Introduction to large-scale optimization (Lecture 1)

Suvrit Sra

Massachusetts Institute of Technology

Microsoft Research India Machine Learning Summer School, June 2015

Course materials

http://suvrit.de/teach/msr2015/

- Some references:
 - Introductory lectures on convex optimization Nesterov
 - Convex optimization Boyd & Vandenberghe
 - Nonlinear programming Bertsekas
 - Convex Analysis Rockafellar
 - Fundamentals of convex analysis Urruty, Lemaréchal
 - Lectures on modern convex optimization Nemirovski
 - Optimization for Machine Learning Sra, Nowozin, Wright
- Some related courses:
 - EE227A, Spring 2013, (UC Berkeley)
 - 10-801, Spring 2014 (CMU)
 - EE364a,b (Boyd, Stanford)
 - EE236b,c (Vandenberghe, UCLA)
- NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Outline

- Recap on convexity
- Recap on duality, optimality
- First-order optimization algorithms
- Proximal methods, operator splitting
- Incremental methods
- High-level view of parallel, distributed
- Some words on nonconvex

Convex analysis

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$, where $\theta \in [0, 1]$, also lies in *C*.

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$, where $\theta \in [0, 1]$, also lies in *C*.

Combinations

- Convex: $\theta_1 x + \theta_2 y \in C$, where $\theta_1, \theta_2 \ge 0$ and $\theta_1 + \theta_2 = 1$.
- Linear: if restrictions on θ_1, θ_2 are dropped
- Conic: if restriction $\theta_1 + \theta_2 = 1$ is dropped

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof.

- \rightarrow If $C_1 \cap C_2 = \emptyset$, then true vacuously.
- \rightarrow Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$.
- → But C_1 , C_2 are convex, hence $\theta x + (1 \theta)y \in C_1$, and also in C_2 . Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$.
- → Inductively follows that $\bigcap_{i=1}^{m} C_i$ is also convex.

(psdcone image from convexoptimization.com, Dattorro)

♡ Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\operatorname{co}(x_1,\ldots,x_m):=\left\{\sum_i \theta_i x_i \mid \theta_i \geq 0, \sum_i \theta_i = 1\right\}.$$

♡ Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).

$$\heartsuit$$
 halfspace $\{x \mid a^T x \leq b\}$.

- \heartsuit polyhedron { $x \mid Ax \leq b, Cx = d$ }.
- ♡ *ellipsoid* $\{x \mid (x x_0)^T A(x x_0) \le 1\}$, (*A*: semidefinite)
- \heartsuit convex cone $x \in \mathcal{K} \implies \alpha x \in \mathcal{K}$ for $\alpha \ge 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Challenge 1

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that

$$R(A,B) := \left\{ (x^T A x, x^T B x) \mid x^T x = 1 \right\}$$

is a compact convex set for $n \ge 3$.

Read: *f* of AM is less than or equal to AM of *f*.

Def. Function $f : I \to \mathbb{R}$ on interval *I* called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

Read: *f* of AM is less than or equal to AM of *f*.

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\theta \ge 0$

 $f(\theta x + (1 - \theta)y) \leq \theta f(x) + (1 - \theta)f(y).$

Def. Function $f : I \to \mathbb{R}$ on interval *I* called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

Read: *f* of AM is less than or equal to AM of *f*.

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\theta \ge 0$

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$

Theorem (J.L.W.V. Jensen). Let $f : I \to \mathbb{R}$ be continuous. Then, f is convex *if and only if* it is midpoint convex.

▶ Extends to $f : \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$; useful for proving convexity.

 $f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle$

slope PQ \leq slope PR \leq slope QR

Example The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \max_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Example The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \max_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Example Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify above examples.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x, y) is convex in (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of *x*, provided $f(x) > -\infty$.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x, y) is convex in (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} L(x, y)$$

is a convex function of *x*, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$. Since $f(u) = \inf_{\mathcal{Y}} L(u, \mathcal{Y})$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$. Similarly, there is $y_2 \in \mathcal{Y}$, such that $L(v, y_2) \leq f(v) + \frac{\epsilon}{2}$. Now we prove that $f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v)$ directly.

$$f(\lambda u + (1 - \lambda)v) = \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y)$$

$$\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2)$$

$$\leq \lambda L(u, y_1) + (1 - \lambda)L(v, y_2)$$

$$\leq \lambda f(u) + (1 - \lambda)f(v) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, claim follows.

Suvrit Sra (MIT)

Convex functions – Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{1}_{\mathcal{X}}(x) := egin{cases} 0 & ext{if } x \in \mathcal{X}, \ \infty & ext{otherwise}. \end{cases}$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

Convex functions – distance

Example Let \mathcal{X} be a convex set. Let $x \in \mathbb{R}^n$ be some point. The distance of x to the set \mathcal{X} is defined as

$$\operatorname{dist}(x,\mathcal{X}) := \inf_{y\in\mathcal{X}} \|x-y\|.$$

Note: because ||x - y|| is jointly convex in (x, y), the function dist (x, \mathcal{Y}) is a convex function of *x*.

Convex functions – norms

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function that satisfies

- 1 $f(x) \ge 0$, and f(x) = 0 if and only if x = 0 (definiteness)
- 2 $f(\lambda x) = |\lambda| f(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- 3 $f(x + y) \le f(x) + f(y)$ (subadditivity)

Such function called *norms*—usually denoted ||x||.

Theorem Norms are convex.

Some norms

Example (ℓ_2 -norm): $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example (ℓ_p -norm): Let $p \ge 1$. $\|x\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Example (ℓ_{∞} -norm): $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n}$. $\|A\|_{\mathsf{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$

Example Let A be any matrix. Then, the **operator norm** of A is

$$\|A\| := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2} = \sigma_{\max}(A).$$

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example $+\infty$ and $-\infty$ conjugate to each other.

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Proof. $f^*(z) = \sup_x z^T x - ||x||$. If $||z||_* > 1$, by defn. of the dual norm, $\exists u$ such that $||u|| \le 1$ and $u^T z > 1$. Now select $x = \alpha u$ and let $\alpha \to \infty$. Then, $z^T x - ||x|| = \alpha (z^T u - ||u||) \to \infty$. If $||z||_* \le 1$, then $z^T x \le ||x|| ||z||_*$, which implies the sup must be zero.

Suvrit Sra (MIT)

Example
$$f(x) = \frac{1}{2}x^T A x$$
, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Example $f(x) = \max(0, 1 - x)$. Verify: dom $f^* = [-1, 0]$, and on this domain, $f^*(z) = z$.

Example $f(x) = \mathbb{1}_{\mathcal{X}}(x)$: $f^*(z) = \sup_{x \in \mathcal{X}} \langle x, z \rangle$ (aka support func)

Challenge 2

Consider the following functions on strictly positive variables:

$$h_1(x) := \frac{1}{x}$$

$$h_2(x,y) := \frac{1}{x} + \frac{1}{y} - \frac{1}{x+y}$$

$$h_3(x,y,z) := \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x+y} - \frac{1}{y+z} - \frac{1}{x+z} + \frac{1}{x+y+z}$$

♥ Prove that h_1 , h_2 , h_3 , and in general h_n are convex! ♥ Prove that in fact each $1/h_n$ is concave

Subgradients

Subgradients: global underestimators

 $f(x) \geq f(y) + \langle \nabla f(y), x - y \rangle$

Subgradients: global underestimators

Subgradients: global underestimators

Subgradients – basic facts

- ► *f* is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at *y*
- A vector g is a subgradient at a point y if and only if f(y) + ⟨g, x − y⟩ is globally smaller than f(x).
- Usually, one subgradient costs approx. as much as f(x)

Subgradients – basic facts

- ▶ *f* is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at *y*
- A vector g is a subgradient at a point y if and only if f(y) + ⟨g, x − y⟩ is globally smaller than f(x).
- Usually, one subgradient costs approx. as much as f(x)
- Determining all subgradients at a given point difficult.
- Subgradient calculus—major achievement in convex analysis
- Fenchel-Young inequality: $f(x) + f^*(s) \ge \langle s, x \rangle$

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$

- * $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$
- * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

- * $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$
- * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$
- * $f_1(y) = f_2(y)$: subgradients, the segment $[f'_1(y), f'_2(y)]$ (imagine all supporting lines turning about point y)

Suvrit Sra (MIT)

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If *f* is convex, $\partial f(x)$ is nice:

♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If *f* is convex, $\partial f(x)$ is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = \{\nabla f(x)\}$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If f is convex, $\partial f(x)$ is nice:

- ♣ If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = \{\nabla f(x)\}$
- ♣ If $\partial f(x) = \{g\}$, then *f* is differentiable and $g = \nabla f(x)$

Subdifferential – example

$$f(x) = |x|$$

Suvrit Sra (MIT)

Subdifferential – example

Subdifferential – example

Example
$$f(x) = ||x||_2$$
. Then,
 $\partial f(x) := \begin{cases} x/||x||_2 & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Example $f(x) = \|x\|_2$. Then, $\partial f(x) := egin{cases} x/\|x\|_2 & x
eq 0, \ \{z \mid \|z\|_2 \leq 1\} & x = 0. \end{cases}$

Proof. $||z||_2 \ge ||x||_2 + \langle g, z - x \rangle$

Example $f(x) = ||x||_2$. Then, $\partial f(x) := egin{cases} x/||x||_2 & x
eq 0, \ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Proof.

$$egin{array}{rcl} \|z\|_2 &\geq & \|x\|_2+\langle g,\,z-x
angle \ \|z\|_2 &\geq & \langle g,\,z
angle \end{array}$$

Example $f(x) = ||x||_2$. Then, $\partial f(x) := egin{cases} x/||x||_2 & x
eq 0, \ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Proof.

$$\begin{split} \|z\|_2 & \geq & \|x\|_2 + \langle g, \, z - x \rangle \\ \|z\|_2 & \geq & \langle g, \, z \rangle \\ & \Longrightarrow & \|g\|_2 \leq 1. \end{split}$$

Example A convex function need not be subdifferentiable everywhere. Let

$$f(x) := \begin{cases} -(1 - \|x\|_2^2)^{1/2} & \text{if } \|x\|_2 \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

f diff. for all *x* with $||x||_2 < 1$, but $\partial f(x) = \emptyset$ whenever $||x||_2 \ge 1$.

Subdifferential calculus

- Finding one subgradient within $\partial f(x)$
- Determining entire subdifferential $\partial f(x)$ at a point x
- Do we have the chain rule?

Subdifferential calculus

- $\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$
- $\oint \text{ Scaling } \alpha > 0, \, \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \}$
- \oint **Addition**^{*}: $\partial(f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)
- ∮ **Chain rule**^{*}: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, and $h : \mathbb{R}^n \to \mathbb{R}$ be given by h(x) = f(Ax + b). Then,

$$\partial h(x) = A^T \partial f(Ax + b).$$

 $\oint \text{ Chain rule}^*: h(x) = f \circ k, \text{ where } k : X \to Y \text{ is diff.}$

$$\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$$

 $\oint \text{ Max function}^*: \text{ If } f(x) := \max_{1 \le i \le m} f_i(x), \text{ then }$

$$\partial f(x) = \operatorname{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$$

convex hull over subdifferentials of "active" functions at x

- \oint **Conjugation:** *z* ∈ ∂*f*(*x*) if and only if *x* ∈ ∂*f*^{*}(*z*)
- * can fail to hold without precise assumptions.

Suvrit Sra (MIT)

It can happen that $\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$

It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = \max\{f_1, f_2\} = \mathbb{1}_{\{0\}}$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = \max\{f_1, f_2\} = \mathbb{1}_{\{0\}}$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

However, $\partial f_1(x) + \partial f_2(x) \subset \partial (f_1 + f_2)(x)$ always holds.

Example $f(x) = ||x||_{\infty}$. Then, $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\},$ where e_i is *i*-th canonical basis vector.

To prove, notice that $f(x) = \max_{1 \le i \le n} \{ |e_i^T x| \}$

Then use, *chain rule* and *max rule* and $\partial |\cdot|$

Example – subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

Example – subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$h(z, y^*) \ge h(x, y^*) + g^T(z - x)$$

 $h(z, y^*) \ge f(x) + g^T(z - x)$

Example – subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$\begin{array}{rcl} h(z,y^*) & \geq & h(x,y^*) + g^T(z-x) \\ h(z,y^*) & \geq & f(x) + g^T(z-x) \\ f(z) & \geq & h(z,y) & (\text{because of sup}) \\ f(z) & \geq & f(x) + g^T(z-x). \end{array}$$

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

(This f is a max over a finite number of terms)

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

(This f is a max over a finite number of terms)

• Let
$$f_k(x) = a_k^T x + b_k$$

• Suppose $f(x) = a_k^T x + b_k$ for some index k

• Here
$$\partial f_k(x) = \{\nabla f_k(x)\}$$

▶ Hence, $a_k \in \partial f(x)$ is a subgradient

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (r.v.)

$$f(x) := \int f(x, u) p(u) du$$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (r.v.)

$$f(x) := \int f(x, u) p(u) du$$

For each *u* choose any $g(x, u) \in \partial_x f(x, u)$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (r.v.)

$$f(x) := \int f(x, u) p(u) du$$

- For each *u* choose any $g(x, u) \in \partial_x f(x, u)$
- ▶ Then, $g(x) = \int g(x, u)p(u)du = \mathbf{E}g(x, u) \in \partial f(x)$

Optimization

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t. } f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$

Henceforth, we drop condition on domains for brevity.
Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t. } f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$

Henceforth, we drop condition on domains for brevity.

- If f_i are differentiable smooth optimization
- If any *f_i* is **non-differentiable** nonsmooth optimization
- If all *f_i* are **convex** convex optimization
- If m = 0, i.e., only f_0 is there unconstrained minimization

Convex optimization

Let \mathcal{X} be **feasible set** and p^* the **optimal value**

 $p^* := \inf \left\{ f_0(x) \mid x \in \mathcal{X} \right\}$

Convex optimization

Let \mathcal{X} be **feasible set** and p^* the **optimal value**

 $p^* := \inf \left\{ f_0(x) \mid x \in \mathcal{X} \right\}$

- If \mathcal{X} is empty, we say problem is **infeasible**
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- Example, min x on \mathbb{R} , or min log x on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \to \pm \infty$)
- Say $f_0(x) = 0$, problem is called **convex feasibility**

Optimality

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal also globally so.

Optimality

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal also globally so.

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local minimum of *f*. Then, $\nabla f(x^*) = 0$.

If *f* is convex, then $\nabla f(x^*) = 0$ is actually **sufficient** for global optimality! For general *f* this is **not** true. (This property makes convex optimization special!)

Optimality – constrained

♠ For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Optimality – constrained

♦ For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$. ♦ Thus, x^* is optimal if and only if

$$\langle \nabla f(x^*), y - x^* \rangle \ge 0,$$
 for all $y \in \mathcal{X}$.

Optimality – constrained

♠ For every x, y ∈ dom f, we have $f(y) ≥ f(x) + \langle \nabla f(x), y - x \rangle$.
♠ Thus, x* is optimal if and only if

$$\langle
abla f(x^*), y - x^* \rangle \geq 0,$$
 for all $y \in \mathcal{X}$.

• If $\mathcal{X} = \mathbb{R}^n$, this reduces to $\nabla f(x^*) = 0$

♠ If $\nabla f(x^*) \neq 0$, it defines supporting hyperplane to X at x^*

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,
argmin $f = \operatorname{zer}(\partial f) := \{x \in \mathbb{R}^n \mid 0 \in \partial f(x)\}$.

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid \mathsf{0} \in \partial f(x)
ight\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$.

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid \mathsf{0} \in \partial f(x)
ight\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y$,

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid \mathsf{0} \in \partial f(x)
ight\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Theorem (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid \mathsf{0} \in \partial f(x)
ight\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Nonsmooth optimality

 $\begin{array}{ll} \min & f(x) \quad \text{s.t. } x \in \mathcal{X} \\ \min & f(x) + \mathbb{1}_{\mathcal{X}}(x). \end{array}$

i

• Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{1}_{\mathcal{X}})(x)$

- Minimizing x must satisfy: $0 \in \partial(f_0 + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f_0) ∩ ri(X) $\neq \emptyset$, 0 $\in \partial f_0(x) + \partial \mathbb{1}_X(x)$

- Minimizing x must satisfy: $0 \in \partial(f_0 + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f_0) ∩ ri(X) $\neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.

- Minimizing x must satisfy: $0 \in \partial(f_0 + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f_0) ∩ ri(X) $\neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.

- Minimizing x must satisfy: $0 \in \partial(f_0 + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f_0) ∩ ri(X) $\neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := ig\{ g \in \mathbb{R}^n \mid 0 \geq \langle g, \, y - x
angle \quad \forall y \in \mathcal{X} ig\}$$

- Minimizing x must satisfy: $0 \in \partial(f_0 + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f_0) ∩ ri(X) $\neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := ig\{ g \in \mathbb{R}^n \mid \mathbf{0} \geq \langle g, \, y - x
angle \quad orall y \in \mathcal{X} ig\}$$

Application. min f(x) s.t. $x \in \mathcal{X}$:

 \diamond If *f* is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$

- Minimizing x must satisfy: $0 \in \partial(f_0 + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming ri(dom f_0) ∩ ri(X) $\neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := ig\{ g \in \mathbb{R}^n \mid \mathbf{0} \geq \langle g, \, y - x
angle \quad orall y \in \mathcal{X} ig\}$$

Application. min f(x) s.t. $x \in \mathcal{X}$:

- \diamond If *f* is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$
- $\diamondsuit \ -\nabla f(x^*) \in \mathcal{N}_{\mathcal{X}}(x^*) \Longleftrightarrow \langle \nabla f(x^*), \ y x^* \rangle \geq 0 \text{ for all } y \in \mathcal{X}.$

Optimality – projection operator

$$P_{\mathcal{X}}(y) := \operatorname*{argmin}_{x \in \mathcal{X}} \|x - y\|^2$$

(Assume \mathcal{X} is closed and convex, then projection is unique) Let \mathcal{X} be nonempty, closed and convex.

• Optimality condition: $x^* = P_{\mathcal{X}}(y)$ iff

$$\langle x^* - y, z - x^* \rangle \geq 0$$
 for all $z \in \mathcal{X}$

Projection is nonexpansive:

$$\| \mathcal{P}_{\mathcal{X}}(x) - \mathcal{P}_{\mathcal{X}}(y) \|^2 \leq \| x - y \|^2 \quad ext{ for all } x, y \in \mathbb{R}^n.$$

Optimality – projection operator

$$P_{\mathcal{X}}(y) := \operatorname*{argmin}_{x \in \mathcal{X}} \|x - y\|^2$$

(Assume \mathcal{X} is closed and convex, then projection is unique) Let \mathcal{X} be nonempty, closed and convex.

• Optimality condition: $x^* = P_{\mathcal{X}}(y)$ iff

$$\langle x^* - y, z - x^* \rangle \geq 0$$
 for all $z \in \mathcal{X}$

Projection is nonexpansive:

$$\|P_{\mathcal{X}}(x) - P_{\mathcal{X}}(y)\|^2 \le \|x - y\|^2$$
 for all $x, y \in \mathbb{R}^n$.

Proof: Exercise!

Duality

Introduction to large-scale optimization

Primal problem

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

nin
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$, (P)
 $x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \}$.

Def. Domain: The set $\mathcal{D} := \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \}$

▶ We call (*P*) the primal problem

r

- ► The variable *x* is the **primal variable**
- ▶ We will attach to (*P*) a dual problem
- In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(\mathbf{x},\lambda) := f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}).$$

• Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(\mathbf{x},\lambda) := f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}).$$

- Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- ♠ Suppose x is feasible, and λ ≥ 0. Then, we get the lower-bound:

$$f_0(x) \geq \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+.$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(\mathbf{x},\lambda) := f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i f_i(\mathbf{x}).$$

- Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- ♠ Suppose x is feasible, and λ ≥ 0. Then, we get the lower-bound:

$$f_0(x) \geq \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+.$$

▲ Lagrangian helps write problem in unconstrained form

Lagrange dual function

Def. We define the Lagrangian dual as

 $g(\lambda) := \inf_{x} \mathcal{L}(x, \lambda).$

Lagrange dual function

Def. We define the Lagrangian dual as

 $g(\lambda) := \inf_{x} \mathcal{L}(x, \lambda).$

Observations:

- g is pointwise inf of affine functions of λ
- ► Thus, g is concave; it may take value -∞

Lagrange dual function

Def. We define the Lagrangian dual as

 $g(\lambda) := \inf_{x} \mathcal{L}(x, \lambda).$

Observations:

- g is pointwise inf of affine functions of λ
- ► Thus, g is concave; it may take value -∞
- ▶ Recall: $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\blacktriangleright \quad \forall x \in \mathcal{X}, \quad f_0(x) \geq \inf_{x'} \mathcal{L}(x', \lambda) = g(\lambda)$
- ▶ Now minimize over *x* on lhs, to obtain

$$\forall \ \lambda \in \mathbb{R}^m_+ \qquad p^* \geq g(\lambda).$$

Lagrange dual problem

$$\sup_{\lambda} g(\lambda)$$
 s.t. $\lambda \ge 0$.

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad ext{ s.t. } \lambda \geq \mathsf{0}.$$

- ▶ dual feasible: if $\lambda \ge 0$ and $g(\lambda) > -\infty$
- dual optimal: λ^* if sup is achieved
- ► Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^*:= \sup_{\lambda\geq 0} \quad g(\lambda).$$

Weak duality

Def. Denote **dual optimal value** by *d**, i.e.,

$$d^*:= \sup_{\lambda\geq 0} \quad g(\lambda).$$

Theorem (Weak-duality): For problem (P), we have $p^* \ge d^*$.

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda \geq 0} \quad g(\lambda).$$

Theorem (Weak-duality): For problem (P), we have $p^* \ge d^*$.

Proof: We showed that for all $\lambda \in \mathbb{R}^m_+$, $p^* \ge g(\lambda)$. Thus, it follows that $p^* \ge \sup g(\lambda) = d^*$.

Duality gap

$p^* - d^* \ge 0$
Duality gap

$p^* - d^* \ge 0$

Strong duality if duality gap is zero: $p^* = d^*$ Notice: both p^* and d^* may be $+\infty$

Duality gap

$p^* - d^* \ge 0$

Strong duality if duality gap is zero: $p^* = d^*$ Notice: both p^* and d^* may be $+\infty$

Several sufficient conditions known!

"Easy" necessary and sufficient conditions: unknown

Zero duality gap: nonconvex example

Trust region subproblem (TRS)

min
$$x^T A x + 2b^T x$$
 $x^T x \leq 1$.

A is symmetric but not necessarily semidefinite!

Theorem TRS always has zero duality gap.

$$\min_{x,y} e^{-x} \quad x^2/y \leq 0,$$
 over the domain $\mathcal{D} = \{(x,y) \mid y > 0\}.$

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\min_{x,y} e^{-x} \quad x^2/y \leq 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{y},\lambda) = \boldsymbol{e}^{-\boldsymbol{x}} + \lambda \boldsymbol{x}^2/\boldsymbol{y},$$

so dual function is $g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$

$$\min_{x,y} e^{-x} \quad x^2/y \leq 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

ľ

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{y},\lambda)=\boldsymbol{e}^{-\boldsymbol{x}}+\lambda\boldsymbol{x}^{2}/\boldsymbol{y},$$

so dual function is

$$g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$$

Dual problem

$$d^* = \max_{\lambda} 0$$
 s.t. $\lambda \ge 0$.

Thus, $d^* = 0$, and gap is $p^* - d^* = 1$.

$$\min_{x,y} e^{-x} \quad x^2/y \leq 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(\boldsymbol{x},\boldsymbol{y},\lambda)=\boldsymbol{e}^{-\boldsymbol{x}}+\lambda\boldsymbol{x}^{2}/\boldsymbol{y},$$

so dual function is $g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$

Dual problem

$$d^* = \max_{\lambda} 0$$
 s.t. $\lambda \ge 0$.

Thus, $d^* = 0$, and gap is $p^* - d^* = 1$. Here, we had no strictly feasible solution.

Suvrit Sra (MIT)

Support vector machine

$$\min_{\substack{x,\xi \\ \text{s.t.}}} \quad \frac{1}{2} \|x\|_2^2 + C \sum_i \xi_i$$

$$\text{s.t.} \quad Ax \ge 1 - \xi, \quad \xi \ge 0$$

Support vector machine

$$\begin{split} \min_{\substack{x,\xi \\ x,\xi \ }} & \frac{1}{2} \|x\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} & Ax \ge 1 - \xi, \quad \xi \ge 0. \\ L(x,\xi,\lambda,\nu) &= \frac{1}{2} \|x\|_2^2 + C \mathbf{1}^T \xi - \lambda^T (Ax - 1 + \xi) - \nu^T \xi \end{split}$$

Support vector machine

$$\begin{split} \min_{\substack{x,\xi \\ x,\xi \\ y \\ z \\ z \\ z \\ z \\ x,\xi \\ x$$

Exercise: Using $\nu \ge 0$, eliminate ν from above problem.

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

Dual problem

$$\inf_{u\in\mathcal{Y}} \quad f^*(-A^T u) + r^*(u).$$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

Dual problem

$$\inf_{u\in\mathcal{Y}} \quad f^*(-A^T u)+r^*(u).$$

► Introduce new variable z = Ax $\inf_{x \in \mathcal{X}, z \in \mathcal{Y}} \quad f(x) + r(z), \qquad \text{s.t.} \quad z = Ax.$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

Dual problem

$$\inf_{u\in\mathcal{Y}} \quad f^*(-A^T u)+r^*(u).$$

• Introduce new variable z = Ax

$$\inf_{x\in\mathcal{X},z\in\mathcal{Y}} \quad f(x)+r(z), \qquad \text{s.t.} \quad z=Ax.$$

► The (partial)-Lagrangian is

$$L(x, z; u) := f(x) + r(z) + u^T (Ax - z), \quad x \in \mathcal{X}, z \in \mathcal{Y};$$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

Dual problem

$$\inf_{u\in\mathcal{Y}} \quad f^*(-A^T u)+r^*(u).$$

• Introduce new variable z = Ax

$$\inf_{x\in\mathcal{X},z\in\mathcal{Y}} \quad f(x)+r(z), \qquad \text{s.t.} \quad z=Ax.$$

► The (partial)-Lagrangian is $L(x, z; u) := f(x) + r(z) + u^T (Ax - z), \quad x \in \mathcal{X}, z \in \mathcal{Y};$

Associated dual function

$$g(u) := \inf_{x \in \mathcal{X}, z \in \mathcal{Y}} L(x, z; u).$$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

$\inf_{y \in \mathcal{Y}} f^*(-A^T y) + r^*(y).$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

$\inf_{y \in \mathcal{Y}} f^*(-A^T y) + r^*(y).$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$

= $-\sup_{x \in \mathcal{X}} \left\{ -x^T A^T y - f(x) \right\} - \sup_{z \in \mathcal{Y}} \left\{ z^T y - r(z) \right\}$

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

$\inf_{y \in \mathcal{Y}} f^*(-A^T y) + r^*(y).$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$

= $-\sup_{x \in \mathcal{X}} \left\{ -x^T A^T y - f(x) \right\} - \sup_{z \in \mathcal{Y}} \left\{ z^T y - r(z) \right\}$
= $-f^*(-A^T y) - r^*(y)$ s.t. $y \in \mathcal{Y}$.

Introduction to large-scale optimization

$$\inf_{x\in\mathcal{X}} \quad f(x)+r(Ax) \quad \text{s.t. } Ax\in\mathcal{Y}.$$

$\inf_{y \in \mathcal{Y}} f^*(-A^T y) + r^*(y).$

The infimum above can be rearranged as follows

$$g(y) = \inf_{x \in \mathcal{X}} f(x) + y^T A x + \inf_{z \in \mathcal{Y}} r(z) - y^T z$$

= $-\sup_{x \in \mathcal{X}} \left\{ -x^T A^T y - f(x) \right\} - \sup_{z \in \mathcal{Y}} \left\{ z^T y - r(z) \right\}$
= $-f^*(-A^T y) - r^*(y)$ s.t. $y \in \mathcal{Y}$.

Dual problem computes $\sup_{u \in \mathcal{Y}} g(u)$; so equivalently,

$$\inf_{y\in\mathcal{Y}} \quad f^*(-A^T y) + r^*(y).$$

Suvrit Sra (MIT)

Introduction to large-scale optimization

Strong duality

$$\inf_{x} \{f(x) + r(Ax)\} = \sup_{y} \{-f^{*}(-A^{T}y) + r^{*}(y)\}$$

if either of the following conditions holds:

Strong duality

$$\inf_{x} \{f(x) + r(Ax)\} = \sup_{y} \left\{ -f^*(-A^T y) + r^*(y) \right\}$$

if either of the following conditions holds:

- 1 $\exists x \in ri(dom f)$ such that $Ax \in ri(dom r)$
- **2** $\exists y \in ri(dom r^*)$ such that $A^T y \in ri(dom f^*)$

Strong duality

$$\inf_{x} \{f(x) + r(Ax)\} = \sup_{y} \left\{ -f^*(-A^T y) + r^*(y) \right\}$$

if either of the following conditions holds:

- 1 $\exists x \in ri(dom f)$ such that $Ax \in ri(dom r)$
- **2** $\exists y \in ri(dom r^*)$ such that $A^T y \in ri(dom f^*)$
 - Condition 1 ensures 'sup' attained at some y
 - Condition 2 ensures 'inf' attained at some x

Example: norm regularized problems

$$\min \quad f(x) + \|Ax\|$$

Example: norm regularized problems

 $\min \quad f(x) + \|Ax\|$

Dual problem

$$\min_{y} \quad f^*(-A^T y) \quad \text{s.t.} \ \|y\|_* \leq 1.$$

Example: norm regularized problems

 $\min \quad f(x) + \|Ax\|$

Dual problem

$$\min_{y} \quad f^*(-A^T y) \quad \text{s.t.} \ \|y\|_* \leq 1.$$

Say $\|\bar{y}\|_* < 1$, such that $A^T \bar{y} \in ri(\text{dom } f^*)$, then we have strong duality (e.g., for instance $0 \in ri(\text{dom } f^*)$)

min f(x) + g(x)

 $\min \quad f(x) + g(x)$

Exercise: Fill in the details below

$$\min_{x,z} \quad f(x) + g(z) \quad \text{s.t.} \quad x = z$$

 $\min \quad f(x) + g(x)$

Exercise: Fill in the details below

$$\min_{x,z} \quad f(x) + g(z) \quad \text{s.t.} \quad x = z$$
$$L(x, z, \nu) = f(x) + g(z) + \nu^{T}(x - z)$$

 $\min \quad f(x) + g(x)$

Exercise: Fill in the details below

$$\min_{\substack{x,z \\ x,z}} f(x) + g(z) \quad \text{s.t.} \quad x = z$$
$$L(x, z, \nu) = f(x) + g(z) + \nu^{T}(x - z)$$
$$g(\nu) = \inf_{\substack{x,z \\ x,z}} L(x, z, \nu)$$

Theorem Let $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$ be any function. Then,

 $\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y) \leq \inf_{x\in\mathcal{X}}\sup_{y\in\mathcal{Y}}\phi(x,y)$

Theorem Let $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$ be any function. Then,

$$\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y) \leq \inf_{x\in\mathcal{X}}\sup_{y\in\mathcal{Y}}\phi(x,y)$$

$$\forall x, y, \quad \inf_{x' \in \mathcal{X}} \phi(x', y) \leq \phi(x, y)$$

Theorem Let $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$ be any function. Then,

$$\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y) \leq \inf_{x\in\mathcal{X}}\sup_{y\in\mathcal{Y}}\phi(x,y)$$

$$\begin{array}{llll} \forall x, y, & \inf_{x' \in \mathcal{X}} \phi(x', y) & \leq & \phi(x, y) \\ \forall x, y, & \inf_{x' \in \mathcal{X}} \phi(x', y) & \leq & \sup_{y' \in \mathcal{Y}} \phi(x, y') \end{array}$$

Theorem Let $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$ be any function. Then,

 $\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y) \leq \inf_{x\in\mathcal{X}}\sup_{y\in\mathcal{Y}}\phi(x,y)$

$$\begin{array}{llll} \forall x, y, & \inf_{x' \in \mathcal{X}} \phi(x', y) & \leq & \phi(x, y) \\ \forall x, y, & \inf_{x' \in \mathcal{X}} \phi(x', y) & \leq & \sup_{y' \in \mathcal{Y}} \phi(x, y') \\ \forall x, & \sup_{y \in \mathcal{Y}} \inf_{x' \in \mathcal{X}} \phi(x', y) & \leq & \sup_{y' \in \mathcal{Y}} \phi(x, y') \end{array}$$

Theorem Let $\phi : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \cup \{\pm \infty\}$ be any function. Then,

$$\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y) \leq \inf_{x\in\mathcal{X}}\sup_{y\in\mathcal{Y}}\phi(x,y)$$

$$\begin{array}{rcl} \forall x, y, & \inf_{x' \in \mathcal{X}} \phi(x', y) &\leq & \phi(x, y) \\ \forall x, y, & \inf_{x' \in \mathcal{X}} \phi(x', y) &\leq & \sup_{y' \in \mathcal{Y}} \phi(x, y') \\ \forall x, & \sup_{y \in \mathcal{Y}} \inf_{x' \in \mathcal{X}} \phi(x', y) &\leq & \sup_{y' \in \mathcal{Y}} \phi(x, y') \\ \Longrightarrow & \sup_{y \in \mathcal{Y}} \inf_{x' \in \mathcal{X}} \phi(x', y) &\leq & \inf_{x \in \mathcal{X}} \sup_{y' \in \mathcal{Y}} \phi(x, y'). \end{array}$$

Primal-dual: strong minimax

- ► If "inf sup = sup inf", common value called saddle-value
- ► Value exists if there is a **saddle-point**, i.e., pair (x^*, y^*)

 $\phi(\mathbf{x}, \mathbf{y}^*) \ge \phi(\mathbf{x}^*, \mathbf{y}^*) \ge \phi(\mathbf{x}^*, \mathbf{y}) \quad \text{for all } \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}.$

Def. Let ϕ be as before. A point (x^*, y^*) is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

 $\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \phi(x, y)$

is **attained** at x^* , and the supremum in the expression

 $\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y)$

is **attained** at y^* , and these two extrema are equal.

Primal-dual: strong minimax

- ► If "inf sup = sup inf", common value called saddle-value
- ► Value exists if there is a **saddle-point**, i.e., pair (x^*, y^*)

 $\phi(\mathbf{x}, \mathbf{y}^*) \ge \phi(\mathbf{x}^*, \mathbf{y}^*) \ge \phi(\mathbf{x}^*, \mathbf{y}) \quad \text{for all } \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}.$

Def. Let ϕ be as before. A point (x^*, y^*) is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

 $\inf_{x \in \mathcal{X}} \sup_{y \in \mathcal{Y}} \phi(x, y)$

is **attained** at x^* , and the supremum in the expression

 $\sup_{y\in\mathcal{Y}}\inf_{x\in\mathcal{X}}\phi(x,y)$

is **attained** at y^* , and these two extrema are equal.

$$x^* \in \operatorname*{argmin}_{x \in \mathcal{X}} \max_{y \in \mathcal{Y}} \phi(x, y)$$
 $y^* \in \operatorname*{argmax}_{y \in \mathcal{Y}} \min_{x \in \mathcal{X}} \phi(x, y).$

Suvrit Sra (MIT)

Introduction to large-scale optimization

Sufficient conditions for saddle-point

- Function ϕ is continuous, and
- It is convex-concave (φ(·, y) convex for every y ∈ 𝔅, and φ(x, ·) concave for every x ∈ 𝔅), and
- ▶ Both X and Y are convex; one of them is compact.

$$p^* := \min_x \|Ax - b\|_2 + \lambda \|x\|_1.$$

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_\infty \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_{\infty} \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, ||v||_{\infty} \le \lambda \right\}$$

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_{\infty} \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \ ||v||_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid ||u||_2 \le 1, \ ||v||_{\infty} \le \lambda \right\}$$

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_{\infty} \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, ||v||_{\infty} \le \lambda \right\}$$

=
$$\max_{x} \min_{u,v} \left\{ u^T (b - Ax) + x^T v \mid ||u||_2 \le 1, ||v||_{\infty} \le \lambda \right\}$$

$$= \max_{u,v} \min_{x} \{ u \ (D - Ax) + x \ v \mid \|u\|_{2} \le 1, \ \|v\|_{\infty} \le x \}$$

$$= \max_{u,v} u^T b \qquad A^T u = v, \ \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda$$

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_{\infty} \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid \|u\|_2 \le 1, \|v\|_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid \|u\|_2 \le 1, \|v\|_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} u^T b \qquad A^T u = v, \|u\|_2 \le 1, \|v\|_{\infty} \le \lambda$$

=
$$\max_{u} u^T b \qquad \|u\|_2 \le 1, \|A^T v\|_{\infty} \le \lambda.$$

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

▶ Recall: $\langle \nabla f_0(x^*), x - x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_{i} \lambda_i f_i(x)$

min
$$f_0(x)$$
 $f_i(x) \leq 0$, $i = 1, \ldots, m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

min
$$f_0(x)$$
 $f_i(x) \leq 0$, $i = 1, \ldots, m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

 $p^* = f_0(x^*)$

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*)$$

min
$$f_0(x)$$
 $f_i(x) \leq 0$, $i = 1, \ldots, m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*)$$

Suvrit Sra (MIT)

Introduction to large-scale optimization

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x,\lambda^*) \le \mathcal{L}(x^*,\lambda^*)$$

Suvrit Sra (MIT)

Introduction to large-scale optimization

min
$$f_0(x)$$
 $f_i(x) \leq 0$, $i = 1, \ldots, m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x,\lambda^*) \le \mathcal{L}(x^*,\lambda^*) \le f_0(x^*) = p^*$$

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x,\lambda^*) \le \mathcal{L}(x^*,\lambda^*) \le f_0(x^*) = p^*$$

▶ Thus, equalities hold in above chain.

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_{x} \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x,\lambda^*) \le \mathcal{L}(x^*,\lambda^*) \le f_0(x^*) = p^*$$

▶ Thus, equalities hold in above chain.

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x},\lambda^*)|_{\mathbf{x}=\mathbf{x}^*} = \nabla f_0(\mathbf{x}^*) + \sum_i \lambda_i^* \nabla f_i(\mathbf{x}^*) = \mathbf{0}.$$

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x},\lambda^*)|_{\mathbf{x}=\mathbf{x}^*} = \nabla f_0(\mathbf{x}^*) + \sum_i \lambda_i^* \nabla f_i(\mathbf{x}^*) = \mathbf{0}.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x},\lambda^*)|_{\mathbf{x}=\mathbf{x}^*} = \nabla f_0(\mathbf{x}^*) + \sum_i \lambda_i^* \nabla f_i(\mathbf{x}^*) = \mathbf{0}.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum_{i}\lambda_{i}^{*}f_{i}(x^{*})=0.$$

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x},\lambda^*)|_{\mathbf{x}=\mathbf{x}^*} = \nabla f_0(\mathbf{x}^*) + \sum_i \lambda_i^* \nabla f_i(\mathbf{x}^*) = \mathbf{0}.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum_{i} \lambda_i^* f_i(x^*) = 0.$$

But $\lambda_i^* \geq 0$ and $f_i(x^*) \leq 0$,

$$x^* \in \operatorname{argmin}_{x} \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{\mathbf{x}}\mathcal{L}(\mathbf{x},\lambda^*)|_{\mathbf{x}=\mathbf{x}^*} = \nabla f_0(\mathbf{x}^*) + \sum_i \lambda_i^* \nabla f_i(\mathbf{x}^*) = \mathbf{0}.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum\nolimits_{i}\lambda_{i}^{*}f_{i}(x^{*})=0.$$

But $\lambda_i^* \ge 0$ and $f_i(x^*) \le 0$, so **complementary slackness**

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \ldots, m.$$

Suvrit Sra (MIT)

Introduction to large-scale optimization

 $egin{array}{rll} f_i(m{x}^*) &\leq & \mathbf{0}, & i=1,\ldots,m \ \lambda_i^* &\geq & \mathbf{0}, & i=1,\ldots,m \end{array}$ (primal feasibility) (dual feasibility) $\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m$ (compl. slackness) (Lagrangian stationarity)

 $\nabla_{\mathbf{x}} \mathcal{L}(\mathbf{x}, \lambda^*)|_{\mathbf{x} = \mathbf{x}^*} = \mathbf{0}$

$$egin{array}{rll} f_i(x^*) &\leq 0, & i=1,\ldots,m & (\mbox{primal feasibility}) \ \lambda_i^* &\geq 0, & i=1,\ldots,m & (\mbox{dual feasibility}) \ \lambda_i^* f_i(x^*) &= 0, & i=1,\ldots,m & (\mbox{compl. slackness}) \
abla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= 0 & (\mbox{Lagrangian stationarity}) \end{array}$$

We showed: if strong duality holds, and (x*, λ*) exist, then KKT conditions are necessary for pair (x*, λ*) to be optimal

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

- We showed: if strong duality holds, and (x*, λ*) exist, then KKT conditions are necessary for pair (x*, λ*) to be optimal
- ▶ If problem is convex, then KKT also sufficient

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

- We showed: if strong duality holds, and (x*, λ*) exist, then KKT conditions are necessary for pair (x*, λ*) to be optimal
- ► If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. *Hint:* Use that $\mathcal{L}(x, \lambda^*)$ is convex, and conclude from KKT conditions that $g(\lambda^*) = f_0(x^*)$, so that (x^*, λ^*) optimal primal-dual pair.