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Course materials

http://suvrit.de/teach/msr2015/
Some references:
� Introductory lectures on convex optimization – Nesterov
� Convex optimization – Boyd & Vandenberghe
� Nonlinear programming – Bertsekas
� Convex Analysis – Rockafellar
� Fundamentals of convex analysis – Urruty, Lemaréchal
� Lectures on modern convex optimization – Nemirovski
� Optimization for Machine Learning – Sra, Nowozin, Wright

Some related courses:
� EE227A, Spring 2013, (UC Berkeley)
� 10-801, Spring 2014 (CMU)
� EE364a,b (Boyd, Stanford)
� EE236b,c (Vandenberghe, UCLA)

NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.
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http://suvrit.de/teach/msr2015/
http://suvrit.de/teach/ee227a/
http://www.cs.cmu.edu/~suvrit/teach/aopt.html


Outline

– Recap on convexity
– Recap on duality, optimality
– First-order optimization algorithms
– Proximal methods, operator splitting
– Incremental methods, stochastic gradient
– High-level view of parallel, distributed

Suvrit Sra (MIT) Introduction to large-scale optimization 3 / 45



Large-scale ML

Regularized Empirical Risk Minimization

min
w

1
n

n∑
i=1

`(yi ,wT xi) + λr(w).

This is the f (w) + r(w) “composite objective” form we saw.
(e.g., regression, logistic regression, lasso, CRFs, etc.)

training data: (xi , yi) ∈ Rd × Y (i.i.d.)
large-scale ML: Both d and n are large:
I d : dimension of each input sample
I n: number of training data points / samples

Assume training data “sparse”; so total datasize� dn.
Running time O(#nnz)
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Regularized Risk Minimization

Training cost F̂ (w) = 1
n
∑n

i=1 `(yi ,wT xi) + λr(w)

Generalization F (w) = E(x ,y)[`(y ,wT x)] + λr(w)

Single pass through data for F (w) by sampling n points

Multiple passes if only minimizing empirical cost F̂ (w)
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Stochastic optimization

minx∈X F (x) := Eξ[f (x , ξ)]
(f : loss; x : parameters; ξ: data samples)

Setup
1. X ⊂ Rd compact convex set

2. ξ r.v. with distribution P on Ω ⊂ Rd

3. The expectation

Eξ[f (x , ξ)] =
∫

Ω f (x , ξ)dP(ξ)

is well-defined and finite valued for every x ∈ X .
4. For every ξ ∈ Ω, f (·, ξ) is convex
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Stochastic optimization

Assumption 1: Possible to generate iid samples ξ1, ξ2, . . .
Assumption 2: Oracle yields stochastic gradient g(x , ξ), i.e.,

G(x) := E[g(x , ξ)] s.t. G(x) ∈ ∂F (x).

Theorem Let ξ ∈ Ω; If f (·, ξ) is convex, and F (·) is finite valued in
a neighborhood of x , then

∂F (x) = E[∂x f (x , ξ)].

I So g(x , ω) ∈ ∂x f (x , ω) is a stochastic subgradient.
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Stochastic optimization – solving

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξk iid

I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi )
I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!
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Stochastic gradient

SA or stochastic (sub)-gradient

I Let x0 ∈ X
I For k ≥ 0

◦ Sample ξk ; compute g(xk , ξk ) using oracle
◦ Update xk+1 = PX (xk − αkg(xk , ξk )), where αk > 0

We’ll simply write

xk+1 = PX
(
xk − αkgk

)
Does this work?
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Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random

I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22

≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22

= Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk ] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk )− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Introduction to large-scale optimization 10 / 45



Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk )〉] = E
{

E[〈xk − x∗, g(xk , ξk )〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk ) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk ).
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Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk ) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk )] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk )− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?
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Convergence analysis

2αkE[F (xk )− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
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Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k ) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k )− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Introduction to large-scale optimization 14 / 45



Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k ) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k )− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Introduction to large-scale optimization 14 / 45



Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k ) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k )− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Introduction to large-scale optimization 14 / 45



Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k ) ≤
∑

i γiF (xi) due to convexity

I So we finally obtain the inequality

E
[
F (x̄k )− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Introduction to large-scale optimization 14 / 45



Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k ) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k )− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Introduction to large-scale optimization 14 / 45



SGD – finally

♠ Let DX := maxx∈X ‖x − x∗‖2 (act. only need ‖x1 − x∗‖ ≤ DX )
♠ Assume αi = α is a constant. Observe that

E[F (x̄k )− F (x∗)] ≤
D2
X + M2kα2

2kα

♠ Minimize rhs over α > 0; thus E[F (x̄k )− F (x∗)] ≤ DX M√
k

♠ If k is not fixed in advance, then choose

αi =
θDX
M
√

i
, i = 1,2, . . .

We showed O(1/
√

k) rate
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Stochastic optimization – smooth

Theorem Let f (x , ξ) be C1
L convex. Let ek := ∇F (xk )− gk satisfy

E[ek ] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L + ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1
E[‖ei‖2]

2ηi
.

As before, by using x̄k = 1
k
∑k

i=1 xi+1 we get

E[F (x̄k )− F (x∗)] ≤ D2

2αk k + 1
k

∑k

i=1
E[‖ei‖2]

2ηi
.

I Using αi = L + ηi where ηi ∝ 1/
√

i we obtain
E[F (x̄k )− F (x∗)] = O(LD2

k ) + O( σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate
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Stochastic optimization – strongly convex

Theorem Suppose f (x , ξ) are convex and F (x) is µ-strongly con-
vex. Let x̄k :=

∑k−1
i=0 θixi , where θi = 2(i+1)

(k+1)(k+2) , we obtain

E[F (x̄k )− F (x∗)] ≤ 2M2

µ(k + 1)
.

(Lacoste-Julien, Schmidt, Bach (2012))
With uniform averaging x̄k = 1

k
∑

i xi , we get O(log k/k).
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Extensions

Proximal stochastic gradient

xk+1 = proxαk h[xk − αkg(xk , ξk )]

(Xiao 2010; Hu et al. 2009)

Accelerated versions also possible
(Ghadimi, Lan (2013))
Related methods:

Regularized dual averaging (Nesterov, 2009; Xiao 2010)
Stochastic mirror-prox (Nemirovski et al. 2009)

. . .
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SAA / Batch problem

min F (x) = E[f (x , ξ)]

Sample Average Approximation (SAA):

Collect samples ξ1, . . . , ξn

Empirical objective: F̂ (x) := 1
n
∑n

i=1 f (x , ξi)

aka Empirical Risk Minimization

Note: we often optimize F̂ using stochastic subgradient;
but theoretical guarantees are then only on the empirical
suboptimality E [F̂ (x̄k )] ≤ . . .
For guarantees on F (x̄k ) more work
(regularization + concentration)
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Finite-sum problems

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x).

Gradient / subgradient methods

xk+1 = xk − αk∇f (xk )

xk+1 = xk − αkg(xk ), g ∈ ∂f (xk )

xk+1 = proxαk r (xk − αk∇f (xk ))
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Stochastic gradient

At iteration k , we randomly pick an integer
i(k) ∈ {1,2, . . . ,m}

xk+1 = xk − αk∇fi(k)(xk )

I The update requires only gradient for fi(k)

I Uses unbiased estimate E[∇fi(k)] = ∇f
I One iteration now n times faster using ∇f (x)

I But how many iterations do we need?
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Stochastic gradient

Method Assumptions Full Stochastic
Subgradient convex O(1/

√
k) O(1/

√
k)

Subgradient strongly cvx O(1/k) O(1/k)

So using stochastic subgradient, solve n times faster.

Method Assumptions Full Stochastic
Gradient convex O(1/k) O(1/

√
k)

Gradient strongly cvx O((1− µ/L)k ) O(1/k)

– For smooth problems, stochastic gradient needs more iterations
– Widely used in ML, rapid initial convergence
– Several speedup techniques studied, but worst case remains same
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Hybrid methods

I Hybrid of stochastic gradient with full gradient.
Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

◦ store the gradients of ∇fi for i = 1, ..,n
◦ Select uniformly at random i(k) ∈ {1, . . . ,n}
◦ Perform the update

xk+1 = xk −
αk

n

n∑
i=1

yk
i yk

i =

{
∇fi (xk ) if i = i(k)

yk−1
i otherwise.

◦ Randomized / stochastic version of incremental gradient method
of Blatt et al (2008)

◦ Storage overhead; acceptable in some ML settings:
fi (x) = `(li , xT Φ(ai )), ∇fi (x) = ∇`(li , xT Φ(ai ))Φ(ai )
Store only n scalars (since depends only on xT ai )
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SAG

Method Assumptions Rate
Gradient convex O(1/k)

Gradient strongly cvx O((1− µ/L)k )
Stochastic strongly cvx O(1/k)

SAG strongly convex O((1−min
{µ

n ,
1

8n

}
)k )

This speedup also observed in practice
Complicated convergence analysis
Similar rates for many other methods
– stochastic dual coordinate (SDCA); [Shalev-Shwartz, Zhang, 2013]
– stochastic variance reduced gradient (SVRG); [Johnson, Zhang, 2013]
– proximal SVRG [Xiao, Zhang, 2014]
– hybrid of SAG and SVRG, SAGA (also proximal); [Defazio et al, 2014]
– accelerated versions [Lin, Mairal, Harchoui; 2015]
– incremental Newton method, S2SGD and MS2GD, . . .
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SVRG

For s ≥ 1:
1 x̄ ← x̄s−1
2 ḡ ← ∇F (x̄) (full gradient computation)

3 x0 = x̄ ; t ← RAND(1,m) (randomized stopping)
4 For k = 0,1, . . . , t − 1

Randomly pick i(k) ∈ [1..m]
xk+1 = xk − ηk (∇fi(k)(xk )−∇fi(k)(x̄) + ḡ)

5 x̄s ← xt

Theorem Assume each fi(x) is smooth, and F (x) strongly-
convex. Then, for sufficiently large n, there is α < 1 s.t.

E[F (x̄s)− F (x∗)] ≤ αs[F (x̄0)− F (x∗)]
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5 x̄s ← xt

Theorem Assume each fi(x) is smooth, and F (x) strongly-
convex. Then, for sufficiently large n, there is α < 1 s.t.

E[F (x̄s)− F (x∗)] ≤ αs[F (x̄0)− F (x∗)]

Suvrit Sra (MIT) Introduction to large-scale optimization 25 / 45



Motivating application
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Formulation as matrix factorization

time t yt = at ∗ x + nt

0 = ∗ + n0

1 = ∗ + n1

2 = ∗ + n2

k = ∗ + nk
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Formulation as matrix factorization |
... |

y1 | yn

|
... |

 ≈
 |

... |
a1 | at

|
... |

 ∗ x

Rewrite: a ∗ x = Ax = Xa[
y1 y2 · · · yt

]
≈ X

[
a1 a2 · · · at

]
Y ≈ XA

Solve this scalably, because...
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Scalable matrix factorization

Example, 5000 frames of size 512× 512
Y262144×5000 ≈ X262144×262144A262144×5000

Without structure ≈ 70 billion parameters!
With structure, ≈ 4.8 million parameters!

Despite structure, alternating
minimization impractical
Fix X , solve for A, requires
updating ≈ 4.5 million params
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Scalable matrix factorization

min
At ,x

∑T

t=1
1
2‖yt − Atx‖2 + Ω(x) + Γ(At )

Initialize guess x0
For t = 1,2, . . .

1. Observe image yt ;
2. Use xt−1 to estimate At
3. Solve optimization subproblem to obtain xt

Step 2. Model, estimate blur At — separate talk

Step 3. convex subproblem — reuse convex building blocks

Do Steps 2, 3 inexactly =⇒ realtime processing!

[Harmeling, Hirsch, Sra, Schölkopf (ICCP’09); Hirsch, Sra, Schölkopf, Harmeling
(CVPR’10); Hirsch, Harmeling, Sra, Schölkopf (Astron. & Astrophy. (AA) 2011);
Harmeling, Hirsch, Sra, Schölkopf, Schuler (Patent 2012); Sra (NIPS’12)]
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Algorithmic framework

Key idea

min
X ,A

Φ(X ,A) ≡ min
X

(
min

A
Φ(X ,A)

)
=

min
X

F (X )

F (X ) := min
A

Φ(X ,A)

Φ(X ,A) = ‖Y − XA‖2 + Ω(X ) + Γ(A)

minX F (X ) + Ω(X )

but now F is nonconvex
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Inexactness: key to scalability

X new ← proxαΩ(X − α∇F (X ))
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Inexactness: key to scalability

X new ← proxαΩ(X − α∇F (X ) + e ) + p

If gradient is inexactly computed

If proxΩ inexactly computed

Example: Say F (X ) =
∑m

i=1 fi(X )

Instead of ∇F (X ), use ∇fk (x)—incremental!

m times cheaper (m can be in the millions or more)

Inexactness: key to scalability
incremental prox-method for large-scale nonconvex

[Sra (NIPS 12)]; (also arXiv: [math.OC-1109.0258])
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Results on real data
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Parallel methods
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BCD – Setup

min f (x) where x ∈ RN

Assume gradient of block i is Lipschitz continuous

‖∇i f (x + Eih)−∇i f (x)‖∗ ≤ Li‖h‖

Block gradient ∇i f (x) is projection of full grad: ET
i ∇f (x)

Block Coordinate “Gradient” Descent

I Using the descent lemma, we have blockwise upper bounds

f (x + Eih) ≤ f (x) + 〈∇i f (x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . ,n.

I At each step, minimize these upper bounds!
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Randomized BCD

I For k ≥ 0 (no init. of x necessary)

I Pick a block i from [n] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk ) + 〈∇i f (xk ), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇i f (xk )

I Update the impacted coordinates of x , formally

x (i)
k+1 ← x (i)

k + h

xk+1 ← xk − 1
Li

Ei∇i f (xk )

Notice: Original BCD had: x (i)
k = argminh f (. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)
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Parallel BCD
Previously

min f (x) = f (x1, . . . , xn)

What if?

min f (x) =
∑

i fi(xi)

I Can solve all n problems independently in parallel
I In theory: n times speedup possible compared to serial case
I So if objective functions are “almost separable” we would

still expect high speedup, diminished by amount of
separability

I Big data problems often have this “almost separable” structure!
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Partial Separability

Consider the sparse data matrixd11 d12
d22 d23

. . . . . .

 ∈ Rm×n,

I Objective f (x) = ‖Dx − b‖22 =
∑m

i=1(dT
i x − bi)

2 also equals

(d11x1 + d12x2 − b1)2 + (d22x2 + d23x3 − b2)2 + · · ·

I Each term depends on only 2 coordinates
I Formally, we could write this as

f (x) =
∑

J∈J
fJ(x),

where J = {{1,2} , {2,3} , · · ·}
I Key point: fJ(x) depends only on xj for j ∈ J.
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Partial Separability

min f (x) s.t. x ∈ Rn

Def. Let J be a collection of subsets of {1, . . . ,n}. We say f is
partially separable of degree ω if it can be written as

f (x) =
∑
J∈J

fJ(x),

where each fJ depends only on xj for j ∈ J, and

|J| ≤ ω ∀J ∈ J .

Example: If Dm×n is a sparse matrix, then ω = max1≤i≤m ‖dT
i ‖0

Exercise: Extend this notion to x = (x (1), . . . , x (n))
Hint: Now, fJ will depend only on x (j) for j ∈ J
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Parallel Stochastic Gradient!

Each core runs the computation:
1 Sample coordinates J from {1, . . . ,n} (all sets of variables)
2 Read current state of xJ from shared memory
3 For each individual coordinate j ∈ J

xj ← xj − αk [∇fJ(xJ)]j

I Atomic update only for xj ← xj − a (not for gradient)
I Since the actual coordinate j can arise in various J,

processors can overwrite each others’ work.
I But if partial overlaps (separability), coordinate j does

not appear in too many different subsets J, method works
fine!
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Parallel BCD

1 Choose initial point x0 ∈ RN

2 For k ≥ 0
• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . ,n}
• Perform BCD updates (in parallel) for i ∈ Sk

x (i)
k+1 ← x (i)

k −
1
βwi
∇i f (xk )

−→ wi typically Li ; β depends on degree of separability ω
♠ Uniform sampling of blocks (or just coordinates)
♠ More careful sampling leads to better guarantees
♠ Theory requires atomic updates
♠ Useful to implement asynchronously (i.e., use whatever latest x (i)

a given core has access to)
♠ Theory of above method requires guaranteed descent
♠ Newer asynchronous CD methods also exist (see survey by

Wright, 2015)
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Parallel computation – high level views

I Intuition from above: degree of separability strongly
correlated with degree of parallelism possible

I Not insisting on exact computation allows more parallelism
I Suppose f is the fraction of sequential computation. Then

speedup for any number of processors (cores) is ≤ 1/f
I Parallel optimization on multi-core machines: shared memory

architecture. Main penalty: synchronization / atomic
operations

I Distributed optimization across machines: synchronization
and communication biggest burden; node failure, network
failure, load-balancing, etc.

I Synchronous vs. asynchronous computation
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Poor man’s parallelism
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Separable optimization

min f (x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick
I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)
I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.
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Separable optimization

min
x

f (x) + 1B(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x , x , . . . , x)}

I Can solve using proximal splitting methods (e.g., DR, ADMM)
I Each component of fi(xi) independently in parallel
I Communicate / synchronize to ensure consensus
I Asynchronous versions exist (results from 2014, 2015)
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