# Introduction to large-scale optimization (Lecture 2) 

Suvrit Sra<br>Massachusetts Institute of Technology

Microsoft Research India
Machine Learning Summer School, June 2015

## Course materials

## ■ http://suvrit.de/teach/msr2015/

■ Some references:

- Introductory lectures on convex optimization - Nesterov
- Convex optimization - Boyd \& Vandenberghe
- Nonlinear programming - Bertsekas
- Convex Analysis - Rockafellar
- Fundamentals of convex analysis - Urruty, Lemaréchal
- Lectures on modern convex optimization - Nemirovski
- Optimization for Machine Learning - Sra, Nowozin, Wright

■ Some related courses:

- EE227A, Spring 2013, (UC Berkeley)
- 10-801, Spring 2014 (CMU)
- EE364a,b (Boyd, Stanford)
- EE236b,c (Vandenberghe, UCLA)

■ NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

## Outline

- Recap on convexity
- Recap on duality, optimality
- First-order optimization algorithms
- Proximal methods, operator splitting
- Incremental methods
- High-level view of parallel, distributed
- Some words on nonconvex


## Descent methods

## $\min _{x} f(x)$

## Descent methods




## Descent methods



## Descent methods



## Descent methods



## Descent methods



## Algorithm

1 Start with some guess $x^{0}$;
© For each $k=0,1, \ldots$

- $x^{k+1} \leftarrow x^{k}+\alpha_{k} d^{k}$
- Check when to stop (e.g., if $\left.\nabla f\left(x^{k+1}\right)=0\right)$


## Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

## Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$
■ Descent direction $d^{k}$ satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

## Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$
■ Descent direction $d^{k}$ satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Numerous ways to select $\alpha_{k}$ and $d^{k}$

## Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

$■$ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$
■ Descent direction $d^{k}$ satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Numerous ways to select $\alpha_{k}$ and $d^{k}$
Usually methods seek monotonic descent

$$
f\left(x^{k+1}\right)<f\left(x^{k}\right)
$$

## Gradient methods - direction

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- Different choices of direction $d^{k}$
- Scaled gradient: $d^{k}=-D^{k} \nabla f\left(x^{k}\right), D^{k} \succ 0$
- Newton's method: $\left(D^{k}=\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\right)$
- Quasi-Newton: $D^{k} \approx\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}$
- Steepest descent: $D^{k}=I$
- Diagonally scaled: $D^{k}$ diagonal with $D_{i i}^{k} \approx\left(\frac{\partial^{2} f\left(x^{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}$
- Discretized Newton: $D^{k}=\left[H\left(x^{k}\right)\right]^{-1}, H$ via finite-diff.


## Gradient methods - direction

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- Different choices of direction $d^{k}$
- Scaled gradient: $d^{k}=-D^{k} \nabla f\left(x^{k}\right), D^{k} \succ 0$
- Newton's method: $\left(D^{k}=\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\right)$
- Quasi-Newton: $D^{k} \approx\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}$
- Steepest descent: $D^{k}=I$
- Diagonally scaled: $D^{k}$ diagonal with $D_{i i}^{k} \approx\left(\frac{\partial^{2} f\left(x^{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}$
- Discretized Newton: $D^{k}=\left[H\left(x^{k}\right)\right]^{-1}, H$ via finite-diff.
- ...

Exercise: Verify that $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$ for above choices

## Gradient methods - stepsize

- Exact: $\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$
$\alpha \geq 0$


## Gradient methods - stepsize

- Exact: $\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$

$$
\alpha \geq 0
$$

- Limited min: $\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$

$$
0 \leq \alpha \leq s
$$

## Gradient methods - stepsize

- Exact: $\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$
$\alpha \geq 0$
- Limited min: $\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$

$$
0 \leq \alpha \leq s
$$

- Armijo-rule. Given fixed scalars, s, $\beta, \sigma$ with $0<\beta<1$ and $0<\sigma<1$ (chosen experimentally). Set

$$
\alpha_{k}=\beta^{m_{k}} s
$$

where we try $\beta^{m} s$ for $m=0,1, \ldots$ until sufficient descent

$$
f\left(x^{k}\right)-f\left(x+\beta^{m} s d^{k}\right) \geq-\sigma \beta^{m} s\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle
$$

- Constant: $\alpha_{k}=1 / L$ (for suitable value of $L$ )
- Diminishing: $\alpha_{k} \rightarrow 0$ but $\sum_{k} \alpha_{k}=\infty$.


## Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$
$\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}$

## Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded

## Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Theorem Let $f \in C_{L}^{1}$ and $\left\{x^{k}\right\}$ be sequence generated as above, with $\alpha_{k}=1 / L$. Then, $f\left(x^{k+1}\right)-f\left(x^{*}\right)=O(1 / k)$.

## Linear convergence

Assumption: Strong convexity; denote $f \in S_{L, \mu}^{1}$

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
$$

- Setting $\alpha_{k}=2 /(\mu+L)$ yields linear rate $(\mu>0)$


## Strongly convex - linear rate

Theorem. If $f \in S_{L, \mu}^{1}, 0<\alpha<2 /(L+\mu)$, then the gradient method generates a sequence $\left\{x^{k}\right\}$ that satisfies

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right)^{k}\left\|x^{0}-x^{*}\right\|_{2} .
$$

Moreover, if $\alpha=2 /(L+\mu)$ then

$$
f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

where $\kappa=L / \mu$ is the condition number.

## Gradient methods - lower bounds

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
$$

Theorem Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq$ $k \leq \frac{1}{2}(n-1)$, there is a smooth $f$, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

## Gradient methods - lower bounds

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
$$

Theorem Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq$ $k \leq \frac{1}{2}(n-1)$, there is a smooth $f$, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L, \mu}^{\infty}(\mu>0, \kappa>1)$

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

## Nonsmooth opt.

## Subgradient method

$$
\begin{gathered}
x^{k+1}=x^{k}-\alpha_{k} g^{k} \\
\text { where } g^{k} \in \partial f\left(x^{k}\right) \text { is any subgradient }
\end{gathered}
$$

## Subgradient method

$$
\begin{gathered}
x^{k+1}=x^{k}-\alpha_{k} g^{k} \\
\text { where } g^{k} \in \partial f\left(x^{k}\right) \text { is any subgradient }
\end{gathered}
$$

## Stepsize $\alpha_{k}>0$ must be chosen

## Subgradient method

$$
x^{k+1}=x^{k}-\alpha_{k} g^{k}
$$

where $g^{k} \in \partial f\left(x^{k}\right)$ is any subgradient

## Stepsize $\alpha_{k}>0$ must be chosen

- Method generates sequence $\left\{x^{k}\right\}_{k \geq 0}$
- Does this sequence converge to an optimal solution $x^{*}$ ?
- If yes, then how fast?
- What if have constraints: $x \in \mathcal{X}$ ?


## Example

$$
\begin{aligned}
& \min \frac{1}{2}\|\boldsymbol{A} x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& x^{k+1}=x^{k}-\alpha_{k}\left(\boldsymbol{A}^{T}\left(\boldsymbol{A} x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)
\end{aligned}
$$



## Example

$$
\begin{gathered}
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
x^{k+1}=x^{k}-\alpha_{k}\left(A^{T}\left(A x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)
\end{gathered}
$$


(More careful implementation)

## Subgradient method - stepsizes

- Constant Set $\alpha_{k}=\alpha>0$, for $k \geq 0$
- Scaled constant $\alpha_{k}=\alpha /\left\|g^{k}\right\|_{2} \quad\left(\left\|x^{k+1}-x^{k}\right\|_{2}=\alpha\right)$


## Subgradient method - stepsizes

- Constant Set $\alpha_{k}=\alpha>0$, for $k \geq 0$
- Scaled constant $\alpha_{k}=\alpha /\left\|g^{k}\right\|_{2} \quad\left(\left\|x^{k+1}-x^{k}\right\|_{2}=\alpha\right)$
- Square summable but not summable

$$
\sum_{k} \alpha_{k}^{2}<\infty, \quad \sum_{k} \alpha_{k}=\infty
$$

- Diminishing scalar

$$
\lim _{k} \alpha_{k}=0, \quad \sum_{k} \alpha_{k}=\infty
$$

- Adaptive stepsizes (not covered)

Not a descent method!
Work with best $f^{k}$ so far: $f_{\min }^{k}:=\min _{0 \leq i \leq k} f^{i}$

## Exercise

## Support vector machines

- Let $\mathcal{D}:=\left\{\left(x_{i}, y_{i}\right) \mid x_{i} \in \mathbb{R}^{n}, y_{i} \in\{ \pm 1\}\right\}$
- We wish to find $w \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that

$$
\min _{w, b} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{m} \max \left[0,1-y_{i}\left(w^{T} x_{i}+b\right)\right]
$$

- Derive and implement a subgradient method
- Plot evolution of objective function
- Experiment with different values of $C>0$
- Plot and keep track of $f_{\text {min }}^{k}:=\min _{0 \leq t \leq k} f\left(x^{t}\right)$


## Nonsmooth complexity

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$


## Nonsmooth complexity

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.


## Nonsmooth complexity

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$


## Nonsmooth complexity

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain $\epsilon$-accuracy.


## Nonsmooth complexity

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain $\epsilon$-accuracy.
- This behavior typical for the subgradient method which exhibits $O(1 / \sqrt{k})$ convergence in general


## Nonsmooth complexity

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain $\epsilon$-accuracy.
- This behavior typical for the subgradient method which exhibits $O(1 / \sqrt{k})$ convergence in general


## Can we do better in general?

## Nonsmooth complexity

Theorem (Nesterov.) Let $\mathcal{B}=\left\{x \mid\left\|x-x^{0}\right\|_{2} \leq D\right\}$. Assume, $x^{*} \in \mathcal{B}$. There exists a convex function $f$ in $C_{L}^{0}(\mathcal{B})$ (with $L>0$ ), such that for $0 \leq k \leq n-1$, the lower-bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})},
$$

holds for any algorithm that generates $x^{k}$ by linearly combining the previous iterates and subgradients.

## Constrained problems

## Constrained optimization

$$
\min \quad f(x) \quad \text { s.t. } \quad x \in \mathcal{X}
$$

## Constrained optimization

$$
\min \quad f(x) \quad \text { s.t. } \quad x \in \mathcal{X}
$$

■ Previously: $x^{t+1}=x^{t}-\alpha_{t} g^{t}$
■ This could be infeasible!

## Projected subgradient method

$$
\begin{gathered}
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} g^{k}\right) \\
\text { where } g^{k} \in \partial f\left(x^{k}\right) \text { is any subgradient }
\end{gathered}
$$

- Projection: closest feasible point

$$
P_{\mathcal{X}}(y)=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\|x-y\|^{2}
$$

## Projected subgradient method

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} g^{k}\right)
$$

where $g^{k} \in \partial f\left(x^{k}\right)$ is any subgradient

- Projection: closest feasible point

$$
P_{\mathcal{X}}(y)=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\|x-y\|^{2}
$$

- Great as long as projection is "easy"
- Same questions as before:

■ Does it converge?
■ For which stepsizes?
■ How fast?

## Examples

$$
\begin{aligned}
& \min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

- Nonnegativity $x \geq 0$
$P_{\mathcal{X}}(z)=[z]_{+}$
Update step: $x^{k+1}=\left[x^{k}-\alpha_{k}\left(\boldsymbol{A}^{T}\left(\boldsymbol{A} \boldsymbol{x}^{k}-\boldsymbol{b}\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)\right]_{+}$


## Examples

$$
\begin{aligned}
& \min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

- Nonnegativity $x \geq 0$
$P_{\mathcal{X}}(z)=[z]_{+}$
Update step: $x^{k+1}=\left[x^{k}-\alpha_{k}\left(\boldsymbol{A}^{T}\left(\boldsymbol{A} x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)\right]_{+}$
- $\ell_{\infty}$-ball $\|x\|_{\infty} \leq 1$

Projection: $\min \|x-z\|^{2}$ s.t. $x \leq 1$ and $x \geq-1$

## Examples

$$
\begin{aligned}
& \min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

- Nonnegativity $x \geq 0$
$P_{\mathcal{X}}(z)=[z]_{+}$
Update step: $x^{k+1}=\left[x^{k}-\alpha_{k}\left(\boldsymbol{A}^{T}\left(\boldsymbol{A} x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)\right]_{+}$
- $\ell_{\infty}$-ball $\|x\|_{\infty} \leq 1$

Projection: $\min \|x-z\|^{2}$ s.t. $x \leq 1$ and $x \geq-1$
this is separable, so do it coordinate-wise:
$P_{\mathcal{X}}(z)=y$ where $y_{i}=\operatorname{sgn}\left(z_{i}\right) \min \left\{\left|z_{i}\right|, 1\right\}$

## Examples

$$
\begin{aligned}
& \min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& \text { s.t. } x \in \mathcal{X}
\end{aligned}
$$

- Nonnegativity $x \geq 0$
$P_{\mathcal{X}}(z)=[z]_{+}$
Update step: $x^{k+1}=\left[x^{k}-\alpha_{k}\left(A^{T}\left(\boldsymbol{A} x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)\right]_{+}$
- $\ell_{\infty}$-ball $\|x\|_{\infty} \leq 1$

Projection: $\min \|x-z\|^{2}$ s.t. $x \leq 1$ and $x \geq-1$
this is separable, so do it coordinate-wise:
$P_{\mathcal{X}}(z)=y$ where $y_{i}=\operatorname{sgn}\left(z_{i}\right) \min \left\{\left|z_{i}\right|, 1\right\}$
Update step:

$$
\begin{aligned}
& z^{k+1}=x^{k}-\alpha_{k}\left(A^{T}\left(A x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right) \\
& x_{i}^{k+1}=\operatorname{sgn}\left(z_{i}^{k+1}\right) \min \left\{\left|z_{i}^{k+1}\right|, 1\right\}
\end{aligned}
$$

## Examples

- Linear constraints $A x=b\left(A \in \mathbb{R}^{n \times m}\right.$ has rank $\left.n\right)$

$$
\begin{aligned}
P_{\mathcal{X}}(y) & =y-A^{\top}\left(A A^{\top}\right)^{-1}(A y-b) \\
& =\left(I-A^{\top}\left(A^{\top} A\right)^{-1} A\right) y+A^{\top}\left(A A^{\top}\right)^{-1} b
\end{aligned}
$$

## Examples

- Linear constraints $A x=b\left(A \in \mathbb{R}^{n \times m}\right.$ has rank $\left.n\right)$

$$
\begin{aligned}
P_{\mathcal{X}}(y) & =y-A^{\top}\left(A A^{\top}\right)^{-1}(A y-b) \\
& =\left(I-A^{\top}\left(A^{\top} A\right)^{-1} A\right) y+A^{\top}\left(A A^{\top}\right)^{-1} b
\end{aligned}
$$

Update step, using $A x^{t}=b$ :

$$
\begin{aligned}
x^{t+1} & =P_{\mathcal{X}}\left(x^{t}-\alpha_{t} g^{t}\right) \\
& =x^{t}-\alpha_{t}\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right) g^{t}
\end{aligned}
$$

## Examples

- Linear constraints $A x=b\left(A \in \mathbb{R}^{n \times m}\right.$ has rank $\left.n\right)$

$$
\begin{aligned}
P_{\mathcal{X}}(y) & =y-A^{\top}\left(A A^{\top}\right)^{-1}(A y-b) \\
& =\left(I-A^{\top}\left(A^{\top} A\right)^{-1} A\right) y+A^{\top}\left(A A^{\top}\right)^{-1} b
\end{aligned}
$$

Update step, using $A x^{t}=b$ :

$$
\begin{aligned}
x^{t+1} & =P_{\mathcal{X}}\left(x^{t}-\alpha_{t} g^{t}\right) \\
& =x^{t}-\alpha_{t}\left(I-A^{\top}\left(A A^{\top}\right)^{-1} A\right) g^{t}
\end{aligned}
$$

- Simplex $x^{\top} 1=1$ and $x \geq 0$ more complex but doable in $O(n)$, similarly $\ell_{1}$-norm ball


## Subgradient method - remarks

- Why care?

■ simple
■ low-memory
■ large-scale versions possible

## Subgradient method - remarks

- Why care?

■ simple
■ low-memory
■ large-scale versions possible

- Another perspective

$$
x^{k+1}=\min _{x \in \mathcal{X}}\left\langle x, g^{k}\right\rangle+\frac{1}{2 \alpha_{k}}\left\|x-x_{k}\right\|^{2}
$$

Mirror Descent

## Subgradient method - remarks

- Why care?

■ simple
■ low-memory
■ large-scale versions possible

- Another perspective

$$
x^{k+1}=\min _{x \in \mathcal{X}}\left\langle x, g^{k}\right\rangle+\frac{1}{2 \alpha_{k}}\left\|x-x_{k}\right\|^{2}
$$

Mirror Descent

- Improvements using more information (heavy-ball, filtered subgradient, ...)


## Subgradient method - remarks

- Why care?

■ simple
■ low-memory
■ large-scale versions possible

- Another perspective

$$
x^{k+1}=\min _{x \in \mathcal{X}}\left\langle x, g^{k}\right\rangle+\frac{1}{2 \alpha_{k}}\left\|x-x_{k}\right\|^{2}
$$

Mirror Descent

- Improvements using more information (heavy-ball, filtered subgradient, ...)
- Don't forget the dual
- may be more amenable to optimization
- duality gap


## What we did not cover

© Adaptive stepsize tricks
© Space dilation methods, quasi-Newton style subgrads
A Barrier subgradient method

- Sparse subgradient method
- Ellipsoid method, center of gravity, etc. as subgradient methods


## Feasible descent

$$
\begin{gathered}
\min \quad f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in \mathcal{X} .
\end{gathered}
$$



## Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

## Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- $d^{k}-$ feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$


## Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- $d^{k}$ - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- $d^{k}$ must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize $\alpha_{k}$ chosen to ensure feasibility and descent.


## Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- $d^{k}$ - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- $d^{k}$ must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize $\alpha_{k}$ chosen to ensure feasibility and descent.

Since $\mathcal{X}$ is convex, all feasible directions are of the form

$$
d^{k}=\gamma\left(z-x^{k}\right), \quad \gamma>0
$$

where $z \in \mathcal{X}$ is any feasible vector.

## Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- $d^{k}$ - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- $d^{k}$ must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize $\alpha_{k}$ chosen to ensure feasibility and descent.

Since $\mathcal{X}$ is convex, all feasible directions are of the form

$$
d^{k}=\gamma\left(z-x^{k}\right), \quad \gamma>0
$$

where $z \in \mathcal{X}$ is any feasible vector.

$$
x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right), \quad \alpha_{k} \in(0,1]
$$

## Cone of feasible directions



## Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$

## Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

## Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Frank-Wolfe (Conditional gradient) method
$\Delta$ Let $z^{k} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle$
$\Delta$ Use different methods to select $\alpha_{k}$
© $x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right)$

## Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{\kappa}\right), d^{k}\right\rangle<0$.

## Frank-Wolfe (Conditional gradient) method

$\Delta$ Let $z^{k} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle$
© Use different methods to select $\alpha_{k}$
© $x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right)$

- Practical when solving linear problem over $\mathcal{X}$ easy
- Became popular in machine learning in recent years
© Refinements, several variants


## Composite objectives

Frequently nonsmooth problems take the form
minimize $f(x):=\ell(x)+r(x)$

## Composite objectives

Frequently nonsmooth problems take the form
minimize $f(x):=\ell(x)+r(x)$
$\ell \in \quad /+r \in$

## Composite objectives

Frequently nonsmooth problems take the form

$$
\operatorname{minimize} f(x):=\ell(x)+r(x)
$$

$$
\ell \in \quad>+r \in
$$

Example: $\ell(x)=\frac{1}{2}\|A x-b\|^{2}$ and $r(x)=\lambda\|x\|_{1}$

> Lasso, L1-LS, compressed sensing

## Composite objectives

Frequently nonsmooth problems take the form


Example: $\ell(x)=\frac{1}{2}\|A x-b\|^{2}$ and $r(x)=\lambda\|x\|_{1}$

> Lasso, L1-LS, compressed sensing

Example: $\ell(x)$ : Logistic loss, and $r(x)=\lambda\|x\|_{1}$
L1-Logistic regression, sparse LR

## Composite objective minimization

$$
\text { minimize } f(x):=\ell(x)+r(x)
$$

subgradient: $x^{k+1}=x^{k}-\alpha^{k} g^{k}, g^{k} \in \partial f\left(x^{k}\right)$

## Composite objective minimization

$$
\text { minimize } f(x):=\ell(x)+r(x)
$$

subgradient: $x^{k+1}=x^{k}-\alpha^{k} g^{k}, g^{k} \in \partial f\left(x^{k}\right)$
subgradient: converges slowly at rate $O(1 / \sqrt{k})$

## Composite objective minimization

minimize $f(x):=\ell(x)+r(x)$
subgradient: $x^{k+1}=x^{k}-\alpha^{k} g^{k}, g^{k} \in \partial f\left(x^{k}\right)$
subgradient: converges slowly at rate $O(1 / \sqrt{k})$
but: $f$ is smooth plus nonsmooth
we should exploit: smoothness of $\ell$ for better method!

## Proximal Gradient Method

$\min \quad f(x) \quad x \in \mathcal{X}$

## Projected gradient

$$
x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))
$$

## Proximal Gradient Method

$\min \quad f(x) \quad x \in \mathcal{X}$

## Projected gradient

$$
x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))
$$

$\min f(x)+h(x)$

## Proximal gradient

$$
x \leftarrow \operatorname{prox}_{\alpha h}(x-\alpha \nabla f(x))
$$

prox $_{\alpha h}$ denotes Euclidean proximity operator for $h$

## Proximal Gradient Method

$$
\min \quad f(x) \quad x \in \mathcal{X}
$$

## Projected gradient

$$
x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))
$$

$\min f(x)+h(x)$

## Proximal gradient

$$
x \leftarrow \operatorname{prox}_{\alpha h}(x-\alpha \nabla f(x))
$$

prox $_{\alpha h}$ denotes Euclidean proximity operator for $h$
NOTE: non-Euclidean versions (mirror-descent) also exist

## Proximity operator

## Projection

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathbb{P} n}{\operatorname{argmin}} \frac{1}{2}\|x-y\|_{2}^{2}+\mathbb{1}_{\mathcal{X}}(x)
$$

## Proximity operator

## Projection

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+\mathbb{1}_{\mathcal{X}}(x)
$$

Proximity: Replace $\mathbb{1}_{\mathcal{X}}$ by a closed convex function

$$
\operatorname{prox}_{r}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \frac{1}{2}\|x-y\|_{2}^{2}+r(x)
$$

## Proximity operator



## Proximity operators

Exercise: Let $r(x)=\|x\|_{1}$. Solve $\operatorname{prox}_{\lambda r}(y)$.

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|x\|_{1} .
$$

Hint 1: The above problem decomposes into $n$ independent subproblems of the form

$$
\min _{x \in \mathbb{R}} \frac{1}{2}(x-y)^{2}+\lambda|x| .
$$

Hint 2: Consider the two cases: either $x=0$ or $x \neq 0$
Aka: Soft-thresholding operator

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
0 \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right)
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
\begin{aligned}
& 0 \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
& 0 \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right)
\end{aligned}
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right)
\end{aligned}
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right)
\end{aligned}
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*} & =(I+\alpha \partial h)^{-1}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)
\end{aligned}
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*} & =(I+\alpha \partial h)^{-1}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right) \\
x^{*} & =\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)
\end{aligned}
$$

## Where does it come from?

$$
\text { Lemma } x^{*}=\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \forall \alpha>0
$$

$$
\begin{aligned}
0 & \in \nabla f\left(x^{*}\right)+\partial h\left(x^{*}\right) \\
0 & \in \alpha \nabla f\left(x^{*}\right)+\alpha \partial h\left(x^{*}\right) \\
x^{*} & \in \alpha \nabla f\left(x^{*}\right)+(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*}-\alpha \nabla f\left(x^{*}\right) & \in(I+\alpha \partial h)\left(x^{*}\right) \\
x^{*} & =(I+\alpha \partial h)^{-1}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right) \\
x^{*} & =\operatorname{prox}_{\alpha h}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)
\end{aligned}
$$

Above fixed-point eqn suggests iteration

$$
x_{k+1}=\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right)
$$

## Why does it work?

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \\
x_{k+1} & =x_{k}-\alpha_{k} G_{\alpha_{k}}\left(x_{k}\right) .
\end{aligned}
$$

## Why does it work?

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \\
x_{k+1} & =x_{k}-\alpha_{k} G_{\alpha_{k}}\left(x_{k}\right)
\end{aligned}
$$

## Gradient mapping: the "gradient-like object"

$$
G_{\alpha}(x)=\frac{1}{\alpha}\left(x-P_{\alpha h}(x-\alpha \nabla f(x))\right)
$$

## Why does it work?

$$
\begin{aligned}
x_{k+1} & =\operatorname{prox}_{\alpha_{k} h}\left(x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right) \\
x_{k+1} & =x_{k}-\alpha_{k} G_{\alpha_{k}}\left(x_{k}\right)
\end{aligned}
$$

Gradient mapping: the "gradient-like object"

$$
G_{\alpha}(x)=\frac{1}{\alpha}\left(x-P_{\alpha h}(x-\alpha \nabla f(x))\right)
$$

- Our lemma shows: $G_{\alpha}(x)=0$ if and only if $x$ is optimal
- So $G_{\alpha}$ analogous to $\nabla f$
- If $x$ locally optimal, then $G_{\alpha}(x)=0$ (nonconvex $f$ )


## Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

## Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded

## Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

## Convergence analysis

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

For convex $f$, compare with

$$
f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle .
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
f(y)-f(x)-\langle\nabla f(x), y-x\rangle=\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right|
\end{aligned}
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t
\end{aligned}
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(x)\right\|_{2} \cdot\|y-x\|_{2} d t
\end{aligned}
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(x)\right\|_{2} \cdot\|y-x\|_{2} d t \\
& \leq L \int_{0}^{1} t\|x-y\|_{2}^{2} d t
\end{aligned}
$$

## Descent lemma

Proof. Since $f \in C_{L}^{1}$, by Taylor's theorem, for the vector $z_{t}=x+t(y-x)$ we have

$$
f(y)=f(x)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), y-x\right\rangle d t .
$$

Add and subtract $\langle\nabla f(x), y-x\rangle$ on rhs we have

$$
\begin{aligned}
f(y)-f(x)-\langle\nabla f(x), y-x\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t \\
|f(y)-f(x)-\langle\nabla f(x), y-x\rangle| & =\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(x), y-x\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(x)\right\|_{2} \cdot\|y-x\|_{2} d t \\
& \leq L \int_{0}^{1} t\|x-y\|_{2}^{\|_{2} d t} \\
& =\frac{L}{2}\|x-y\|_{2}^{2} .
\end{aligned}
$$

Bounds $f(y)$ around $x$ with quadratic functions

## Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\iota}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

## Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\iota}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha^{2} L}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

## Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\iota}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha^{2} L}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Corollary. So if $0 \leq \alpha \leq 1 / L$, we have

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

## Descent lemma - corollary

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{\iota}{2}\|y-x\|_{2}^{2}
$$

Let $y=x-\alpha G_{\alpha}(x)$, then

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha^{2} L}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Corollary. So if $0 \leq \alpha \leq 1 / L$, we have

$$
f(y) \leq f(x)-\alpha\left\langle\nabla f(x), G_{\alpha}(x)\right\rangle+\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Lemma Let $y=x-\alpha G_{\alpha}(x)$. Then, for any $z$ we have

$$
f(y)+h(y) \leq f(z)+h(z)+\left\langle G_{\alpha}(x), x-z\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

Exercise: Prove! (hint: $f, h$ are convex, $\left.G_{\alpha}(x)-\nabla f(x) \in \partial h(y)\right)$

## Convergence analysis

We've actually shown $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method. Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Why this inequality suffices to show convergence.

## Convergence analysis

We've actually shown $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method.
Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Why this inequality suffices to show convergence. Use $z=x^{*}$ in corollary to obtain progress in terms of iterates:

$$
\phi\left(x^{\prime}\right)-\phi^{*} \leq\left\langle G_{\alpha}(x), x-x^{*}\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2}
$$

## Convergence analysis

We've actually shown $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method.
Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Why this inequality suffices to show convergence. Use $z=x^{*}$ in corollary to obtain progress in terms of iterates:

$$
\begin{aligned}
\phi\left(x^{\prime}\right)-\phi^{*} & \leq\left\langle G_{\alpha}(x), x-x^{*}\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} \\
& =\frac{1}{2 \alpha}\left[2\left\langle\alpha G_{\alpha}(x), x-x^{*}\right\rangle-\left\|\alpha G_{\alpha}(x)\right\|_{2}^{2}\right] \\
& =\frac{1}{2 \alpha}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x-x^{*}-\alpha G_{\alpha}(x)\right\|_{2}^{2}\right]
\end{aligned}
$$

## Convergence analysis

We've actually shown $x^{\prime}=x-\alpha G_{\alpha}(x)$ is a descent method.
Write $\phi=f+h$; plug in $z=x$ to obtain

$$
\phi\left(x^{\prime}\right) \leq \phi(x)-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} .
$$

Exercise: Why this inequality suffices to show convergence. Use $z=x^{*}$ in corollary to obtain progress in terms of iterates:

$$
\begin{aligned}
\phi\left(x^{\prime}\right)-\phi^{*} & \leq\left\langle G_{\alpha}(x), x-x^{*}\right\rangle-\frac{\alpha}{2}\left\|G_{\alpha}(x)\right\|_{2}^{2} \\
& =\frac{1}{2 \alpha}\left[2\left\langle\alpha G_{\alpha}(x), x-x^{*}\right\rangle-\left\|\alpha G_{\alpha}(x)\right\|_{2}^{2}\right] \\
& =\frac{1}{2 \alpha}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x-x^{*}-\alpha G_{\alpha}(x)\right\|_{2}^{2}\right] \\
& =\frac{1}{2 \alpha}\left[\left\|x-x^{*}\right\|_{2}^{2}-\left\|x^{\prime}-x^{*}\right\|_{2}^{2}\right] .
\end{aligned}
$$

## Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

## Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{i}-x^{*}\right\|_{2}^{2}-\left\|x_{i+1}-x^{*}\right\|_{2}^{2}\right]
$$

## Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{i}-x^{*}\right\|_{2}^{2}-\left\|x_{i+1}-x^{*}\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right]
\end{aligned}
$$

## Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{i}-x^{*}\right\|_{2}^{2}-\left\|x_{i+1}-x^{*}\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right] \\
& \leq \frac{L}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

## Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{i}-x^{*}\right\|_{2}^{2}-\left\|x_{i+1}-x^{*}\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right] \\
& \leq \frac{L}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Since $\phi\left(x_{k}\right)$ is a decreasing sequence, it follows that

$$
\phi\left(x_{k+1}\right)-\phi^{*} \leq \frac{1}{k+1} \sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) \leq \frac{L}{2(k+1)}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

This is the well-known $O(1 / k)$ rate.

## Convergence rate

Set $x \leftarrow x_{k}, x^{\prime} \leftarrow x_{k+1}$, and $\alpha=1 / L$. Then add

$$
\begin{aligned}
\sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) & \leq \frac{L}{2} \sum_{i=1}^{k+1}\left[\left\|x_{i}-x^{*}\right\|_{2}^{2}-\left\|x_{i+1}-x^{*}\right\|_{2}^{2}\right] \\
& =\frac{L}{2}\left[\left\|x_{1}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}\right] \\
& \leq \frac{L}{2}\left\|x_{1}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Since $\phi\left(x_{k}\right)$ is a decreasing sequence, it follows that

$$
\phi\left(x_{k+1}\right)-\phi^{*} \leq \frac{1}{k+1} \sum_{i=1}^{k+1}\left(\phi\left(x_{i}\right)-\phi^{*}\right) \leq \frac{L}{2(k+1)}\left\|x_{1}-x^{*}\right\|_{2}^{2}
$$

This is the well-known $O(1 / k)$ rate.
But for $C_{L}^{1}$ convex functions, optimal rate is $O\left(1 / k^{2}\right)$

## Faster methods

## Optimal gradient methods

© We saw following efficiency estimates for the gradient method

$$
\begin{array}{ll}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{array}
$$

## Optimal gradient methods

© We saw following efficiency estimates for the gradient method

$$
\begin{array}{ll}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{array}
$$

A We also saw lower complexity bounds

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}} \\
f S_{L, \mu}^{\infty}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2} .
\end{aligned}
$$

## Optimal gradient methods

A Subgradient method upper and lower bounds

$$
\begin{gathered}
f\left(x^{k}\right)-f\left(x^{*}\right) \leq O(1 / \sqrt{k}) \\
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})} .
\end{gathered}
$$

A Composite objective problems: proximal gradient gives same bounds as gradient methods.

## Gradient with "momentum"

## Polyak's method (aka heavy-ball) for $f \in S_{L, \mu}^{1}$ <br> $$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)+\beta_{k}\left(x^{k}-x^{k-1}\right)
$$

## Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S_{L, \mu}^{1}$

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)+\beta_{k}\left(x^{k}-x^{k-1}\right)
$$

- Converges (locally, i.e., for $\left\|x^{0}-x^{*}\right\|_{2} \leq \epsilon$ ) as

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

for $\alpha_{k}=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}$ and $\beta_{k}=\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2}$

## Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

## Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$

## Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. $k$-th iteration $(k \geq 0)$ :
a). Compute intermediate update

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

## Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. $k$-th iteration $(k \geq 0)$ :
a). Compute intermediate update

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

b). Compute stepsize $\alpha_{k+1}$ by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

## Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. $k$-th iteration $(k \geq 0)$ :
a). Compute intermediate update

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

b). Compute stepsize $\alpha_{k+1}$ by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

c). Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
d). Update solution estimate

$$
y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)
$$

## Optimal gradient method - rate

Theorem Let $\left\{x^{k}\right\}$ be sequence generated by above algorithm. If $\alpha_{0} \geq \sqrt{\mu / L}$, then

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq c_{1} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4 L}{\left(2 \sqrt{L}+c_{2} k\right)^{2}}\right\},
$$

where constants $c_{1}, c_{2}$ depend on $\alpha_{0}, L, \mu$.

## Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

## Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. $k$-th iteration $(k \geq 0)$ :

## Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. $k$-th iteration $(k \geq 0)$ :
a). $x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)$
b). $y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right)$

## Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0 .
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. $k$-th iteration $(k \geq 0)$ :
a). $x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)$
b). $y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right)$

Notice similarity to Polyak's method!

## Accelerated Proximal Gradient

$$
\min \phi(x)=f(x)+h(x)
$$

Let $x^{0}=y^{0} \in \operatorname{dom} h$. For $k \geq 1$ :

$$
\begin{aligned}
x^{k} & =\operatorname{prox}_{\alpha_{k} h}\left(y^{k-1}-\alpha_{k} \nabla f\left(y^{k-1}\right)\right) \\
y^{k} & =x_{k}+\frac{k-1}{k+2}\left(x^{k}-x^{k-1}\right)
\end{aligned}
$$

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).

## Accelerated Proximal Gradient

$$
\min \phi(x)=f(x)+h(x)
$$

Let $x^{0}=y^{0} \in \operatorname{dom} h$. For $k \geq 1$ :

$$
\begin{aligned}
x^{k} & =\operatorname{prox}_{\alpha_{k} h}\left(y^{k-1}-\alpha_{k} \nabla f\left(y^{k-1}\right)\right) \\
y^{k} & =x_{k}+\frac{k-1}{k+2}\left(x^{k}-x^{k-1}\right)
\end{aligned}
$$

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).

- Uses extra "memory" for interpolation
- Same computational cost as ordinary prox-grad
- Convergence rate theoretically optimal


## Accelerated Proximal Gradient

$$
\min \phi(x)=f(x)+h(x)
$$

Let $x^{0}=y^{0} \in \operatorname{dom} h$. For $k \geq 1$ :

$$
\begin{aligned}
x^{k} & =\operatorname{prox}_{\alpha_{k} h}\left(y^{k-1}-\alpha_{k} \nabla f\left(y^{k-1}\right)\right) \\
y^{k} & =x_{k}+\frac{k-1}{k+2}\left(x^{k}-x^{k-1}\right)
\end{aligned}
$$

Framework due to: Nesterov (1983, 2004); also Beck, Teboulle (2009). Simplified analysis: Tseng (2008).

- Uses extra "memory" for interpolation
- Same computational cost as ordinary prox-grad
- Convergence rate theoretically optimal

$$
\phi\left(x^{k}\right)-\phi^{*} \leq \frac{2 L}{(k+1)^{2}}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

## The operator view

## Set-valued mappings

Think of $\partial f$ as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

## Set-valued mappings

Think of $\partial f$ as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation $R$ is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

## Set-valued mappings

Think of $\partial f$ as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation $R$ is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

- Empty relation: $\emptyset$
- Identity: $I:=\left\{(x, x) \mid x \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(x, 0) \mid x \in \mathbb{R}^{n}\right\}$
- Subdifferential: $\partial f:=\left\{(x, g) \mid x \in \mathbb{R}^{n}, g \in \partial f(x)\right\}$


## Set-valued mappings

Think of $\partial f$ as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation $R$ is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

- Empty relation: $\emptyset$
- Identity: $I:=\left\{(x, x) \mid x \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(x, 0) \mid x \in \mathbb{R}^{n}\right\}$
- Subdifferential: $\partial f:=\left\{(x, g) \mid x \in \mathbb{R}^{n}, g \in \partial f(x)\right\}$
- We will write $R(x)$ to mean $\{y \mid(x, y) \in R\}$.
- Example: $\partial f(x)=\{g \mid(x, g) \in \partial f\}$


## Why this notation?

- Goal: solve generalized equation $0 \in R(x)$
- That is, find $x \in \mathbb{R}^{n}$ such that $(x, 0) \in R$


## Why this notation?

- Goal: solve generalized equation $0 \in R(x)$
- That is, find $x \in \mathbb{R}^{n}$ such that $(x, 0) \in R$
- Example: Say $R \equiv \partial f$, then goal

$$
0 \in R(x) \Leftrightarrow 0 \in \partial f(x)
$$

means we want to find an $x$ that minimizes $f$.

- Helps succinctly write / analyze problems and algorithms


## Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$


## Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$


## Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$


## Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation $R$ with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

## Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation $R$ with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

$-I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$

## Working with operators

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation $R$ with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

$-I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$

- $S=\{(x+\lambda y, x) \mid(x, y) \in R\}$


## Which operators are "easier"?

## Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

## Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

## Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$


## Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

## Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential $\partial f$ of a convex function (verify!)


## Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

## Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential $\partial f$ of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$


## Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

## Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential $\partial f$ of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$
- Projection and proximity operators


## Which operators are "easier"?

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

## Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential $\partial f$ of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$
- Projection and proximity operators


## Generalize notion of monotonicity to vectors

A Abstraction takes linear-algebra intuition to optimization

## Monotone operators - simple facts

Exercise: Prove $\lambda R$ monotone if $R$ monotone and $\lambda \geq 0$ Exercise: Prove $R^{-1}$ monotone, if $R$ is monotone Exercise: For monotone $R, S$ and $\lambda \geq 0, R+\lambda S$ is monotone. Corollary: Resolvent of monotone operator is monotone.
$R$ monotone $\Longrightarrow(I+\lambda R)^{-1}$ is monotone.

## Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

## Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

## Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:<br>$0 \in R(x)$

## Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

## Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x)$

## Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

## Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x) \leftrightarrow x \in(I+\alpha R)(x)$

## Importance of resolvent operators

Aim: solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

## Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x) \leftrightarrow x \in(I+\alpha R)(x) \leftrightarrow x=(I+\alpha R)^{-1}(x)$

## Rederiving proximal-gradient

Theorem Let $h$ be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y) .
$$

## Rederiving proximal-gradient

Theorem Let $h$ be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y) .
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued


## Rederiving proximal-gradient

Theorem Let $h$ be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y) .
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$


## Rederiving proximal-gradient

Theorem Let $h$ be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y) .
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$
- That is, $y \in x+\lambda \partial h(x)$


## Rederiving proximal-gradient

Theorem Let $h$ be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y) .
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$
- That is, $y \in x+\lambda \partial h(x)$
- Equivalently, $x-y+\lambda \partial h(x) \ni 0$


## Rederiving proximal-gradient

Theorem Let $h$ be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial h)^{-1}(y)=\operatorname{prox}_{\lambda h}(y) .
$$

- Suppose $(I+\lambda \partial h)^{-1}$ is single valued
- Then, $x=(I+\lambda \partial h)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial h)(x)$
- That is, $y \in x+\lambda \partial h(x)$
- Equivalently, $x-y+\lambda \partial h(x) \ni 0$
- Nothing other than optimality condition for prox-operator

$$
\operatorname{prox}_{\lambda h}(y) \equiv y \mapsto \underset{x}{\operatorname{argmin}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda h(x)
$$

## More proximal splitting

$$
\ell(x)+f(x)+h(x)
$$

- Direct use of prox-grad not easy
- Requires computation of: $\operatorname{prox}_{\lambda(f+h)}$ (i.e., $\left.(I+\lambda(\partial f+\partial h))^{-1}\right)$


## More proximal splitting

$$
\ell(x)+f(x)+h(x)
$$

- Direct use of prox-grad not easy
- Requires computation of: $\operatorname{prox}_{\lambda(f+h)}$ (i.e., $\left.(I+\lambda(\partial f+\partial h))^{-1}\right)$ Example:

$$
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}+\underbrace{\lambda\|x\|_{2}}_{f(x)}+\underbrace{\mu \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right|}_{h(x)} .
$$

## More proximal splitting

$$
\ell(x)+f(x)+h(x)
$$

- Direct use of prox-grad not easy
- Requires computation of: $\operatorname{prox}_{\lambda(f+h)}$ (i.e., $\left.(I+\lambda(\partial f+\partial h))^{-1}\right)$


## Example:

$$
\min \frac{1}{2}\|x-y\|_{2}^{2}+\underbrace{\lambda\|x\|_{2}}_{f(x)}+\underbrace{\mu \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right|}_{h(x)} .
$$

- But good feature: prox $_{f}$ and prox $_{h}$ separately easier
- Can we exploit that?


## Proximal splitting - operator notation

- If $(I+\partial f+\partial h)^{-1}$ hard, but $(I+\partial f)^{-1}$ and $(I+\partial h)^{-1}$ "easy"


## Proximal splitting - operator notation

- If $(I+\partial f+\partial h)^{-1}$ hard, but $(I+\partial f)^{-1}$ and $(I+\partial h)^{-1}$ "easy"
- Let us derive a fixed-point equation that "splits" the operators


## Proximal splitting - operator notation

- If $(I+\partial f+\partial h)^{-1}$ hard, but $(I+\partial f)^{-1}$ and $(I+\partial h)^{-1}$ "easy"
- Let us derive a fixed-point equation that "splits" the operators


## Assume we are solving

$$
\min \quad f(x)+h(x)
$$

where both $f$ and $h$ are convex but potentially nondifferentiable. Notice: We implicitly assumed: $\partial(f+h)=\partial f+\partial h$.

## Proximal splitting

$$
0 \in \partial f(x)+\partial h(x)
$$

## Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

## Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

## Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x)
$$

## Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x) \Longrightarrow x \in(I+\partial f)^{-1}(2 x-z)
$$

## Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x) \Longrightarrow x \in(I+\partial f)^{-1}(2 x-z)
$$

- Not a fixed-point equation yet


## Proximal splitting

$$
\begin{aligned}
0 & \in \partial f(x)+\partial h(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial h)(x)
\end{aligned}
$$

Key idea of splitting: new variable!

$$
z \in(I+\partial h)(x) \Longrightarrow x=\operatorname{prox}_{h}(z)
$$

$$
2 x-z \in(I+\partial f)(x) \Longrightarrow x \in(I+\partial f)^{-1}(2 x-z)
$$

- Not a fixed-point equation yet
- We need one more idea


## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

## Douglas-Rachford method

$$
z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z)
$$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method
$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method

$$
z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z
$$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x)
\end{aligned}
$$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method
$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right)
\end{aligned}
$$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method
$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right) \\
\text { but } R_{h}(z) & =2 x-z \Longrightarrow \\
z & =2 x-R_{h}(z)
\end{aligned}
$$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

Douglas-Rachford method
$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right)
\end{aligned}
$$

$$
\text { but } R_{h}(z)=2 x-z \Longrightarrow
$$

$$
\begin{aligned}
z & =2 x-R_{h}(z) \\
z & =2 \operatorname{prox}_{f}\left(R_{h}(z)\right)-R_{h}(z)=
\end{aligned}
$$

## Douglas-Rachford splitting

## Reflection operator

$$
R_{h}(z):=2 \operatorname{prox}_{h}(z)-z
$$

## Douglas-Rachford method

$z \in(I+\partial h)(x), \quad x=\operatorname{prox}_{h}(z) \Longrightarrow R_{h}(z)=2 x-z$

$$
\begin{aligned}
0 & \in \partial f(x)+\partial g(x) \\
2 x & \in(I+\partial f)(x)+(I+\partial g)(x) \\
2 x-z & \in(I+\partial f)(x) \\
x & =\operatorname{prox}_{f}\left(R_{h}(z)\right)
\end{aligned}
$$

$$
\text { but } R_{h}(z)=2 x-z \Longrightarrow
$$

$$
\begin{aligned}
z & =2 x-R_{h}(z) \\
z & =2 \operatorname{prox}_{f}\left(R_{h}(z)\right)-R_{h}(z)=R_{f}\left(R_{h}(z)\right)
\end{aligned}
$$

Finally, $z$ is on both sides of the eqn

## Douglas-Rachford method

$$
0 \in \partial f(x)+\partial h(x) \Leftrightarrow\left\{\begin{array}{l}
x=\operatorname{prox}_{h}(z) \\
z=R_{f}\left(R_{h}(z)\right)
\end{array}\right.
$$

DR method: given $z_{0}$, iterate for $k \geq 0$

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{h}\left(z_{k}\right) \\
v_{k} & =\operatorname{prox}_{f}\left(2 x_{k}-z_{k}\right) \\
z_{k+1} & =z_{k}+\gamma_{k}\left(v_{k}-x_{k}\right)
\end{aligned}
$$

## Douglas-Rachford method

$$
0 \in \partial f(x)+\partial h(x) \Leftrightarrow\left\{\begin{array}{l}
x=\operatorname{prox}_{h}(z) \\
z=R_{f}\left(R_{h}(z)\right)
\end{array}\right.
$$

DR method: given $z_{0}$, iterate for $k \geq 0$

$$
\begin{aligned}
x_{k} & =\operatorname{prox}_{h}\left(z_{k}\right) \\
v_{k} & =\operatorname{prox}_{f}\left(2 x_{k}-z_{k}\right) \\
z_{k+1} & =z_{k}+\gamma_{k}\left(v_{k}-x_{k}\right)
\end{aligned}
$$

Theorem If $f+h$ admits minimizers, and ( $\gamma_{k}$ ) satisfy

$$
\gamma_{k} \in[0,2], \quad \sum_{k} \gamma_{k}\left(2-\gamma_{k}\right)=\infty,
$$

then the DR-iterates $v_{k}$ and $x_{k}$ converge to a minimizer.

## Douglas-Rachford method

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z_{k+1}=z_{k}+v_{k}-x_{k} \\
& z_{k+1}=z_{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{h}\left(z_{k}\right)-z_{k}\right)-\operatorname{prox}_{h}\left(z_{k}\right)
\end{aligned}
$$

## Douglas-Rachford method

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z_{k+1}=z_{k}+v_{k}-x_{k} \\
& z_{k+1}=z_{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{h}\left(z_{k}\right)-z_{k}\right)-\operatorname{prox}_{h}\left(z_{k}\right)
\end{aligned}
$$

Dropping superscripts, writing $P \equiv$ prox, we have

$$
\begin{gathered}
z \leftarrow T z \\
T=I+P_{f}\left(2 P_{h}-I\right)-P_{h}
\end{gathered}
$$

## Douglas-Rachford method

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z_{k+1}=z_{k}+v_{k}-x_{k} \\
& z_{k+1}=z_{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{h}\left(z_{k}\right)-z_{k}\right)-\operatorname{prox}_{h}\left(z_{k}\right)
\end{aligned}
$$

Dropping superscripts, writing $P \equiv$ prox, we have

$$
\begin{gathered}
z \leftarrow T z \\
T=I+P_{f}\left(2 P_{h}-I\right)-P_{h}
\end{gathered}
$$

Lemma DR can be written as: $z \leftarrow \frac{1}{2}\left(R_{f} R_{h}+I\right) z$, where $R_{f}$ denotes the reflection operator $2 P_{f}-I$ (similarly $R_{h}$ ).

Exercise: Prove this claim.

## Other methods

- ADMM (DR on dual)

■ Proximal-Dykstra
■ Proximal methods for $f_{1}+f_{2}+\cdots+f_{n}$

- Peaceman-Rachford
- Proximal quasi-Newton, Newton

■ Ultimately, proximal-point method

