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Primal problem

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

(P)

Def. Domain: The set D := {dom f0 ∩ dom f1 · · · ∩ dom fm}

I We call (P ) the primal problem

I The variable x is the primal variable

I We will attach to (P ) a dual problem

I In our initial derivation: no restriction to convexity.
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Lagrangian

To the primal problem, associate Lagrangian L : Rn × Rm → R,

L(x, λ) := f0(x) +
∑m

i=1
λifi(x).

♠ Variables λ ∈ Rm called Lagrange multipliers

♠ Suppose x is feasible, and λ ≥ 0. Then, we get the lower-bound:

f0(x) ≥ L(x, λ) ∀x ∈ X , λ ∈ Rm+ .

♠ Lagrangian helps write problem in unconstrained form
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Lagrangian

Claim: Since, f0(x) ≥ L(x, λ) ∀x ∈ X , λ ∈ Rm+ , primal optimal

p∗ = inf
x∈X

sup
λ≥0

L(x, λ).

Proof:

♠ If x is not feasible, then some fi(x) > 0

♠ In this case, inner sup is +∞, so claim true by definition

♠ If x is feasible, each fi(x) ≤ 0, so supλ
∑

i λifi(x) = 0
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Lagrange dual function

Def. We define the Lagrangian dual as

g(λ) := infx L(x, λ).

Observations:

I g is pointwise inf of affine functions of λ

I Thus, g is concave; it may take value −∞
I Recall: f0(x) ≥ L(x, λ) ∀x ∈ X ; thus

I ∀x ∈ X , f0(x) ≥ infx′ L(x′, λ) = g(λ)

I Now minimize over x on lhs, to obtain

∀ λ ∈ Rm+ p∗ ≥ g(λ).
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Lagrange dual problem

sup
λ
g(λ) s.t. λ ≥ 0.

I dual feasible: if λ ≥ 0 and g(λ) > −∞
I dual optimal: λ∗ if sup is achieved

I Lagrange dual is always concave, regardless of original
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Weak duality

Def. Denote dual optimal value by d∗, i.e.,

d∗ := sup
λ≥0

g(λ).

Theorem (Weak-duality): For problem (P), we have p∗ ≥ d∗.

Proof: We showed that for all λ ∈ Rm+ , p∗ ≥ g(λ).
Thus, it follows that p∗ ≥ sup g(λ) = d∗.
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Equality constraints

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

Exercise: Show that we get the Lagrangian dual

g : Rm+ × Rp : (λ, ν) 7→ inf
x
L(x, λ, ν),

where the Lagrange variable ν corresponding to the equality
constraints is unconstrained.
Hint: Represent hi(x) = 0 as hi(x) ≤ 0 and −hi(x) ≤ 0.

Again, we see that p∗ ≥ supλ≥0,ν g(λ, ν) = d∗
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Some duals

I Least-norm solution of linear equations: minxTx s.t. Ax = b

I Linear programming standard form

I Study example (5.7) in BV (binary QP)
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