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Organizational Info

I Quiz coming up on 19th Feb.

I Project teams by 19th Feb

I Good if you can mix your research with class projects

I More info in a few days
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Mini Challenge

Kummer’s confluent hypergeometric function

M(a, c, x) :=
∑
j≥0

(a)j
(c)j

xj

j!
, a, c, x ∈ R,

and (a)0 = 1, (a)j = a(a+ 1) · · · (a+ j− 1) is the rising-factorial.

Claim: Let c > a > 0 and x ≥ 0. Then the function

ha,c(µ;x) := µ 7→ Γ(a+ µ)

Γ(c+ µ)
M(a+ µ, c+ µ, x)

is strictly log-convex on [0,∞) (note that h is a function of µ).

Recall: Γ(x) :=
∫∞
0 tx−1e−tdt is the Gamma function (which is

known to be log-convex for x ≥ 1; see also Exercise 3.52 of BV).

3 / 31



Mini Challenge

Kummer’s confluent hypergeometric function

M(a, c, x) :=
∑
j≥0

(a)j
(c)j

xj

j!
, a, c, x ∈ R,

and (a)0 = 1, (a)j = a(a+ 1) · · · (a+ j− 1) is the rising-factorial.

Claim: Let c > a > 0 and x ≥ 0. Then the function

ha,c(µ;x) := µ 7→ Γ(a+ µ)

Γ(c+ µ)
M(a+ µ, c+ µ, x)

is strictly log-convex on [0,∞) (note that h is a function of µ).

Recall: Γ(x) :=
∫∞
0 tx−1e−tdt is the Gamma function (which is

known to be log-convex for x ≥ 1; see also Exercise 3.52 of BV).

3 / 31



LP formulation

Write min ‖Ax− b‖1 as a linear program.

min ‖Ax− b‖1 x ∈ Rn

min
∑

i
|aTi x− bi|

min
x,t

∑
i
ti, |aTi x− bi| ≤ ti, i = 1, . . . ,m.

min
x,t

1T t, −ti ≤ aTi x− bi ≤ ti, i = 1, . . . ,m.

Exercise: Recast ‖Ax− b‖22 + λ‖Bx‖1 as a QP.
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Cone programs – overview

I Last time we briefly saw LP, QP, SOCP, SDP

LP (standard form)

min fTx s.t. Ax = b, x ≥ 0.

Feasible set X = {x | Ax = b} ∩ Rn
+ (nonneg orthant)

Input data: (A, b, c)
Structural constraints: x ≥ 0.

How should we generalize this model?
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Cone programs – overview

I Replace linear map x 7→ Ax by a nonlinear map?

I Quickly becomes nonconvex, potentially intractable

Generalize structural constraint Rn
+

♣ Replace nonneg orthant by a convex cone K;

♣ Replace ≥ by conic inequality �
♣ Nesterov and Nemirovski developed nice theory in late 80s

♣ Rich class of cones for which cone programs are tractable
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Conic inequalities

I We are looking for “good” vector inequalities � on Rn

I Characterized by the set

K := {x ∈ Rn | x � 0}

of vector nonneg w.r.t. �

x � y ⇔ x− y � 0 ⇔ x− y ∈ K.

I Necessary and sufficient condition for a set K ⊂ Rn to define
a useful vector inequality � is: it should be a nonempty,
pointed cone.
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Cone programs – inequalities

• K is nonempty: K 6= ∅
• K is closed wrt addition: x, y ∈ K =⇒ x+ y ∈ K
• K closed wrt noneg scaling: x ∈ K, α ≥ 0 =⇒ αx ∈ K
• K is pointed: x,−x ∈ K =⇒ x = 0

Cone inequality

x �K y ⇐⇒ x− y ∈ K
x �K y ⇐⇒ x− y ∈ int(K).
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Conic inequalities

I Cone underlying standard coordinatewise vector inequalities:

x ≥ y ⇔ xi ≥ yi ⇔ xi − yi ≥ 0,

is the nonegative orthant Rn
+.

I Two more important properties that Rn
+ has as a cone:

It is closed
{
xi ∈ Rn

+

}
→ x =⇒ x ∈ Rn

+

It has nonempty interior (contains Euclidean ball of
positive radius)

I We’ll require our cones to also satisfy these two properties.
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Conic optimization problems

Standard form cone program

min fTx s.t. Ax = b, x ∈ K
min fTx s.t. Ax �K b.

♣ The nonnegative orthant Rn
+

♣ The second order cone Qn := {(x, t) ∈ Rn | ‖x‖2 ≤ t}
♣ The semidefinite cone: Sn+ :=

{
X = XT � 0

}
.

♣ Other cones K given by Cartesian products of these

♣ These cones are “nice”:

♣ LP, QP, SOCP, SDP: all are cone programs

♣ Can treat them theoretically in a uniform way (roughly)

♣ Not all cones are nice!
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Cone programs – tough case

Copositive cone

Def. Let CPn :=
{
A ∈ Sn×n | xTAx ≥ 0, ∀x ≥ 0

}
.

Exercise: Verify that CPn is a convex cone.

If someone told you convex is “easy” ... they lied!

I Testing membership in CPn is co-NP complete.
(Deciding whether given matrix is not copositive is NP-complete.)

I Copositive cone programming: NP-Hard

Exercise: Verify that the following matrix is copositive:

A :=


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

11 / 31



Cone programs – tough case

Copositive cone

Def. Let CPn :=
{
A ∈ Sn×n | xTAx ≥ 0, ∀x ≥ 0

}
.

Exercise: Verify that CPn is a convex cone.

If someone told you convex is “easy” ... they lied!

I Testing membership in CPn is co-NP complete.
(Deciding whether given matrix is not copositive is NP-complete.)

I Copositive cone programming: NP-Hard

Exercise: Verify that the following matrix is copositive:

A :=


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

11 / 31



Cone programs – tough case

Copositive cone

Def. Let CPn :=
{
A ∈ Sn×n | xTAx ≥ 0, ∀x ≥ 0

}
.

Exercise: Verify that CPn is a convex cone.

If someone told you convex is “easy” ... they lied!

I Testing membership in CPn is co-NP complete.
(Deciding whether given matrix is not copositive is NP-complete.)

I Copositive cone programming: NP-Hard

Exercise: Verify that the following matrix is copositive:

A :=


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

11 / 31



Cone programs – tough case

Copositive cone

Def. Let CPn :=
{
A ∈ Sn×n | xTAx ≥ 0, ∀x ≥ 0

}
.

Exercise: Verify that CPn is a convex cone.

If someone told you convex is “easy” ... they lied!

I Testing membership in CPn is co-NP complete.
(Deciding whether given matrix is not copositive is NP-complete.)

I Copositive cone programming: NP-Hard

Exercise: Verify that the following matrix is copositive:

A :=


1 −1 1 1 −1
−1 1 −1 1 1
1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

11 / 31



SOCP in conic form

min fTx s.t. ‖Aix+ bi‖2 ≤ cTi x+ di i = 1, . . . ,m

Let Ai ∈ Rni×n; so Aix+ bi ∈ Rni .

K = Qn1 ×Qn2 × · · · × Qnm , A =



[
−A1

−cT1

]
[
−A2

−cT2

]
...[
−Am

−cTm

]


, b =



b1
d1
b2
d2
...
bm
dm


.

SOCP in conic form

min fTx Ax �K b
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SOCP representation

Exercise: Let 0 ≺ Q = LLT , then show that

xTQx+ bTx+ c ≤ 0⇔ ‖LTx+ L−1b‖2 ≤
√
bTQ−1b− c

Rotated second-order cone

Qn
r :=

{
(x, y, z) ∈ Rn+1 | ‖x‖2 ≤

√
yz, y ≥ 0, z ≥ 0

}
.

Convert into standard SOC (verify!)∥∥∥∥[ 2x
y − z

]∥∥∥∥
2

≤ (y + z) ⇐⇒ ‖x‖2 ≤
√
yz.

Exercise: Rewrite the constraint xTQx ≤ t, where both x and t
are variables using the rotated second order cone.
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Convex QP as SOCP

min xTQx+ cTx s.t. Ax = b.

min
x,t

cTx+ t

s.t. Ax = b, xTQx ≤ t.

min
x,t

cTx+ t

s.t. Ax = b, (2LTx, t, 1) ∈ Qn
r .

Since, xTQx = xTLLTx = ‖LTx‖22
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Convex QCQPs as SOCP

Quadratically Constrained QP

min q0(x) s.t. qi(x) ≤ 0, i = 1, . . . ,m

where each qi(x) = xTPix+ bTi x+ ci is a convex quadratic.

Exercise: Show how QCQPs can be cast at SOCPs using Qn
r

Hint: See Lecture 5!

Exercise: Explain why we cannot cast SOCPs as QCQPs. That is,
why cannot we simply use the equivalence

‖Ax+ b‖2 ≤ cTx+ d⇔ ‖Ax+ b‖22 ≤ (cTx+ d)2, cTx+ d ≥ 0.

Hint: Look carefully at the inequality!
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Robust LP

min cTx

s.t. aTi x ≤ bi ∀ai ∈ Ei
where Ei := {āi + Piu | ‖u‖2 ≤ 1} .

Robust half-space constraint:

I Wish to ensure aTi x ≤ bi holds irrespective of which ai we pick
from the uncertainty set Ei. This happens, if bi ≥ supai∈Ei a

T
i x.

sup
‖u‖2≤1

(āi + Piu)Tx = āTi x+ ‖P T
i x‖2.

I We used the fact that sup‖u‖2≤1 u
T v = ‖v‖2 (recall dual-norms)

SOCP formulation

min cTx, s.t. āTi x+ ‖P T
i x‖2 ≤ bi, i = 1, . . . ,m.
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min cTx

s.t. aTi x ≤ bi ∀ai ∈ Ei
where Ei := {āi + Piu | ‖u‖2 ≤ 1} .

Robust half-space constraint:
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i x‖2.

I We used the fact that sup‖u‖2≤1 u
T v = ‖v‖2 (recall dual-norms)

SOCP formulation

min cTx, s.t. āTi x+ ‖P T
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Semidefinite Program (SDP)

Cone program (semidefinite)

min cTx s.t. Ax = b, x ∈ K,

where K is a product of semidefinite cones.

Standard form

I Think of x as a matrix variable X
I Wlog we may assume K = Sn+ (Why?)
I Say K = Sn1

+ × S
n2
+

I The condition (X1, X2) ∈ K ⇔ X := Diag(X1, X2) ∈ Sn1+n2
+

I Thus, by imposing non diagonals blocks to be zero, we reduce to
where K is the semidefinite cone itself (of suitable dimension).

I So, in matrix notation:
cTx→ Tr(CX);
aTi x = bi → Tr(AiX) = bi; and
x ∈ K as X � 0.
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SDP

SDP (conic form)

min
y∈Rn

cT y

s.t. A(y) := A0 + y1A1 + y2A2 + . . .+ ynAn � 0.

Standard form SDP

min Tr(CX)

s.t. Tr(AiX) = bi, i = 1, . . . ,m

X � 0.

One can be converted into another
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SDP – CVX form

cvx_begin

variables X(n,n) symmetric;

minimize( trace(C*X) )

subject to

for i = 1:m,

trace(A{i}*X) == b(i);

end

X == semidefinite(n);

cvx_end

Note: remember symmetric and semidefinite

19 / 31



SDP representation – LP

LP as SDP

min fTx s.t. Ax ≤ b.

SDP formulation

min fTx

s.t. A(x) := diag(b1 − aT1 x, . . . , bm − aTmx) � 0.
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SDP representation – SOCP

SOCP as SDP

min fTx s.t. ‖AT
i x+ bi‖ ≤ cTi x+ di, i = 1, . . . ,m.

SDP formulation

‖x‖2 ≤ t⇐⇒
[
t xT

x tI

]
� 0

Schur-complements:
[
A BT

B C

]
� 0⇐⇒ A−BTC−1B � 0.

‖AT
i x+ bi‖ ≤ cTi x+ di ⇐⇒

[
cTi x+ di (AT

i x+ bi)
T

AT
i x+ bi (cTi x+ di)

]
� 0.
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SDP / LMI representation

Def. A set S ⊂ Rn is called linear matrix inequality (LMI) repre-
sentable if there exist symmetric matrices A0, . . . , An such that

S = {x ∈ Rn | A0 + x1A1 + · · ·+ xnAn � 0} .

S is called SDP representable if it equals the projection of some
higher dimensional LMI representable set.

♠ Linear inequalities: Ax ≤ b iffb1 − a
T
1 x

. . .

bm − aTmx

 � 0.
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SDP / LMI representation

♠ Convex quadratics: xTLLTx+ bTx ≤ c iff[
I LTx

xTL c− bTx

]
� 0

♠ Eigenvalue inequalities:

λmax(X) ≤ t, iff tI −X � 0

λmin(X) ≥ t iffX − tI � 0

λmax cvx λminconcave.

♠ Matrix norm: X ∈ Rm×n, ‖X‖2 ≤ t (i.e., σmax(X) ≤ t) iff[
tIm X
XT tIn

]
� 0.

Proof. t2I � XXT =⇒ t2 ≥ λmax(XXT ) = σ2max(X).
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SDP / LMI representation

♠ Sum of top eigenvalues: For X ∈ Sn,
∑k

i=1 λi(X) ≤ t iff

t− ks− Tr(Z) ≥ 0

Z � 0

Z −X + sI � 0.

Proof:
Suppose

∑k
i=1 λi(X) ≤ t. Then, choosing s = λk and

Z = Diag(λ1 − s, . . . , λk − s, 0, . . . , 0), above LMIs hold.
Conversely, if above LMI holds, then, (since Z � 0)

X � Z + sI =⇒
∑k

i=1
λi(X) ≤

∑k

i=1
(λi(Z) + s)

≤
∑n

i=1
λi(Z) + ks

≤ t (from first ineq.).
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SDP / LMI Representation

♠ Nuclear norm: X ∈ Rm×n; ‖X‖tr :=
∑n

i=1 σi(X) ≤ t iff

t− ns− Tr(Z) ≥ 0

Z � 0

Z −
[

0 X
XT 0

]
+ sIm+n � 0.

Follows from: λ
([

0 X
XT 0

])
= (±σ(X), 0, . . . , 0).

Alternatively, we may SDP-represent nuclear norm as

‖X‖tr ≤ t ⇔ ∃U, V :

[
U X
XT V

]
� 0, Tr(U + V ) ≤ 2t.

Proof is slightly more involved (see lecture notes).
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SDP example

Logarithmic Chebyshev approximation

min max
1≤i≤m

| log(aTi x)− log bi|

| log(aTi x)− log bi| = log max(aTi x/bi, bi/a
T
i x)

Reformulation

min
x,t

t s.t. 1/t ≤ aTi x/bi ≤ t, i = 1, . . . ,m.

[
aTi x/bi 1

1 t

]
� 0, i = 1, . . . ,m.
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Least-squares SDP

min ‖X − Y ‖22 s.t. X � 0.

Exercise 1: Try solving using CVX (assume Y T = Y ); note ‖·‖2
above is the operator 2-norm; not the Frobenius norm.

Exercise 2: Recast as SDP. Hint: Begin with minX,t t s.t. . . .
Exercise 3: Solve the two questions also with ‖X − Y ‖2F
Exercise 4: Verify against analytic solution: X = UΛ+UT , where
Y = UΛUT , and Λ+ = Diag(max(0, λ1), . . . ,max(0, λn)).

27 / 31



SDP relaxation
Binary Least-squares

min ‖Ax− b‖2

xi ∈{−1,+1} i = 1, . . . , n.

I Fundamental problem (engineering, computer science)

I Nonconvex; xi ∈ {−1,+1} – 2n possible solutions

I Very hard in general (even to approximate)

min xTATAx− 2xTAT b+ bT b x2i = 1

min Tr(ATAxxT )− 2bTAx x2i = 1

min Tr(ATAY )− 2bTAx s.t. Y = xxT , diag(Y ) = 1.

I Still hard: Y = xxT is a nonconvex constraint.
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SDP relaxation

Replace Y = xxT by Y � xxT . Thus, we obtain

min Tr(ATAY )− 2bTAx

Y � xxT , diag(Y ) = 1.

This is an SDP, since

Y � xxT ⇔
[
Y x
xT 1

]
� 0

(using Schur complements).

I Optimal value gives lower bound on binary LS

I Recover binary x by randomized rounding

Exercise: Try the above problem in CVX.
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Nonconvex quadratic optimization

min xTAx+ bTx

xTPix+ bTi x+ c ≤ 0, i = 1, . . . ,m.

Exercise: Show that xTQx = Tr(QxxT ) (where Q is symmetric).

min
X,x

Tr(AX) + bTx

Tr(PiX) + bTi x+ c ≤ 0, i = 1, . . . ,m

X � 0, rank(X) = 1.

I Relax nonconvex rank(X) = 1 to X � xxT .

I Can be quite bad, but sometimes also quite tight.
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