Introduction to large-scale optimization (Lecture 1)

Suvrit Sra
Massachusetts Institute of Technology

Microsoft Research India
Machine Learning Summer School, June 2015

Course materials

■ http://suvrit.de/teach/msr2015/

■ Some references:

- Introductory lectures on convex optimization - Nesterov
- Convex optimization - Boyd \& Vandenberghe
- Nonlinear programming - Bertsekas
- Convex Analysis - Rockafellar
- Fundamentals of convex analysis - Urruty, Lemaréchal
- Lectures on modern convex optimization - Nemirovski
- Optimization for Machine Learning - Sra, Nowozin, Wright

■ Some related courses:

- EE227A, Spring 2013, (UC Berkeley)
- 10-801, Spring 2014 (CMU)
- EE364a,b (Boyd, Stanford)
- EE236b,c (Vandenberghe, UCLA)

■ NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Outline

- Recap on convexity
- Recap on duality, optimality
- First-order optimization algorithms
- Proximal methods, operator splitting
- Incremental methods
- High-level view of parallel, distributed
- Some words on nonconvex

Convex analysis

Convex sets

Convex sets

Def. Set $C \subset \mathbb{R}^{n}$ called convex, if for any $x, y \in C$, the linesegment $\theta x+(1-\theta) y$, where $\theta \in[0,1]$, also lies in C.

Convex sets

Def. Set $C \subset \mathbb{R}^{n}$ called convex, if for any $x, y \in C$, the linesegment $\theta x+(1-\theta) y$, where $\theta \in[0,1]$, also lies in C.

Combinations

- Convex: $\theta_{1} x+\theta_{2} y \in C$, where $\theta_{1}, \theta_{2} \geq 0$ and $\theta_{1}+\theta_{2}=1$.
- Linear: if restrictions on θ_{1}, θ_{2} are dropped
- Conic: if restriction $\theta_{1}+\theta_{2}=1$ is dropped

Convex sets

Theorem (Intersection).

Let C_{1}, C_{2} be convex sets. Then, $C_{1} \cap C_{2}$ is also convex.

Proof.

\rightarrow If $C_{1} \cap C_{2}=\emptyset$, then true vacuously.
\rightarrow Let $x, y \in C_{1} \cap C_{2}$. Then, $x, y \in C_{1}$ and $x, y \in C_{2}$.
\rightarrow But C_{1}, C_{2} are convex, hence $\theta x+(1-\theta) y \in C_{1}$, and also in C_{2}. Thus, $\theta x+(1-\theta) y \in C_{1} \cap C_{2}$.
\rightarrow Inductively follows that $\cap_{i=1}^{m} C_{i}$ is also convex.

Convex sets

(psdcone image from convexoptimization.com, Dattorro)

Convex sets

\odot Let $x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}^{n}$. Their convex hull is

$$
\operatorname{co}\left(x_{1}, \ldots, x_{m}\right):=\left\{\sum_{i} \theta_{i} x_{i} \mid \theta_{i} \geq 0, \sum_{i} \theta_{i}=1\right\}
$$

\checkmark Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. The set $\{x \mid A x=b\}$ is convex (it is an affine space over subspace of solutions of $A x=0$).
\bigcirc halfspace $\left\{x \mid a^{T} x \leq b\right\}$.
\bigcirc polyhedron $\{x \mid A x \leq b, C x=d\}$.
\bigcirc ellipsoid $\left\{x \mid\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right) \leq 1\right\}$, (A: semidefinite)
\bigcirc convex cone $x \in \mathcal{K} \Longrightarrow \alpha x \in \mathcal{K}$ for $\alpha \geq 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Challenge 1

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that

$$
R(A, B):=\left\{\left(x^{\top} A x, x^{\top} B x\right) \mid x^{\top} x=1\right\}
$$

is a compact convex set for $n \geq 3$.

Convex functions

Def. Function $f: I \rightarrow \mathbb{R}$ on interval I called midpoint convex if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \quad \text { whenever } x, y \in I .
$$

Read: f of AM is less than or equal to AM of f.

Convex functions

Def. Function $f: I \rightarrow \mathbb{R}$ on interval I called midpoint convex if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \quad \text { whenever } x, y \in I .
$$

Read: f of AM is less than or equal to AM of f.
Def. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if its domain $\operatorname{dom}(f)$ is a convex set and for any $x, y \in \operatorname{dom}(f)$ and $\theta \geq 0$

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Convex functions

Def. Function $f: I \rightarrow \mathbb{R}$ on interval / called midpoint convex if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \quad \text { whenever } x, y \in I
$$

Read: f of AM is less than or equal to AM of f.
Def. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if its domain $\operatorname{dom}(f)$ is a convex set and for any $x, y \in \operatorname{dom}(f)$ and $\theta \geq 0$

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

Theorem (J.L.W.V. Jensen). Let $f: I \rightarrow \mathbb{R}$ be continuous. Then, f is convex if and only if it is midpoint convex.

- Extends to $f: \mathcal{X} \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}$; useful for proving convexity.

Convex functions

Convex functions

$$
f(X)>f(V)+\langle\nabla f(V), X-y
$$

Convex functions

Convex functions

Example The pointwise maximum of a family of convex functions is convex. That is, if $f(x ; y)$ is a convex function of x for every y in some "index set" \mathcal{Y}, then

$$
f(x):=\max _{y \in \mathcal{Y}} f(x ; y)
$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Convex functions

Example The pointwise maximum of a family of convex functions is convex. That is, if $f(x ; y)$ is a convex function of x for every y in some "index set" \mathcal{Y}, then

$$
f(x):=\max _{y \in \mathcal{Y}} f(x ; y)
$$

is a convex function of x (set \mathcal{Y} is arbitrary).
Example Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.
Exercise: Verify above examples.

Convex functions

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.

Convex functions

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.
Proof. Let $u, v \in \operatorname{dom} f$. Since $f(u)=\inf _{y} L(u, y)$, for each $\epsilon>0$, there is a $y_{1} \in \mathcal{Y}$, s.t. $f(u)+\frac{\epsilon}{2}$ is not the infimum. Thus, $L\left(u, y_{1}\right) \leq f(u)+\frac{\epsilon}{2}$.
Similarly, there is $y_{2} \in \mathcal{Y}$, such that $L\left(v, y_{2}\right) \leq f(v)+\frac{\epsilon}{2}$.
Now we prove that $f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v)$ directly.

$$
\begin{aligned}
f(\lambda u+(1-\lambda) v) & =\inf _{y \in \mathcal{Y}} L(\lambda u+(1-\lambda) v, y) \\
& \leq L\left(\lambda u+(1-\lambda) v, \lambda y_{1}+(1-\lambda) y_{2}\right) \\
& \leq \lambda L\left(u, y_{1}\right)+(1-\lambda) L\left(v, y_{2}\right) \\
& \leq \lambda f(u)+(1-\lambda) f(v)+\epsilon
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, claim follows.

Convex functions - Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the indicator function for \mathcal{X} defined as:

$$
\mathbb{1}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise }\end{cases}
$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

Convex functions - distance

Example Let \mathcal{X} be a convex set. Let $x \in \mathbb{R}^{n}$ be some point. The distance of x to the set \mathcal{X} is defined as

$$
\operatorname{dist}(x, \mathcal{X}):=\inf _{y \in \mathcal{X}}\|x-y\| .
$$

Note: because $\|x-y\|$ is jointly convex in (x, y), the function $\operatorname{dist}(x, \mathcal{Y})$ is a convex function of x.

Convex functions - norms

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function that satisfies
$1 f(x) \geq 0$, and $f(x)=0$ if and only if $x=0$ (definiteness)
$2 f(\lambda x)=|\lambda| f(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
$3 f(x+y) \leq f(x)+f(y)$ (subadditivity)
Such function called norms-usually denoted $\|x\|$.
Theorem Norms are convex.

Some norms

Example (ℓ_{2}-norm): $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$

Example $\left(\ell_{p}\right.$-norm): Let $p \geq 1 .\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
Example (ℓ_{∞}-norm): $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
Example (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n} .\|A\|_{F}:=\sqrt{\sum_{i j}\left|a_{i j}\right|^{2}}$
Example Let A be any matrix. Then, the operator norm of A is

$$
\|A\|:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{\max }(A) .
$$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{\top} z-f(x) .
$$

Note: f^{*} is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example $+\infty$ and $-\infty$ conjugate to each other.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{\top} z-f(x)
$$

Note: f^{*} is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example $+\infty$ and $-\infty$ conjugate to each other.
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.
Proof. $f^{*}(z)=\sup _{x} z^{T} x-\|x\|$. If $\|z\|_{*}>1$, by defn. of the dual norm, $\exists u$ such that $\|u\| \leq 1$ and $u^{T} z>1$. Now select $x=\alpha u$ and let $\alpha \rightarrow \infty$. Then, $z^{\top} x-\|x\|=\alpha\left(z^{\top} u-\|u\|\right) \rightarrow \infty$. If $\|z\|_{*} \leq 1$, then $z^{\top} x \leq\|x\|\|z\|_{*}$, which implies the sup must be zero.

Fenchel conjugate

Example $f(x)=\frac{1}{2} x^{\top} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{\top} A^{-1} z$.
Example $f(x)=\max (0,1-x)$. Verify: $\operatorname{dom} f^{*}=[-1,0]$, and on this domain, $f^{*}(z)=z$.

Example $f(x)=\mathbb{1}_{\mathcal{X}}(x): f^{*}(z)=\sup _{x \in \mathcal{X}}\langle x, z\rangle$ (aka support func)

Challenge 2

Consider the following functions on strictly positive variables:

$$
\begin{aligned}
h_{1}(x) & :=\frac{1}{x} \\
h_{2}(x, y) & :=\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y} \\
h_{3}(x, y, z) & :=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y}-\frac{1}{y+z}-\frac{1}{x+z}+\frac{1}{x+y+z}
\end{aligned}
$$

\odot Prove that h_{1}, h_{2}, h_{3}, and in general h_{n} are convex!
\odot Prove that in fact each $1 / h_{n}$ is concave

$$
\nabla^{2} h_{n}(x) \succeq 0 \text { is not recommended }
$$

Subgradients

Subgradients: global underestimators

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
$$

Subgradients: global underestimators

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Subgradients: global underestimators

g_{1}, g_{2}, g_{3} are subgradients at y

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus-major achievement in convex analysis
- Fenchel-Young inequality: $f(x)+f^{*}(s) \geq\langle s, x\rangle$

Subgradients - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$
$\star f_{1}(y)=f_{2}(y)$: subgradients, the segment $\left[f_{1}^{\prime}(y), f_{2}^{\prime}(y)\right]$ (imagine all supporting lines turning about point y)

Subdifferential

> Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

Subdifferential

> Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty

Subdifferential

> Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$

Subdifferential

Def. The set of all subgradients at \boldsymbol{y} denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\&. If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
\& If $\partial f(x)=\{g\}$, then f is differentiable and $g=\nabla f(x)$

Subdifferential - example

$$
f(x)=|x|
$$

Subdifferential - example

Subdifferential - example

$$
f(x)=|x|
$$

$$
\partial|x|= \begin{cases}-1 & x<0 \\ +1 & x>0 \\ {[-1,1]} & x=0\end{cases}
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0, \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0, \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

Proof.

$$
\|z\|_{2} \geq\|x\|_{2}+\langle g, z-x\rangle
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0, \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

Proof.

$$
\begin{aligned}
& \|z\|_{2} \geq\|x\|_{2}+\langle g, z-x\rangle \\
& \|z\|_{2} \geq\langle g, z\rangle
\end{aligned}
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0, \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

Proof.

$$
\begin{aligned}
\|z\|_{2} & \geq\|x\|_{2}+\langle g, z-x\rangle \\
\|z\|_{2} & \geq\langle g, z\rangle \\
& \Longrightarrow\|g\|_{2} \leq 1
\end{aligned}
$$

Example

Example A convex function need not be subdifferentiable everywhere. Let

$$
f(x):= \begin{cases}-\left(1-\|x\|_{2}^{2}\right)^{1 / 2} & \text { if }\|x\|_{2} \leq 1, \\ +\infty & \text { otherwise } .\end{cases}
$$

f diff. for all x with $\|x\|_{2}<1$, but $\partial f(x)=\emptyset$ whenever $\|x\|_{2} \geq 1$.

Subdifferential calculus

- Finding one subgradient within $\partial f(x)$
- Determining entire subdifferential $\partial f(x)$ at a point x
- Do we have the chain rule?

Subdifferential calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x
\oint Conjugation: $z \in \partial f(x)$ if and only if $x \in \partial f^{*}(z)$

* - can fail to hold without precise assumptions.

Example

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array}\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0 .\end{cases}$
Then, $f=\max \left\{f_{1}, f_{2}\right\}=\mathbb{1}_{\{0\}}$, whereby $\partial f(0)=\mathbb{R}$ But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.

Example

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array}\right.$ and $f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0 .\end{cases}$
Then, $f=\max \left\{f_{1}, f_{2}\right\}=\mathbb{1}_{\{0\}}$, whereby $\partial f(0)=\mathbb{R}$ But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.

However, $\partial f_{1}(x)+\partial f_{2}(x) \subset \partial\left(f_{1}+f_{2}\right)(x)$ always holds.

Example

Example $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}
$$

where e_{i} is i-th canonical basis vector.
To prove, notice that $f(x)=\max _{1 \leq i \leq n}\left\{\left|e_{i}^{T} x\right|\right\}$
Then use, chain rule and max rule and $\partial|\cdot|$

Example - subgradients

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Simple way to obtain some $g \in \partial f(x)$:

Example - subgradients

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
& h\left(z, y^{*}\right) \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
& h\left(z, y^{*}\right) \geq f(x)+g^{T}(z-x)
\end{aligned}
$$

Example - subgradients

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
h\left(z, y^{*}\right) & \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
h\left(z, y^{*}\right) & \geq f(x)+g^{T}(z-x) \\
f(z) & \geq h(z, y) \quad \text { (because of sup) } \\
f(z) & \geq f(x)+g^{T}(z-x)
\end{aligned}
$$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

(This f is a max over a finite number of terms)

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

(This f is a max over a finite number of terms)

- Let $f_{k}(x)=a_{k}^{T} x+b_{k}$
- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$
- Hence, $a_{k} \in \partial f(x)$ is a subgradient

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$
- Then, $g(x)=\int g(x, u) p(u) d u=\mathbf{E} g(x, u) \in \partial f(x)$

Optimization

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

- If f_{i} are differentiable - smooth optimization
- If any f_{i} is non-differentiable - nonsmooth optimization
- If all f_{i} are convex - convex optimization
- If $m=0$, i.e., only f_{0} is there - unconstrained minimization

Convex optimization

Let \mathcal{X} be feasible set and p^{*} the optimal value

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

Convex optimization

Let \mathcal{X} be feasible set and p^{*} the optimal value

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, min x on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \rightarrow \pm \infty$)
- Say $f_{0}(x)=0$, problem is called convex feasibility

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal also globally so.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal also globally so.
Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

If f is convex, then $\nabla f\left(x^{*}\right)=0$ is actually sufficient for global optimality! For general f this is not true.
(This property makes convex optimization special!)

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

© If $\mathcal{X}=\mathbb{R}^{n}$, this reduces to $\nabla f\left(x^{*}\right)=0$

© If $\nabla f\left(x^{*}\right) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^{*}

Optimality - nonsmooth

> Theorem (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then, $$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$. Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y$,

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Nonsmooth optimality

$$
\begin{array}{ll}
\min & f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f(x)+\mathbb{1}_{\mathcal{X}}(x) .
\end{array}
$$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{1}_{X}(x)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \mathcal{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application. $\min f(x) \quad$ s.t. $x \in \mathcal{X}$:
\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N} \mathcal{X}\left(x^{*}\right)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application. $\min f(x) \quad$ s.t. $x \in \mathcal{X}$:
\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N} \mathcal{X}\left(x^{*}\right)$
$\diamond-\nabla f\left(x^{*}\right) \in \mathcal{N} \mathcal{X}\left(x^{*}\right) \Longleftrightarrow\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$ for all $y \in \mathcal{X}$.

Optimality - projection operator

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\|x-y\|^{2}
$$

(Assume \mathcal{X} is closed and convex, then projection is unique) Let \mathcal{X} be nonempty, closed and convex.
$■$ Optimality condition: $x^{*}=P_{\mathcal{X}}(y)$ iff

$$
\left\langle x^{*}-y, z-x^{*}\right\rangle \geq 0 \text { for all } z \in \mathcal{X}
$$

- Projection is nonexpansive:

$$
\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|^{2} \leq\|x-y\|^{2} \quad \text { for all } x, y \in \mathbb{R}^{n} .
$$

Optimality - projection operator

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\|x-y\|^{2}
$$

(Assume \mathcal{X} is closed and convex, then projection is unique) Let \mathcal{X} be nonempty, closed and convex.
$■$ Optimality condition: $x^{*}=P_{\mathcal{X}}(y)$ iff

$$
\left\langle x^{*}-y, z-x^{*}\right\rangle \geq 0 \text { for all } z \in \mathcal{X}
$$

- Projection is nonexpansive:

$$
\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|^{2} \leq\|x-y\|^{2} \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Proof: Exercise!

Duality

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \mathrm{s.t.} f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem
- In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

- Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

- Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
- Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m} .
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

- Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
- Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m} .
$$

- Lagrangian helps write problem in unconstrained form

Lagrange dual function

Def. We define the Lagrangian dual as
 $$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$
- Now minimize over x on Ihs, to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda) .
$$

Lagrange dual problem

$\sup g(\lambda) \quad$ s.t. $\lambda \geq 0$.

Lagrange dual problem

$$
\sup g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved
- Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda>0} g(\lambda) .
$$

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.
Proof: We showed that for all $\lambda \in \mathbb{R}_{+}^{m}, p^{*} \geq g(\lambda)$.
Thus, it follows that $p^{*} \geq \sup g(\lambda)=d^{*}$.

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$ Notice: both p^{*} and d^{*} may be $+\infty$

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$ Notice: both p^{*} and d^{*} may be $+\infty$

Several sufficient conditions known!

"Easy" necessary and sufficient conditions: unknown

Zero duality gap: nonconvex example

> Trust region subproblem (TRS) min $x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$
A is symmetric but not necessarily semidefinite!

Theorem TRS always has zero duality gap.

Strong duality - counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.

Strong duality - counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

Strong duality - counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Strong duality - counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0 .
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$.

Strong duality - counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$. Here, we had no strictly feasible solution.

Support vector machine

$$
\begin{array}{ll}
\min _{x, \xi} & \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & A x \geq 1-\xi, \quad \xi \geq 0
\end{array}
$$

Support vector machine

$$
\begin{gathered}
\min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } A x \geq 1-\xi, \quad \xi \geq 0 . \\
L(x, \xi, \lambda, \nu)=\frac{1}{2}\|x\|_{2}^{2}+C 1^{\top} \xi-\lambda^{T}(A x-1+\xi)-\nu^{\top} \xi
\end{gathered}
$$

Support vector machine

$$
\begin{aligned}
& \min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
& \text { s.t. } \quad A x \geq 1-\xi, \quad \xi \geq 0 . \\
L(x, \xi, \lambda, \nu)= & \frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi \\
g(\lambda, \nu): & =\inf L(x, \xi, \lambda, \nu) \\
= & \begin{cases}\lambda^{T} 1-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2} & \lambda+\nu=C 1 \\
+\infty & \text { otherwise }\end{cases} \\
d^{*}= & \max _{\lambda \geq 0, \nu \geq 0} g(\lambda, \nu)
\end{aligned}
$$

Exercise: Using $\nu \geq 0$, eliminate ν from above problem.

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \text { s.t. } A x \in \mathcal{Y} .
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \text { s.t. } A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \text { s.t. } A x \in \mathcal{Y} \text {. }
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y}
$$

- Associated dual function

$$
g(u):=\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} L(x, z ; u) .
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \text { s.t. } A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
g(y)=\inf _{x \in \mathcal{X}} f(x)+y^{\top} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{\top} z
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\}
\end{aligned}
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \text { s.t. } A x \in \mathcal{Y} \text {. }
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y} .
\end{aligned}
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \text { s.t. } A x \in \mathcal{Y} \text {. }
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y} .
\end{aligned}
$$

Dual problem computes $\sup _{u \in \mathcal{Y}} g(u)$; so equivalently,

$$
\inf _{y \in \mathcal{Y}} f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

Regularized optimization

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:

Regularized optimization

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:
$1 \exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$
$2 \exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

Regularized optimization

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:
$1 \exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$
$2 \exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$
■ Condition 1 ensures 'sup' attained at some y

- Condition 2 ensures 'inf' attained at some x

Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

Example: norm regularized problems

$$
\min f(x)+\|A x\|
$$

Dual problem

$\min _{y} f^{*}\left(-A^{T} y\right) \quad$ s.t. $\|y\|_{*} \leq 1$.

Example: norm regularized problems

$$
\min f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality (e.g., for instance $\left.0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)\right)$

Example: variable splitting

$\min f(x)+g(x)$

Example: variable splitting

$$
\min f(x)+g(x)
$$

Exercise: Fill in the details below

$$
\min _{x, z} f(x)+g(z) \text { s.t. } x=z
$$

Example: variable splitting

$$
\min f(x)+g(x)
$$

Exercise: Fill in the details below

$$
\begin{array}{r}
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+g(z)+\nu^{T}(x-z)
\end{array}
$$

Example: variable splitting

$$
\min f(x)+g(x)
$$

Exercise: Fill in the details below

$$
\begin{array}{r}
\min _{x, z} f(x)+g(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+g(z)+\nu^{T}(x-z) \\
g(\nu)=\inf _{x, z} L(x, z, \nu)
\end{array}
$$

Primal-dual: weak minimax

Theorem Let $\begin{aligned} & \phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\} \text { be any function. Then, } \\ &$$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$$\leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)\end{aligned}$

Primal-dual: weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \phi(x, y)
$$

Primal-dual: weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
& \forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \phi(x, y) \\
& \forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right)
\end{aligned}
$$

Primal-dual: weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right)
\end{aligned}
$$

Primal-dual: weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \sup _{y \in \mathcal{Y}} \inf _{X^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\Longrightarrow \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \inf _{x \in \mathcal{X}} \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) .
\end{aligned}
$$

Primal-dual: strong minimax

- If "inf sup = sup inf", common value called saddle-value
- Value exists if there is a saddle-point, i.e., pair $\left(x^{*}, y^{*}\right)$

$$
\phi\left(x, y^{*}\right) \geq \phi\left(x^{*}, y^{*}\right) \geq \phi\left(x^{*}, y\right) \quad \text { for all } x \in \mathcal{X}, y \in \mathcal{Y} .
$$

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

Primal-dual: strong minimax

- If "inf sup = sup inf", common value called saddle-value
- Value exists if there is a saddle-point, i.e., pair $\left(x^{*}, y^{*}\right)$

$$
\phi\left(x, y^{*}\right) \geq \phi\left(x^{*}, y^{*}\right) \geq \phi\left(x^{*}, y\right) \quad \text { for all } x \in \mathcal{X}, y \in \mathcal{Y}
$$

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \min _{x \in \mathcal{X}} \phi(x, y)
$$

Sufficient conditions for saddle-point

- Function ϕ is continuous, and
- It is convex-concave $(\phi(\cdot, y)$ convex for every $y \in \mathcal{Y}$, and $\phi(x, \cdot)$ concave for every $x \in \mathcal{X}$), and
- Both \mathcal{X} and \mathcal{Y} are convex; one of them is compact.

Example: Lasso-like problem

$$
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} .
$$

Example: Lasso-like problem

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{\top} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{\top} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
p^{*}=\min _{x} \max _{u, v}\left\{u^{\top}(b-A x)+v^{\top} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{\top} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{\top} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{\top} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\}
\end{aligned}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{\top} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{\top} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda
\end{aligned}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{\top} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{\top} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{\top} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda \\
& =\max _{u} u^{T} b \quad\|u\|_{2} \leq 1, \quad\left\|A^{T} v\right\|_{\infty} \leq \lambda .
\end{aligned}
$$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)
$$

Example: KKT conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

Example: KKT conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Example: KKT conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

Example: KKT conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

Example: KKT conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$,

Example: KKT conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, so complementary slackness

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m .
$$

KKT conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility) (dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

KKT conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility) (dual feasibility) (compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal

KKT conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility) (dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and (x^{*}, λ^{*}) exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

KKT conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that $\mathcal{L}\left(x, \lambda^{*}\right)$ is convex, and conclude from KKT conditions that $g\left(\lambda^{*}\right)=f_{0}\left(x^{*}\right)$, so that $\left(x^{*}, \lambda^{*}\right)$ optimal primal-dual pair.

