Convex Optimization

 (EE227A: UC Berkeley)Lecture 8
Weak duality

14 Feb, 2013

Suvrit Sra

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
x \in & \left.x \operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f_{0}(x) \\
\quad \text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
x & \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem
- In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

© Lagrangian helps write problem in unconstrained form

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

© If x is not feasible, then some $f_{i}(x)>0$

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

4. If x is not feasible, then some $f_{i}(x)>0$
© In this case, inner sup is $+\infty$, so claim true by definition

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

A If x is not feasible, then some $f_{i}(x)>0$
A In this case, inner sup is $+\infty$, so claim true by definition
© If x is feasible, each $f_{i}(x) \leq 0$, so $\sup _{\lambda} \sum_{i} \lambda_{i} f_{i}(x)=0$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda)
$$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$
- Now minimize over x on Ihs, to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda)
$$

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved
- Lagrange dual is always concave, regardless of original

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda>0} g(\lambda) .
$$

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda)
$$

Theorem (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.
Proof: We showed that for all $\lambda \in \mathbb{R}_{+}^{m}, p^{*} \geq g(\lambda)$.
Thus, it follows that $p^{*} \geq \sup g(\lambda)=d^{*}$.

Equality constraints

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

Exercise: Show that we get the Lagrangian dual

$$
g: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}:(\lambda, \nu) \mapsto \inf _{x} \quad \mathcal{L}(x, \lambda, \nu)
$$

where the Lagrange variable ν corresponding to the equality constraints is unconstrained.
Hint: Represent $h_{i}(x)=0$ as $h_{i}(x) \leq 0$ and $-h_{i}(x) \leq 0$.

Equality constraints

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

Exercise: Show that we get the Lagrangian dual

$$
g: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}:(\lambda, \nu) \mapsto \inf _{x} \quad \mathcal{L}(x, \lambda, \nu)
$$

where the Lagrange variable ν corresponding to the equality constraints is unconstrained.
Hint: Represent $h_{i}(x)=0$ as $h_{i}(x) \leq 0$ and $-h_{i}(x) \leq 0$.
Again, we see that $p^{*} \geq \sup _{\lambda \geq 0, \nu} g(\lambda, \nu)=d^{*}$

- Least-norm solution of linear equations: $\min x^{T} x$ s.t. $A x=b$
- Linear programming standard form
- Study example (5.7) in BV (binary QP)

