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Outline

– Recap on convexity
– Recap on duality, optimality
– First-order optimization algorithms
– Proximal methods, operator splitting
– Incremental methods
– High-level view of parallel, distributed
– Some words on nonconvex
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Convex analysis
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Convex sets
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Convex sets

Def. Set C ⊂ Rn called convex, if for any x , y ∈ C, the line-
segment θx + (1− θ)y , where θ ∈ [0,1], also lies in C.

Combinations

I Convex: θ1x + θ2y ∈ C, where θ1, θ2 ≥ 0 and θ1 + θ2 = 1.
I Linear: if restrictions on θ1, θ2 are dropped
I Conic: if restriction θ1 + θ2 = 1 is dropped
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Convex sets

Theorem (Intersection).
Let C1, C2 be convex sets. Then, C1 ∩ C2 is also convex.

Proof.

→ If C1 ∩ C2 = ∅, then true vacuously.
→ Let x , y ∈ C1 ∩ C2. Then, x , y ∈ C1 and x , y ∈ C2.
→ But C1, C2 are convex, hence θx + (1− θ)y ∈ C1, and also in C2.

Thus, θx + (1− θ)y ∈ C1 ∩ C2.
→ Inductively follows that ∩m

i=1Ci is also convex.
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Convex sets

(psdcone image from convexoptimization.com, Dattorro)
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Convex sets

♥ Let x1, x2, . . . , xm ∈ Rn. Their convex hull is

co(x1, . . . , xm) :=
{∑

i
θixi | θi ≥ 0,

∑
i
θi = 1

}
.

♥ Let A ∈ Rm×n, and b ∈ Rm. The set {x | Ax = b} is convex (it
is an affine space over subspace of solutions of Ax = 0).

♥ halfspace
{

x | aT x ≤ b
}

.
♥ polyhedron {x | Ax ≤ b,Cx = d}.
♥ ellipsoid

{
x | (x − x0)T A(x − x0) ≤ 1

}
, (A: semidefinite)

♥ convex cone x ∈ K =⇒ αx ∈ K for α ≥ 0 (and K convex)

◦

Exercise: Verify that these sets are convex.
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Challenge 1

Let A, B ∈ Rn×n be symmetric. Prove that

R(A,B) :=
{

(xT Ax , xT Bx) | xT x = 1
}

is a compact convex set for n ≥ 3.
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Convex functions

Def. Function f : I → R on interval I called midpoint convex if

f
(x+y

2

)
≤ f (x)+f (y)

2 , whenever x , y ∈ I.

Read: f of AM is less than or equal to AM of f .

Def. A function f : Rn → R is called convex if its domain dom(f )

is a convex set and for any x , y ∈ dom(f ) and θ ≥ 0

f (θx + (1− θ)y) ≤ θf (x) + (1− θ)f (y).

Theorem (J.L.W.V. Jensen). Let f : I → R be continuous. Then, f
is convex if and only if it is midpoint convex.

I Extends to f : X ⊆ Rn → R; useful for proving convexity.
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Convex functions

x y

f (x)

f (y)

λf (x)
+ (1− λ)f (y

)

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)
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Convex functions

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x − y〉
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Convex functions

x y

P

Q

R

z = λx+ (1− λ)y

slope PQ ≤ slope PR ≤ slope QR
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Convex functions

Example The pointwise maximum of a family of convex functions
is convex. That is, if f (x ; y) is a convex function of x for every y
in some “index set” Y, then

f (x) := max
y∈Y

f (x ; y)

is a convex function of x (set Y is arbitrary).

Example Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f (Ax + b) is convex.

Exercise: Verify above examples.
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Convex functions

Theorem Let Y be a nonempty convex set. Suppose L(x , y) is
convex in (x , y), then,

f (x) := inf
y∈Y

L(x , y)

is a convex function of x , provided f (x) > −∞.

Proof. Let u, v ∈ dom f . Since f (u) = infy L(u, y), for each ε > 0, there is a
y1 ∈ Y, s.t. f (u) + ε

2 is not the infimum. Thus, L(u, y1) ≤ f (u) + ε
2 .

Similarly, there is y2 ∈ Y, such that L(v , y2) ≤ f (v) + ε
2 .

Now we prove that f (λu + (1− λ)v) ≤ λf (u) + (1− λ)f (v) directly.

f (λu + (1− λ)v) = inf
y∈Y

L(λu + (1− λ)v , y)

≤ L(λu + (1− λ)v , λy1 + (1− λ)y2)

≤ λL(u, y1) + (1− λ)L(v , y2)

≤ λf (u) + (1− λ)f (v) + ε.

Since ε > 0 is arbitrary, claim follows.
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Convex functions – Indicator

Let 1X be the indicator function for X defined as:

1X (x) :=

{
0 if x ∈ X ,
∞ otherwise.

Note: 1X (x) is convex if and only if X is convex.
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Convex functions – distance

Example Let X be a convex set. Let x ∈ Rn be some point. The
distance of x to the set X is defined as

dist(x ,X ) := inf
y∈X

‖x − y‖.

Note: because ‖x − y‖ is jointly convex in (x , y), the function
dist(x ,Y) is a convex function of x .
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Convex functions – norms

Let f : Rn → R be a function that satisfies
1 f (x) ≥ 0, and f (x) = 0 if and only if x = 0 (definiteness)
2 f (λx) = |λ|f (x) for any λ ∈ R (positive homogeneity)
3 f (x + y) ≤ f (x) + f (y) (subadditivity)

Such function called norms—usually denoted ‖x‖.
Theorem Norms are convex.
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Some norms

Example (`2-norm): ‖x‖2 =
(∑

i x2
i

)1/2

Example (`p-norm): Let p ≥ 1. ‖x‖p =
(∑

i |xi |p
)1/p

Example (`∞-norm): ‖x‖∞ = max1≤i≤n |xi |

Example (Frobenius-norm): Let A ∈ Rm×n. ‖A‖F :=
√∑

ij |aij |2

Example Let A be any matrix. Then, the operator norm of A is

‖A‖ := sup
‖x‖2 6=0

‖Ax‖2
‖x‖2

= σmax(A).
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f ∗(z) := sup
x∈dom f

xT z − f (x).

Note: f ∗ is pointwise (over x) sup of linear functions of z. Hence,
it is always convex (even if f is not convex).

Example +∞ and −∞ conjugate to each other.

Example Let f (x) = ‖x‖. We have f ∗(z) = 1‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

Proof. f ∗(z) = supx zT x − ‖x‖. If ‖z‖∗ > 1, by defn. of the dual norm, ∃u
such that ‖u‖ ≤ 1 and uT z > 1. Now select x = αu and let α→∞. Then,
zT x − ‖x‖ = α(zT u − ‖u‖)→∞. If ‖z‖∗ ≤ 1, then zT x ≤ ‖x‖‖z‖∗, which
implies the sup must be zero.
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Fenchel conjugate

Example f (x) = 1
2xT Ax , where A � 0. Then, f ∗(z) = 1

2zT A−1z.

Example f (x) = max(0,1 − x). Verify: dom f ∗ = [−1,0], and on
this domain, f ∗(z) = z.

Example f (x) = 1X (x): f ∗(z) = supx∈X 〈x , z〉 (aka support func)
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Challenge 2

Consider the following functions on strictly positive variables:

h1(x) :=
1
x

h2(x , y) :=
1
x
+

1
y
− 1

x + y

h3(x , y , z) :=
1
x
+

1
y
+

1
z
− 1

x + y
− 1

y + z
− 1

x + z
+

1
x + y + z

♥ Prove that h1, h2, h3, and in general hn are convex!
♥ Prove that in fact each 1/hn is concave

∇2hn(x) � 0 is not recommended
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Subgradients
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Subgradients: global underestimators

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x − y〉
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Subgradients: global underestimators

y

f(y)

g1

g2
g3

f(y)
+ 〈g1,

x− y〉

f(x)

f (x) ≥ f (y) + 〈g, x − y〉
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Subgradients: global underestimators

y

f(y)

g1

g2
g3

f(y)
+ 〈g1,

x− y〉

f(x)

g1, g2, g3 are subgradients at y
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Subgradients – basic facts

I f is convex, differentiable: ∇f (y) the unique subgradient at y
I A vector g is a subgradient at a point y if and only if

f (y) + 〈g, x − y〉 is globally smaller than f (x).
I Usually, one subgradient costs approx. as much as f (x)

I Determining all subgradients at a given point — difficult.
I Subgradient calculus—major achievement in convex analysis
I Fenchel-Young inequality: f (x) + f ∗(s) ≥ 〈s, x〉
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Subgradients – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable
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Subgradients – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f ′2(y)]
(imagine all supporting lines turning about point y )
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Subdifferential

Def. The set of all subgradients at y denoted by ∂f (y). This set
is called subdifferential of f at y

If f is convex, ∂f (x) is nice:
♣ If x ∈ relative interior of dom f , then ∂f (x) nonempty
♣ If f differentiable at x , then ∂f (x) = {∇f (x)}
♣ If ∂f (x) = {g}, then f is differentiable and g = ∇f (x)
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Subdifferential – example

f (x) = |x |

∂f(x)

−1

+1

x

∂|x | =


−1 x < 0,
+1 x > 0,
[−1,1] x = 0.
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More examples

Example f (x) = ‖x‖2. Then,

∂f (x) :=

{
x/‖x‖2 x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z − x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.

Suvrit Sra (MIT) Introduction to large-scale optimization 30 / 68



More examples

Example f (x) = ‖x‖2. Then,

∂f (x) :=

{
x/‖x‖2 x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z − x〉

‖z‖2 ≥ 〈g, z〉
=⇒ ‖g‖2 ≤ 1.

Suvrit Sra (MIT) Introduction to large-scale optimization 30 / 68



More examples

Example f (x) = ‖x‖2. Then,

∂f (x) :=

{
x/‖x‖2 x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z − x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.

Suvrit Sra (MIT) Introduction to large-scale optimization 30 / 68



More examples

Example f (x) = ‖x‖2. Then,

∂f (x) :=

{
x/‖x‖2 x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z − x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.

Suvrit Sra (MIT) Introduction to large-scale optimization 30 / 68



Example

Example A convex function need not be subdifferentiable every-
where. Let

f (x) :=

{
−(1− ‖x‖22)1/2 if ‖x‖2 ≤ 1,
+∞ otherwise.

f diff. for all x with ‖x‖2 < 1, but ∂f (x) = ∅ whenever ‖x‖2 ≥ 1.
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Subdifferential calculus

♠ Finding one subgradient within ∂f (x)

♠ Determining entire subdifferential ∂f (x) at a point x
♠ Do we have the chain rule?
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Subdifferential calculus∮
If f is differentiable, ∂f (x) = {∇f (x)}∮
Scaling α > 0, ∂(αf )(x) = α∂f (x) = {αg | g ∈ ∂f (x)}∮
Addition∗: ∂(f + k)(x) = ∂f (x) + ∂k(x) (set addition)∮
Chain rule∗: Let A ∈ Rm×n, b ∈ Rm, f : Rm → R, and h : Rn → R be
given by h(x) = f (Ax + b). Then,

∂h(x) = AT∂f (Ax + b).∮
Chain rule∗: h(x) = f ◦ k , where k : X → Y is diff.

∂h(x) = ∂f (k(x)) ◦ Dk(x) = [Dk(x)]T∂f (k(x))∮
Max function∗: If f (x) := max1≤i≤m fi (x), then

∂f (x) = conv
⋃
{∂fi (x) | fi (x) = f (x)} ,

convex hull over subdifferentials of “active” functions at x∮
Conjugation: z ∈ ∂f (x) if and only if x ∈ ∂f ∗(z)

* — can fail to hold without precise assumptions.
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Example

It can happen that ∂(f1 + f2) 6= ∂f1 + ∂f2

Example Define f1 and f2 by

f1(x) :=

{
−2
√

x if x ≥ 0,
+∞ if x < 0,

and f2(x) :=

{
+∞ if x > 0,
−2
√−x if x ≤ 0.

Then, f = max {f1, f2} = 1{0}, whereby ∂f (0) = R
But ∂f1(0) = ∂f2(0) = ∅.

However, ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) always holds.
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Example

Example f (x) = ‖x‖∞. Then,

∂f (0) = conv {±e1, . . . ,±en} ,

where ei is i-th canonical basis vector.

To prove, notice that f (x) = max1≤i≤n
{
|eT

i x |
}

Then use, chain rule and max rule and ∂| · |
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Example – subgradients

f (x) := sup
y∈Y

h(x , y)

Simple way to obtain some g ∈ ∂f (x):

I Pick any y∗ for which h(x , y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x , y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x , y∗) + gT (z − x)

h(z, y∗) ≥ f (x) + gT (z − x)

f (z) ≥ h(z, y) (because of sup)

f (z) ≥ f (x) + gT (z − x).
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Example

Suppose ai ∈ Rn and bi ∈ R. And

f (x) := max
1≤i≤n

(aT
i x + bi).

(This f is a max over a finite number of terms)

I Let fk (x) = aT
k x + bk

I Suppose f (x) = aT
k x + bk for some index k

I Here ∂fk (x) = {∇fk (x)}
I Hence, ak ∈ ∂f (x) is a subgradient
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Subgradient of expectation

Suppose f = Ef (x ,u), where f is convex in x for each u (r.v.)

f (x) :=

∫
f (x ,u)p(u)du

I For each u choose any g(x ,u) ∈ ∂x f (x ,u)

I Then, g(x) =
∫

g(x ,u)p(u)du = Eg(x ,u) ∈ ∂f (x)
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Optimization

Suvrit Sra (MIT) Introduction to large-scale optimization 39 / 68



Optimization problems

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

Henceforth, we drop condition on domains for brevity.

• If fi are differentiable — smooth optimization
• If any fi is non-differentiable — nonsmooth optimization
• If all fi are convex — convex optimization
• If m = 0, i.e., only f0 is there — unconstrained minimization

Suvrit Sra (MIT) Introduction to large-scale optimization 40 / 68



Optimization problems

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

Henceforth, we drop condition on domains for brevity.
• If fi are differentiable — smooth optimization
• If any fi is non-differentiable — nonsmooth optimization
• If all fi are convex — convex optimization
• If m = 0, i.e., only f0 is there — unconstrained minimization

Suvrit Sra (MIT) Introduction to large-scale optimization 40 / 68



Convex optimization

Let X be feasible set and p∗ the optimal value

p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible
I By convention, we set p∗ = +∞ for infeasible problems
I If p∗ = −∞, we say problem is unbounded below.
I Example, min x on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x → ±∞)
I Say f0(x) = 0, problem is called convex feasibility
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Optimality

Def. A point x∗ ∈ X is locally optimal if f (x∗) ≤ f (x) for all x in a
neighborhood of x∗. Global if f (x∗) ≤ f (x) for all x ∈ X .

Theorem For convex problems, locally optimal also globally so.

Theorem Let f : Rn → R be continuously differentiable in an open
set S containing x∗, a local minimum of f . Then, ∇f (x∗) = 0.

If f is convex, then ∇f (x∗) = 0 is actually sufficient for global
optimality! For general f this is not true.
(This property makes convex optimization special!)

Suvrit Sra (MIT) Introduction to large-scale optimization 42 / 68



Optimality

Def. A point x∗ ∈ X is locally optimal if f (x∗) ≤ f (x) for all x in a
neighborhood of x∗. Global if f (x∗) ≤ f (x) for all x ∈ X .

Theorem For convex problems, locally optimal also globally so.

Theorem Let f : Rn → R be continuously differentiable in an open
set S containing x∗, a local minimum of f . Then, ∇f (x∗) = 0.

If f is convex, then ∇f (x∗) = 0 is actually sufficient for global
optimality! For general f this is not true.
(This property makes convex optimization special!)

Suvrit Sra (MIT) Introduction to large-scale optimization 42 / 68



Optimality – constrained

♠ For every x , y ∈ dom f , we have f (y) ≥ f (x) + 〈∇f (x), y − x〉.

♠ Thus, x∗ is optimal if and only if

〈∇f (x∗), y − x∗〉 ≥ 0, for all y ∈ X .
♠ If X = Rn, this reduces to ∇f (x∗) = 0

x∗

∇f(x∗)x
f(x

)

X

♠ If ∇f (x∗) 6= 0, it defines supporting hyperplane to X at x∗
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Optimality – nonsmooth

Theorem (Fermat’s rule): Let f : Rn → (−∞,+∞]. Then,

argmin f = zer(∂f ) :=
{

x ∈ Rn | 0 ∈ ∂f (x)
}
.

Proof: x ∈ argmin f implies that f (x) ≤ f (y) for all y ∈ Rn.
Equivalently, f (y) ≥ f (x) + 〈0, y − x〉 ∀y ,↔ 0 ∈ ∂f (x).

Nonsmooth optimality

min f (x) s.t. x ∈ X
min f (x) + 1X (x).
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Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .
I Normal cone:

NX (x) :=
{

g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X
}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .
I Normal cone:

NX (x) :=
{

g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X
}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .

I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .
I Normal cone:

NX (x) :=
{

g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X
}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .

I Normal cone:
NX (x) :=

{
g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X

}
Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .
I Normal cone:

NX (x) :=
{

g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X
}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .
I Normal cone:

NX (x) :=
{

g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X
}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)

♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + 1X )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂1X (x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y − x〉 for all y .
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .
I Normal cone:

NX (x) :=
{

g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X
}

Application. min f (x) s.t. x ∈ X :
♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y − x∗〉 ≥ 0 for all y ∈ X .

Suvrit Sra (MIT) Introduction to large-scale optimization 45 / 68



Optimality – projection operator

PX (y) := argmin
x∈X

‖x − y‖2

(Assume X is closed and convex, then projection is unique)
Let X be nonempty, closed and convex.

Optimality condition: x∗ = PX (y) iff

〈x∗ − y , z − x∗〉 ≥ 0 for all z ∈ X

Projection is nonexpansive:

‖PX (x)− PX (y)‖2 ≤ ‖x − y‖2 for all x , y ∈ Rn.

Proof: Exercise!
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Duality

Suvrit Sra (MIT) Introduction to large-scale optimization 47 / 68



Primal problem

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

(P)

Def. Domain: The set D := {dom f0 ∩ dom f1 · · · ∩ dom fm}

I We call (P) the primal problem
I The variable x is the primal variable
I We will attach to (P) a dual problem
I In our initial derivation: no restriction to convexity.
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Lagrangian

To the primal problem, associate Lagrangian L : Rn × Rm → R,

L(x , λ) := f0(x) +
∑m

i=1
λi fi(x).

♠ Variables λ ∈ Rm called Lagrange multipliers

♠ Suppose x is feasible, and λ ≥ 0. Then, we get the
lower-bound:

f0(x) ≥ L(x , λ) ∀x ∈ X , λ ∈ Rm
+.

♠ Lagrangian helps write problem in unconstrained form
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Lagrange dual function

Def. We define the Lagrangian dual as

g(λ) := infx L(x , λ).

Observations:
I g is pointwise inf of affine functions of λ
I Thus, g is concave; it may take value −∞
I Recall: f0(x) ≥ L(x , λ) ∀x ∈ X ; thus
I ∀x ∈ X , f0(x) ≥ infx ′ L(x ′, λ) = g(λ)

I Now minimize over x on lhs, to obtain

∀ λ ∈ Rm
+ p∗ ≥ g(λ).
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Lagrange dual problem

sup
λ

g(λ) s.t. λ ≥ 0.

I dual feasible: if λ ≥ 0 and g(λ) > −∞
I dual optimal: λ∗ if sup is achieved
I Lagrange dual is always concave, regardless of original
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Weak duality

Def. Denote dual optimal value by d∗, i.e.,

d∗ := sup
λ≥0

g(λ).

Theorem (Weak-duality): For problem (P), we have p∗ ≥ d∗.

Proof: We showed that for all λ ∈ Rm
+, p∗ ≥ g(λ).

Thus, it follows that p∗ ≥ sup g(λ) = d∗.
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Duality gap

p∗ − d∗ ≥ 0

Strong duality if duality gap is zero: p∗ = d∗

Notice: both p∗ and d∗ may be +∞

Several sufficient conditions known!

“Easy” necessary and sufficient conditions: unknown

Suvrit Sra (MIT) Introduction to large-scale optimization 53 / 68



Duality gap

p∗ − d∗ ≥ 0

Strong duality if duality gap is zero: p∗ = d∗

Notice: both p∗ and d∗ may be +∞

Several sufficient conditions known!

“Easy” necessary and sufficient conditions: unknown

Suvrit Sra (MIT) Introduction to large-scale optimization 53 / 68



Duality gap

p∗ − d∗ ≥ 0

Strong duality if duality gap is zero: p∗ = d∗

Notice: both p∗ and d∗ may be +∞

Several sufficient conditions known!

“Easy” necessary and sufficient conditions: unknown

Suvrit Sra (MIT) Introduction to large-scale optimization 53 / 68



Zero duality gap: nonconvex example

Trust region subproblem (TRS)

min xT Ax + 2bT x xT x ≤ 1.

A is symmetric but not necessarily semidefinite!

Theorem TRS always has zero duality gap.
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Strong duality – counterexample

min
x ,y

e−x x2/y ≤ 0,

over the domain D = {(x , y) | y > 0}.

Clearly, only feasible x = 0. So p∗ = 1

L(x , y , λ) = e−x + λx2/y ,

so dual function is
g(λ) = inf

x ,y>0
e−x + λx2y =

{
0 λ ≥ 0
−∞ λ < 0.

Dual problem

d∗ = max
λ

0 s.t. λ ≥ 0.

Thus, d∗ = 0, and gap is p∗ − d∗ = 1.
Here, we had no strictly feasible solution.
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Support vector machine

min
x ,ξ

1
2‖x‖22 + C

∑
i
ξi

s.t. Ax ≥ 1− ξ, ξ ≥ 0.

L(x , ξ, λ, ν) = 1
2‖x‖22 + C1T ξ − λT (Ax − 1 + ξ)− νT ξ

g(λ, ν) := inf L(x , ξ, λ, ν)

=

{
λT 1− 1

2‖ATλ‖22 λ+ ν = C1
+∞ otherwise

d∗ = max
λ≥0,ν≥0

g(λ, ν)

Exercise: Using ν ≥ 0, eliminate ν from above problem.
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Regularized optimization

inf
x∈X

f (x) + r(Ax) s.t. Ax ∈ Y.

Dual problem

inf
u∈Y

f ∗(−AT u) + r∗(u).

I Introduce new variable z = Ax
inf

x∈X ,z∈Y
f (x) + r(z), s.t. z = Ax .

I The (partial)-Lagrangian is
L(x , z; u) := f (x) + r(z) + uT (Ax − z), x ∈ X , z ∈ Y;

I Associated dual function
g(u) := inf

x∈X ,z∈Y
L(x , z; u).
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Regularized optimization

inf
x∈X

f (x) + r(Ax) s.t. Ax ∈ Y.

Dual problem
inf

y∈Y
f ∗(−AT y) + r∗(y).

The infimum above can be rearranged as follows

g(y) = inf
x∈X

f (x) + yT Ax + inf
z∈Y

r(z)− yT z

= − sup
x∈X

{
−xT AT y − f (x)

}
− sup

z∈Y

{
zT y − r(z)

}
= −f ∗(−AT y)− r∗(y) s.t. y ∈ Y.

Dual problem computes supu∈Y g(u); so equivalently,

inf
y∈Y

f ∗(−AT y) + r∗(y).
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Regularized optimization

Strong duality

inf
x
{f (x) + r(Ax)} = sup

y

{
−f ∗(−AT y) + r∗(y)

}
if either of the following conditions holds:

1 ∃x ∈ ri(dom f ) such that Ax ∈ ri(dom r)

2 ∃y ∈ ri(dom r∗) such that AT y ∈ ri(dom f ∗)

Condition 1 ensures ’sup’ attained at some y
Condition 2 ensures ’inf’ attained at some x
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Example: norm regularized problems

min f (x) + ‖Ax‖

Dual problem

min
y

f ∗(−AT y) s.t. ‖y‖∗ ≤ 1.

Say ‖ȳ‖∗ < 1, such that AT ȳ ∈ ri(dom f ∗), then we have strong
duality (e.g., for instance 0 ∈ ri(dom f ∗))
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Example: variable splitting

min f (x) + g(x)

Exercise: Fill in the details below

min
x ,z

f (x) + g(z) s.t. x = z

L(x , z, ν) = f (x) + g(z) + νT (x − z)

g(ν) = inf
x ,z

L(x , z, ν)
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Primal-dual: weak minimax

Theorem Let φ : X × Y → R ∪ {±∞} be any function. Then,

sup
y∈Y

inf
x∈X

φ(x , y) ≤ inf
x∈X

sup
y∈Y

φ(x , y)

Proof:
∀x , y , inf

x′∈X
φ(x ′, y) ≤ φ(x , y)

∀x , y , inf
x′∈X

φ(x ′, y) ≤ sup
y ′∈Y

φ(x , y ′)

∀x , sup
y∈Y

inf
x′∈X

φ(x ′, y) ≤ sup
y ′∈Y

φ(x , y ′)

=⇒ sup
y∈Y

inf
x′∈X

φ(x ′, y) ≤ inf
x∈X

sup
y ′∈Y

φ(x , y ′).
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Theorem Let φ : X × Y → R ∪ {±∞} be any function. Then,

sup
y∈Y

inf
x∈X

φ(x , y) ≤ inf
x∈X

sup
y∈Y

φ(x , y)

Proof:
∀x , y , inf

x′∈X
φ(x ′, y) ≤ φ(x , y)
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Primal-dual: strong minimax
I If “inf sup = sup inf”, common value called saddle-value
I Value exists if there is a saddle-point, i.e., pair (x∗, y∗)

φ(x , y∗) ≥ φ(x∗, y∗) ≥ φ(x∗, y) for all x ∈ X , y ∈ Y.

Def. Let φ be as before. A point (x∗, y∗) is a saddle-point of φ (min over
X and max over Y) iff the infimum in the expression

inf
x∈X

sup
y∈Y

φ(x , y)

is attained at x∗, and the supremum in the expression

sup
y∈Y

inf
x∈X

φ(x , y)

is attained at y∗, and these two extrema are equal.

x∗ ∈ argmin
x∈X

max
y∈Y

φ(x , y) y∗ ∈ argmax
y∈Y

min
x∈X

φ(x , y).
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Sufficient conditions for saddle-point

I Function φ is continuous, and
I It is convex-concave (φ(·, y) convex for every y ∈ Y, and
φ(x , ·) concave for every x ∈ X ), and

I Both X and Y are convex; one of them is compact.
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Example: Lasso-like problem

p∗ := minx ‖Ax − b‖2 + λ‖x‖1.

‖x‖1 = max
{

xT v | ‖v‖∞ ≤ 1
}

‖x‖2 = max
{

xT u | ‖u‖2 ≤ 1
}
.

Saddle-point formulation

p∗ = min
x

max
u,v

{
uT (b − Ax) + vT x | ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

}
= max

u,v
min

x

{
uT (b − Ax) + xT v | ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

}
= max

u,v
uT b AT u = v , ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

= max
u

uT b ‖u‖2 ≤ 1, ‖AT v‖∞ ≤ λ.
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Example: KKT conditions

min f0(x) fi(x) ≤ 0, i = 1, . . . ,m.

I Recall: 〈∇f0(x∗), x − x∗〉 ≥ 0 for all feasible x ∈ X
I Can we simplify this using Lagrangian?
I g(λ) = infx L(x , λ) := f0(x) +

∑
i λi fi(x)

Assume strong duality; and both p∗ and d∗ attained!

Thus, there exists a pair (x∗, λ∗) such that

p∗ = f0(x∗) = d∗ = g(λ∗) = min
x
L(x , λ∗) ≤ L(x∗, λ∗) ≤ f0(x∗) = p∗

I Thus, equalities hold in above chain.

x∗ ∈ argminx L(x , λ∗).
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Example: KKT conditions

x∗ ∈ argminx L(x , λ∗).

If f0, f1, . . . , fm are differentiable, this implies

∇xL(x , λ∗)|x=x∗ = ∇f0(x∗) +
∑

i
λ∗i ∇fi(x∗) = 0.

Moreover, since L(x∗, λ∗) = f0(x∗), we also have∑
i
λ∗i fi(x∗) = 0.

But λ∗i ≥ 0 and fi(x∗) ≤ 0, so complementary slackness

λ∗i fi(x∗) = 0, i = 1, . . . ,m.
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KKT conditions

fi(x∗) ≤ 0, i = 1, . . . ,m (primal feasibility)
λ∗i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ∗i fi(x∗) = 0, i = 1, . . . ,m (compl. slackness)
∇xL(x , λ∗)|x=x∗ = 0 (Lagrangian stationarity)

I We showed: if strong duality holds, and (x∗, λ∗) exist, then
KKT conditions are necessary for pair (x∗, λ∗) to be optimal

I If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that
L(x , λ∗) is convex, and conclude from KKT conditions that
g(λ∗) = f0(x∗), so that (x∗, λ∗) optimal primal-dual pair.
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