Convex Optimization

 (EE227A: UC Berkeley)Lecture 6
(Conic optimization)
07 Feb, 2013

Suvrit Sra

Organizational Info

- Quiz coming up on 19th Feb.
- Project teams by 19th Feb
- Good if you can mix your research with class projects
- More info in a few days

Kummer's confluent hypergeometric function

$$
M(a, c, x):=\sum_{j \geq 0} \frac{(a)_{j}}{(c)_{j}} \frac{x^{j}}{j!}, \quad a, c, x \in \mathbb{R}
$$

and $(a)_{0}=1,(a)_{j}=a(a+1) \cdots(a+j-1)$ is the rising-factorial.

Mini Challenge

Kummer's confluent hypergeometric function

$$
M(a, c, x):=\sum_{j \geq 0} \frac{(a)_{j}}{(c)_{j}} \frac{x^{j}}{j!}, \quad a, c, x \in \mathbb{R}
$$

and $(a)_{0}=1,(a)_{j}=a(a+1) \cdots(a+j-1)$ is the rising-factorial.
Claim: Let $c>a>0$ and $x \geq 0$. Then the function

$$
h_{a, c}(\mu ; x):=\mu \mapsto \frac{\Gamma(a+\mu)}{\Gamma(c+\mu)} M(a+\mu, c+\mu, x)
$$

is strictly log-convex on $[0, \infty)$ (note that h is a function of μ).
Recall: $\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t$ is the Gamma function (which is known to be log-convex for $x \geq 1$; see also Exercise 3.52 of BV).

Write min $\|A x-b\|_{1}$ as a linear program.

$$
\begin{array}{ll}
\min & \|A x-b\|_{1} \quad x \in \mathbb{R}^{n} \\
\min & \sum_{i}\left|a_{i}^{T} x-b_{i}\right| \\
\min _{x, t} & \sum_{i} t_{i}, \quad\left|a_{i}^{T} x-b_{i}\right| \leq t_{i}, \quad i=1, \ldots, m \\
\min _{x, t} & \mathbf{1}^{T} t, \quad-t_{i} \leq a_{i}^{T} x-b_{i} \leq t_{i}, \quad i=1, \ldots, m
\end{array}
$$

Write min $\|A x-b\|_{1}$ as a linear program.

$$
\begin{array}{ll}
\min & \|A x-b\|_{1} \quad x \in \mathbb{R}^{n} \\
\min & \sum_{i}\left|a_{i}^{T} x-b_{i}\right| \\
\min _{x, t} & \sum_{i} t_{i}, \quad\left|a_{i}^{T} x-b_{i}\right| \leq t_{i}, \quad i=1, \ldots, m . \\
\min _{x, t} & \mathbf{1}^{T} t, \quad-t_{i} \leq a_{i}^{T} x-b_{i} \leq t_{i}, \quad i=1, \ldots, m .
\end{array}
$$

Exercise: Recast $\|A x-b\|_{2}^{2}+\lambda\|B x\|_{1}$ as a QP.

Cone programs - overview

- Last time we briefly saw LP, QP, SOCP, SDP

Cone programs - overview

- Last time we briefly saw LP, QP, SOCP, SDP

$$
\begin{array}{ll}
& \text { LP (standard form) } \\
\min & f^{T} x \quad \text { s.t. } A x=b, \quad x \geq 0
\end{array}
$$

Feasible set $\mathcal{X}=\{x \mid A x=b\} \cap \mathbb{R}_{+}^{n}$ (nonneg orthant)

Cone programs - overview

- Last time we briefly saw LP, QP, SOCP, SDP

$$
\begin{array}{ll}
& \text { LP (standard form) } \\
\min & f^{T} x \quad \text { s.t. } A x=b, \quad x \geq 0
\end{array}
$$

Feasible set $\mathcal{X}=\{x \mid A x=b\} \cap \mathbb{R}_{+}^{n}$ (nonneg orthant)
Input data: (A, b, c)
Structural constraints: $x \geq 0$.

Cone programs - overview

- Last time we briefly saw LP, QP, SOCP, SDP

LP (standard form)

$\min \quad f^{T} x \quad$ s.t. $A x=b, \quad x \geq 0$.
Feasible set $\mathcal{X}=\{x \mid A x=b\} \cap \mathbb{R}_{+}^{n}$ (nonneg orthant)
Input data: (A, b, c)
Structural constraints: $x \geq 0$.

How should we generalize this model?

Cone programs - overview

- Replace linear map $x \mapsto A x$ by a nonlinear map?

Cone programs - overview

- Replace linear map $x \mapsto A x$ by a nonlinear map?
- Quickly becomes nonconvex, potentially intractable

Cone programs - overview

- Replace linear map $x \mapsto A x$ by a nonlinear map?
- Quickly becomes nonconvex, potentially intractable

Generalize structural constraint \mathbb{R}_{+}^{n}

Cone programs - overview

- Replace linear map $x \mapsto A x$ by a nonlinear map?
- Quickly becomes nonconvex, potentially intractable

\& Replace nonneg orthant by a convex cone \mathcal{K};

Cone programs - overview

- Replace linear map $x \mapsto A x$ by a nonlinear map?
- Quickly becomes nonconvex, potentially intractable

\& Replace nonneg orthant by a convex cone \mathcal{K};
\& Replace \geq by conic inequality \succeq

Cone programs - overview

- Replace linear map $x \mapsto A x$ by a nonlinear map?
- Quickly becomes nonconvex, potentially intractable

Generalize structural constraint \mathbb{R}_{+}^{n}

\& Replace nonneg orthant by a convex cone \mathcal{K};
\& Replace \geq by conic inequality \succeq
\& Nesterov and Nemirovski developed nice theory in late 80s
\& Rich class of cones for which cone programs are tractable

Conic inequalities

- We are looking for "good" vector inequalities \succeq on \mathbb{R}^{n}

Conic inequalities

- We are looking for "good" vector inequalities \succeq on \mathbb{R}^{n}
- Characterized by the set

$$
\mathcal{K}:=\left\{x \in \mathbb{R}^{n} \mid x \succeq 0\right\}
$$

of vector nonneg w.r.t. \succeq

$$
x \succeq y \quad \Leftrightarrow \quad x-y \succeq 0 \quad \Leftrightarrow \quad x-y \in \mathcal{K} .
$$

Conic inequalities

- We are looking for "good" vector inequalities \succeq on \mathbb{R}^{n}
- Characterized by the set

$$
\mathcal{K}:=\left\{x \in \mathbb{R}^{n} \mid x \succeq 0\right\}
$$

of vector nonneg w.r.t. \succeq

$$
x \succeq y \quad \Leftrightarrow \quad x-y \succeq 0 \quad \Leftrightarrow \quad x-y \in \mathcal{K} .
$$

- Necessary and sufficient condition for a set $\mathcal{K} \subset \mathbb{R}^{n}$ to define a useful vector inequality \succeq is: it should be a nonempty, pointed cone.

Cone programs - inequalities

- \mathcal{K} is nonempty: $\mathcal{K} \neq \emptyset$
- \mathcal{K} is closed wrt addition: $x, y \in \mathcal{K} \Longrightarrow x+y \in \mathcal{K}$
- \mathcal{K} closed wrt noneg scaling: $x \in \mathcal{K}, \alpha \geq 0 \Longrightarrow \alpha x \in \mathcal{K}$
- \mathcal{K} is pointed: $x,-x \in \mathcal{K} \Longrightarrow x=0$

Cone programs - inequalities

- \mathcal{K} is nonempty: $\mathcal{K} \neq \emptyset$
- \mathcal{K} is closed wrt addition: $x, y \in \mathcal{K} \Longrightarrow x+y \in \mathcal{K}$
- \mathcal{K} closed wrt noneg scaling: $x \in \mathcal{K}, \alpha \geq 0 \Longrightarrow \alpha x \in \mathcal{K}$
- \mathcal{K} is pointed: $x,-x \in \mathcal{K} \Longrightarrow x=0$

Cone inequality

$$
\begin{aligned}
& x \succeq \mathcal{K} y \quad \Longleftrightarrow \quad x-y \in \mathcal{K} \\
& x \succ_{\mathcal{K}} y \quad \Longleftrightarrow \quad x-y \in \operatorname{int}(\mathcal{K}) .
\end{aligned}
$$

Conic inequalities

- Cone underlying standard coordinatewise vector inequalities:

$$
x \geq y \quad \Leftrightarrow \quad x_{i} \geq y_{i} \quad \Leftrightarrow \quad x_{i}-y_{i} \geq 0
$$

is the nonegative orthant \mathbb{R}_{+}^{n}.

Conic inequalities

- Cone underlying standard coordinatewise vector inequalities:

$$
x \geq y \quad \Leftrightarrow \quad x_{i} \geq y_{i} \quad \Leftrightarrow \quad x_{i}-y_{i} \geq 0
$$

is the nonegative orthant \mathbb{R}_{+}^{n}.

- Two more important properties that \mathbb{R}_{+}^{n} has as a cone:

■ It is closed $\left\{x^{i} \in \mathbb{R}_{+}^{n}\right\} \rightarrow x \Longrightarrow x \in \mathbb{R}_{+}^{n}$

- It has nonempty interior (contains Euclidean ball of positive radius)

Conic inequalities

- Cone underlying standard coordinatewise vector inequalities:

$$
x \geq y \quad \Leftrightarrow \quad x_{i} \geq y_{i} \quad \Leftrightarrow \quad x_{i}-y_{i} \geq 0
$$

is the nonegative orthant \mathbb{R}_{+}^{n}.

- Two more important properties that \mathbb{R}_{+}^{n} has as a cone:

■ It is closed $\left\{x^{i} \in \mathbb{R}_{+}^{n}\right\} \rightarrow x \Longrightarrow x \in \mathbb{R}_{+}^{n}$

- It has nonempty interior (contains Euclidean ball of positive radius)
- We'll require our cones to also satisfy these two properties.

Conic optimization problems

Standard form cone program

$$
\begin{array}{lll}
\min & f^{T} x & \text { s.t. } A x=b, x \in \mathcal{K} \\
\min & f^{T} x & \text { s.t. } A x \preceq_{\mathcal{K}} b .
\end{array}
$$

Conic optimization problems

Standard form cone program

$$
\begin{array}{lll}
\min & f^{T} x & \text { s.t. } A x=b, x \in \mathcal{K} \\
\min & f^{T} x & \text { s.t. } A x \preceq_{\mathcal{K}} b .
\end{array}
$$

\& The nonnegative orthant \mathbb{R}_{+}^{n}
\& The second order cone $\mathcal{Q}^{n}:=\left\{(x, t) \in \mathbb{R}^{n} \mid\|x\|_{2} \leq t\right\}$
\& The semidefinite cone: $\mathcal{S}_{+}^{n}:=\left\{X=X^{T} \succeq 0\right\}$.

Conic optimization problems

Standard form cone program

$$
\begin{array}{lll}
\min & f^{T} x & \text { s.t. } A x=b, x \in \mathcal{K} \\
\min & f^{T} x & \text { s.t. } A x \preceq_{\mathcal{K}} b .
\end{array}
$$

\& The nonnegative orthant \mathbb{R}_{+}^{n}
\& The second order cone $\mathcal{Q}^{n}:=\left\{(x, t) \in \mathbb{R}^{n} \mid\|x\|_{2} \leq t\right\}$
\& The semidefinite cone: $\mathcal{S}_{+}^{n}:=\left\{X=X^{T} \succeq 0\right\}$.
\& Other cones \mathcal{K} given by Cartesian products of these

Conic optimization problems

Standard form cone program

$$
\begin{array}{lll}
\min & f^{T} x & \text { s.t. } A x=b, x \in \mathcal{K} \\
\min & f^{T} x & \text { s.t. } A x \preceq_{\mathcal{K}} b .
\end{array}
$$

\& The nonnegative orthant \mathbb{R}_{+}^{n}
\& The second order cone $\mathcal{Q}^{n}:=\left\{(x, t) \in \mathbb{R}^{n} \mid\|x\|_{2} \leq t\right\}$
\& The semidefinite cone: $\mathcal{S}_{+}^{n}:=\left\{X=X^{T} \succeq 0\right\}$.
\& Other cones \mathcal{K} given by Cartesian products of these
\& These cones are "nice":
\& LP, QP, SOCP, SDP: all are cone programs

Conic optimization problems

Standard form cone program

$$
\begin{array}{lll}
\min & f^{T} x & \text { s.t. } A x=b, x \in \mathcal{K} \\
\min & f^{T} x & \text { s.t. } A x \preceq_{\mathcal{K}} b .
\end{array}
$$

\& The nonnegative orthant \mathbb{R}_{+}^{n}
\& The second order cone $\mathcal{Q}^{n}:=\left\{(x, t) \in \mathbb{R}^{n} \mid\|x\|_{2} \leq t\right\}$
\& The semidefinite cone: $\mathcal{S}_{+}^{n}:=\left\{X=X^{T} \succeq 0\right\}$.
\& Other cones \mathcal{K} given by Cartesian products of these
\& These cones are "nice":
\& LP, QP, SOCP, SDP: all are cone programs
\% Can treat them theoretically in a uniform way (roughly)

Conic optimization problems

Standard form cone program

$$
\begin{array}{lll}
\min & f^{T} x & \text { s.t. } A x=b, x \in \mathcal{K} \\
\min & f^{T} x & \text { s.t. } A x \preceq_{\mathcal{K}} b .
\end{array}
$$

\& The nonnegative orthant \mathbb{R}_{+}^{n}
\& The second order cone $\mathcal{Q}^{n}:=\left\{(x, t) \in \mathbb{R}^{n} \mid\|x\|_{2} \leq t\right\}$
\& The semidefinite cone: $\mathcal{S}_{+}^{n}:=\left\{X=X^{T} \succeq 0\right\}$.
\& Other cones \mathcal{K} given by Cartesian products of these
\& These cones are "nice":
\& LP, QP, SOCP, SDP: all are cone programs
\& Can treat them theoretically in a uniform way (roughly)
\& Not all cones are nice!

Cone programs - tough case

Copositive cone

$$
\text { Def. Let } C P_{n}:=\left\{A \in \mathbb{S}^{n \times n} \mid x^{T} A x \geq 0, \forall x \geq 0\right\} \text {. }
$$

Exercise: Verify that $C P_{n}$ is a convex cone.

Cone programs - tough case

Copositive cone

$$
\text { Def. Let } C P_{n}:=\left\{A \in \mathbb{S}^{n \times n} \mid x^{T} A x \geq 0, \forall x \geq 0\right\} \text {. }
$$

Exercise: Verify that $C P_{n}$ is a convex cone.
If someone told you convex is "easy" ... they lied!

Cone programs - tough case

Copositive cone

$$
\text { Def. Let } C P_{n}:=\left\{A \in \mathbb{S}^{n \times n} \mid x^{T} A x \geq 0, \forall x \geq 0\right\} \text {. }
$$

Exercise: Verify that $C P_{n}$ is a convex cone.

> If someone told you convex is "easy" ... they lied!

- Testing membership in $C P_{n}$ is co-NP complete. (Deciding whether given matrix is not copositive is NP-complete.)
- Copositive cone programming: NP-Hard

Cone programs - tough case

Copositive cone

Def. Let $C P_{n}:=\left\{A \in \mathbb{S}^{n \times n} \mid x^{T} A x \geq 0, \forall x \geq 0\right\}$.
Exercise: Verify that $C P_{n}$ is a convex cone.

> If someone told you convex is "easy" ... they lied!

- Testing membership in $C P_{n}$ is co-NP complete. (Deciding whether given matrix is not copositive is NP-complete.)
- Copositive cone programming: NP-Hard

Exercise: Verify that the following matrix is copositive:

$$
A:=\left[\begin{array}{ccccc}
1 & -1 & 1 & 1 & -1 \\
-1 & 1 & -1 & 1 & 1 \\
1 & -1 & 1 & -1 & 1 \\
1 & 1 & -1 & 1 & -1 \\
-1 & 1 & 1 & -1 & 1
\end{array}\right]
$$

$\min \quad f^{T} x \quad$ s.t. $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i} \quad i=1, \ldots, m$
Let $A_{i} \in \mathbb{R}^{n_{i} \times n}$; so $A_{i} x+b_{i} \in \mathbb{R}^{n_{i}}$.
$\min \quad f^{T} x \quad$ s.t. $\quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i} \quad i=1, \ldots, m$
Let $A_{i} \in \mathbb{R}^{n_{i} \times n}$; so $A_{i} x+b_{i} \in \mathbb{R}^{n_{i}}$.
$\mathcal{K}=\mathcal{Q}^{n_{1}} \times \mathcal{Q}^{n_{2}} \times \cdots \times \mathcal{Q}^{n_{m}}, \quad A=\left[\begin{array}{c}-A_{1} \\ -c_{1}^{T}\end{array}\right] .\left[\begin{array}{c}b_{1} \\ -A_{2} \\ -c_{2}^{T}\end{array}\right], \quad b=\left[\begin{array}{c}d_{1} \\ b_{2} \\ d_{2} \\ \vdots \\ -A_{m} \\ -c_{m}^{T}\end{array}\right]$.
SOCP in conic form
$\min \quad f^{T} x \quad A x \preceq_{\mathcal{K}} b$

SOCP representation

Exercise: Let $0 \prec Q=L L^{T}$, then show that

$$
x^{T} Q x+b^{T} x+c \leq 0 \Leftrightarrow\left\|L^{T} x+L^{-1} b\right\|_{2} \leq \sqrt{b^{T} Q^{-1} b-c}
$$

Exercise: Let $0 \prec Q=L L^{T}$, then show that

$$
x^{T} Q x+b^{T} x+c \leq 0 \Leftrightarrow\left\|L^{T} x+L^{-1} b\right\|_{2} \leq \sqrt{b^{T} Q^{-1} b-c}
$$

Rotated second-order cone

$$
\mathcal{Q}_{r}^{n}:=\left\{(x, y, z) \in \mathbb{R}^{n+1} \mid\|x\|_{2} \leq \sqrt{y z}, y \geq 0, z \geq 0\right\}
$$

Exercise: Let $0 \prec Q=L L^{T}$, then show that

$$
x^{T} Q x+b^{T} x+c \leq 0 \Leftrightarrow\left\|L^{T} x+L^{-1} b\right\|_{2} \leq \sqrt{b^{T} Q^{-1} b-c}
$$

Rotated second-order cone

$$
\mathcal{Q}_{r}^{n}:=\left\{(x, y, z) \in \mathbb{R}^{n+1} \mid\|x\|_{2} \leq \sqrt{y z}, y \geq 0, z \geq 0\right\}
$$

Convert into standard SOC (verify!)

$$
\left\|\left[\begin{array}{c}
2 x \\
y-z
\end{array}\right]\right\|_{2} \leq(y+z) \Longleftrightarrow\|x\|_{2} \leq \sqrt{y z}
$$

Exercise: Rewrite the constraint $x^{T} Q x \leq t$, where both x and t are variables using the rotated second order cone.

Convex QP as SOCP

$\min \quad x^{T} Q x+c^{T} x \quad$ s.t. $A x=b$.

Convex QP as SOCP

$$
\min \quad x^{T} Q x+c^{T} x \quad \text { s.t. } A x=b
$$

$$
\begin{array}{ll}
\min _{x, t} & c^{T} x+t \\
\text { s.t. } & A x=b, \quad x^{T} Q x \leq t
\end{array}
$$

Convex QP as SOCP

$\min \quad x^{T} Q x+c^{T} x \quad$ s.t. $A x=b$.

$$
\begin{aligned}
& \quad \min _{x, t} \quad c^{T} x+t \\
& \quad \text { s.t. } \quad A x=b, \quad x^{T} Q x \leq t \\
& \min _{x, t} \quad c^{T} x+t \\
& \text { s.t. } \quad A x=b, \quad\left(2 L^{T} x, t, 1\right) \in \mathcal{Q}_{r}^{n} \\
& \text { Since, } x^{T} Q x=x^{T} L L^{T} x=\left\|L^{T} x\right\|_{2}^{2}
\end{aligned}
$$

Convex QCQPs as SOCP

Quadratically Constrained QP

$$
\min \quad q_{0}(x) \quad \text { s.t. } q_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

where each $q_{i}(x)=x^{T} P_{i} x+b_{i}^{T} x+c_{i}$ is a convex quadratic.

Convex QCQPs as SOCP

Quadratically Constrained QP

$$
\min \quad q_{0}(x) \quad \text { s.t. } q_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

where each $q_{i}(x)=x^{T} P_{i} x+b_{i}^{T} x+c_{i}$ is a convex quadratic.
Exercise: Show how QCQPs can be cast at SOCPs using \mathcal{Q}_{r}^{n} Hint: See Lecture 5!

Convex QCQPs as SOCP

Quadratically Constrained QP

$$
\min \quad q_{0}(x) \quad \text { s.t. } q_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

where each $q_{i}(x)=x^{T} P_{i} x+b_{i}^{T} x+c_{i}$ is a convex quadratic.
Exercise: Show how QCQPs can be cast at SOCPs using \mathcal{Q}_{r}^{n} Hint: See Lecture 5!

Exercise: Explain why we cannot cast SOCPs as QCQPs. That is, why cannot we simply use the equivalence

$$
\|A x+b\|_{2} \leq c^{T} x+d \Leftrightarrow\|A x+b\|_{2}^{2} \leq\left(c^{T} x+d\right)^{2}, c^{T} x+d \geq 0 .
$$

Hint: Look carefully at the inequality!

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i} \\
\text { where } & \mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} .
\end{array}
$$

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i} \\
\text { where } & \mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} .
\end{array}
$$

Robust half-space constraint:

- Wish to ensure $a_{i}^{T} x \leq b_{i}$ holds irrespective of which a_{i} we pick from the uncertainty set \mathcal{E}_{i}.

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i} \\
\text { where } & \mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} .
\end{array}
$$

Robust half-space constraint:

- Wish to ensure $a_{i}^{T} x \leq b_{i}$ holds irrespective of which a_{i} we pick from the uncertainty set \mathcal{E}_{i}. This happens, if $b_{i} \geq \sup _{a_{i} \in \mathcal{E}_{i}} a_{i}^{T} x$.

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i} \\
\text { where } & \mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} .
\end{array}
$$

Robust half-space constraint:

- Wish to ensure $a_{i}^{T} x \leq b_{i}$ holds irrespective of which a_{i} we pick from the uncertainty set \mathcal{E}_{i}. This happens, if $b_{i} \geq \sup _{a_{i} \in \mathcal{E}_{i}} a_{i}^{T} x$.

$$
\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} .
$$

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i} \\
\text { where } & \mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\} .
\end{array}
$$

Robust half-space constraint:

- Wish to ensure $a_{i}^{T} x \leq b_{i}$ holds irrespective of which a_{i} we pick from the uncertainty set \mathcal{E}_{i}. This happens, if $b_{i} \geq \sup _{a_{i} \in \mathcal{E}_{i}} a_{i}^{T} x$.

$$
\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} .
$$

- We used the fact that $\sup _{\|u\|_{2} \leq 1} u^{T} v=\|v\|_{2}$ (recall dual-norms)

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & a_{i}^{T} x \leq b_{i} \quad \forall a_{i} \in \mathcal{E}_{i} \\
\text { where } & \mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{array}
$$

Robust half-space constraint:

- Wish to ensure $a_{i}^{T} x \leq b_{i}$ holds irrespective of which a_{i} we pick from the uncertainty set \mathcal{E}_{i}. This happens, if $b_{i} \geq \sup _{a_{i} \in \mathcal{E}_{i}} a_{i}^{T} x$.

$$
\sup _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} .
$$

- We used the fact that $\sup _{\|u\|_{2} \leq 1} u^{T} v=\|v\|_{2}$ (recall dual-norms)

SOCP formulation

$$
\min \quad c^{T} x, \quad \text { s.t. } \quad \bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2} \leq b_{i}, \quad i=1, \ldots, m
$$

$$
\begin{aligned}
& \text { Cone program (semidefinite) } \\
& \min \quad c^{T} x \quad \text { s.t. } A x=b, \quad x \in \mathcal{K},
\end{aligned}
$$

where \mathcal{K} is a product of semidefinite cones.

Cone program (semidefinite)

$$
\min \quad c^{T} x \quad \text { s.t. } A x=b, \quad x \in \mathcal{K}
$$

where \mathcal{K} is a product of semidefinite cones.

Standard form

- Think of x as a matrix variable X

Semidefinite Program (SDP)

> Cone program (semidefinite)
> $\min \quad c^{T} x \quad$ s.t. $A x=b, \quad x \in \mathcal{K}$,
where \mathcal{K} is a product of semidefinite cones.

Standard form

- Think of x as a matrix variable X
- Wlog we may assume $\mathcal{K}=\mathcal{S}_{+}^{n}$ (Why?)

Semidefinite Program (SDP)

$$
\begin{aligned}
& \text { Cone program (semidefinite) } \\
& \text { min } \quad c^{T} x \quad \text { s.t. } A x=b, \quad x \in \mathcal{K},
\end{aligned}
$$

where \mathcal{K} is a product of semidefinite cones.

Standard form

- Think of x as a matrix variable X
- Wlog we may assume $\mathcal{K}=\mathcal{S}_{+}^{n}$ (Why?)
- Say $\mathcal{K}=\mathcal{S}_{+}^{n_{1}} \times \mathcal{S}_{+}^{n_{2}}$

Semidefinite Program (SDP)

Cone program (semidefinite)

$$
\min \quad c^{T} x \quad \text { s.t. } A x=b, \quad x \in \mathcal{K},
$$

where \mathcal{K} is a product of semidefinite cones.

Standard form

- Think of x as a matrix variable X
- Wlog we may assume $\mathcal{K}=\mathcal{S}_{+}^{n}$ (Why?)
- Say $\mathcal{K}=\mathcal{S}_{+}^{n_{1}} \times \mathcal{S}_{+}^{n_{2}}$
- The condition $\left(X_{1}, X_{2}\right) \in \mathcal{K} \Leftrightarrow X:=\operatorname{Diag}\left(X_{1}, X_{2}\right) \in \mathcal{S}_{+}^{n_{1}+n_{2}}$

Semidefinite Program (SDP)

Cone program (semidefinite)

$$
\min \quad c^{T} x \quad \text { s.t. } A x=b, \quad x \in \mathcal{K},
$$

where \mathcal{K} is a product of semidefinite cones.

Standard form

- Think of x as a matrix variable X
- Wlog we may assume $\mathcal{K}=\mathcal{S}_{+}^{n}$ (Why?)
- Say $\mathcal{K}=\mathcal{S}_{+}^{n_{1}} \times \mathcal{S}_{+}^{n_{2}}$
- The condition $\left(X_{1}, X_{2}\right) \in \mathcal{K} \Leftrightarrow X:=\operatorname{Diag}\left(X_{1}, X_{2}\right) \in \mathcal{S}_{+}^{n_{1}+n_{2}}$
- Thus, by imposing non diagonals blocks to be zero, we reduce to where \mathcal{K} is the semidefinite cone itself (of suitable dimension).

Cone program (semidefinite)

$$
\min \quad c^{T} x \quad \text { s.t. } A x=b, \quad x \in \mathcal{K},
$$

where \mathcal{K} is a product of semidefinite cones.

Standard form

- Think of x as a matrix variable X
- Wlog we may assume $\mathcal{K}=\mathcal{S}_{+}^{n}$ (Why?)
- Say $\mathcal{K}=\mathcal{S}_{+}^{n_{1}} \times \mathcal{S}_{+}^{n_{2}}$
- The condition $\left(X_{1}, X_{2}\right) \in \mathcal{K} \Leftrightarrow X:=\operatorname{Diag}\left(X_{1}, X_{2}\right) \in \mathcal{S}_{+}^{n_{1}+n_{2}}$
- Thus, by imposing non diagonals blocks to be zero, we reduce to where \mathcal{K} is the semidefinite cone itself (of suitable dimension).
- So, in matrix notation:
- $c^{T} x \rightarrow \operatorname{Tr}(C X)$;
- $a_{i}^{T} x=b_{i} \rightarrow \operatorname{Tr}\left(A_{i} X\right)=b_{i}$; and
- $x \in \mathcal{K}$ as $X \succeq 0$.

SDP (conic form)

$\begin{aligned} \min _{y \in \mathbb{R}^{n}} & c^{T} y \\ \text { s.t. } & A(y):=A_{0}+y_{1} A_{1}+y_{2} A_{2}+\ldots+y_{n} A_{n} \succeq 0 .\end{aligned}$

SDP (conic form)

$\min _{y \in \mathbb{R}^{n}} c^{T} y$

$$
\text { s.t. } \quad A(y):=A_{0}+y_{1} A_{1}+y_{2} A_{2}+\ldots+y_{n} A_{n} \succeq 0
$$

Standard form SDP

$$
\begin{array}{ll}
\min & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0 .
\end{array}
$$

SDP (conic form)

$$
\begin{aligned}
\min _{y \in \mathbb{R}^{n}} & c^{T} y \\
\text { s.t. } & A(y):=A_{0}+y_{1} A_{1}+y_{2} A_{2}+\ldots+y_{n} A_{n} \succeq 0 .
\end{aligned}
$$

Standard form SDP

$$
\begin{array}{ll}
\text { min } & \operatorname{Tr}(C X) \\
\text { s.t. } & \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m \\
& X \succeq 0 .
\end{array}
$$

SDP - CVX form

```
cvx_begin
    variables X(n,n) symmetric;
    minimize( trace(C*X) )
    subject to
        for i = 1:m,
        trace(A{i}*X) == b(i);
        end
        X == semidefinite(n);
cvx_end
```

Note: remember symmetric and semidefinite

SDP representation - LP

$$
\begin{gathered}
\text { LP as SDP } \\
\min \quad f^{T} x \quad \text { s.t. } A x \leq b .
\end{gathered}
$$

LP as SDP

$$
\min \quad f^{T} x \quad \text { s.t. } A x \leq b .
$$

SDP formulation

$$
\begin{array}{ll}
\min & f^{T} x \\
\text { s.t. } & A(x):=\operatorname{diag}\left(b_{1}-a_{1}^{T} x, \ldots, b_{m}-a_{m}^{T} x\right) \succeq 0 .
\end{array}
$$

SOCP as SDP

$\min \quad f^{T} x \quad$ s.t. $\left\|A_{i}^{T} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$.

SOCP as SDP

$\min \quad f^{T} x \quad$ s.t. $\left\|A_{i}^{T} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$.
SDP formulation

$$
\|x\|_{2} \leq t \Longleftrightarrow\left[\begin{array}{cc}
t & x^{T} \\
x & t I
\end{array}\right] \succeq 0
$$

Schur-complements: $\left[\begin{array}{cc}A & B^{T} \\ B & C\end{array}\right] \succeq 0 \Longleftrightarrow A-B^{T} C^{-1} B \succeq 0$.

SDP representation - SOCP

SOCP as SDP

$\min \quad f^{T} x \quad$ s.t. $\left\|A_{i}^{T} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$.

SDP formulation

$$
\|x\|_{2} \leq t \Longleftrightarrow\left[\begin{array}{cc}
t & x^{T} \\
x & t I
\end{array}\right] \succeq 0
$$

Schur-complements: $\left[\begin{array}{cc}A & B^{T} \\ B & C\end{array}\right] \succeq 0 \Longleftrightarrow A-B^{T} C^{-1} B \succeq 0$.

$$
\left\|A_{i}^{T} x+b_{i}\right\| \leq c_{i}^{T} x+d_{i} \Longleftrightarrow\left[\begin{array}{cc}
c_{i}^{T} x+d_{i} & \left(A_{i}^{T} x+b_{i}\right)^{T} \\
A_{i}^{T} x+b_{i} & \left(c_{i}^{T} x+d_{i}\right)
\end{array}\right] \succeq 0 .
$$

SDP / LMI representation

Def. A set $S \subset \mathbb{R}^{n}$ is called linear matrix inequality (LMI) representable if there exist symmetric matrices A_{0}, \ldots, A_{n} such that

$$
S=\left\{x \in \mathbb{R}^{n} \mid A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0\right\}
$$

S is called SDP representable if it equals the projection of some higher dimensional LMI representable set.

SDP / LMI representation

Def. A set $S \subset \mathbb{R}^{n}$ is called linear matrix inequality (LMI) representable if there exist symmetric matrices A_{0}, \ldots, A_{n} such that

$$
S=\left\{x \in \mathbb{R}^{n} \mid A_{0}+x_{1} A_{1}+\cdots+x_{n} A_{n} \succeq 0\right\}
$$

S is called SDP representable if it equals the projection of some higher dimensional LMI representable set.
© Linear inequalities: $A x \leq b$ iff

$$
\left[\begin{array}{ccc}
b_{1}-a_{1}^{T} x & & \\
& \ddots & \\
& & b_{m}-a_{m}^{T} x
\end{array}\right] \succeq 0
$$

SDP / LMI representation

© Convex quadratics: $x^{T} L L^{T} x+b^{T} x \leq c$ iff

$$
\left[\begin{array}{cc}
I & L^{T} x \\
x^{T} L & c-b^{T} x
\end{array}\right] \succeq 0
$$

SDP / LMI representation

© Convex quadratics: $x^{T} L L^{T} x+b^{T} x \leq c$ iff

$$
\left[\begin{array}{cc}
I & L^{T} x \\
x^{T} L & c-b^{T} x
\end{array}\right] \succeq 0
$$

© Eigenvalue inequalities:

$$
\lambda_{\max }(X) \leq t, \quad \text { iff } \quad t I-X \succeq 0
$$

SDP / LMI representation

© Convex quadratics: $x^{T} L L^{T} x+b^{T} x \leq c$ iff

$$
\left[\begin{array}{cc}
I & L^{T} x \\
x^{T} L & c-b^{T} x
\end{array}\right] \succeq 0
$$

© Eigenvalue inequalities:

$$
\begin{aligned}
& \lambda_{\max }(X) \leq t, \quad \text { iff } \quad t I-X \succeq 0 \\
& \lambda_{\min }(X) \geq t \quad \text { iff } X-t I \succeq 0 \\
& \lambda_{\max } \mathrm{cvx}
\end{aligned}
$$

SDP / LMI representation

© Convex quadratics: $x^{T} L L^{T} x+b^{T} x \leq c$ iff

$$
\left[\begin{array}{cc}
I & L^{T} x \\
x^{T} L & c-b^{T} x
\end{array}\right] \succeq 0
$$

© Eigenvalue inequalities:

$$
\begin{gathered}
\lambda_{\max }(X) \leq t, \quad \text { iff } \quad t I-X \succeq 0 \\
\lambda_{\min }(X) \geq t \quad \text { iff } X-t I \succeq 0 \\
\lambda_{\max } \mathrm{cvx}
\end{gathered} \lambda_{\min \text { concave. }}
$$

© Matrix norm: $X \in \mathbb{R}^{m \times n},\|X\|_{2} \leq t$ (i.e., $\sigma_{\max }(X) \leq t$) iff

$$
\left[\begin{array}{cc}
t I_{m} & X \\
X^{T} & t I_{n}
\end{array}\right] \succeq 0 .
$$

Proof. $t^{2} I \succeq X X^{T} \Longrightarrow t^{2} \geq \lambda_{\max }\left(X X^{T}\right)=\sigma_{\max }^{2}(X)$.
© Sum of top eigenvalues: For $X \in \mathbb{S}^{n}, \sum_{i=1}^{k} \lambda_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-k s-\operatorname{Tr}(Z) & \geq 0 \\
Z & \succeq 0 \\
Z-X+s I & \succeq 0 .
\end{aligned}
$$

© Sum of top eigenvalues: For $X \in \mathbb{S}^{n}, \sum_{i=1}^{k} \lambda_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-k s-\operatorname{Tr}(Z) & \geq 0 \\
Z & \succeq 0 \\
Z-X+s I & \succeq 0 .
\end{aligned}
$$

Proof:
Suppose $\sum_{i=1}^{k} \lambda_{i}(X) \leq t$.

ه Sum of top eigenvalues: For $X \in \mathbb{S}^{n}, \sum_{i=1}^{k} \lambda_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-k s-\operatorname{Tr}(Z) & \geq 0 \\
Z & \succeq 0 \\
Z-X+s I & \succeq 0 .
\end{aligned}
$$

Proof:
Suppose $\sum_{i=1}^{k} \lambda_{i}(X) \leq t$. Then, choosing $s=\lambda_{k}$ and
$Z=\operatorname{Diag}\left(\lambda_{1}-s, \ldots, \lambda_{k}-s, 0, \ldots, 0\right)$, above LMIs hold.
n Sum of top eigenvalues: For $X \in \mathbb{S}^{n}, \sum_{i=1}^{k} \lambda_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-k s-\operatorname{Tr}(Z) & \geq 0 \\
Z & \succeq 0 \\
Z-X+s I & \succeq 0 .
\end{aligned}
$$

Proof:
Suppose $\sum_{i=1}^{k} \lambda_{i}(X) \leq t$. Then, choosing $s=\lambda_{k}$ and
$Z=\operatorname{Diag}\left(\lambda_{1}-s, \ldots, \lambda_{k}-s, 0, \ldots, 0\right)$, above LMIs hold.
Conversely, if above LMI holds, then, (since $Z \succeq 0$)

$$
\begin{aligned}
X \preceq Z+s I & \Longrightarrow \sum_{i=1}^{k} \lambda_{i}(X) \leq \sum_{i=1}^{k}\left(\lambda_{i}(Z)+s\right) \\
& \leq \sum_{i=1}^{n} \lambda_{i}(Z)+k s \\
\leq & \text { (from first ineq.). }
\end{aligned}
$$

ค Nuclear norm: $X \in \mathbb{R}^{m \times n} ;\|X\|_{\mathrm{tr}}:=\sum_{i=1}^{n} \sigma_{i}(X) \leq t$ iff

中 Nuclear norm: $X \in \mathbb{R}^{m \times n} ;\|X\|_{\mathrm{tr}}:=\sum_{i=1}^{n} \sigma_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-n s-\operatorname{Tr}(Z) & \geq 0 \\
Z & \succeq 0 \\
Z-\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]+s I_{m+n} & \succeq 0
\end{aligned}
$$

© Nuclear norm: $X \in \mathbb{R}^{m \times n} ;\|X\|_{\mathrm{tr}}:=\sum_{i=1}^{n} \sigma_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-n s-\operatorname{Tr}(Z) & \geq 0 \\
Z & \succeq 0 \\
Z-\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]+s I_{m+n} & \succeq 0 .
\end{aligned}
$$

Follows from: $\lambda\left(\left[\begin{array}{cc}0 & X \\ X^{T} & 0\end{array}\right]\right)=(\pm \sigma(X), 0, \ldots, 0)$.

A Nuclear norm: $X \in \mathbb{R}^{m \times n} ;\|X\|_{\text {tr }}:=\sum_{i=1}^{n} \sigma_{i}(X) \leq t$ iff

$$
\begin{aligned}
t-n s-\operatorname{Tr}(Z) & \succeq 0 \\
Z & \succeq 0 \\
Z-\left[\begin{array}{cc}
0 & X \\
X^{T} & 0
\end{array}\right]+s I_{m+n} & \succeq 0 .
\end{aligned}
$$

Follows from: $\lambda\left(\left[\begin{array}{cc}0 & X \\ X^{T} & 0\end{array}\right]\right)=(\pm \sigma(X), 0, \ldots, 0)$.
Alternatively, we may SDP-represent nuclear norm as

$$
\|X\|_{\mathrm{tr}} \leq t \quad \Leftrightarrow \quad \exists U, V:\left[\begin{array}{cc}
U & X \\
X^{T} & V
\end{array}\right] \succeq 0, \quad \operatorname{Tr}(U+V) \leq 2 t .
$$

Proof is slightly more involved (see lecture notes).

Logarithmic Chebyshev approximation

$$
\min \max _{1 \leq i \leq m}\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right|
$$

Logarithmic Chebyshev approximation

$$
\begin{gathered}
\min \max _{1 \leq i \leq m}\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right| \\
\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right|=\log \max \left(a_{i}^{T} x / b_{i}, b_{i} / a_{i}^{T} x\right)
\end{gathered}
$$

Logarithmic Chebyshev approximation

$$
\begin{gathered}
\min \max _{1 \leq i \leq m}\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right| \\
\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right|=\log \max \left(a_{i}^{T} x / b_{i}, b_{i} / a_{i}^{T} x\right)
\end{gathered}
$$

Reformulation

$$
\min _{x, t} \quad t \quad \text { s.t. } 1 / t \leq a_{i}^{T} x / b_{i} \leq t, \quad i=1, \ldots, m
$$

Logarithmic Chebyshev approximation

$$
\begin{gathered}
\min \max _{1 \leq i \leq m}\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right| \\
\left|\log \left(a_{i}^{T} x\right)-\log b_{i}\right|=\log \max \left(a_{i}^{T} x / b_{i}, b_{i} / a_{i}^{T} x\right)
\end{gathered}
$$

Reformulation

$$
\begin{aligned}
\min _{x, t} \quad & t \quad \text { s.t. } 1 / t \leq a_{i}^{T} x / b_{i} \leq t, \quad i=1, \ldots, m . \\
& {\left[\begin{array}{cc}
a_{i}^{T} x / b_{i} & 1 \\
1 & t
\end{array}\right] \succeq 0, \quad i=1, \ldots, m . }
\end{aligned}
$$

Least-squares SDP

$$
\min \quad\|X-Y\|_{2}^{2} \quad \text { s.t. } X \succeq 0 .
$$

Exercise 1: Try solving using CVX (assume $Y^{T}=Y$); note $\|\cdot\|_{2}$ above is the operator 2-norm; not the Frobenius norm.

Exercise 2: Recast as SDP. Hint: Begin with $\min _{X, t} t$ s.t. ... Exercise 3: Solve the two questions also with $\|X-Y\|_{\mathrm{F}}^{2}$

Exercise 4: Verify against analytic solution: $X=U \Lambda^{+} U^{T}$, where $Y=U \Lambda U^{T}$, and $\Lambda^{+}=\operatorname{Diag}\left(\max \left(0, \lambda_{1}\right), \ldots, \max \left(0, \lambda_{n}\right)\right)$.

SDP relaxation

Binary Least-squares

$$
\begin{aligned}
\min & \|A x-b\|^{2} \\
x_{i} & \in\{-1,+1\} \quad i=1, \ldots, n
\end{aligned}
$$

- Fundamental problem (engineering, computer science)
- Nonconvex; $x_{i} \in\{-1,+1\}-2^{n}$ possible solutions
- Very hard in general (even to approximate)

SDP relaxation

Binary Least-squares

$$
\begin{aligned}
\min & \|A x-b\|^{2} \\
x_{i} & \in\{-1,+1\} \quad i=1, \ldots, n .
\end{aligned}
$$

- Fundamental problem (engineering, computer science)
- Nonconvex; $x_{i} \in\{-1,+1\}-2^{n}$ possible solutions
- Very hard in general (even to approximate)
min

$$
x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b \quad x_{i}^{2}=1
$$

min

$$
\operatorname{Tr}\left(A^{T} A x x^{T}\right)-2 b^{T} A x \quad x_{i}^{2}=1
$$

SDP relaxation

Binary Least-squares

$$
\begin{aligned}
\min & \|A x-b\|^{2} \\
x_{i} & \in\{-1,+1\} \quad i=1, \ldots, n
\end{aligned}
$$

- Fundamental problem (engineering, computer science)
- Nonconvex; $x_{i} \in\{-1,+1\}-2^{n}$ possible solutions
- Very hard in general (even to approximate)
min

$$
x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b \quad x_{i}^{2}=1
$$

min

$$
\operatorname{Tr}\left(A^{T} A x x^{T}\right)-2 b^{T} A x \quad x_{i}^{2}=1
$$

min

$$
\operatorname{Tr}\left(A^{T} A Y\right)-2 b^{T} A x \quad \text { s.t. } Y=x x^{T}, \operatorname{diag}(Y)=1
$$

SDP relaxation

Binary Least-squares

$$
\begin{aligned}
\min & \|A x-b\|^{2} \\
x_{i} & \in\{-1,+1\} \quad i=1, \ldots, n .
\end{aligned}
$$

- Fundamental problem (engineering, computer science)
- Nonconvex; $x_{i} \in\{-1,+1\}-2^{n}$ possible solutions
- Very hard in general (even to approximate)
min

$$
x^{T} A^{T} A x-2 x^{T} A^{T} b+b^{T} b \quad x_{i}^{2}=1
$$

min

$$
\operatorname{Tr}\left(A^{T} A x x^{T}\right)-2 b^{T} A x \quad x_{i}^{2}=1
$$

min

$$
\operatorname{Tr}\left(A^{T} A Y\right)-2 b^{T} A x \quad \text { s.t. } Y=x x^{T}, \operatorname{diag}(Y)=1
$$

- Still hard: $Y=x x^{T}$ is a nonconvex constraint.

SDP relaxation

Replace $Y=x x^{T}$ by $Y \succeq x x^{T}$. Thus, we obtain

$$
\begin{array}{ll}
\min & \operatorname{Tr}\left(A^{T} A Y\right)-2 b^{T} A x \\
& Y \succeq x x^{T}, \quad \operatorname{diag}(Y)=1 .
\end{array}
$$

SDP relaxation

Replace $Y=x x^{T}$ by $Y \succeq x x^{T}$. Thus, we obtain

$$
\begin{array}{ll}
\min & \operatorname{Tr}\left(A^{T} A Y\right)-2 b^{T} A x \\
& Y \succeq x x^{T}, \quad \operatorname{diag}(Y)=1 .
\end{array}
$$

This is an SDP, since

$$
Y \succeq x x^{T} \quad \Leftrightarrow \quad\left[\begin{array}{cc}
Y & x \\
x^{T} & 1
\end{array}\right] \succeq 0
$$

(using Schur complements).

SDP relaxation

Replace $Y=x x^{T}$ by $Y \succeq x x^{T}$. Thus, we obtain

$$
\begin{array}{ll}
\min & \operatorname{Tr}\left(A^{T} A Y\right)-2 b^{T} A x \\
& Y \succeq x x^{T}, \quad \operatorname{diag}(Y)=1
\end{array}
$$

This is an SDP, since

$$
Y \succeq x x^{T} \quad \Leftrightarrow \quad\left[\begin{array}{cc}
Y & x \\
x^{T} & 1
\end{array}\right] \succeq 0
$$

(using Schur complements).

- Optimal value gives lower bound on binary LS
- Recover binary x by randomized rounding

Exercise: Try the above problem in CVX.

Nonconvex quadratic optimization

$$
\begin{array}{ll}
\min & x^{T} A x+b^{T} x \\
& x^{T} P_{i} x+b_{i}^{T} x+c \leq 0, \quad i=1, \ldots, m
\end{array}
$$

$$
\begin{array}{ll}
\min & x^{T} A x+b^{T} x \\
& x^{T} P_{i} x+b_{i}^{T} x+c \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Exercise: Show that $x^{T} Q x=\operatorname{Tr}\left(Q x x^{T}\right)$ (where Q is symmetric).

$$
\begin{array}{ll}
\min & x^{T} A x+b^{T} x \\
& x^{T} P_{i} x+b_{i}^{T} x+c \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Exercise: Show that $x^{T} Q x=\operatorname{Tr}\left(Q x x^{T}\right)$ (where Q is symmetric).

$$
\begin{aligned}
\min _{X, x} & \operatorname{Tr}(A X)+b^{T} x \\
& \operatorname{Tr}\left(P_{i} X\right)+b_{i}^{T} x+c \leq 0, \quad i=1, \ldots, m \\
& X \succeq 0, \quad \operatorname{rank}(X)=1
\end{aligned}
$$

$$
\begin{array}{ll}
\min & x^{T} A x+b^{T} x \\
& x^{T} P_{i} x+b_{i}^{T} x+c \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Exercise: Show that $x^{T} Q x=\operatorname{Tr}\left(Q x x^{T}\right)$ (where Q is symmetric).

$$
\begin{array}{ll}
\min _{X, x} & \operatorname{Tr}(A X)+b^{T} x \\
& \operatorname{Tr}\left(P_{i} X\right)+b_{i}^{T} x+c \leq 0, \quad i=1, \ldots, m \\
& X \succeq 0, \quad \operatorname{rank}(X)=1
\end{array}
$$

- Relax nonconvex $\operatorname{rank}(X)=1$ to $X \succeq x x^{T}$.
- Can be quite bad, but sometimes also quite tight.

1 L. Vandenberghe. MLSS 2012 Lecture slides; EE236B slides
2 A. Nemirovski. Lecture slides on modern convex optimization.

