Introduction to large-scale optimization (Lecture 3)

Suvrit Sra
Massachusetts Institute of Technology

Microsoft Research India
Machine Learning Summer School, June 2015

Course materials

■ http://suvrit.de/teach/msr2015/

■ Some references:

- Introductory lectures on convex optimization - Nesterov
- Convex optimization - Boyd \& Vandenberghe
- Nonlinear programming - Bertsekas
- Convex Analysis - Rockafellar
- Fundamentals of convex analysis - Urruty, Lemaréchal
- Lectures on modern convex optimization - Nemirovski
- Optimization for Machine Learning - Sra, Nowozin, Wright

■ Some related courses:

- EE227A, Spring 2013, (UC Berkeley)
- 10-801, Spring 2014 (CMU)
- EE364a,b (Boyd, Stanford)
- EE236b,c (Vandenberghe, UCLA)

■ NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Outline

- Recap on convexity
- Recap on duality, optimality
- First-order optimization algorithms
- Proximal methods, operator splitting
- Incremental methods, stochastic gradient
- High-level view of parallel, distributed

Large-scale ML

Regularized Empirical Risk Minimization

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{T} x_{i}\right)+\lambda r(w) .
$$

This is the $f(w)+r(w)$ "composite objective" form we saw. (e.g., regression, logistic regression, lasso, CRFs, etc.)

Large-scale ML

Regularized Empirical Risk Minimization

$$
\min _{w} \frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{T} x_{i}\right)+\lambda r(w) .
$$

This is the $f(w)+r(w)$ "composite objective" form we saw. (e.g., regression, logistic regression, lasso, CRFs, etc.)
\square training data: $\left(x_{i}, y_{i}\right) \in \mathbb{R}^{d} \times \mathcal{Y}$ (i.i.d.)
\square large-scale ML: Both d and n are large:

- d: dimension of each input sample
- n : number of training data points / samples

■ Assume training data "sparse"; so total datasize $\ll d n$.

- Running time $O(\# \mathrm{nnz})$

Regularized Risk Minimization

Training cost $\widehat{F}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{T} x_{i}\right)+\lambda r(w)$
Generalization $F(w)=\mathbb{E}_{(x, y)}\left[\ell\left(y, w^{\top} x\right)\right]+\lambda r(w)$

Regularized Risk Minimization

Training cost $\widehat{F}(w)=\frac{1}{n} \sum_{i=1}^{n} \ell\left(y_{i}, w^{T} x_{i}\right)+\lambda r(w)$
Generalization $F(w)=\mathbb{E}_{(x, y)}\left[\ell\left(y, w^{\top} x\right)\right]+\lambda r(w)$
Single pass through data for $F(w)$ by sampling n points
Multiple passes if only minimizing empirical cost $\widehat{F}(w)$

Stochastic optimization

$$
\begin{gathered}
\min _{x \in \mathcal{X}} F(x):=\mathbb{E}_{\xi}[f(x, \xi)] \\
\text { (} f: \text { loss; } x: \text { parameters; } \xi: \text { data samples) }
\end{gathered}
$$

Setup
 1. $\mathcal{X} \subset \mathbb{R}^{d}$ compact convex set

Stochastic optimization

$$
\begin{gathered}
\min _{x \in \mathcal{X}} F(x):=\mathbb{E}_{\xi}[f(x, \xi)] \\
\text { (f: loss; } x: \text { parameters; } \xi \text { : data samples) }
\end{gathered}
$$

Setup

1. $\mathcal{X} \subset \mathbb{R}^{d}$ compact convex set
2. ξ r.v. with distribution P on $\Omega \subset \mathbb{R}^{d}$

Stochastic optimization

$$
\begin{gathered}
\min _{x \in \mathcal{X}} F(x):=\mathbb{E}_{\xi}[f(x, \xi)] \\
\text { (} f: \text { loss; } x: \text { parameters; } \xi: \text { data samples) }
\end{gathered}
$$

Setup

1. $\mathcal{X} \subset \mathbb{R}^{d}$ compact convex set
2. ξ r.v. with distribution P on $\Omega \subset \mathbb{R}^{d}$
3. The expectation

$$
\mathbb{E}_{\xi}[f(x, \xi)]=\int_{\Omega} f(x, \xi) d P(\xi)
$$

is well-defined and finite valued for every $x \in \mathcal{X}$.

Stochastic optimization

$$
\begin{gathered}
\min _{x \in \mathcal{X}} F(x):=\mathbb{E}_{\xi}[f(x, \xi)] \\
\text { (} f: \text { loss; } x: \text { parameters; } \xi: \text { data samples) }
\end{gathered}
$$

Setup

1. $\mathcal{X} \subset \mathbb{R}^{d}$ compact convex set
2. ξ r.v. with distribution P on $\Omega \subset \mathbb{R}^{d}$
3. The expectation

$$
\mathbb{E}_{\xi}[f(x, \xi)]=\int_{\Omega} f(x, \xi) d P(\xi)
$$

is well-defined and finite valued for every $x \in \mathcal{X}$.
4. For every $\xi \in \Omega, f(\cdot, \xi)$ is convex

Stochastic optimization

Assumption 1: Possible to generate iid samples ξ_{1}, ξ_{2}, \ldots
Assumption 2: Oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$
G(x):=\mathbb{E}[g(x, \xi)] \quad \text { s.t. } \quad G(x) \in \partial F(x) .
$$

Stochastic optimization

Assumption 1: Possible to generate iid samples ξ_{1}, ξ_{2}, \ldots
Assumption 2: Oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$
G(x):=\mathbb{E}[g(x, \xi)] \quad \text { s.t. } \quad G(x) \in \partial F(x)
$$

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$
\partial F(x)=\mathbb{E}\left[\partial_{x} f(x, \xi)\right]
$$

Stochastic optimization

Assumption 1: Possible to generate iid samples ξ_{1}, ξ_{2}, \ldots
Assumption 2: Oracle yields stochastic gradient $g(x, \xi)$, i.e.,

$$
G(x):=\mathbb{E}[g(x, \xi)] \quad \text { s.t. } \quad G(x) \in \partial F(x)
$$

Theorem Let $\xi \in \Omega$; If $f(\cdot, \xi)$ is convex, and $F(\cdot)$ is finite valued in a neighborhood of x, then

$$
\partial F(x)=\mathbb{E}\left[\partial_{x} f(x, \xi)\right]
$$

- So $g(x, \omega) \in \partial_{x} f(x, \omega)$ is a stochastic subgradient.

Stochastic optimization - solving

\& Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid

Stochastic optimization - solving

\& Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid
- Generate stochastic subgradient $g(x, \xi)$

Stochastic optimization - solving

\& Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid
- Generate stochastic subgradient $g(x, \xi)$
- Use that in a subgradient method

Stochastic optimization - solving

\& Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid
- Generate stochastic subgradient $g(x, \xi)$
- Use that in a subgradient method
\& Sample average approximation (SAA)

Stochastic optimization - solving

\% Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid
- Generate stochastic subgradient $g(x, \xi)$
- Use that in a subgradient method
\& Sample average approximation (SAA)
- Generate n iid samples, ξ_{1}, \ldots, ξ_{n}

Stochastic optimization - solving

\% Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid
- Generate stochastic subgradient $g(x, \xi)$
- Use that in a subgradient method
\& Sample average approximation (SAA)
- Generate n iid samples, ξ_{1}, \ldots, ξ_{n}
- Consider empirical objective $\hat{F}_{n}:=n^{-1} \sum_{i} f\left(x, \xi_{i}\right)$

Stochastic optimization - solving

\% Stochastic Approximation (SA) / Stochastic gradient (SGD)

- Sample ξ_{k} iid
- Generate stochastic subgradient $g(x, \xi)$
- Use that in a subgradient method
is Sample average approximation (SAA)
- Generate n iid samples, ξ_{1}, \ldots, ξ_{n}
- Consider empirical objective $\hat{F}_{n}:=n^{-1} \sum_{i} f\left(x, \xi_{i}\right)$
- SAA refers to creation of this sample average problem
- Minimizing \hat{F}_{n} still needs to be done!

Stochastic gradient

SA or stochastic (sub)-gradient

- Let $x_{0} \in \mathcal{X}$
- For $k \geq 0$
- Sample ξ_{k}; compute $g\left(x_{k}, \xi_{k}\right)$ using oracle
- Update $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g\left(x_{k}, \xi_{k}\right)\right)$, where $\alpha_{k}>0$

Stochastic gradient

SA or stochastic (sub)-gradient

- Let $x_{0} \in \mathcal{X}$
- For $k \geq 0$
- Sample ξ_{k}; compute $g\left(x_{k}, \xi_{k}\right)$ using oracle
- Update $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g\left(x_{k}, \xi_{k}\right)\right)$, where $\alpha_{k}>0$

We'll simply write

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)
$$

Stochastic gradient

SA or stochastic (sub)-gradient

- Let $x_{0} \in \mathcal{X}$
- For $k \geq 0$
- Sample ξ_{k}; compute $g\left(x_{k}, \xi_{k}\right)$ using oracle
- Update $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g\left(x_{k}, \xi_{k}\right)\right)$, where $\alpha_{k}>0$

We'll simply write

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)
$$

Does this work?

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}
- Subgradient method analysis hinges upon: $\left\|x_{k}-x^{*}\right\|^{2}$

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}
- Subgradient method analysis hinges upon: $\left\|x_{k}-x^{*}\right\|^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}
- Subgradient method analysis hinges upon: $\left\|x_{k}-x^{*}\right\|^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$

Denote: $R_{k}:=\left\|x_{k}-x^{*}\right\|^{2}$ and $r_{k}:=\mathbb{E}\left[R_{k}\right]=\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}
- Subgradient method analysis hinges upon: $\left\|x_{k}-x^{*}\right\|^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$

Denote: $R_{k}:=\left\|x_{k}-x^{*}\right\|^{2}$ and $r_{k}:=\mathbb{E}\left[R_{k}\right]=\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$
Bounding R_{k+1}

$$
R_{k+1}=\left\|x_{k+1}-x^{*}\right\|_{2}^{2}=\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2}
$$

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}
- Subgradient method analysis hinges upon: $\left\|x_{k}-x^{*}\right\|^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$

Denote: $R_{k}:=\left\|x_{k}-x^{*}\right\|^{2}$ and $r_{k}:=\mathbb{E}\left[R_{k}\right]=\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$
Bounding R_{k+1}

$$
\begin{aligned}
R_{k+1} & =\left\|x_{k+1}-x^{*}\right\|_{2}^{2}=\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
& \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2}
\end{aligned}
$$

Convergence Analysis

- x_{k} depends on rvs $\xi_{1}, \ldots, \xi_{k-1}$, so itself random
- Of course, x_{k} does not depend on ξ_{k}
- Subgradient method analysis hinges upon: $\left\|x_{k}-x^{*}\right\|^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$

Denote: $R_{k}:=\left\|x_{k}-x^{*}\right\|^{2}$ and $r_{k}:=\mathbb{E}\left[R_{k}\right]=\mathbb{E}\left[\left\|x_{k}-x^{*}\right\|^{2}\right]$
Bounding R_{k+1}

$$
\begin{aligned}
R_{k+1} & =\left\|x_{k+1}-x^{*}\right\|_{2}^{2}=\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
& \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2} \\
& =R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
\end{aligned}
$$

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

- Assume: $\left\|g_{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right] .
$$

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

- Assume: $\left\|g_{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

- Assume: $\left\|g_{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term
- Since x_{k} is independent of ξ_{k}, we have

$$
\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle\right]=
$$

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

- Assume: $\left\|g_{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term
- Since x_{k} is independent of ξ_{k}, we have

$$
\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle\right]=\mathbb{E}\left\{\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle \mid \xi_{[1 . .(k-1)]}\right]\right\}
$$

$$
=
$$

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

- Assume: $\left\|g_{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term
- Since x_{k} is independent of ξ_{k}, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle\right] & =\mathbb{E}\left\{\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle \mid \xi_{[1 . .(k-1)]}\right]\right\} \\
& =\mathbb{E}\left\{\left\langle x_{k}-x^{*}, \mathbb{E}\left[g\left(x_{k}, \xi_{k}\right) \mid \xi_{[1 . .(k-1)]}\right]\right\rangle\right\} \\
& =
\end{aligned}
$$

Convergence analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
$$

- Assume: $\left\|g_{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g_{k}, x_{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term
- Since x_{k} is independent of ξ_{k}, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle\right] & =\mathbb{E}\left\{\mathbb{E}\left[\left\langle x_{k}-x^{*}, g\left(x_{k}, \xi_{k}\right)\right\rangle \mid \xi_{[1 . .(k-1)]}\right]\right\} \\
& =\mathbb{E}\left\{\left\langle x_{k}-x^{*}, \mathbb{E}\left[g\left(x_{k}, \xi_{k}\right) \mid \xi_{[1 . .(k-1)]}\right]\right\rangle\right\} \\
& =\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right], \quad G_{k} \in \partial F\left(x_{k}\right) .
\end{aligned}
$$

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

- Since F is cvx, $F(x) \geq F\left(x_{k}\right)+\left\langle G_{k}, x-x_{k}\right\rangle$ for any $x \in \mathcal{X}$.

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

- Since F is cvx, $F(x) \geq F\left(x_{k}\right)+\left\langle G_{k}, x-x_{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x^{*}\right)-F\left(x_{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x^{*}-x_{k}\right\rangle\right]
$$

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

- Since F is $\mathrm{cvx}, F(x) \geq F\left(x_{k}\right)+\left\langle G_{k}, x-x_{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x^{*}\right)-F\left(x_{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x^{*}-x_{k}\right\rangle\right]
$$

Plug this bound back into the r_{k+1} inequality:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right]
$$

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

- Since F is cvx, $F(x) \geq F\left(x_{k}\right)+\left\langle G_{k}, x-x_{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x^{*}\right)-F\left(x_{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x^{*}-x_{k}\right\rangle\right]
$$

Plug this bound back into the r_{k+1} inequality:

$$
\begin{aligned}
r_{k+1} & \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right] \\
2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2}
\end{aligned}
$$

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

- Since F is cvx, $F(x) \geq F\left(x_{k}\right)+\left\langle G_{k}, x-x_{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x^{*}\right)-F\left(x_{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x^{*}-x_{k}\right\rangle\right]
$$

Plug this bound back into the r_{k+1} inequality:

$$
\begin{aligned}
r_{k+1} & \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right] \\
2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} \\
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
\end{aligned}
$$

Convergence analysis

It remains to bound: $\mathbb{E}\left[\left\langle x_{k}-x^{*}, G_{k}\right\rangle\right]$

- Since F is cvx, $F(x) \geq F\left(x_{k}\right)+\left\langle G_{k}, x-x_{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x^{*}\right)-F\left(x_{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x^{*}-x_{k}\right\rangle\right]
$$

Plug this bound back into the r_{k+1} inequality:

$$
\begin{aligned}
r_{k+1} & \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right] \\
2 \alpha_{k} \mathbb{E}\left[\left\langle G_{k}, x_{k}-x^{*}\right\rangle\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} \\
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
\end{aligned}
$$

We've bounded the expected progress; What now?

Convergence analysis

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Convergence analysis

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $i=1, \ldots, k$, to obtain

$$
\sum_{i=1}^{k}\left(2 \alpha_{i} \mathbb{E}\left[F\left(x_{i}\right)-f\left(x^{*}\right)\right]\right) \leq r_{1}-r_{k+1}+M^{2} \sum_{i} \alpha_{i}^{2}
$$

Convergence analysis

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $i=1, \ldots, k$, to obtain

$$
\begin{aligned}
\sum_{i=1}^{k}\left(2 \alpha_{i} \mathbb{E}\left[F\left(x_{i}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{k+1}+M^{2} \sum_{i} \alpha_{i}^{2} \\
& \leq r_{1}+M^{2} \sum_{i} \alpha_{i}^{2}
\end{aligned}
$$

Convergence analysis

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $i=1, \ldots, k$, to obtain

$$
\begin{aligned}
\sum_{i=1}^{k}\left(2 \alpha_{i} \mathbb{E}\left[F\left(x_{i}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{k+1}+M^{2} \sum_{i} \alpha_{i}^{2} \\
& \leq r_{1}+M^{2} \sum_{i} \alpha_{i}^{2}
\end{aligned}
$$

Divide both sides by $\sum_{i} \alpha_{i}$, so

Convergence analysis

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $i=1, \ldots, k$, to obtain

$$
\begin{aligned}
\sum_{i=1}^{k}\left(2 \alpha_{i} \mathbb{E}\left[F\left(x_{i}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{k+1}+M^{2} \sum_{i} \alpha_{i}^{2} \\
& \leq r_{1}+M^{2} \sum_{i} \alpha_{i}^{2} .
\end{aligned}
$$

Divide both sides by $\sum_{i} \alpha_{i}$, so

- Set $\gamma_{i}=\frac{\alpha_{i}}{\sum_{i}^{k} \alpha_{i}}$.
- Thus, $\gamma_{i} \geq 0$ and $\sum_{i} \gamma_{i}=1$

Convergence analysis

$$
2 \alpha_{k} \mathbb{E}\left[F\left(x_{k}\right)-F\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $i=1, \ldots, k$, to obtain

$$
\begin{aligned}
\sum_{i=1}^{k}\left(2 \alpha_{i} \mathbb{E}\left[F\left(x_{i}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{k+1}+M^{2} \sum_{i} \alpha_{i}^{2} \\
& \leq r_{1}+M^{2} \sum_{i} \alpha_{i}^{2} .
\end{aligned}
$$

Divide both sides by $\sum_{i} \alpha_{i}$, so

- Set $\gamma_{i}=\frac{\alpha_{i}}{\sum_{i}^{k} \alpha_{i}}$.
- Thus, $\gamma_{i} \geq 0$ and $\sum_{i} \gamma_{i}=1$

$$
\mathbb{E}\left[\sum_{i} \gamma_{i}\left(F\left(x_{i}\right)-F\left(x^{*}\right)\right)\right] \leq \frac{r_{1}+M^{2} \sum_{i} \alpha_{i}^{2}}{2 \sum_{i} \alpha_{i}}
$$

Convergence analysis

- But we wish to say something about x_{k}

Convergence analysis

- But we wish to say something about x_{k}
- Since $\gamma_{i} \geq 0$ and $\sum_{i}^{k} \gamma_{i}=1$, and we have $\gamma_{i} F\left(x_{i}\right)$

Convergence analysis

- But we wish to say something about x_{k}
- Since $\gamma_{i} \geq 0$ and $\sum_{i}^{k} \gamma_{i}=1$, and we have $\gamma_{i} F\left(x_{i}\right)$
- Easier to talk about averaged

$$
\bar{x}_{k}:=\sum_{i}^{k} \gamma_{i} x_{i}
$$

Convergence analysis

- But we wish to say something about x_{k}
- Since $\gamma_{i} \geq 0$ and $\sum_{i}^{k} \gamma_{i}=1$, and we have $\gamma_{i} F\left(x_{i}\right)$
- Easier to talk about averaged

$$
\bar{x}_{k}:=\sum_{i}^{k} \gamma_{i} x_{i}
$$

- $f\left(\bar{x}_{k}\right) \leq \sum_{i} \gamma_{i} F\left(x_{i}\right)$ due to convexity

Convergence analysis

- But we wish to say something about x_{k}
- Since $\gamma_{i} \geq 0$ and $\sum_{i}^{k} \gamma_{i}=1$, and we have $\gamma_{i} F\left(x_{i}\right)$
- Easier to talk about averaged

$$
\bar{x}_{k}:=\sum_{i}^{k} \gamma_{i} x_{i}
$$

- $f\left(\bar{x}_{k}\right) \leq \sum_{i} \gamma_{i} F\left(x_{i}\right)$ due to convexity
- So we finally obtain the inequality

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right] \leq \frac{r_{1}+M^{2} \sum_{i} \alpha_{i}^{2}}{2 \sum_{i} \alpha_{i}}
$$

SGD - finally

© Let $D_{\mathcal{X}}:=\max _{x \in \mathcal{X}}\left\|x-x^{*}\right\|_{2}$ (act. only need $\left\|x_{1}-x^{*}\right\| \leq D_{\mathcal{X}}$)
${ }^{4}$ Assume $\alpha_{i}=\alpha$ is a constant. Observe that

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right] \leq \frac{D_{X}^{2}+M^{2} k \alpha^{2}}{2 k \alpha}
$$

- Minimize rhs over $\alpha>0$; thus $\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right] \leq \frac{D_{x} M}{\sqrt{k}}$
a If k is not fixed in advance, then choose

$$
\alpha_{i}=\frac{\theta D_{\mathcal{X}}}{M \sqrt{i}}, \quad i=1,2, \ldots
$$

We showed $O(1 / \sqrt{k})$ rate

Stochastic optimization - smooth

$$
\begin{aligned}
& \text { Theorem Let } f(x, \xi) \text { be } C_{L}^{1} \text { convex. Let } e_{k}:=\nabla F\left(x_{k}\right)-g_{k} \text { satisfy } \\
& \begin{array}{c}
\mathbb{E}\left[e_{k}\right]=0 \text {. Let }\left\|x_{i}-x^{*}\right\| \leq D \text {. Also, let } \alpha_{i}=1 /\left(L+\eta_{i}\right) \text {. Then, } \\
\mathbb{E}\left[\sum_{i=1}^{k} F\left(x_{i+1}\right)-F\left(x^{*}\right)\right] \leq \frac{D^{2}}{2 \alpha_{k}}+\sum_{i=1}^{k} \frac{\left.\mathbb{E}\left\|e_{i}\right\|^{2}\right]}{2 \eta_{i}} .
\end{array}
\end{aligned}
$$

Stochastic optimization - smooth

Theorem Let $f(x, \xi)$ be C_{L}^{1} convex. Let $e_{k}:=\nabla F\left(x_{k}\right)-g_{k}$ satisfy $\mathbb{E}\left[e_{k}\right]=0$. Let $\left\|x_{i}-x^{*}\right\| \leq D$. Also, let $\alpha_{i}=1 /\left(L+\eta_{i}\right)$. Then,

$$
\mathbb{E}\left[\sum_{i=1}^{k} F\left(x_{i+1}\right)-F\left(x^{*}\right)\right] \leq \frac{D^{2}}{2 \alpha_{k}}+\sum_{i=1}^{k} \frac{\mathbb{E}\left[\left\|e_{i}\right\|^{2}\right]}{2 \eta_{i}} .
$$

As before, by using $\bar{x}_{k}=\frac{1}{k} \sum_{i=1}^{k} x_{i+1}$ we get

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right] \leq \frac{D^{2}}{2 \alpha_{k} k}+\frac{1}{k} \sum_{i=1}^{k} \frac{\mathbb{E}\left[\left\|e_{i}\right\|^{2}\right]}{2 \eta_{i}} .
$$

Stochastic optimization - smooth

Theorem Let $f(x, \xi)$ be C_{L}^{1} convex. Let $e_{k}:=\nabla F\left(x_{k}\right)-g_{k}$ satisfy $\mathbb{E}\left[e_{k}\right]=0$. Let $\left\|x_{i}-x^{*}\right\| \leq D$. Also, let $\alpha_{i}=1 /\left(L+\eta_{i}\right)$. Then,

$$
\mathbb{E}\left[\sum_{i=1}^{k} F\left(x_{i+1}\right)-F\left(x^{*}\right)\right] \leq \frac{D^{2}}{2 \alpha_{k}}+\sum_{i=1}^{k} \frac{\mathbb{E}\left[\left\|e_{i}\right\|^{2}\right]}{2 \eta_{i}} .
$$

As before, by using $\bar{x}_{k}=\frac{1}{k} \sum_{i=1}^{k} x_{i+1}$ we get

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right] \leq \frac{D^{2}}{2 \alpha_{k} k}+\frac{1}{k} \sum_{i=1}^{k} \frac{\mathbb{E}\left[\|e\|_{i}^{2}\right]}{\left.2 \eta_{i}\right]} .
$$

- Using $\alpha_{i}=L+\eta_{i}$ where $\eta_{i} \propto 1 / \sqrt{i}$ we obtain

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right]=O\left(\frac{L D^{2}}{k}\right)+O\left(\frac{\sigma D}{\sqrt{k}}\right)
$$

where σ bounds the variance $\mathbb{E}\left[\left\|e_{i}\right\|^{2}\right]$

Minimax optimal rate

Stochastic optimization - strongly convex

Theorem Suppose $f(x, \xi)$ are convex and $F(x)$ is μ-strongly convex. Let $\bar{x}_{k}:=\sum_{i=0}^{k-1} \theta_{i} x_{i}$, where $\theta_{i}=\frac{2(i+1)}{(k+1)(k+2)}$, we obtain

$$
\mathbb{E}\left[F\left(\bar{x}_{k}\right)-F\left(x^{*}\right)\right] \leq \frac{2 M^{2}}{\mu(k+1)} .
$$

(Lacoste-Julien, Schmidt, Bach (2012))
With uniform averaging $\bar{x}_{k}=\frac{1}{k} \sum_{i} x_{i}$, we get $O(\log k / k)$.

Extensions

■ Proximal stochastic gradient

$$
x_{k+1}=\operatorname{prox}_{\alpha_{k} h}\left[x_{k}-\alpha_{k} g\left(x_{k}, \xi_{k}\right)\right]
$$

(Xiao 2010; Hu et al. 2009)
Accelerated versions also possible (Ghadimi, Lan (2013))
■ Related methods:
■ Regularized dual averaging (Nesterov, 2009; Xiao 2010)
■ Stochastic mirror-prox (Nemirovski et al. 2009)

SAA / Batch problem

$$
\min F(x)=\mathbb{E}[f(x, \xi)]
$$

Sample Average Approximation (SAA):
■ Collect samples ξ_{1}, \ldots, ξ_{n}
■ Empirical objective: $\widehat{F}(x):=\frac{1}{n} \sum_{i=1}^{n} f\left(x, \xi_{i}\right)$
■ aka Empirical Risk Minimization

SAA / Batch problem

$$
\min F(x)=\mathbb{E}[f(x, \xi)]
$$

Sample Average Approximation (SAA):
■ Collect samples ξ_{1}, \ldots, ξ_{n}
■ Empirical objective: $\widehat{F}(x):=\frac{1}{n} \sum_{i=1}^{n} f\left(x, \xi_{i}\right)$
■ aka Empirical Risk Minimization
■ Note: we often optimize \widehat{F} using stochastic subgradient; but theoretical guarantees are then only on the empirical suboptimality $E\left[\widehat{F}\left(\bar{x}_{k}\right)\right] \leq \ldots$

SAA / Batch problem

$$
\min F(x)=\mathbb{E}[f(x, \xi)]
$$

Sample Average Approximation (SAA):
■ Collect samples ξ_{1}, \ldots, ξ_{n}
■ Empirical objective: $\widehat{F}(x):=\frac{1}{n} \sum_{i=1}^{n} f\left(x, \xi_{i}\right)$

- aka Empirical Risk Minimization

■ Note: we often optimize \widehat{F} using stochastic subgradient; but theoretical guarantees are then only on the empirical suboptimality $E\left[\widehat{F}\left(\bar{x}_{k}\right)\right] \leq \ldots$
■ For guarantees on $F\left(\bar{x}_{k}\right)$ more work (regularization + concentration)

Finite-sum problems

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x) .
$$

Finite-sum problems

$$
\min _{x \in \mathbb{R}^{d}} f(x)=\frac{1}{n} \sum_{i=1}^{n} f_{i}(x)
$$

Gradient / subgradient methods

$$
\begin{aligned}
x_{k+1} & =x_{k}-\alpha_{k} \nabla f\left(x_{k}\right) \\
x_{k+1} & =x_{k}-\alpha_{k} g\left(x_{k}\right), \quad g \in \partial f\left(x_{k}\right) \\
x_{k+1} & =\operatorname{prox}_{\alpha_{k} r}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)
\end{aligned}
$$

Stochastic gradient

At iteration k, we randomly pick an integer

$$
\begin{gathered}
i(k) \in\{1,2, \ldots, m\} \\
x_{k+1}=x_{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
\end{gathered}
$$

- The update requires only gradient for $f_{i(k)}$
- Uses unbiased estimate $\mathbb{E}\left[\nabla f_{i(k)}\right]=\nabla f$
- One iteration now n times faster using $\nabla f(x)$
- But how many iterations do we need?

Stochastic gradient

Method	Assumptions	Full	Stochastic
Subgradient	convex	$O(1 / \sqrt{k})$	$O(1 / \sqrt{k})$
Subgradient	strongly cvx	$O(1 / k)$	$O(1 / k)$

So using stochastic subgradient, solve n times faster.

Stochastic gradient

Method	Assumptions	Full	Stochastic
Subgradient	convex	$O(1 / \sqrt{k})$	$O(1 / \sqrt{k})$
Subgradient	strongly cvx	$O(1 / k)$	$O(1 / k)$

So using stochastic subgradient, solve n times faster.

Method	Assumptions	Full	Stochastic
Gradient	convex	$O(1 / k)$	$O(1 / \sqrt{k})$
Gradient	strongly cvx	$O\left((1-\mu / L)^{k}\right)$	$O(1 / k)$

- For smooth problems, stochastic gradient needs more iterations
- Widely used in ML, rapid initial convergence
- Several speedup techniques studied, but worst case remains same

Hybrid methods

- Hybrid of stochastic gradient with full gradient.

Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

- store the gradients of ∇f_{i} for $i=1, . ., n$
- Select uniformly at random $i(k) \in\{1, \ldots, n\}$
- Perform the update

$$
x_{k+1}=x_{k}-\frac{\alpha_{k}}{n} \sum_{i=1}^{n} y_{i}^{k} \quad y_{i}^{k}= \begin{cases}\nabla f_{i}\left(x_{k}\right) & \text { if } i=i(k) \\ y_{i}^{k-1} & \text { otherwise } .\end{cases}
$$

Hybrid methods

- Hybrid of stochastic gradient with full gradient.

Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

- store the gradients of ∇f_{i} for $i=1, . ., n$
- Select uniformly at random $i(k) \in\{1, \ldots, n\}$
- Perform the update

$$
x_{k+1}=x_{k}-\frac{\alpha_{k}}{n} \sum_{i=1}^{n} y_{i}^{k} \quad y_{i}^{k}= \begin{cases}\nabla f_{i}\left(x_{k}\right) & \text { if } i=i(k) \\ y_{i}^{k-1} & \text { otherwise } .\end{cases}
$$

- Randomized / stochastic version of incremental gradient method of Blatt et al (2008)
- Storage overhead; acceptable in some ML settings:
- $f_{i}(x)=\ell\left(l_{i}, x^{\top} \Phi\left(a_{i}\right)\right), \nabla f_{i}(x)=\nabla \ell\left(l_{i}, x^{\top} \Phi\left(a_{i}\right)\right) \Phi\left(a_{i}\right)$

■ Store only n scalars (since depends only on $x^{\top} a_{i}$)

SAG

Method	Assumptions	Rate
Gradient	convex	$O(1 / k)$
Gradient	strongly cvx	$O\left((1-\mu / L)^{k}\right)$
Stochastic	strongly cvx	$O(1 / k)$
SAG	strongly convex	$O\left(\left(1-\min \left\{\frac{\mu}{n}, \frac{1}{8 n}\right\}\right)^{k}\right)$

This speedup also observed in practice
Complicated convergence analysis
Similar rates for many other methods

- stochastic dual coordinate (SDCA); [Shalev-Shwartz, Zhang, 2013]
- stochastic variance reduced gradient (SVRG); [Johnson, Zhang, 2013]
- proximal SVRG [Xiao, Zhang, 2014]
- hybrid of SAG and SVRG, SAGA (also proximal); [Defazio et al, 2014]
- accelerated versions [Lin, Mairal, Harchoui; 2015]
- incremental Newton method, S2SGD and MS2GD, ...

SVRG

■ For $s \geq 1$:
$1 \bar{X} \leftarrow \bar{X}_{S-1}$
$2 \bar{g} \leftarrow \nabla F(\bar{x})$
(full gradient computation)

SVRG

■ For $s \geq 1$:
$1 \bar{X} \leftarrow \bar{X}_{S-1}$
$2 \bar{g} \leftarrow \nabla F(\bar{x})$
(full gradient computation)
$3 x_{0}=\bar{x} ; \quad t \leftarrow \operatorname{RAND}(1, m) \quad$ (randomized stopping)

SVRG

■ For $s \geq 1$:
$1 \bar{X} \leftarrow \bar{X}_{S-1}$
$2 \bar{g} \leftarrow \nabla F(\bar{x})$
(full gradient computation)
$3 x_{0}=\bar{x} ; \quad t \leftarrow \operatorname{RAND}(1, m) \quad$ (randomized stopping)
4 For $k=0,1, \ldots, t-1$

- Randomly pick $i(k) \in[1 . . m]$

■ $x_{k+1}=x_{k}-\eta_{k}\left(\nabla f_{i(k)}\left(x_{k}\right)-\nabla f_{i(k)}(\bar{x})+\bar{g}\right)$

SVRG

■ For $s \geq 1$:
$1 \bar{X} \leftarrow \bar{X}_{S-1}$
$2 \bar{g} \leftarrow \nabla F(\bar{x})$
(full gradient computation)
$3 x_{0}=\bar{x} ; \quad t \leftarrow \operatorname{RAND}(1, m) \quad$ (randomized stopping)
4 For $k=0,1, \ldots, t-1$

- Randomly pick $i(k) \in[1 . . m]$

■ $x_{k+1}=x_{k}-\eta_{k}\left(\nabla f_{i(k)}\left(x_{k}\right)-\nabla f_{i(k)}(\bar{x})+\bar{g}\right)$
$5 \bar{x}_{s} \leftarrow x_{t}$

SVRG

\square For $s \geq 1$:
$1 \bar{x} \leftarrow \bar{x}_{s-1}$
$2 \bar{g} \leftarrow \nabla F(\bar{x})$
(full gradient computation)
$3 x_{0}=\bar{x} ; \quad t \leftarrow \operatorname{RAND}(1, m) \quad$ (randomized stopping)
4 For $k=0,1, \ldots, t-1$

- Randomly pick $i(k) \in[1 . . m]$

■ $x_{k+1}=x_{k}-\eta_{k}\left(\nabla f_{i(k)}\left(x_{k}\right)-\nabla f_{i(k)}(\bar{x})+\bar{g}\right)$
$5 \bar{x}_{s} \leftarrow x_{t}$
Theorem Assume each $f_{i}(x)$ is smooth, and $F(x)$ stronglyconvex. Then, for sufficiently large n, there is $\alpha<1$ s.t.

$$
\mathbb{E}\left[F\left(\bar{x}_{s}\right)-F\left(x^{*}\right)\right] \leq \alpha^{s}\left[F\left(\bar{x}_{0}\right)-F\left(x^{*}\right)\right]
$$

Motivating application

Formulation as matrix factorization

Formulation as matrix factorization

$$
\left[\begin{array}{ccc}
\mid & \vdots & \mid \\
y_{1} & \mid & y_{n} \\
\mid & \vdots & \mid
\end{array}\right] \approx\left[\begin{array}{ccc}
\mid & \vdots & \mid \\
a_{1} & \mid & a_{t} \\
\mid & \vdots & \mid
\end{array}\right] * x
$$

Rewrite: $a * x=A x=X a$

$$
\left[\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{t}
\end{array}\right] \approx X\left[\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{t}
\end{array}\right]
$$

$$
Y \approx X A
$$

Solve this scalably, because...

Scalable matrix factorization

Example, 5000 frames of size 512×512 $Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure ≈ 70 billion parameters! With structure, ≈ 4.8 million parameters!

Scalable matrix factorization

Example, 5000 frames of size 512×512 $Y_{262144 \times 5000} \approx X_{262144 \times 262144} A_{262144 \times 5000}$

Without structure ≈ 70 billion parameters! With structure, ≈ 4.8 million parameters!

Despite structure, alternating minimization impractical Fix X, solve for A, requires updating ≈ 4.5 million params

Scalable matrix factorization

$\min _{A_{t}, x} \sum_{t=1}^{T} \frac{1}{2}\left\|y_{t}-A_{t} x\right\|^{2}+\Omega(x)+\Gamma\left(A_{t}\right)$

Scalable matrix factorization

$\min _{A_{t}, x} \sum_{t=1}^{T} \frac{1}{2}\left\|y_{t}-A_{t} x\right\|^{2}+\Omega(x)+\Gamma\left(A_{t}\right)$

Initialize guess \boldsymbol{x}_{0}
For $t=1,2, \ldots$.

1. Observe image \boldsymbol{y}_{t};

Scalable matrix factorization

$\min _{A_{t}, x} \sum_{t=1}^{T} \frac{1}{2}\left\|y_{t}-A_{t} x\right\|^{2}+\Omega(x)+\Gamma\left(A_{t}\right)$

Initialize guess \boldsymbol{x}_{0}
For $t=1,2, \ldots$.

1. Observe image \boldsymbol{y}_{t};
2. Use \boldsymbol{x}_{t-1} to estimate \boldsymbol{A}_{t}

Scalable matrix factorization

$\min _{A_{t}, x} \sum_{t=1}^{T} \frac{1}{2}\left\|y_{t}-A_{t} x\right\|^{2}+\Omega(x)+\Gamma\left(A_{t}\right)$

Initialize guess \boldsymbol{x}_{0}
For $t=1,2, \ldots$

1. Observe image \boldsymbol{y}_{t};
2. Use \boldsymbol{x}_{t-1} to estimate \boldsymbol{A}_{t}
3. Solve optimization subproblem to obtain \boldsymbol{x}_{t}

Scalable matrix factorization

$\min _{A_{t}, x} \quad \sum_{t=1}^{T} \frac{1}{2}\left\|y_{t}-A_{t} x\right\|^{2}+\Omega(x)+\Gamma\left(A_{t}\right)$

Initialize guess \boldsymbol{x}_{0}
For $t=1,2, \ldots$

1. Observe image \boldsymbol{y}_{t};
2. Use \boldsymbol{x}_{t-1} to estimate \boldsymbol{A}_{t}
3. Solve optimization subproblem to obtain \boldsymbol{x}_{t}

Step 2. Model, estimate blur A_{t} - separate talk
Step 3. convex subproblem - reuse convex building blocks
Do Steps 2, 3 inexactly \Longrightarrow realtime processing!
[Harmeling, Hirsch, Sra, Schölkopf (ICCP’09); Hirsch, Sra, Schölkopf, Harmeling (CVPR'10); Hirsch, Harmeling, Sra, Schölkopf (Astron. \& Astrophy. (AA) 2011); Harmeling, Hirsch, Sra, Schölkopf, Schuler (Patent 2012); Sra (NIPS'12)]

Algorithmic framework

Key idea

$\min _{X, A} \Phi(X, A) \equiv \min _{X}\left(\min _{A} \Phi(X, A)\right)=$

Algorithmic framework

Key idea

$$
\begin{aligned}
\min _{X, A} \Phi(X, A) & \equiv \min _{X}\left(\min _{A} \Phi(X, A)\right)=\min _{X} F(X) \\
F(X) & :=\min _{A} \Phi(X, A)
\end{aligned}
$$

Algorithmic framework

Key idea

$$
\begin{aligned}
\min _{X, A} \Phi(X, A) & \equiv \min _{X}\left(\min _{A} \Phi(X, A)\right)=\min _{X} F(X) \\
F(X) & :=\min _{A} \Phi(X, A)
\end{aligned}
$$

$$
\begin{gathered}
\Phi(X, A)=\|Y-X A\|^{2}+\Omega(X)+\Gamma(A) \\
\xrightarrow[\longrightarrow]{\longrightarrow} \min _{X} F(X)+\Omega(X) \\
\text { but now } F \text { is nonconvex }
\end{gathered}
$$

Inexactness: key to scalability

$X^{\text {new }} \leftarrow \operatorname{prox}_{\alpha \Omega}(X-\alpha \nabla F(X))$

Inexactness: key to scalability

$X^{\text {new }} \leftarrow \operatorname{prox}_{\alpha \Omega}(X-\alpha \nabla F(X)+e)+p$

If gradient is inexactly computed
If prox ${ }_{\Omega}$ inexactly computed

Inexactness: key to scalability

$$
X^{\text {new }} \leftarrow \operatorname{prox}_{\alpha \Omega}(X-\alpha \nabla F(X)+e)+p
$$

If gradient is inexactly computed
If prox $_{\Omega}$ inexactly computed
Example: Say $F(X)=\sum_{i=1}^{m} f_{i}(X)$
Instead of $\nabla F(X)$, use $\nabla f_{k}(x)$-incremental!
m times cheaper (m can be in the millions or more)

Inexactness: key to scalability

 incremental prox-method for large-scale nonconvex[Sra (NIPS 12)]; (also arXiv: [math.OC-1109.0258])

Results on real data

Parallel methods

BCD - Setup

$\min f(x)$ where $x \in \mathbb{R}^{N}$

BCD - Setup

$\min f(x)$ where $x \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous

$$
\left\|\nabla_{i} f\left(x+E_{i} h\right)-\nabla_{i} f(x)\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(x)$

BCD - Setup

$\min f(x)$ where $x \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous

$$
\left\|\nabla_{i} f\left(x+E_{i} h\right)-\nabla_{i} f(x)\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(x)$

BCD - Setup

$\min f(x)$ where $x \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous

$$
\left\|\nabla_{i} f\left(x+E_{i} h\right)-\nabla_{i} f(x)\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(x)$
Block Coordinate "Gradient" Descent

BCD - Setup

$\min f(x)$ where $x \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous

$$
\left\|\nabla_{i} f\left(x+E_{i} h\right)-\nabla_{i} f(x)\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(x)$

Block Coordinate "Gradient" Descent

- Using the descent lemma, we have blockwise upper bounds

$$
f\left(x+E_{i} h\right) \leq f(x)+\left\langle\nabla_{i} f(x), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, n
$$

- At each step, minimize these upper bounds!

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [n] with probability $p_{i}>0$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [n] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [n] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [n] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

$$
\begin{aligned}
& x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}+h \\
& x_{k+1} \leftarrow x_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [n] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

$$
\begin{aligned}
& x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}+h \\
& x_{k+1} \leftarrow x_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

Notice: Original BCD had: $x_{k}^{(i)}=\operatorname{argmin}_{h} f(\ldots, \underbrace{h}_{\text {block } i}, \ldots)$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [n] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

$$
\begin{aligned}
& x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}+h \\
& x_{k+1} \leftarrow x_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(x_{k}\right)
\end{aligned}
$$

Notice: Original BCD had: $x_{k}^{(i)}=\operatorname{argmin}_{h} f(\ldots, \underbrace{h}, \ldots)$ We'll call this BCM (Block Coordinate Minimization)

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

What if?

$$
\min f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

What if?

$$
\min f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

- Can solve all n problems independently in parallel
- In theory: n times speedup possible compared to serial case

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

What if?

$$
\min f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

- Can solve all n problems independently in parallel
- In theory: n times speedup possible compared to serial case
- So if objective functions are "almost separable" we would still expect high speedup, diminished by amount of separability
- Big data problems often have this "almost separable" structure!

Partial Separability

Consider the sparse data matrix

$$
\left(\begin{array}{llll}
d_{11} & d_{12} & & \\
& d_{22} & d_{23} & \\
& & \ddots & \ddots
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

Partial Separability

Consider the sparse data matrix

$$
\left(\begin{array}{llll}
d_{11} & d_{12} & & \\
& d_{22} & d_{23} & \\
& & \ddots & \ddots
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

- Objective $f(x)=\|D x-b\|_{2}^{2}=\sum_{i=1}^{m}\left(d_{i}^{T} x-b_{i}\right)^{2}$ also equals

$$
\left(d_{11} x_{1}+d_{12} x_{2}-b_{1}\right)^{2}+\left(d_{22} x_{2}+d_{23} x_{3}-b_{2}\right)^{2}+\cdots
$$

- Each term depends on only 2 coordinates
- Formally, we could write this as

$$
f(x)=\sum_{J \in \mathcal{J}} f_{J}(x)
$$

where $\mathcal{J}=\{\{1,2\},\{2,3\}, \cdots\}$

- Key point: $f_{J}(x)$ depends only on x_{j} for $j \in J$.

Partial Separability

$$
\min f(x) \text { s.t. } x \in \mathbb{R}^{n}
$$

Def. Let \mathcal{J} be a collection of subsets of $\{1, \ldots, n\}$. We say f is partially separable of degree ω if it can be written as

$$
f(x)=\sum_{J \in \mathcal{J}} f_{J}(x)
$$

where each f_{J} depends only on x_{j} for $j \in J$, and

$$
|J| \leq \omega \quad \forall J \in \mathcal{J}
$$

Example: If $D_{m \times n}$ is a sparse matrix, then $\omega=\max _{1 \leq i \leq m}\left\|d_{i}^{T}\right\|_{0}$

Partial Separability

$$
\min f(x) \text { s.t. } x \in \mathbb{R}^{n}
$$

Def. Let \mathcal{J} be a collection of subsets of $\{1, \ldots, n\}$. We say f is partially separable of degree ω if it can be written as

$$
f(x)=\sum_{J \in \mathcal{J}} f_{J}(x)
$$

where each f_{J} depends only on x_{j} for $j \in J$, and

$$
|J| \leq \omega \quad \forall J \in \mathcal{J}
$$

Example: If $D_{m \times n}$ is a sparse matrix, then $\omega=\max _{1 \leq i \leq m}\left\|d_{i}^{T}\right\|_{0}$ Exercise: Extend this notion to $x=\left(x^{(1)}, \ldots, x^{(n)}\right)$ Hint: Now, f_{J} will depend only on $x^{(j)}$ for $j \in J$

Parallel Stochastic Gradient!

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$

$$
x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}
$$

Parallel Stochastic Gradient!

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$
$x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}$

- Atomic update only for $x_{j} \leftarrow x_{j}-a$ (not for gradient)

Parallel Stochastic Gradient!

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$
$x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}$

- Atomic update only for $x_{j} \leftarrow x_{j}-a$ (not for gradient)
- Since the actual coordinate j can arise in various J, processors can overwrite each others' work.

Parallel Stochastic Gradient!

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$
$x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}$

- Atomic update only for $x_{j} \leftarrow x_{j}-a$ (not for gradient)
- Since the actual coordinate j can arise in various J, processors can overwrite each others' work.
- But if partial overlaps (separability), coordinate j does not appear in too many different subsets J, method works fine!

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(x_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(x_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω

- Uniform sampling of blocks (or just coordinates)
- More careful sampling leads to better guarantees

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(x_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω
A Uniform sampling of blocks (or just coordinates)
© More careful sampling leads to better guarantees
© Theory requires atomic updates

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
x_{k+1}^{(i)} \leftarrow x_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(x_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω
A Uniform sampling of blocks (or just coordinates)
© More careful sampling leads to better guarantees
© Theory requires atomic updates
A Useful to implement asynchronously (i.e., use whatever latest $x^{(i)}$ a given core has access to)
© Theory of above method requires guaranteed descent

- Newer asynchronous CD methods also exist (see survey by Wright, 2015)

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden;

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.

Parallel computation - high level views

- Intuition from above: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.
- Synchronous vs. asynchronous computation

Poor man's parallelism

Separable optimization

$\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n}$.

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n}
$$

Product space trick

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n} .
$$

Product space trick

- Introduce (local) variables $\left(x_{1}, \ldots, x_{m}\right)$

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n} .
$$

Product space trick

- Introduce (local) variables $\left(x_{1}, \ldots, x_{m}\right)$
- Problem is now over $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n} .
$$

Product space trick

- Introduce (local) variables $\left(x_{1}, \ldots, x_{m}\right)$
- Problem is now over $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)
- Consensus constraint: $x_{1}=x_{2}=\ldots=x_{m}$

$$
\begin{array}{ll}
& \min _{\left(x_{1}, \ldots, x_{m}\right)} \quad \sum_{i} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{1}=x_{2}=\cdots=x_{m} .
\end{array}
$$

Separable optimization

$$
\begin{gathered}
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x}) \\
\text { where } \boldsymbol{x} \in \mathcal{H}^{m} \text { and } \mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}
\end{gathered}
$$

Separable optimization

$$
\begin{gathered}
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x}) \\
\text { where } \boldsymbol{x} \in \mathcal{H}^{m} \text { and } \mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}
\end{gathered}
$$

- Can solve using proximal splitting methods (e.g., DR, ADMM)

Separable optimization

$$
\begin{gathered}
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x}) \\
\text { where } \boldsymbol{x} \in \mathcal{H}^{m} \text { and } \mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}
\end{gathered}
$$

- Can solve using proximal splitting methods (e.g., DR, ADMM)
- Each component of $f_{i}\left(x_{i}\right)$ independently in parallel
- Communicate / synchronize to ensure consensus
- Asynchronous versions exist (results from 2014, 2015)

