Introduction to large-scale optimization (Lecture 3)

Suvrit Sra

Massachusetts Institute of Technology

Microsoft Research India Machine Learning Summer School, June 2015

Course materials

http://suvrit.de/teach/msr2015/

- Some references:
 - Introductory lectures on convex optimization Nesterov
 - Convex optimization Boyd & Vandenberghe
 - Nonlinear programming Bertsekas
 - Convex Analysis Rockafellar
 - Fundamentals of convex analysis Urruty, Lemaréchal
 - Lectures on modern convex optimization Nemirovski
 - Optimization for Machine Learning Sra, Nowozin, Wright
- Some related courses:
 - EE227A, Spring 2013, (UC Berkeley)
 - 10-801, Spring 2014 (CMU)
 - EE364a,b (Boyd, Stanford)
 - EE236b,c (Vandenberghe, UCLA)
- NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Outline

- Recap on convexity
- Recap on duality, optimality
- First-order optimization algorithms
- Proximal methods, operator splitting
- Incremental methods, stochastic gradient
- High-level view of parallel, distributed

Large-scale ML

Regularized Empirical Risk Minimization

$$\min_{\boldsymbol{w}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{y}_i, \boldsymbol{w}^T \boldsymbol{x}_i) + \lambda \boldsymbol{r}(\boldsymbol{w}).$$

This is the f(w) + r(w) "composite objective" form we saw. (e.g., regression, logistic regression, lasso, CRFs, etc.)

Large-scale ML

Regularized Empirical Risk Minimization

$$\min_{\boldsymbol{w}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{y}_i, \boldsymbol{w}^T \boldsymbol{x}_i) + \lambda \boldsymbol{r}(\boldsymbol{w}).$$

This is the f(w) + r(w) "composite objective" form we saw. (e.g., regression, logistic regression, lasso, CRFs, etc.)

- training data: $(x_i, y_i) \in \mathbb{R}^d \times \mathcal{Y}$ (i.i.d.)
- large-scale ML: Both *d* and *n* are large:
 - ► *d*: dimension of each input sample
 - ▶ *n*: number of training data points / samples
- Assume training data "sparse"; so total datasize $\ll dn$.
- Running time O(#nnz)

Regularized Risk Minimization

Training cost $\widehat{F}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, w^T x_i) + \lambda r(w)$ Generalization $F(w) = \mathbb{E}_{(x,y)}[\ell(y, w^T x)] + \lambda r(w)$

Regularized Risk Minimization

Training cost
$$\widehat{F}(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, w^T x_i) + \lambda r(w)$$

Generalization $F(w) = \mathbb{E}_{(x,y)}[\ell(y, w^T x)] + \lambda r(w)$

Single pass through data for F(w) by sampling *n* points **Multiple passes** if only minimizing empirical cost $\widehat{F}(w)$

 $\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$ (f: loss; x: parameters; ξ : data samples)

Setup 1. $\mathcal{X} \subset \mathbb{R}^d$ compact convex set

 $\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$ (*f*: loss; *x*: parameters; ξ : data samples)

Setup

- **1.** $\mathcal{X} \subset \mathbb{R}^d$ compact convex set
- **2.** ξ r.v. with distribution P on $\Omega \subset \mathbb{R}^d$

 $\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$ (*f*: loss; *x*: parameters; ξ : data samples)

Setup

- **1.** $\mathcal{X} \subset \mathbb{R}^d$ compact convex set
- **2.** ξ r.v. with distribution P on $\Omega \subset \mathbb{R}^d$
- 3. The expectation

$$\mathbb{E}_{\xi}[f(x,\xi)] = \int_{\Omega} f(x,\xi) dP(\xi)$$

is well-defined and finite valued for every $x \in \mathcal{X}$.

 $\min_{x \in \mathcal{X}} F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$ (*f*: loss; *x*: parameters; ξ : data samples)

Setup

- **1.** $\mathcal{X} \subset \mathbb{R}^d$ compact convex set
- **2.** ξ r.v. with distribution P on $\Omega \subset \mathbb{R}^d$
- 3. The expectation

$$\mathbb{E}_{\xi}[f(x,\xi)] = \int_{\Omega} f(x,\xi) dP(\xi)$$

is well-defined and finite valued for every $x \in \mathcal{X}$. 4. For every $\xi \in \Omega$, $f(\cdot, \xi)$ is convex

Assumption 1: Possible to generate iid samples $\xi_1, \xi_2, ...$ **Assumption 2:** Oracle yields stochastic gradient $g(x, \xi)$, i.e.,

 $G(x) := \mathbb{E}[g(x,\xi)]$ s.t. $G(x) \in \partial F(x)$.

Assumption 1: Possible to generate iid samples $\xi_1, \xi_2, ...$ **Assumption 2:** Oracle yields stochastic gradient $g(x, \xi)$, i.e., $G(x) := \mathbb{E}[q(x, \xi)]$ s.t. $G(x) \in \partial F(x)$.

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

 $\partial F(x) = \mathbb{E}[\partial_x f(x,\xi)].$

Assumption 1: Possible to generate iid samples $\xi_1, \xi_2, ...$ **Assumption 2:** Oracle yields stochastic gradient $g(x, \xi)$, i.e., $G(x) := \mathbb{E}[g(x, \xi)]$ s.t. $G(x) \in \partial F(x)$.

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of *x*, then

$$\partial F(x) = \mathbb{E}[\partial_x f(x,\xi)].$$

▶ So $g(x, \omega) \in \partial_x f(x, \omega)$ is a stochastic subgradient.

- Stochastic Approximation (SA) / Stochastic gradient (SGD)
 - Sample ξ_k iid

- Stochastic Approximation (SA) / Stochastic gradient (SGD)
 - Sample ξ_k iid
 - Generate stochastic subgradient $g(x, \xi)$

- Sample ξ_k iid
- Generate stochastic subgradient $g(x, \xi)$
- Use that in a subgradient method

- Sample ξ_k iid
- Generate stochastic subgradient $g(x, \xi)$
- ► Use that in a subgradient method
- Sample average approximation (SAA)

- Sample ξ_k iid
- Generate stochastic subgradient $g(x, \xi)$
- ► Use that in a subgradient method
- Sample average approximation (SAA)
 - Generate *n* iid samples, ξ_1, \ldots, ξ_n

- Sample ξ_k iid
- Generate stochastic subgradient $g(x, \xi)$
- ► Use that in a subgradient method
- Sample average approximation (SAA)
 - Generate *n* iid samples, ξ_1, \ldots, ξ_n
 - Consider empirical objective $\hat{F}_n := n^{-1} \sum_i f(x, \xi_i)$

- Stochastic Approximation (SA) / Stochastic gradient (SGD)
 - Sample ξ_k iid
 - Generate stochastic subgradient $g(x, \xi)$
 - Use that in a subgradient method
- Sample average approximation (SAA)
 - Generate *n* iid samples, ξ_1, \ldots, ξ_n
 - Consider empirical objective $\hat{F}_n := n^{-1} \sum_i f(x, \xi_i)$
 - SAA refers to creation of this sample average problem
 - Minimizing \hat{F}_n still needs to be done!

Stochastic gradient

SA or stochastic (sub)-gradient

- Let $x_0 \in \mathcal{X}$
- ▶ For $k \ge 0$
 - Sample ξ_k ; compute $g(x_k, \xi_k)$ using oracle
 - Update $x_{k+1} = P_{\mathcal{X}}(x_k \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

Stochastic gradient

SA or stochastic (sub)-gradient

- Let $x_0 \in \mathcal{X}$
- ▶ For $k \ge 0$
 - Sample ξ_k ; compute $g(x_k, \xi_k)$ using oracle
 - Update $x_{k+1} = P_{\mathcal{X}}(x_k \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

We'll simply write

$$\mathbf{x}_{k+1} = \mathbf{P}_{\mathcal{X}}(\mathbf{x}_k - \alpha_k \mathbf{g}_k)$$

Stochastic gradient

SA or stochastic (sub)-gradient

- Let $x_0 \in \mathcal{X}$
- ▶ For $k \ge 0$
 - Sample ξ_k ; compute $g(x_k, \xi_k)$ using oracle
 - Update $x_{k+1} = P_{\mathcal{X}}(x_k \alpha_k g(x_k, \xi_k))$, where $\alpha_k > 0$

We'll simply write

$$\mathbf{x}_{k+1} = \mathbf{P}_{\mathcal{X}} \big(\mathbf{x}_k - \alpha_k \mathbf{g}_k \big)$$

► x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random

- ► x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $||x_k x^*||^2$

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ► Stochastic subgradient hinges upon: $\mathbb{E}[||x_k x^*||^2]$

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ► Stochastic subgradient hinges upon: $\mathbb{E}[||x_k x^*||^2]$

Denote:
$$R_k := ||x_k - x^*||^2$$
 and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ► Stochastic subgradient hinges upon: $\mathbb{E}[||x_k x^*||^2]$

Denote: $R_k := ||x_k - x^*||^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$ **Bounding** R_{k+1} $R_{k+1} = ||x_{k+1} - x^*||_2^2 = ||P_{\mathcal{X}}(x_k - \alpha_k q_k) - P_{\mathcal{X}}(x^*)||_2^2$

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ► Stochastic subgradient hinges upon: $\mathbb{E}[||x_k x^*||^2]$

Denote: $R_k := ||x_k - x^*||^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$ **Bounding** R_{k+1}

$$\begin{array}{rcl} R_{k+1} &=& \|x_{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ &\leq& \|x_k - x^* - \alpha_k g_k\|_2^2 \end{array}$$

- x_k depends on rvs ξ_1, \ldots, ξ_{k-1} , so itself random
- Of course, x_k does not depend on ξ_k
- Subgradient method analysis hinges upon: $||x_k x^*||^2$
- ► Stochastic subgradient hinges upon: $\mathbb{E}[||x_k x^*||^2]$

Denote: $R_k := ||x_k - x^*||^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[||x_k - x^*||^2]$

Bounding *R*_{k+1}

$$\begin{aligned} & \mathcal{R}_{k+1} &= \|x_{k+1} - x^*\|_2^2 = \|\mathcal{P}_{\mathcal{X}}(x_k - \alpha_k g_k) - \mathcal{P}_{\mathcal{X}}(x^*)\|_2^2 \\ &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \mathcal{R}_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle. \end{aligned}$$

 $R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$

$$R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ► Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

$$R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ► Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$\mathbf{r}_{k+1} \leq \mathbf{r}_k + \alpha_k^2 \mathbf{M}^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

▶ We need to now get a handle on the last term

$$R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ► Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ► Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] =$$
$$R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ► Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ► Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E} \{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}] \}$$
$$=$$

$$R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ► Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- ▶ We need to now get a handle on the last term
- ► Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E}\left\{\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}]\right\}$$
$$= \mathbb{E}\left\{\langle x_k - x^*, \mathbb{E}[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle\right\}$$

$$R_{k+1} \leq R_k + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle$$

- ► Assume: $||g_k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g_k, x_k - x^* \rangle].$$

- We need to now get a handle on the last term
- ► Since x_k is independent of ξ_k , we have

$$\mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle] = \mathbb{E}\left\{ \mathbb{E}[\langle x_k - x^*, g(x_k, \xi_k) \rangle \mid \xi_{[1..(k-1)]}] \right\}$$

= $\mathbb{E}\left\{ \langle x_k - x^*, \mathbb{E}[g(x_k, \xi_k) \mid \xi_{[1..(k-1)]}] \rangle \right\}$
= $\mathbb{E}[\langle x_k - x^*, G_k \rangle], \quad G_k \in \partial F(x_k).$

t remains to bound:
$$\mathbb{E}[\langle x_k - x^*, G_k \rangle]$$

It remains to bound: $\mathbb{E}[\langle x_k - x^*, G_k \rangle]$

▶ Since *F* is cvx, $F(x) \ge F(x_k) + \langle G_k, x - x_k \rangle$ for any $x \in \mathcal{X}$.

It remains to bound:
$$\mathbb{E}[\langle x_k - x^*, G_k \rangle]$$

- ▶ Since *F* is cvx, $F(x) \ge F(x_k) + \langle G_k, x x_k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular

$$2\alpha_{k}\mathbb{E}[F(x^{*}) - F(x_{k})] \geq 2\alpha_{k}\mathbb{E}[\langle G_{k}, x^{*} - x_{k} \rangle]$$

It remains to bound:
$$\mathbb{E}[\langle x_k - x^*, G_k \rangle]$$

Since F is cvx, F(x) ≥ F(x_k) + ⟨G_k, x - x_k⟩ for any x ∈ X.
Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle]$$

It remains to bound:
$$\mathbb{E}[\langle x_k - x^*, G_k \rangle]$$

Since F is cvx, F(x) ≥ F(x_k) + ⟨G_k, x - x_k⟩ for any x ∈ X.
Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$\begin{aligned} r_{k+1} &\leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] \\ 2\alpha_k \mathbb{E}[\langle G_k, x_k - x^* \rangle] &\leq r_k - r_{k+1} + \alpha_k M^2 \end{aligned}$$

It remains to bound:
$$\mathbb{E}[\langle x_k - x^*, G_k \rangle]$$

Since F is cvx, F(x) ≥ F(x_k) + ⟨G_k, x - x_k⟩ for any x ∈ X.
Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$\begin{array}{rcl} r_{k+1} &\leq & r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, \, x_k - x^* \rangle] \\ 2\alpha_k \mathbb{E}[\langle G_k, \, x_k - x^* \rangle] &\leq & r_k - r_{k+1} + \alpha_k M^2 \\ 2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] &\leq & r_k - r_{k+1} + \alpha_k M^2. \end{array}$$

It remains to bound:
$$\mathbb{E}[\langle x_k - x^*, G_k \rangle]$$

Since F is cvx, F(x) ≥ F(x_k) + ⟨G_k, x - x_k⟩ for any x ∈ X.
Thus, in particular

$$2\alpha_k \mathbb{E}[F(x^*) - F(x_k)] \ge 2\alpha_k \mathbb{E}[\langle G_k, x^* - x_k \rangle]$$

Plug this bound back into the r_{k+1} inequality:

$$\begin{array}{rcl} r_{k+1} &\leq & r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G_k, \, x_k - x^* \rangle] \\ 2\alpha_k \mathbb{E}[\langle G_k, \, x_k - x^* \rangle] &\leq & r_k - r_{k+1} + \alpha_k M^2 \\ 2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] &\leq & r_k - r_{k+1} + \alpha_k M^2. \end{array}$$

We've bounded the expected progress; What now?

 $2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.$

$$2\alpha_k \mathbb{E}[F(x_k) - F(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $i = 1, ..., k$, to obtain
$$\sum_{k=1}^{k} (2\alpha_k \mathbb{E}[F(x_k) - f(x^*)]) \le r_k - r_{k+1} + M^2 \sum_{k=1}^{k} \alpha_k^2$$

$$\sum_{i=1}^{k} (2\alpha_{i}\mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2}\sum_{i} \alpha_{i}^{2}$$

0

$$2\alpha_{k}\mathbb{E}[F(x_{k}) - F(x^{*})] \leq r_{k} - r_{k+1} + \alpha_{k}M^{2}.$$

Sum up over $i = 1, ..., k$, to obtain
$$\sum_{i=1}^{k} (2\alpha_{i}\mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$
$$\leq r_{1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$

** > 1

. .2

$$2\alpha_{k}\mathbb{E}[F(x_{k}) - F(x^{*})] \leq r_{k} - r_{k+1} + \alpha_{k}M^{2}.$$

Sum up over $i = 1, ..., k$, to obtain
$$\sum_{i=1}^{k} (2\alpha_{i}\mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$
$$\leq r_{1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$

Divide both sides by $\sum_i \alpha_i$, so

$$2\alpha_{k}\mathbb{E}[F(x_{k}) - F(x^{*})] \leq r_{k} - r_{k+1} + \alpha_{k}M^{2}.$$

Sum up over $i = 1, ..., k$, to obtain
$$\sum_{i=1}^{k} (2\alpha_{i}\mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$
$$\leq r_{1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$

Divide both sides by $\sum_{i} \alpha_{i}$, so Set $\gamma_{i} = \frac{\alpha_{i}}{\sum_{i}^{k} \alpha_{i}}$. Thus, $\gamma_{i} \ge 0$ and $\sum_{i} \gamma_{i} = 1$. .2

$$2\alpha_{k}\mathbb{E}[F(x_{k}) - F(x^{*})] \leq r_{k} - r_{k+1} + \alpha_{k}M^{2}.$$

Sum up over $i = 1, ..., k$, to obtain
$$\sum_{i=1}^{k} (2\alpha_{i}\mathbb{E}[F(x_{i}) - f(x^{*})]) \leq r_{1} - r_{k+1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$
$$\leq r_{1} + M^{2}\sum_{i} \alpha_{i}^{2}.$$

Divide both sides by $\sum_{i} \alpha_{i}$, so \blacktriangleright Set $\gamma_{i} = \frac{\alpha_{i}}{\sum_{i}^{k} \alpha_{i}}$. \blacktriangleright Thus, $\gamma_{i} \ge 0$ and $\sum_{i} \gamma_{i} = 1$ $\mathbb{E}\left[\sum_{i} \gamma_{i}(F(x_{i}) - F(x^{*}))\right] \le \frac{r_{1} + M^{2} \sum_{i} \alpha_{i}^{2}}{2 \sum_{i} \alpha_{i}}$

Introduction to large-scale optimization

. .2

• But we wish to say something about x_k

- But we wish to say something about x_k
- Since $\gamma_i \ge 0$ and $\sum_{i=1}^{k} \gamma_i = 1$, and we have $\gamma_i F(x_i)$

- But we wish to say something about x_k
- Since $\gamma_i \ge 0$ and $\sum_{i=1}^{k} \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about averaged

$$\bar{\mathbf{x}}_k := \sum_{i}^k \gamma_i \mathbf{x}_i$$

- But we wish to say something about x_k
- Since $\gamma_i \ge 0$ and $\sum_{i=1}^{k} \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about averaged

$$\bar{\mathbf{x}}_k := \sum_{i}^k \gamma_i \mathbf{x}_i.$$

• $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity

- ▶ But we wish to say something about *x_k*
- Since $\gamma_i \ge 0$ and $\sum_{i=1}^{k} \gamma_i = 1$, and we have $\gamma_i F(x_i)$
- Easier to talk about averaged

$$\bar{\mathbf{x}}_k := \sum_i^k \gamma_i \mathbf{x}_i.$$

- $f(\bar{x}_k) \leq \sum_i \gamma_i F(x_i)$ due to convexity
- ► So we finally obtain the inequality

$$\mathbb{E}\big[F(\bar{x}_k)-F(x^*)\big] \leq \frac{r_1+M^2\sum_i \alpha_i^2}{2\sum_i \alpha_i}.$$

Introduction to large-scale optimization

SGD – finally

♦ Let $D_{\mathcal{X}} := \max_{x \in \mathcal{X}} ||x - x^*||_2$ (act. only need $||x_1 - x^*|| \le D_{\mathcal{X}}$) ♦ Assume $\alpha_i = \alpha$ is a constant. Observe that

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_{\mathcal{X}}^2 + M^2 k \alpha^2}{2k\alpha}$$

A Minimize rhs over $\alpha > 0$; thus $\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{D_{\mathcal{X}}M}{\sqrt{k}}$

♠ If k is not fixed in advance, then choose

$$\alpha_i = \frac{\theta D_{\mathcal{X}}}{M\sqrt{i}}, \quad i = 1, 2, \dots$$

We showed
$$O(1/\sqrt{k})$$
 rate

Introduction to large-scale optimization

Stochastic optimization – smooth

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $||x_i - x^*|| \le D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then, $\mathbb{E}[\sum_{i=1}^k F(x_{i+1}) - F(x^*)] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^k \frac{\mathbb{E}[||e_i||^2]}{2\eta_i}$.

Stochastic optimization – smooth

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $||x_i - x^*|| \le D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then, $\mathbb{E}[\sum_{i=1}^k F(x_{i+1}) - F(x^*)] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^k \frac{\mathbb{E}[||e_i||^2]}{2\eta_i}$.

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(ar{x}_k)-F(x^*)] \leq rac{D^2}{2lpha_kk}+rac{1}{k}\sum_{i=1}^krac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

Stochastic optimization – smooth

Theorem Let $f(x,\xi)$ be C_L^1 convex. Let $e_k := \nabla F(x_k) - g_k$ satisfy $\mathbb{E}[e_k] = 0$. Let $||x_i - x^*|| \le D$. Also, let $\alpha_i = 1/(L + \eta_i)$. Then,

$$\mathbb{E}\left[\sum_{i=1}^{n} F(x_{i+1}) - F(x^*)\right] \le \frac{D^2}{2\alpha_k} + \sum_{i=1}^{n} \frac{\mathbb{E}\left[\left|\theta_i\right|\right|^2}{2\eta_i}$$

As before, by using $\bar{x}_k = \frac{1}{k} \sum_{i=1}^k x_{i+1}$ we get

$$\mathbb{E}[F(ar{x}_k)-F(x^*)] \leq rac{D^2}{2lpha_kk}+rac{1}{k}\sum_{i=1}^krac{\mathbb{E}[\|e_i\|^2]}{2\eta_i}.$$

► Using $\alpha_i = L + \eta_i$ where $\eta_i \propto 1/\sqrt{i}$ we obtain $\mathbb{E}[F(\bar{x}_k) - F(x^*)] = O(\frac{LD^2}{k}) + O(\frac{\sigma D}{\sqrt{k}})$

where σ bounds the variance $\mathbb{E}[||\boldsymbol{e}_i||^2]$

Minimax optimal rate

Stochastic optimization – strongly convex

Theorem Suppose $f(x, \xi)$ are convex and F(x) is μ -strongly convex. Let $\bar{x}_k := \sum_{i=0}^{k-1} \theta_i x_i$, where $\theta_i = \frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$\mathbb{E}[F(\bar{x}_k) - F(x^*)] \leq \frac{2M^2}{\mu(k+1)}.$$

(Lacoste-Julien, Schmidt, Bach (2012)) With uniform averaging $\bar{x}_k = \frac{1}{k} \sum_i x_i$, we get $O(\log k/k)$.

Extensions

Proximal stochastic gradient

$$x_{k+1} = \operatorname{prox}_{\alpha_k h}[x_k - \alpha_k g(x_k, \xi_k)]$$

(Xiao 2010; Hu et al. 2009)

Accelerated versions also possible (*Ghadimi, Lan (2013)*)

Related methods:

Regularized dual averaging (Nesterov, 2009; Xiao 2010)

Stochastic mirror-prox (Nemirovski et al. 2009)

. . . .

SAA / Batch problem

$$\min F(x) = \mathbb{E}[f(x,\xi)]$$

Sample Average Approximation (SAA):

- **Collect samples** ξ_1, \ldots, ξ_n
- Empirical objective: $\hat{F}(x) := \frac{1}{n} \sum_{i=1}^{n} f(x, \xi_i)$
- aka Empirical Risk Minimization

SAA / Batch problem

$$\min F(x) = \mathbb{E}[f(x,\xi)]$$

Sample Average Approximation (SAA):

- Collect samples ξ_1, \ldots, ξ_n
- Empirical objective: $\widehat{F}(x) := \frac{1}{n} \sum_{i=1}^{n} f(x, \xi_i)$
- aka Empirical Risk Minimization
- Note: we often optimize *F* using stochastic subgradient; but theoretical guarantees are then only on the *empirical* suboptimality *E*[*F*(*x*_k)] ≤ ...

SAA / Batch problem

$$\min F(x) = \mathbb{E}[f(x,\xi)]$$

Sample Average Approximation (SAA):

- Collect samples ξ_1, \ldots, ξ_n
- Empirical objective: $\widehat{F}(x) := \frac{1}{n} \sum_{i=1}^{n} f(x, \xi_i)$
- aka Empirical Risk Minimization
- Note: we often optimize *F* using stochastic subgradient; but theoretical guarantees are then only on the *empirical* suboptimality *E*[*F*(*x*_k)] ≤ ...
- For guarantees on $F(\bar{x}_k)$ more work (*regularization* + concentration)

Finite-sum problems

$$\min_{x\in\mathbb{R}^d} \quad f(x)=\frac{1}{n}\sum_{i=1}^n f_i(x).$$

Finite-sum problems

$$\min_{x\in\mathbb{R}^d} \quad f(x)=\frac{1}{n}\sum_{i=1}^n f_i(x).$$

Gradient / subgradient methods

$$\begin{aligned} x_{k+1} &= x_k - \alpha_k \nabla f(x_k) \\ x_{k+1} &= x_k - \alpha_k g(x_k), \quad g \in \partial f(x_k) \\ x_{k+1} &= \operatorname{prox}_{\alpha_k r} (x_k - \alpha_k \nabla f(x_k)) \end{aligned}$$

Stochastic gradient

At iteration k, we randomly pick an integer $i(k) \in \{1, 2, ..., m\}$ $x_{k+1} = x_k - \alpha_k \nabla f_{i(k)}(x_k)$

- The update requires only gradient for $f_{i(k)}$
- Uses unbiased estimate $\mathbb{E}[\nabla f_{i(k)}] = \nabla f$
- One iteration now *n* times faster using $\nabla f(x)$
- But how many iterations do we need?

Stochastic gradient

Method	Assumptions	Full	Stochastic
Subgradient	convex	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Subgradient	strongly cvx	O(1/k)	O(1/k)

So using stochastic subgradient, solve *n* times faster.

Stochastic gradient

Method	Assumptions	Full	Stochastic
Subgradient	convex	$O(1/\sqrt{k})$	$O(1/\sqrt{k})$
Subgradient	strongly cvx	O(1/k)	O(1/k)

So using stochastic subgradient, solve *n* times faster.

Method	Assumptions	Full	Stochastic
Gradient	convex	O(1/k)	$O(1/\sqrt{k})$
Gradient	strongly cvx	$O((1-\mu/L)^k)$	O(1/k)

- For smooth problems, stochastic gradient needs more iterations

- Widely used in ML, rapid initial convergence

- Several speedup techniques studied, but worst case remains same

Hybrid methods

► Hybrid of stochastic gradient with full gradient. Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

- store the gradients of ∇f_i for i = 1, ..., n
- Select uniformly at random $i(k) \in \{1, \ldots, n\}$
- Perform the update

$$x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^n y_i^k \quad y_i^k = \begin{cases} \nabla f_i(x_k) & \text{if } i = i(k) \\ y_i^{k-1} & \text{otherwise.} \end{cases}$$
Hybrid methods

► Hybrid of stochastic gradient with full gradient. Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

- store the gradients of ∇f_i for i = 1, ..., n
- Select uniformly at random $i(k) \in \{1, \ldots, n\}$
- Perform the update

$$x_{k+1} = x_k - \frac{\alpha_k}{n} \sum_{i=1}^n y_i^k \quad y_i^k = \begin{cases} \nabla f_i(x_k) & \text{if } i = i(k) \\ y_i^{k-1} & \text{otherwise.} \end{cases}$$

- Randomized / stochastic version of incremental gradient method of Blatt et al (2008)
- Storage overhead; acceptable in some ML settings:
 - $f_i(x) = \ell(I_i, x^T \Phi(a_i)), \nabla f_i(x) = \nabla \ell(I_i, x^T \Phi(a_i)) \Phi(a_i)$
 - Store only *n* scalars (since depends only on $x^T a_i$)

SAG

Method	Assumptions	Rate
Gradient	convex	<i>O</i> (1/ <i>k</i>)
Gradient	strongly cvx	$O((1-\mu/L)^k)$
Stochastic	strongly cvx	O(1/k)
SAG	strongly convex	$O((1 - \min\{\frac{\mu}{n}, \frac{1}{8n}\})^k)$

This speedup also observed in practice

Complicated convergence analysis

Similar rates for many other methods

- stochastic dual coordinate (SDCA); [Shalev-Shwartz, Zhang, 2013]
- stochastic variance reduced gradient (SVRG); [Johnson, Zhang, 2013]
- proximal SVRG [Xiao, Zhang, 2014]
- hybrid of SAG and SVRG, SAGA (also proximal); [Defazio et al, 2014]
- accelerated versions [Lin, Mairal, Harchoui; 2015]
- incremental Newton method, S2SGD and MS2GD, ...

For
$$s \ge 1$$
:
 $\bar{x} \leftarrow \bar{x}_{s-1}$
 $\bar{g} \leftarrow \nabla F(\bar{x})$

(full gradient computation)

(full gradient computation) (randomized stopping)

For
$$s \ge 1$$
:
1 $\bar{x} \leftarrow \bar{x}_{s-1}$
2 $\bar{g} \leftarrow \nabla F(\bar{x})$ (full gradient computation)
3 $x_0 = \bar{x}; \quad t \leftarrow \text{RAND}(1, m)$ (randomized stopping)
4 For $k = 0, 1, \dots, t-1$
Bandomly pick $i(k) \in [1..m]$
 $x_{k+1} = x_k - \eta_k (\nabla f_{i(k)}(x_k) - \nabla f_{i(k)}(\bar{x}) + \bar{g})$
5 $\bar{x}_s \leftarrow x_t$

Theorem Assume each $f_i(x)$ is smooth, and F(x) stronglyconvex. Then, for sufficiently large *n*, there is $\alpha < 1$ s.t.

$$\mathbb{E}[F(\bar{\boldsymbol{x}}_{s}) - F(\boldsymbol{x}^{*})] \leq \alpha^{s}[F(\bar{\boldsymbol{x}}_{0}) - F(\boldsymbol{x}^{*})]$$

Introduction to large-scale optimization

Motivating application

Formulation as matrix factorization

Introduction to large-scale optimization

Formulation as matrix factorization

$$\begin{bmatrix} | & \vdots & | \\ y_1 & | & y_n \\ | & \vdots & | \end{bmatrix} \approx \begin{bmatrix} | & \vdots & | \\ a_1 & | & a_t \\ | & \vdots & | \end{bmatrix} * X$$

Rewrite: a * x = Ax = Xa

$$\begin{bmatrix} y_1 & y_2 & \cdots & y_t \end{bmatrix} \approx X \begin{bmatrix} a_1 & a_2 & \cdots & a_t \end{bmatrix}$$

 $Y \approx XA$

Solve this scalably, because...

Introduction to large-scale optimization

Example, 5000 frames of size 512×512 $Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure \approx 70 billion parameters! With structure, \approx 4.8 million parameters!

Example, 5000 frames of size 512×512 $Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure \approx 70 billion parameters! With structure, \approx 4.8 million parameters!

> Despite structure, alternating minimization **impractical** Fix *X*, solve for *A*, requires updating \approx 4.5 million params

$$\min_{A_{t,x}} \quad \sum_{t=1}^{T} \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

$$\min_{A_{t,x}} \quad \sum_{t=1}^{T} \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess \boldsymbol{x}_0 For t = 1, 2, ...1. Observe image \boldsymbol{y}_t ;

$$\min_{A_{t,x}} \quad \sum_{t=1}^{T} \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess \mathbf{x}_0 For t = 1, 2, ...1. Observe image \mathbf{y}_t ; 2. Use \mathbf{x}_{t-1} to estimate \mathbf{A}_t

$$\min_{A_{t},x} \quad \sum_{t=1}^{T} \frac{1}{2} \|y_{t} - A_{t}x\|^{2} + \Omega(x) + \Gamma(A_{t})$$

Initialize guess \boldsymbol{x}_0 For t = 1, 2, ...

- 1. Observe image **y**_t;
- 2. Use \mathbf{x}_{t-1} to estimate \mathbf{A}_t
- 3. Solve optimization subproblem to obtain x_t

$$\min_{A_{t,x}} \quad \sum_{t=1}^{T} \frac{1}{2} \|y_t - A_t x\|^2 + \Omega(x) + \Gamma(A_t)$$

Initialize guess \mathbf{x}_0 For t = 1, 2, ...

- 1. Observe image **y**_t;
- 2. Use \mathbf{x}_{t-1} to estimate \mathbf{A}_t
- 3. Solve optimization subproblem to obtain x_t

Do Steps 2, 3 **inexactly** \implies realtime processing!

[Harmeling, Hirsch, Sra, Schölkopf (ICCP'09); Hirsch, Sra, Schölkopf, Harmeling (CVPR'10); Hirsch, Harmeling, Sra, Schölkopf (Astron. & Astrophy. (AA) 2011); Harmeling, Hirsch, Sra, Schölkopf, Schuler (Patent 2012); Sra (NIPS'12)]

Algorithmic framework

$$\begin{array}{rcl} & {\sf Key \ idea} \\ \min_{X,A} \Phi(X,A) & \equiv & \min_X \left(\min_A \Phi(X,A) \right) = \end{array}$$

Algorithmic framework

$$\begin{array}{rcl} & {\sf Key \ idea} \\ \min_{X,A} \Phi(X,A) & \equiv & \min_X \left(\min_A \Phi(X,A) \right) = \min_X F(X) \\ F(X) & := & \min_A \Phi(X,A) \end{array}$$

Algorithmic framework

$$\begin{array}{rcl} & {\sf Key \ idea} \\ \min_{X,A} \Phi(X,A) & \equiv & \min_X \left(\min_A \Phi(X,A) \right) = \min_X F(X) \\ F(X) & := & \min_A \Phi(X,A) \end{array}$$

$$\Phi(X, A) = \|Y - XA\|^2 + \Omega(X) + \Gamma(A)$$

$$\longleftrightarrow \min_X F(X) + \Omega(X)$$

but now *F* is **nonconvex**

Introduction to large-scale optimization

Inexactness: key to scalability

$$X^{\mathsf{new}} \leftarrow \mathsf{prox}_{\alpha\Omega}(X - \alpha \nabla F(X))$$

Inexactness: key to scalability

$$X^{new} \leftarrow \operatorname{prox}_{\alpha\Omega}(X - \alpha \nabla F(X) + e) + p$$

If gradient is inexactly computed ________

Inexactness: key to scalability

Example: Say
$$F(X) = \sum_{i=1}^{m} f_i(X)$$

Instead of $\nabla F(X)$, use $\nabla f_k(x)$ —incremental!

m times cheaper (*m* can be in the millions or more)

Inexactness: key to scalability

incremental prox-method for large-scale nonconvex

[Sra (NIPS 12)]; (also arXiv: [math.OC-1109.0258])

Results on real data

Parallel methods

Introduction to large-scale optimization

min f(x) where $x \in \mathbb{R}^N$

min f(x) where $x \in \mathbb{R}^N$

Assume gradient of block *i* is Lipschitz continuous

$\|\nabla_i f(x+E_ih)-\nabla_i f(x)\|_* \leq L_i \|h\|$

Block gradient $\nabla_i f(x)$ is projection of full grad: $E_i^T \nabla f(x)$

min f(x) where $x \in \mathbb{R}^N$

Assume gradient of block *i* is Lipschitz continuous

$\|\nabla_i f(x+E_ih)-\nabla_i f(x)\|_* \leq L_i \|h\|$

Block gradient $\nabla_i f(x)$ is projection of full grad: $E_i^T \nabla f(x)$

min f(x) where $x \in \mathbb{R}^N$

Assume gradient of block *i* is Lipschitz continuous

$$\|\nabla_i f(x+E_ih)-\nabla_i f(x)\|_* \leq L_i \|h\|$$

Block gradient $\nabla_i f(x)$ is projection of full grad: $E_i^T \nabla f(x)$

Block Coordinate "Gradient" Descent

min f(x) where $x \in \mathbb{R}^N$

Assume gradient of block *i* is Lipschitz continuous

$$\|\nabla_i f(x+E_ih)-\nabla_i f(x)\|_* \leq L_i \|h\|$$

Block gradient $\nabla_i f(x)$ is projection of full grad: $E_i^T \nabla f(x)$

Block Coordinate "Gradient" Descent

► Using the descent lemma, we have blockwise upper bounds

$$f(x + E_i h) \leq f(x) + \langle \nabla_i f(x), h \rangle + \frac{L_i}{2} \|h\|^2$$
, for $i = 1, \dots, n$.

► At each step, minimize these upper bounds!

For $k \ge 0$ (no init. of x necessary)

- For $k \ge 0$ (no init. of x necessary)
- Pick a block *i* from [*n*] with probability $p_i > 0$

- For $k \ge 0$ (no init. of x necessary)
- Pick a block *i* from [*n*] with probability $p_i > 0$
- Optimize upper bound (partial gradient step) for block i

$$h = \operatorname*{argmin}_{h} f(x_k) + \langle \nabla_i f(x_k), h \rangle + \frac{L_i}{2} \|h\|^2$$
$$h = -\frac{1}{L_i} \nabla_i f(x_k)$$

- For $k \ge 0$ (no init. of x necessary)
- Pick a block *i* from [*n*] with probability $p_i > 0$
- Optimize upper bound (partial gradient step) for block i

$$h = \operatorname*{argmin}_{h} f(x_k) + \langle \nabla_i f(x_k), h \rangle + \frac{L_i}{2} \|h\|^2$$
$$h = -\frac{1}{L_i} \nabla_i f(x_k)$$

► Update the impacted coordinates of *x*, formally

- For $k \ge 0$ (no init. of x necessary)
- Pick a block *i* from [*n*] with probability $p_i > 0$
- Optimize upper bound (partial gradient step) for block i

$$h = \operatorname*{argmin}_{h} f(x_k) + \langle \nabla_i f(x_k), h \rangle + \frac{L_i}{2} \|h\|^2$$
$$h = -\frac{1}{L_i} \nabla_i f(x_k)$$

► Update the impacted coordinates of *x*, formally

$$\begin{aligned} x_{k+1}^{(i)} \leftarrow x_k^{(i)} + h \\ x_{k+1} \leftarrow x_k - \frac{1}{L_i} E_i \nabla_i f(x_k) \end{aligned}$$

- For $k \ge 0$ (no init. of x necessary)
- Pick a block *i* from [*n*] with probability $p_i > 0$
- Optimize upper bound (partial gradient step) for block i

$$h = \operatorname*{argmin}_{h} f(x_k) + \langle \nabla_i f(x_k), h \rangle + \frac{L_i}{2} \|h\|^2$$
$$h = -\frac{1}{L_i} \nabla_i f(x_k)$$

► Update the impacted coordinates of *x*, formally

$$egin{aligned} & x_{k+1}^{(i)} \leftarrow x_k^{(i)} + h \ & x_{k+1} \leftarrow x_k - rac{1}{L_i} E_i
abla_i f(x_k) \end{aligned}$$

Notice: Original BCD had: $x_k^{(i)} = \operatorname{argmin}_h f(\ldots, \underbrace{h}_{block i}, \ldots)$
Randomized BCD

- For $k \ge 0$ (no init. of x necessary)
- Pick a block *i* from [*n*] with probability $p_i > 0$
- Optimize upper bound (partial gradient step) for block i

$$h = \operatorname*{argmin}_{h} f(x_k) + \langle \nabla_i f(x_k), h \rangle + \frac{L_i}{2} \|h\|^2$$
$$h = -\frac{1}{L_i} \nabla_i f(x_k)$$

► Update the impacted coordinates of *x*, formally

$$\begin{aligned} x_{k+1}^{(i)} \leftarrow x_k^{(i)} + h \\ x_{k+1} \leftarrow x_k - \frac{1}{L_i} E_i \nabla_i f(x_k) \end{aligned}$$

Notice: Original BCD had: $x_k^{(i)} = \operatorname{argmin}_h f(\dots, \underbrace{h}_{block}, \dots)$ We'll call this BCM (Block Coordinate Minimization)

Suvrit Sra (MIT)

Introduction to large-scale optimization

Previously

$$\min f(x) = f(x_1,\ldots,x_n)$$

Previously

$$\min f(x) = f(x_1,\ldots,x_n)$$

What if?

$$\min f(x) = \sum_i f_i(x_i)$$

Previously

$$\min f(x) = f(x_1,\ldots,x_n)$$

What if?

min
$$f(x) = \sum_i f_i(x_i)$$

- ► Can solve all *n* problems independently in parallel
- ▶ In theory: *n* times speedup possible compared to serial case

Previously

$$\min f(x) = f(x_1,\ldots,x_n)$$

What if?

min
$$f(x) = \sum_i f_i(x_i)$$

- ► Can solve all *n* problems independently in parallel
- ▶ In theory: *n* times speedup possible compared to serial case
- So if objective functions are "almost separable" we would still expect high speedup, diminished by amount of separability
- ▶ Big data problems often have this "almost separable" structure!

Consider the sparse data matrix

$$\begin{pmatrix} d_{11} & d_{12} & & \\ & d_{22} & d_{23} & \\ & & \ddots & \ddots \end{pmatrix} \in \mathbb{R}^{m \times n},$$

Consider the sparse data matrix

$$\begin{pmatrix} d_{11} & d_{12} & & \\ & d_{22} & d_{23} & \\ & & \ddots & \ddots & \end{pmatrix} \in \mathbb{R}^{m \times n},$$

- Objective $f(x) = \|Dx b\|_2^2 = \sum_{i=1}^m (d_i^T x b_i)^2$ also equals $(d_{11}x_1 + d_{12}x_2 - b_1)^2 + (d_{22}x_2 + d_{23}x_3 - b_2)^2 + \cdots$
- Each term depends on only 2 coordinates
- ► Formally, we could write this as

$$f(x)=\sum\nolimits_{J\in \mathcal{J}}f_J(x),$$

where $\mathcal{J} = \left\{ \left\{1,2\right\}, \left\{2,3\right\},\cdots \right\}$

• Key point: $f_J(x)$ depends only on x_j for $j \in J$.

min
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$

Def. Let \mathcal{J} be a collection of subsets of $\{1, \ldots, n\}$. We say *f* is **partially separable of degree** ω if it can be written as

$$f(x)=\sum_{J\in\mathcal{J}}f_J(x),$$

where each f_J depends only on x_j for $j \in J$, and

$$|\boldsymbol{J}| \leq \boldsymbol{\omega} \quad \forall \boldsymbol{J} \in \mathcal{J}.$$

Example: If $D_{m \times n}$ is a sparse matrix, then $\omega = \max_{1 \le i \le m} \|d_i^T\|_0$

min
$$f(x)$$
 s.t. $x \in \mathbb{R}^n$

Def. Let \mathcal{J} be a collection of subsets of $\{1, \ldots, n\}$. We say *f* is **partially separable of degree** ω if it can be written as

$$f(x)=\sum_{J\in\mathcal{J}}f_J(x),$$

where each f_J depends only on x_j for $j \in J$, and

$$|\boldsymbol{J}| \leq \boldsymbol{\omega} \quad \forall \boldsymbol{J} \in \mathcal{J}.$$

Example: If $D_{m \times n}$ is a sparse matrix, then $\omega = \max_{1 \le i \le m} ||d_i^T||_0$ **Exercise:** Extend this notion to $x = (x^{(1)}, \dots, x^{(n)})$ *Hint:* Now, f_J will depend only on $x^{(j)}$ for $j \in J$

Suvrit Sra (MIT)

Each core runs the computation:

- **1** Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
- **2** Read current state of x_J from shared memory
- 3 For each individual coordinate $j \in J$

 $x_j \leftarrow x_j - \alpha_k [\nabla f_J(x_J)]_j$

Each core runs the computation:

- **1** Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
- 2 Read current state of x_J from shared memory
- 3 For each individual coordinate $j \in J$ $x_j \leftarrow x_j - \alpha_k [\nabla f_J(x_J)]_j$
- ► Atomic update only for $x_j \leftarrow x_j a$ (not for gradient)

Each core runs the computation:

- **1** Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
- 2 Read current state of x_J from shared memory
- 3 For each individual coordinate $j \in J$ $x_j \leftarrow x_j - \alpha_k [\nabla f_J(x_J)]_j$
- ► Atomic update only for $x_j \leftarrow x_j a$ (not for gradient)
- ► Since the actual coordinate *j* can arise in various *J*, processors can overwrite each others' work.

Each core runs the computation:

- **1** Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
- 2 Read current state of x_J from shared memory
- 3 For each individual coordinate $j \in J$ $x_j \leftarrow x_j - \alpha_k [\nabla f_J(x_J)]_j$
- ► Atomic update only for $x_j \leftarrow x_j a$ (not for gradient)
- ► Since the actual coordinate *j* can arise in various *J*, processors can overwrite each others' work.
- But if partial overlaps (separability), coordinate *j* does not appear in too many different subsets *J*, method works fine!

- **1** Choose initial point $x_0 \in \mathbb{R}^N$
- 2 For k ≥ 0
 - Randomly pick (in parallel) a set of blocks $S_k \subset \{1, \ldots, n\}$

- **1** Choose initial point $x_0 \in \mathbb{R}^N$
- 2 For k ≥ 0
 - Randomly pick (in parallel) a set of blocks $S_k \subset \{1, \ldots, n\}$
 - Perform BCD updates (in parallel) for $i \in S_k$

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} - \frac{1}{\beta w_i} \nabla_i f(x_k)$$

- **1** Choose initial point $x_0 \in \mathbb{R}^N$
- 2 For k ≥ 0
 - Randomly pick (in parallel) a set of blocks $S_k \subset \{1, \ldots, n\}$
 - Perform BCD updates (in parallel) for $i \in S_k$

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} - \frac{1}{\beta w_i} \nabla_i f(x_k)$$

- Uniform sampling of blocks (or just coordinates)
- More careful sampling leads to better guarantees

- **1** Choose initial point $x_0 \in \mathbb{R}^N$
- 2 For k ≥ 0
 - Randomly pick (in parallel) a set of blocks $S_k \subset \{1, \ldots, n\}$
 - Perform BCD updates (in parallel) for $i \in S_k$

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} - \frac{1}{\beta w_i} \nabla_i f(x_k)$$

- Uniform sampling of blocks (or just coordinates)
- More careful sampling leads to better guarantees
- Theory requires atomic updates

- **1** Choose initial point $x_0 \in \mathbb{R}^N$
- 2 For k ≥ 0
 - Randomly pick (in parallel) a set of blocks $S_k \subset \{1, \ldots, n\}$
 - Perform BCD updates (in parallel) for $i \in S_k$

$$x_{k+1}^{(i)} \leftarrow x_k^{(i)} - \frac{1}{\beta w_i} \nabla_i f(x_k)$$

- Uniform sampling of blocks (or just coordinates)
- More careful sampling leads to better guarantees
- Theory requires atomic updates
- Useful to implement asynchronously (i.e., use whatever latest x⁽ⁱ⁾ a given core has access to)
- Theory of above method requires guaranteed descent
- Newer asynchronous CD methods also exist (see survey by Wright, 2015)

 Intuition from above: degree of separability strongly correlated with degree of parallelism possible

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose *f* is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/*f*

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose *f* is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/*f*
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose *f* is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/*f*
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden;

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose *f* is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/*f*
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose *f* is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/*f*
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.
- Synchronous vs. asynchronous computation

Poor man's parallelism

Suvrit Sra (MIT)

Introduction to large-scale optimization

min
$$f(x) := \sum_{i=1}^m f_i(x)$$
 $x \in \mathbb{R}^n$.

min
$$f(x) := \sum_{i=1}^m f_i(x) \quad x \in \mathbb{R}^n.$$

Product space trick

min
$$f(x) := \sum_{i=1}^m f_i(x)$$
 $x \in \mathbb{R}^n$.

Product space trick

► Introduce (local) variables (x_1, \ldots, x_m)

min
$$f(x) := \sum_{i=1}^m f_i(x)$$
 $x \in \mathbb{R}^n$.

Product space trick

- ► Introduce (local) variables $(x_1, ..., x_m)$
- ▶ Problem is now over $\mathcal{H}^m := \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (*m*-times)

min
$$f(x) := \sum_{i=1}^m f_i(x)$$
 $x \in \mathbb{R}^n$.

Product space trick

- ► Introduce (local) variables $(x_1, ..., x_m)$
- ▶ Problem is now over $\mathcal{H}^m := \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (*m*-times)
- **Consensus** constraint: $x_1 = x_2 = \ldots = x_m$

$$\min_{\substack{(x_1,\ldots,x_m)\\ \text{s.t.}}} \sum_i f_i(x_i)$$

s.t. $x_1 = x_2 = \cdots = x_m$.

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{1}_{\mathcal{B}}(\boldsymbol{x})$$

where $\boldsymbol{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

$$\min_{\boldsymbol{x}} f(\boldsymbol{x}) + \mathbb{1}_{\mathcal{B}}(\boldsymbol{x})$$
where $\boldsymbol{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

Can solve using proximal splitting methods (e.g., DR, ADMM)

$$\min_{\mathbf{x}} f(\mathbf{x}) + \mathbb{1}_{\mathcal{B}}(\mathbf{x})$$

where $\boldsymbol{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{ \boldsymbol{z} \in \mathcal{H}^m \mid \boldsymbol{z} = (x, x, \dots, x) \}$

- Can solve using proximal splitting methods (e.g., DR, ADMM)
- ► Each component of $f_i(x_i)$ independently in parallel
- ► Communicate / synchronize to ensure consensus
- Asynchronous versions exist (results from 2014, 2015)