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Primal problem

Let f; : R™ — R (0 <4 <m). Generic nonlinear program

min  fo(z)
st. fi(x) <0, 1<i<m,
x € {dom fy Ndom f; ---Ndom fp,}.

Def. Domain: The set D := {dom fy Ndom f; --- N dom f, }

» We call (P) the primal problem
» The variable z is the primal variable
» We will attach to (P) a dual problem

» In our initial derivation: no restriction to convexity.
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Lagrangian

To the primal problem, associate Lagrangian £ : R” x R™ — R,

‘C( _fO Z )‘fz

& Variables A € R™ called Lagrange multipliers
& Suppose z is feasible, and A > 0. Then, we get the lower-bound:

fo(x) > L(z,))  VzeX, XeR}.

& Lagrangian helps write problem in unconstrained form
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Lagrangian

Claim: Since, fo(x) > L(x,\) Vx € X, A€ R, primal optimal

* = inf sup L(z,\).
P reX )\ZFO) ( )
Proof:
& If z is not feasible, then some f;(z) > 0

& In this case, inner sup is +00, so claim true by definition
# If x is feasible, each f;(x) <0, so supy > ; Aifi(x) =0
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Lagrange dual function

Def. We define the Lagrangian dual as

g(A) :=inf, L(z, ).

Observations:

» g is pointwise inf of affine functions of A
» Thus, g is concave; it may take value —oo
» Recall: fo(x) > L(z,\) Vx € X; thus

> Vo e X, fo(x)>infy L(2/,\) = g(N)

» Now minimize over z on lhs, to obtain

vV AeRY p* > g(N).
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Lagrange dual problem

sup g(A) s.t. A > 0.
A

» dual feasible: if A >0 and g(\) > —oc0
» dual optimal: \* if sup is achieved

» Lagrange dual is always concave, regardless of original
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Weak duality

Def. Denote dual optimal value by d*, i.e.,

d* :=sup g(\).
A>0

’Theorem (Weak-duality): For problem (P), we have p* > d*.

Proof: We showed that for all A € R, p* > g(A).
Thus, it follows that p* > sup g(\) = d*.



Equality constraints

min  fo(z)
sit. fi(x) <0, i=1,...,m,
hz(x):()v 2217' , D

Exercise: Show that we get the Lagrangian dual
g : R xRP: (\v)—inf L(z,\v),
T

where the Lagrange variable v corresponding to the equality
constraints is unconstrained.
Hint: Represent h;(x) =0 as h;j(z) < 0 and —h;(x) <0.



Equality constraints

min  fo(z)
s.t. fl(x) < 07 ¢ 17 s 110y
hi(x) =0, i=1,...,p

Exercise: Show that we get the Lagrangian dual
g : R xRP: (\v)—inf L(z,\v),
T

where the Lagrange variable v corresponding to the equality
constraints is unconstrained.
Hint: Represent h;(x) =0 as h;j(z) < 0 and —h;(x) <0.

Again, we see that p* > supy>q, g(\,v) =d*




Some duals

» Least-norm solution of linear equations: minz’z s.t. Az =b
» Linear programming standard form
» Study example (5.7) in BV (binary QP)



