Convex Optimization

(EE227A: UC Berkeley)

Lecture 8 Weak duality

14 Feb, 2013

Suvrit Sra

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \le 0, \quad 1 \le i \le m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$$

Let $f_i : \mathbb{R}^n \to \mathbb{R} \ (0 \le i \le m)$. Generic **nonlinear program**

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$, (P)
 $x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \}.$

Let $f_i : \mathbb{R}^n \to \mathbb{R} \ (0 \le i \le m)$. Generic nonlinear program

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$, (P)
 $x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \}.$

- We call (P) the primal problem
- \blacktriangleright The variable x is the **primal variable**

Let $f_i : \mathbb{R}^n \to \mathbb{R} \ (0 \le i \le m)$. Generic nonlinear program

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \le 0, \quad 1 \le i \le m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$$

- We call (P) the primal problem
- \blacktriangleright The variable x is the **primal variable**
- We will attach to (P) a dual problem

Let $f_i : \mathbb{R}^n \to \mathbb{R} \ (0 \le i \le m)$. Generic nonlinear program

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \le 0, \quad 1 \le i \le m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$$

- We call (P) the primal problem
- \blacktriangleright The variable x is the **primal variable**
- We will attach to (P) a dual problem
- In our initial derivation: no restriction to convexity.

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

• Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

• Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers

• Suppose x is feasible, and $\lambda \ge 0$. Then, we get the lower-bound:

$$f_0(x) \ge \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+.$$

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- Suppose x is feasible, and $\lambda \ge 0$. Then, we get the lower-bound:

$$f_0(x) \ge \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+.$$

Lagrangian helps write problem in unconstrained form

Claim: Since, $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+$, primal optimal

$$p^* = \inf_{x \in \mathcal{X}} \sup_{\lambda > 0} \quad \mathcal{L}(x, \lambda).$$

Claim: Since, $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+$, primal optimal

$$p^* = \inf_{x \in \mathcal{X}} \sup_{\lambda > 0} \quad \mathcal{L}(x, \lambda).$$

Proof:

 \blacklozenge If x is not feasible, then some $f_i(x) > 0$

Claim: Since, $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+$, primal optimal

$$p^* = \inf_{x \in \mathcal{X}} \sup_{\lambda > 0} \quad \mathcal{L}(x, \lambda).$$

Proof:

- If x is not feasible, then some $f_i(x) > 0$
- \blacklozenge In this case, inner \sup is $+\infty,$ so claim true by definition

Claim: Since, $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+$, primal optimal

$$p^* = \inf_{x \in \mathcal{X}} \sup_{\lambda > 0} \quad \mathcal{L}(x, \lambda).$$

Proof:

- If x is not feasible, then some $f_i(x) > 0$
- \blacklozenge In this case, inner \sup is $+\infty$, so claim true by definition
- \blacklozenge If x is feasible, each $f_i(x) \leq 0$, so $\sup_{\lambda} \sum_i \lambda_i f_i(x) = 0$

Def. We define the Lagrangian dual as

 $g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$

Def. We define the **Lagrangian dual** as

$$g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$$

- $\blacktriangleright \ g$ is pointwise inf of affine functions of λ
- $\blacktriangleright\,$ Thus, g is concave; it may take value $-\infty$

Def. We define the **Lagrangian dual** as

$$g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$$

- g is pointwise inf of affine functions of λ
- \blacktriangleright Thus, g is concave; it may take value $-\infty$
- ▶ Recall: $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus

Def. We define the **Lagrangian dual** as

$$g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$$

- g is pointwise inf of affine functions of λ
- \blacktriangleright Thus, g is concave; it may take value $-\infty$
- ▶ Recall: $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus

$$\blacktriangleright \quad \forall x \in \mathcal{X}, \quad f_0(x) \ge \inf_{x'} \mathcal{L}(x', \lambda) = g(\lambda)$$

Def. We define the **Lagrangian dual** as

$$g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$$

- g is pointwise inf of affine functions of λ
- \blacktriangleright Thus, g is concave; it may take value $-\infty$
- ▶ Recall: $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\blacktriangleright \quad \forall x \in \mathcal{X}, \quad f_0(x) \ge \inf_{x'} \mathcal{L}(x', \lambda) = g(\lambda)$
- \blacktriangleright Now minimize over x on lhs, to obtain

$$\forall \ \lambda \in \mathbb{R}^m_+ \qquad p^* \geq g(\lambda).$$

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \ge 0.$$

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \ge 0.$$

- ▶ dual feasible: if $\lambda \ge 0$ and $g(\lambda) > -\infty$
- **b** dual optimal: λ^* if sup is achieved

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \ge 0.$$

- ▶ dual feasible: if $\lambda \ge 0$ and $g(\lambda) > -\infty$
- **b** dual optimal: λ^* if sup is achieved
- ► Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda \ge 0} \quad g(\lambda).$$

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda \ge 0} \quad g(\lambda).$$

Theorem (Weak-duality): For problem (P), we have $p^* \ge d^*$.

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda \ge 0} g(\lambda).$$

Theorem (Weak-duality): For problem (P), we have $p^* \ge d^*$.

Proof: We showed that for all $\lambda \in \mathbb{R}^m_+$, $p^* \ge g(\lambda)$. Thus, it follows that $p^* \ge \sup g(\lambda) = d^*$.

Equality constraints

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$,
 $h_i(x) = 0$, $i = 1, ..., p$.

Exercise: Show that we get the Lagrangian dual

$$g: \mathbb{R}^m_+ \times \mathbb{R}^p: (\lambda, \nu) \mapsto \inf_x \quad \mathcal{L}(x, \lambda, \nu),$$

where the Lagrange variable ν corresponding to the equality constraints is unconstrained.

Hint: Represent $h_i(x) = 0$ as $h_i(x) \le 0$ and $-h_i(x) \le 0$.

Equality constraints

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $i = 1, ..., m$,
 $h_i(x) = 0$, $i = 1, ..., p$.

Exercise: Show that we get the Lagrangian dual

$$g: \mathbb{R}^m_+ \times \mathbb{R}^p: (\lambda, \nu) \mapsto \inf_x \quad \mathcal{L}(x, \lambda, \nu),$$

where the Lagrange variable ν corresponding to the equality constraints is unconstrained.

Hint: Represent $h_i(x) = 0$ as $h_i(x) \le 0$ and $-h_i(x) \le 0$.

Again, we see that
$$p^* \geq \sup_{\lambda \geq 0,
u} \; g(\lambda,
u) = d^*$$

Some duals

- ▶ Least-norm solution of linear equations: $\min x^T x$ s.t. Ax = b
- ► Linear programming standard form
- ► Study example (5.7) in BV (binary QP)