Convex Optimization

(EE227A: UC Berkeley)

Lecture 5 (Optimization problems)

05 Feb, 2013

Suvrit Sra

Organizational

- ► Homeworks due in class: 2/14/2013
- ▶ No late homeworks will be accepted
- ▶ Team up for projects into groups of 3-4 (max)
- ► Talk to me if special concerns
- ▶ We're using Piazza for Q/A sign up!
- ▶ Bspace has the rest (course material, links, etc.)

Challenge

Consider the following functions on strictly positive variables:

$$h_1(x) := \frac{1}{x}$$

$$h_2(x,y) := \frac{1}{x} + \frac{1}{y} - \frac{1}{x+y}$$

$$h_3(x,y,z) := \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x+y} - \frac{1}{y+z} - \frac{1}{x+z} + \frac{1}{x+y+z}$$

- \heartsuit Prove that h_1 , h_2 , h_3 , and in general h_n are convex!
- \heartsuit Prove that in fact each $1/h_n$ is concave
- \heartsuit Generalize to where denom. replaced by g(x), g(x+y), g(x+y+z), etc.

Challenge

Consider the following functions on strictly positive variables:

$$h_1(x) := \frac{1}{x}$$

$$h_2(x,y) := \frac{1}{x} + \frac{1}{y} - \frac{1}{x+y}$$

$$h_3(x,y,z) := \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x+y} - \frac{1}{y+z} - \frac{1}{x+z} + \frac{1}{x+y+z}$$

- \heartsuit Prove that h_1 , h_2 , h_3 , and in general h_n are convex!
- \heartsuit Prove that in fact each $1/h_n$ is concave
- \heartsuit Generalize to where denom. replaced by g(x), g(x+y), g(x+y+z), etc.

 $\nabla^2 h_n(x) \succeq 0$ is not recommended $\stackrel{\bullet}{\smile}$

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$$

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$$

Henceforth, we drop condition on domains for brevity.

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$,
 $x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \}$.

Henceforth, we drop condition on domains for brevity.

- If f_i are **differentiable** smooth optimization
- If any of the f_i is **non-differentiable** nonsmooth optimization
- If all f_i are **convex** convex optimization
- If m = 0, i.e., only f_0 is there unconstrained minimization

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \; f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \; f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \ f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- ▶ All f_i are convex
- ▶ Direction of inequality $f_i(x) \le 0$ crucial

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- ▶ All f_i are convex
- Direction of inequality $f_i(x) \leq 0$ crucial
- ▶ The only equality constraints we allow are affine

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- ▶ All f_i are convex
- Direction of inequality $f_i(x) \leq 0$ crucial
- ▶ The only equality constraints we allow are affine
- ► This ensures, set of feasible solutions is also convex

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

Def. We denote by \mathcal{X} the feasible set $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, 1 \le i \le m, Ax = b\}.$

Def. We denote by \mathcal{X} the **feasible set**

 $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

Def. We denote by p^* the **optimal value** of the problem. $p^* := \inf \{ f_0(x) \mid x \in \mathcal{X} \}$

• If \mathcal{X} is empty, we say problem is **infeasible**

Def. We denote by \mathcal{X} the **feasible set**

 $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

- If \mathcal{X} is empty, we say problem is **infeasible**
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems

Def. We denote by \mathcal{X} the **feasible set**

 $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

- If \mathcal{X} is empty, we say problem is **infeasible**
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.

Def. We denote by \mathcal{X} the **feasible set**

 $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

- \blacktriangleright If ${\mathcal X}$ is empty, we say problem is infeasible
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- ▶ Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}

Def. We denote by \mathcal{X} the **feasible set**

 $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

- \blacktriangleright If ${\mathcal X}$ is empty, we say problem is infeasible
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- ▶ Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}
- ▶ Sometimes minimum doesn't exist (as $x \to \pm \infty$)

Def. We denote by \mathcal{X} the **feasible set**

 $\mathcal{X} := \{ x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b \}.$

- \blacktriangleright If ${\mathcal X}$ is empty, we say problem is infeasible
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- ▶ Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}
- ▶ Sometimes minimum doesn't exist (as $x \to \pm \infty$)
- ▶ Say $f_0(x) = 0$, problem is called **convex feasibility**

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

 \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.
- $\blacktriangleright \ \ {\rm We need to show that} \ f(y) \geq f(x^*) = p^*.$

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.
- $\blacktriangleright \ \ {\rm We need to show that} \ f(y) \geq f(x^*) = p^*.$
- ▶ If $y \notin \text{dom } f$, then by definition $f(y) = +\infty$; nothing to prove

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.
- $\blacktriangleright \ \ {\rm We need to show that} \ f(y) \geq f(x^*) = p^*.$
- ▶ If $y \notin \text{dom } f$, then by definition $f(y) = +\infty$; nothing to prove
- ▶ \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.
- $\blacktriangleright \ \ {\rm We need to show that} \ f(y) \geq f(x^*) = p^*.$
- ▶ If $y \notin \text{dom } f$, then by definition $f(y) = +\infty$; nothing to prove
- ▶ \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- ▶ Since f is cvx, and $x^*, y \in \text{dom } f$, we have

$$f(x_{\theta}) - f(x^*) \le \theta(f(y) - f(x^*)).$$

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.
- $\blacktriangleright \ \ {\rm We need to show that} \ f(y) \geq f(x^*) = p^*.$
- ▶ If $y \notin \text{dom } f$, then by definition $f(y) = +\infty$; nothing to prove
- ▶ \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- \blacktriangleright Since f is cvx, and $x^*, y \in \operatorname{dom} f$, we have

$$f(x_{\theta}) - f(x^*) \le \theta(f(y) - f(x^*)).$$

▶ Since x^* is a local minimizer, for small enough $\theta > 0$, lhs ≥ 0 .

Def. A point $x^* \in \mathcal{X}$ is locally optimal if $f(x^*) \leq f(x)$ for all x in a neighborhood of x^* . Global if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

- \blacktriangleright Let x^* be a local minimizer of f(x) on ${\mathcal X}$
- Let $y \in \mathcal{X}$ be any other feasible point.
- $\blacktriangleright \ \ {\rm We need to show that} \ f(y) \geq f(x^*) = p^*.$
- ▶ If $y \notin \text{dom } f$, then by definition $f(y) = +\infty$; nothing to prove
- ▶ \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- \blacktriangleright Since f is cvx, and $x^*, y \in \operatorname{dom} f$, we have

$$f(x_{\theta}) - f(x^*) \le \theta(f(y) - f(x^*)).$$

- ▶ Since x^* is a local minimizer, for small enough $\theta > 0$, lhs ≥ 0 .
- ▶ So rhs is also nonnegative, proving $f(y) \ge f(x^*)$ as desired.

Optimal set

The set of optimal solutions \mathcal{X}^\ast may be empty

Example If $\mathcal{X} = \emptyset$, i.e., no feasible solutions, then $\mathcal{X}^* = \emptyset$

Optimal set

The set of optimal solutions \mathcal{X}^* may be empty

Example If $\mathcal{X} = \emptyset$, i.e., no feasible solutions, then $\mathcal{X}^* = \emptyset$

Example When only inf and not min, e.g., $\inf e^x$ as $x \to -\infty$ or $\inf 1/x$ as $x \to \infty$; so sometimes we have to worry about $\mathcal{X}^* = \emptyset$

Optimal set

The set of optimal solutions \mathcal{X}^* may be empty

Example If $\mathcal{X} = \emptyset$, i.e., no feasible solutions, then $\mathcal{X}^* = \emptyset$

Example When only inf and not min, e.g., $\inf e^x$ as $x \to -\infty$ or $\inf 1/x$ as $x \to \infty$; so sometimes we have to worry about $\mathcal{X}^* = \emptyset$

Exercise: Verify that \mathcal{X}^* is always convex.

First-order optimality conditions

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

First-order optimality conditions

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough t, $f(x^* + td) \ge f(x^*)$.

First-order optimality conditions

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough t, $f(x^* + td) \ge f(x^*)$.

$$0 \le \qquad \frac{f(x^* + td) - f(x^*)}{2}$$
Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

$$0 \le \qquad \frac{f(x^* + td) - f(x^*)}{t}$$

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t}$$

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt}$$

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

$$0 \leq \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough t, $f(x^* + td) \ge f(x^*)$.

$$0 \leq \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Similarly, using -d it follows that $\langle \nabla f(x^*), d \rangle \leq 0$, so $\langle \nabla f(x^*), d \rangle = 0$ must hold. Since d is arbitrary, $\nabla f(x^*) = 0$.

Theorem Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set S containing x^* , a local minimum of f. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough t, $f(x^* + td) \ge f(x^*)$.

$$0 \leq \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Similarly, using -d it follows that $\langle \nabla f(x^*), d \rangle \leq 0$, so $\langle \nabla f(x^*), d \rangle = 0$ must hold. Since d is arbitrary, $\nabla f(x^*) = 0$.

Exercise: Prove that if f is convex, then $\nabla f(x^*) = 0$ is actually **sufficient** for global optimality! For general f this is **not** true. (This property that makes convex optimization special!)

 $\label{eq:formula} \clubsuit \mbox{ For every } x,y \in \mathrm{dom}\, f \mbox{, we have } f(y) \geq f(x) + \langle \nabla f(x),\, y-x\rangle.$

♠ For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$. ♠ Thus, x^* is optimal if and only if

$$\langle \nabla f(x^*), \, y - x^* \rangle \geq 0, \qquad \text{for all} \ \ y \in \mathcal{X}.$$

♠ For every $x, y \in \text{dom } f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$. ♠ Thus, x^* is optimal if and only if

$$\langle \nabla f(x^*), y - x^* \rangle \ge 0,$$
 for all $y \in \mathcal{X}$.

 $\clubsuit~$ If $\mathcal{X}=\mathbb{R}^n,$ this reduces to $\nabla f(x^*)=0$

• If $\nabla f(x^*) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^*

- ▶ Suppose $\exists y \in \mathcal{X}$ such that $\langle \nabla f(x^*), \, y x^* \rangle < 0$
- \blacktriangleright Using mean-value theorem of calculus, $\exists \xi \in [0,1] \text{ s.t.}$

$$f(x^* + t(y - x^*)) = f(x^*) + \langle \nabla f(x^* + \xi t(y - x^*)), t(y - x^*) \rangle$$

(we applied MVT to $g(t) := f(x^\ast + t(y-x^\ast)))$

- ► For sufficiently small t, since ∇f continuous, by assump on y, $\langle \nabla f(x^* + \xi t(y x^*)), y x^* \rangle < 0$
- \blacktriangleright This in turn implies that $f(x^* + t(y-x^*)) < f(x^*)$
- \blacktriangleright Since ${\mathcal X}$ is convex, $x^* + t(y-x^*) \in {\mathcal X}$ is also feasible
- \blacktriangleright Contradiction to local optimality of x^*

Theorem (Fermat's rule): Let $f_0 : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

Argmin $f_0 = \operatorname{zer}(\partial f_0) := \{x \in \mathbb{R}^n \mid 0 \in \partial f_0(x)\}.$

Theorem (Fermat's rule): Let $f_0 : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

Argmin $f_0 = \operatorname{zer}(\partial f_0) := \{x \in \mathbb{R}^n \mid 0 \in \partial f_0(x)\}.$

Proof: $x \in \operatorname{Argmin} f_0$ implies that $f_0(x) \leq f_0(y)$ for all $y \in \mathbb{R}^n$.

Theorem (Fermat's rule): Let $f_0 : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

 $\operatorname{Argmin} f_0 = \operatorname{zer}(\partial f_0) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f_0(x) \right\}.$

Proof: $x \in \operatorname{Argmin} f_0$ implies that $f_0(x) \leq f_0(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f_0(y) \geq f_0(x) + \langle 0, y - x \rangle \quad \forall y$,

Theorem (Fermat's rule): Let $f_0 : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

Argmin $f_0 = \operatorname{zer}(\partial f_0) := \{x \in \mathbb{R}^n \mid 0 \in \partial f_0(x)\}.$

Proof: $x \in \operatorname{Argmin} f_0$ implies that $f_0(x) \leq f_0(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f_0(y) \geq f_0(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f_0(x)$.

Theorem (Fermat's rule): Let $f_0 : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

Argmin $f_0 = \operatorname{zer}(\partial f_0) := \{x \in \mathbb{R}^n \mid 0 \in \partial f_0(x)\}.$

Proof: $x \in \operatorname{Argmin} f_0$ implies that $f_0(x) \leq f_0(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f_0(y) \geq f_0(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f_0(x)$.

Nonsmooth optimality

 $\begin{array}{ll} \min & f_0(x) \quad \text{s.t.} \ x \in \mathcal{X} \\ \min & f_0(x) + \mathbb{I}_{\mathcal{X}}(x). \end{array}$

• Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$

- Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f_0) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{I}_X(x)$

- Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f_0) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{I}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \ge \mathbb{I}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.

- Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f_0) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{I}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \ge \mathbb{I}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.

- Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f_0) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{I}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \ge \mathbb{I}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \}$$

- Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f_0) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{I}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \ge \mathbb{I}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \}$$

Application. $\min f_0(x)$ s.t. $x \in \mathcal{X}$:

 \diamondsuit If f_0 is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$

- Minimizing x must satisfy: $0 \in \partial (f_0 + \mathbb{I}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f_0) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f_0(x) + \partial \mathbb{I}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \ge \mathbb{I}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \}$$

Application. $\min f_0(x)$ s.t. $x \in \mathcal{X}$:

 $\begin{aligned} & \Leftrightarrow \text{ If } f_0 \text{ is diff., we get } 0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*) \\ & \diamondsuit \quad -\nabla f(x^*) \in \mathcal{N}_{\mathcal{X}}(x^*) \Longleftrightarrow \langle \nabla f(x^*), \, y - x^* \rangle \geq 0 \text{ for all } y \in \mathcal{X}. \end{aligned}$

min	f(x)	$\ x\ \le 1.$	
-----	------	----------------	--

$\min \quad f(x) \qquad \|x\| \le 1.$

A point \boldsymbol{x} is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1,$

\min	f(x)	$\ x\ \le 1.$
--------	------	----------------

A point x is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point x is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$

In other words

$$\begin{aligned} \forall \|y\| \le 1, \quad \nabla f(x)^T y \ge \nabla f(x)^T x \\ \forall \|y\| \le 1, \quad -\nabla f(x)^T y \le -\nabla f(x)^T x \end{aligned}$$

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point x is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$

In other words

$$\begin{aligned} \forall \|y\| &\leq 1, \quad \nabla f(x)^T y \geq \nabla f(x)^T x \\ \forall \|y\| &\leq 1, \quad -\nabla f(x)^T y \leq -\nabla f(x)^T x \\ \sup\{-\nabla f(x)^T y \mid \|y\| \leq 1\} \leq -\nabla f(x)^T x \end{aligned}$$

$\min \quad f(x) \qquad \|x\| \le 1.$

A point x is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$

In other words

$$\begin{aligned} \forall \|y\| \leq 1, \quad \nabla f(x)^T y \geq \nabla f(x)^T x \\ \forall \|y\| \leq 1, \quad -\nabla f(x)^T y \leq -\nabla f(x)^T x \\ \sup\{-\nabla f(x)^T y \mid \|y\| \leq 1\} \leq -\nabla f(x)^T x \\ \|-\nabla f(x)\|_* \leq -\nabla f(x)^T x \\ \|\nabla f(x)\|_* \leq -\nabla f(x)^T x. \end{aligned}$$

$\min \quad f(x) \qquad \|x\| \le 1.$

A point x is optimal if and only if

 $x \in \operatorname{dom} f$, $||x|| \le 1, \forall y \text{ s.t. } ||y|| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$

In other words

$$\begin{aligned} \forall \|y\| \leq 1, \quad \nabla f(x)^T y \geq \nabla f(x)^T x \\ \forall \|y\| \leq 1, \quad -\nabla f(x)^T y \leq -\nabla f(x)^T x \\ \sup\{-\nabla f(x)^T y \mid \|y\| \leq 1\} \leq -\nabla f(x)^T x \\ \|-\nabla f(x)\|_* \leq -\nabla f(x)^T x \\ \|\nabla f(x)\|_* \leq -\nabla f(x)^T x. \end{aligned}$$

Observe: If constraint not satisfied strictly at optimum (||x|| < 1), then $\nabla f(x) = 0$ (else we'd violate the last inequality above).

Equivalent Problems

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Standard form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$,
 $Ax = b$.

Say ψ₀ : ℝ → ℝ is monotone increasing
ψ_i : ℝ → ℝ satisfy ψ_i(u) ≤ 0 iff u ≤ 0
h(z) = 0 iff z = 0.

Standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

▶ Say
$$\psi_0 : \mathbb{R} \to \mathbb{R}$$
 is monotone increasing
▶ $\psi_i : \mathbb{R} \to \mathbb{R}$ satisfy $\psi_i(u) \le 0$ iff $u \le 0$

▶
$$h(z) = 0$$
 iff $z = 0$.

Transformed problem

$$\begin{array}{ll} \min & \psi_0(f_0(x)) \\ \text{s.t.} & \psi_i(f_i(x)) \leq 0, \quad i=1,\ldots,m \\ & h(Ax-b)=0. \end{array}$$

Standard form

min
$$f_0(x)$$

s.t. $f_i(x) \le 0$, $1 \le i \le m$,
 $Ax = b$.

► Say
$$\psi_0 : \mathbb{R} \to \mathbb{R}$$
 is monotone increasing

▶
$$\psi_i : \mathbb{R} \to \mathbb{R}$$
 satisfy $\psi_i(u) \le 0$ iff $u \le 0$

▶
$$h(z) = 0$$
 iff $z = 0$.

Transformed problem

$$\begin{array}{ll} \min & \psi_0(f_0(x)) \\ \text{s.t.} & \psi_i(f_i(x)) \leq 0, \quad i = 1, \dots, m \\ & h(Ax - b) = 0. \end{array}$$

Can destroy convexity

$$\begin{array}{ll} \min & \|Ax - b\| \\ \min & \|Ax - b\|^2 \end{array}$$

$$\min \qquad \|Ax - b\| \\ \min \qquad \|Ax - b\|^2$$

- Set of optimal points same
- Problems equivalent but not same
Example

$$\begin{array}{ll} \min & \|Ax - b\|\\ \min & \|Ax - b\|^2 \end{array}$$

- Set of optimal points same
- Problems equivalent but not same
- First problem is nondifferentiable
- Second is differentiable solvable in closed form!

Slack variables

To turn inequalities into equalities

$$\begin{array}{ll} \min & f(x) \quad \text{s.t.} \quad Ax \leq b \\ \min & f(x) \quad \text{s.t.} \quad Ax+s=b, \ s \geq 0. \end{array}$$

Standard form; optimal value p^* min $f_0(x)$ s.t. $f_i(x) \le 0$, $1 \le i \le m$, Ax = b.

Standard form; optimal value p^{\ast}

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Epigraph form

$$\begin{split} \min_{(x,t)} & t \\ \text{s.t. } f_0(x) - t \leq 0 \\ & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{split}$$

At the optimum, $t = p^*$.

Standard form; optimal value p^*

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Epigraph form

$$\begin{array}{ll} \min_{(x,t)} & t \\ \text{s.t. } f_0(x) - t \leq 0 \\ & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

At the optimum, $t = p^*$. In other words: Define sublevel set $L_t := \{x \mid f_0(x) \le t\}, t \in \mathbb{R}$.

Standard form; optimal value p^*

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Epigraph form

$$\begin{array}{ll} \min_{(x,t)} & t \\ \text{s.t. } f_0(x) - t \leq 0 \\ & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

At the optimum, $t = p^*$. In other words: Define sublevel set $L_t := \{x \mid f_0(x) \le t\}, t \in \mathbb{R}$. We seek smallest t such that L_t intersects with constraint set \mathcal{X} .

Epigraph form — geometrically

$$\min_{x,y} \quad f_0(x,y) \quad \text{s.t.} \quad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

Recall, since f_0 is convex in (x, y), $\inf_y f_0(x, y)$ is still convex.

$$\min_{x,y} \quad f_0(x,y) \quad \text{s.t.} \quad f_i(x) \leq 0, \quad i = 1, \dots, m.$$

Recall, since f_0 is convex in (x, y), $\inf_y f_0(x, y)$ is still convex.

Variable elimination

$$\min_{x} \quad \tilde{f}_{0}(x) \quad \text{s.t.} \quad f_{i}(x) \leq 0, \quad i = 1, \dots, m$$

where $\tilde{f}_{0}(x) := \inf_{y} f_{0}(x, y).$

$$\min_{x,y} \quad f_0(x,y) \quad \text{s.t.} \quad f_i(x) \leq 0, \quad i=1,\ldots,m.$$

Recall, since f_0 is convex in (x, y), $\inf_y f_0(x, y)$ is still convex.

Variable elimination

$$\min_{x} \quad \tilde{f}_{0}(x) \quad \text{s.t.} \quad f_{i}(x) \leq 0, \quad i = 1, \dots, m$$
where $\tilde{f}_{0}(x) := \inf_{y} f_{0}(x, y).$

More generally: $\tilde{f}_0(x) := \inf \{ f_0(x, y) \mid g_i(y) \le 0, i = 1, ..., m' \}$

$$\min_{x,y} \quad f_0(x,y) \quad \text{s.t.} \quad f_i(x) \leq 0, \quad i=1,\ldots,m.$$

Recall, since f_0 is convex in (x, y), $\inf_y f_0(x, y)$ is still convex.

Variable elimination

$$\min_{x} \quad \tilde{f}_{0}(x) \quad \text{s.t.} \quad f_{i}(x) \leq 0, \quad i = 1, \dots, m$$

where $\tilde{f}_{0}(x) := \inf_{y} f_{0}(x, y).$

More generally: $\tilde{f}_0(x) := \inf \{ f_0(x, y) \mid g_i(y) \le 0, i = 1, ..., m' \}$

Independent constraints important here.

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \; f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \; f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

For Ax = b to be feasible, $b \in \mathcal{R}(A)$.

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \; f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- For Ax = b to be feasible, $b \in \mathcal{R}(A)$.
- ▶ Let x_0 be any solution to Ax = b.

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- ▶ For Ax = b to be feasible, $b \in \mathcal{R}(A)$.
- Let x_0 be any solution to Ax = b.
- ▶ Let F be a matrix with $\mathcal{R}(F) = \mathcal{N}(A)$; so AFz = 0

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- For Ax = b to be feasible, $b \in \mathcal{R}(A)$.
- Let x_0 be any solution to Ax = b.
- ▶ Let F be a matrix with $\mathcal{R}(F) = \mathcal{N}(A)$; so AFz = 0
- General solution to Ax = b is of form: $Fz + x_0$

Standard form

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$

- For Ax = b to be feasible, $b \in \mathcal{R}(A)$.
- Let x_0 be any solution to Ax = b.
- ▶ Let F be a matrix with $\mathcal{R}(F) = \mathcal{N}(A)$; so AFz = 0
- General solution to Ax = b is of form: $Fz + x_0$

Elimination form

min $f_0(Fz + x_0)$ s.t. $f_i(Fz + x_0) \le 0$, $1 \le i \le m$.

Introducing equality constraints

Separable function

$$\begin{array}{ll} \min & \sum_{i=1}^{T} f_{0,i}(\boldsymbol{x}) \\ \text{s.t.} & f_i(\boldsymbol{x}) \leq 0, \quad i = 1, \dots, m. \end{array}$$

Introducing equality constraints

Separable function

min
$$\sum_{i=1}^{T} f_{0,i}(\mathbf{x})$$

s.t. $f_i(\mathbf{x}) \le 0, \quad i = 1, \dots, m.$

Often useful trick: variable splitting

$$\min_{\substack{x_1,\dots,x_T,z\\ \mathbf{s.t.}}} \sum_{i=1}^T f_{0,i}(x_i)$$

s.t. $f_i(z) \le 0, \quad i = 1,\dots,m$
 $x_i = z, \quad i = 1,\dots,T.$

Introducing equality constraints

Separable function

min
$$\sum_{i=1}^{T} f_{0,i}(x)$$

s.t. $f_i(x) \le 0, \quad i = 1, ..., m.$

Often useful trick: variable splitting

$$\min_{\substack{x_1,\dots,x_T,z\\ \mathbf{s.t.}}} \sum_{i=1}^T f_{0,i}(x_i)$$

s.t. $f_i(z) \le 0, \quad i = 1,\dots,m$
 $x_i = z, \quad i = 1,\dots,T.$

Almost separate problems! Useful for distributed computing.

Constrained problem

min $f_0(x)$ s.t. $x \in \mathcal{X}$.

Constrained problem

min $f_0(x)$ s.t. $x \in \mathcal{X}$.

Unconstrained problem

 $\min \quad f_0(x) + \mathbb{I}_X(x)$

Constrained problem

min $f_0(x)$ s.t. $x \in \mathcal{X}$.

Unconstrained problem

min $f_0(x) + \mathbb{I}_X(x)$

Penalized form (approximate) min $f_0(x) + \rho \|\max \{0, f(x)\}\|_2^2$, where $f(x) = [f_1(x), \dots, f_m(x)]^T$; $\rho \gg 0$.

Constrained problem

min $f_0(x)$ s.t. $x \in \mathcal{X}$.

Unconstrained problem

min $f_0(x) + \mathbb{I}_X(x)$

Penalized form (approximate) min $f_0(x) + \rho \|\max\{0, f(x)\}\|_2^2$, where $f(x) = [f_1(x), \dots, f_m(x)]^T$; $\rho \gg 0$.

Reducing number of constraints

$$\begin{split} \min f_0(x) & \text{s.t.} \quad f_i(x) \leq 0, \quad i = 1, \dots, m \\ \Longrightarrow \min f_0(x) & \text{s.t.} \quad [g(x) := \max_{1 \leq i \leq m} f_i(x)] \leq 0. \end{split}$$

Implicit constraints

$$\min \quad c^T x - \sum_{i=1}^m \log(b_i - a_i^T x),$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and a_i^T are rows of $A \in \mathbb{R}^{m \times n}$.

Implicit constraints

$$\min \quad c^T x - \sum_{i=1}^m \log(b_i - a_i^T x),$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and a_i^T are rows of $A \in \mathbb{R}^{m \times n}$.

▶ Implicit constraint: $b_i - a_i^T x \in \operatorname{dom}(-\log z)$ (else $+\infty$)

▶ Thus, x must be in strict interior of $\mathcal{P} = \{x \mid Ax \leq b\}.$

Implicit constraints

$$\min \quad c^T x - \sum_{i=1}^m \log(b_i - a_i^T x),$$

where $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, and a_i^T are rows of $A \in \mathbb{R}^{m \times n}$.

- ▶ Implicit constraint: $b_i a_i^T x \in \operatorname{dom}(-\log z)$ (else $+\infty$)
- ▶ Thus, x must be in strict interior of $\mathcal{P} = \{x \mid Ax \leq b\}$.

Idea comes up again in interior point methods

Problem classes

Linear Programming

$$\begin{array}{ll} \min \quad c^T x \\ \text{s.t.} \quad Ax \leq b, \quad Cx = d. \end{array}$$

Linear Programming

$$\begin{array}{ll} \min \quad c^T x\\ \text{s.t.} \quad Ax < b, \quad Cx = d \end{array}$$

Piecewise linear minimization

min
$$f(x) = \max_{1 \le i \le m} (a_i^T x + b_i)$$

Linear Programming

$$\begin{array}{ll} \min \quad c^T x\\ \text{s.t.} \quad Ax \leq b, \quad Cx = d \end{array}$$

Piecewise linear minimization

min
$$f(x) = \max_{1 \le i \le m} (a_i^T x + b_i)$$

 $\min_{x,t} \quad t \quad \text{s.t.} \quad a_i^T x + b_i \le t, \quad i = 1, \dots, m.$

• Linear program with variables $x, t \in \mathbb{R}$.

LP Exercises

- \bigcirc Formulate min $||Ax b||_1$ as an LP $(||x||_1 = \sum_i |x_i|)$
- $\stackrel{\boldsymbol{\smile}}{\smile}$ Formulate $\min \|Ax b\|_{\infty}$ as an LP $(\|x\|_{\infty} = \max_{1 \leq i \leq n} |x_i|)$

Quadratic Programming

$$\min \quad \frac{1}{2}x^T A x + b^T x + c \qquad \text{s.t.} \quad G x \le h.$$

We assume $A \succeq 0$ (semidefinite).

Quadratic Programming

$$\min \quad \frac{1}{2}x^T A x + b^T x + c \qquad \text{s.t.} \quad G x \le h.$$

We assume $A \succeq 0$ (semidefinite).

Exercise: Say no constraints; does this QP always have a solution?

Quadratic Programming

$$\min \quad \frac{1}{2}x^T A x + b^T x + c \qquad \text{s.t.} \quad G x \le h.$$

We assume $A \succeq 0$ (semidefinite).

Exercise: Say no constraints; does this QP always have a solution?

Nonnegative least squares (NNLS)

min
$$\frac{1}{2} ||Ax - b||^2$$
 s.t. $x \ge 0$.

Exercise: Prove that NNLS always has a solution.

Regularized least-squares

Lasso

$$\min \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1.$$

Exercise: How large must $\lambda > 0$ so that x = 0 is the optimum?
Regularized least-squares

Lasso

$$\min \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1.$$

Exercise: How large must $\lambda > 0$ so that x = 0 is the optimum?

Total-variation denoising

min
$$\frac{1}{2} \|Ax - b\|_2^2 + \lambda \sum_{i=1}^{n-1} |x_{i+1} - x_i|.$$

Exercise: Is the total-variation term a norm? Prove or disprove.

Regularized least-squares

Lasso

$$\min \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_1.$$

Exercise: How large must $\lambda > 0$ so that x = 0 is the optimum?

Total-variation denoising

min
$$\frac{1}{2} \|Ax - b\|_2^2 + \lambda \sum_{i=1}^{n-1} |x_{i+1} - x_i|.$$

Exercise: Is the total-variation term a norm? Prove or disprove.

Group Lasso

$$\min_{x_1,\dots,x_T} \quad \frac{1}{2} \left\| b - \sum_{j=1}^T A_j x_j \right\|_2^2 + \lambda \sum_{j=1}^T \|x_j\|_2.$$

Notice non-differentiable regularizers

Second order cone program (SOCP)

min
$$f^T x$$

s.t. $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, ..., m.$

Second order cone program (SOCP)

min
$$f^T x$$

s.t. $||A_i x + b_i||_2 \le c_i^T x + d_i, \quad i = 1, ..., m.$

► Linear objective

- ► Nonlinear, nondifferentiable constraints
- ► Generalization of LP, QP: allows cone constraints
- ▶ Recall $Q^n := \{(x,t) \in \mathbb{R}^{n+1} \mid ||x||_2 \le t\}$ is a convex cone

min
$$c^T x$$
, s.t. $a_i^T x \le b_i \ \forall a_i \in \mathcal{E}_i$
 $\mathcal{E}_i := \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \}$

The constraints are uncertain but with bounded uncertainty.

min
$$c^T x$$
, s.t. $a_i^T x \le b_i \ \forall a_i \in \mathcal{E}_i$
 $\mathcal{E}_i := \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \}$

The constraints are uncertain but with bounded uncertainty.

$$\min_{x} \sup_{\|u\|_{2} \le 1} \left\{ c^{T} x \mid a_{i}^{T} x \le b_{i}, \quad a_{i} \in \mathcal{E}_{i} \right\}$$

min
$$c^T x$$
, s.t. $a_i^T x \le b_i \ \forall a_i \in \mathcal{E}_i$
 $\mathcal{E}_i := \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \}$

The constraints are uncertain but with bounded uncertainty.

$$\min_{x} \sup_{\|u\|_{2} \le 1} \left\{ c^{T} x \mid a_{i}^{T} x \le b_{i}, \quad a_{i} \in \mathcal{E}_{i} \right\}$$

SOCP formulation

min $c^T x$, s.t. $\|P_i^T x\|_2 \le -\bar{a}_i^T x + b_i, i = 1, \dots, m$.

min
$$c^T x$$
, s.t. $a_i^T x \le b_i \ \forall a_i \in \mathcal{E}_i$
 $\mathcal{E}_i := \{ \bar{a}_i + P_i u \mid ||u||_2 \le 1 \}$

The constraints are uncertain but with bounded uncertainty.

$$\min_{x} \sup_{\|u\|_{2} \le 1} \left\{ c^{T} x \mid a_{i}^{T} x \le b_{i}, \quad a_{i} \in \mathcal{E}_{i} \right\}$$

SOCP formulation

min $c^T x$, s.t. $\|P_i^T x\|_2 \le -\bar{a}_i^T x + b_i, i = 1, \dots, m$.

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$

s.t. $A(x) := A_0 + x_1 A_1 + x_2 A_2 + \ldots + x_n A_n \succeq 0.$

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$
s.t.
$$A(x) := A_0 + x_1 A_1 + x_2 A_2 + \ldots + x_n A_n \succeq 0.$$

- ▶ A_0, \ldots, A_n are real, symmetric matrices
- ▶ Inequality $A \preceq B$ means B A is *semidefinite*
- ► Also a cone program (conic optimization problem)

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$
s.t.
$$A(x) := A_0 + x_1 A_1 + x_2 A_2 + \ldots + x_n A_n \succeq 0.$$

- A_0, \ldots, A_n are real, symmetric matrices
- ▶ Inequality $A \preceq B$ means B A is *semidefinite*
- ► Also a cone program (conic optimization problem)
- $\blacktriangleright SDP \supset SOCP \supset QP \supset LP$
- ► Exercise: Write LPs, QPs, and SOCPs as SDPs

$$\min_{x \in \mathbb{R}^n} \quad c^T x$$
s.t. $A(x) := A_0 + x_1 A_1 + x_2 A_2 + \ldots + x_n A_n \succeq 0.$

- A_0, \ldots, A_n are real, symmetric matrices
- ▶ Inequality $A \preceq B$ means B A is *semidefinite*
- ► Also a cone program (conic optimization problem)
- $\blacktriangleright \text{ SDP} \supset \text{SOCP} \supset \text{QP} \supset \text{LP}$
- ► Exercise: Write LPs, QPs, and SOCPs as SDPs
- ► Feasible set of SDP is {semidefinite cone ∩ hyperplanes}

$$\min_{x \in \mathbb{R}^n} \quad c^T x \\ \text{s.t.} \quad A(x) := A_0 + x_1 A_1 + x_2 A_2 + \ldots + x_n A_n \succeq 0.$$

- ▶ A_0, \ldots, A_n are real, symmetric matrices
- ▶ Inequality $A \preceq B$ means B A is *semidefinite*
- ► Also a cone program (conic optimization problem)
- $\blacktriangleright SDP \supset SOCP \supset QP \supset LP$
- ► Exercise: Write LPs, QPs, and SOCPs as SDPs
- ► Feasible set of SDP is {semidefinite cone ∩ hyperplanes}
- ▶ When is a convex problem representable as an SDP?

Examples

\clubsuit Eigenvalue optimization: $\min \lambda_{\max}(A(x))$

min t s.t. $A(x) \preceq tI$.

Examples

\clubsuit Eigenvalue optimization: $\min \lambda_{\max}(A(x))$

min t s.t.
$$A(x) \preceq tI$$
.

A Norm minimization: $\min ||A(x)||$

min
$$t$$
 s.t. $\begin{bmatrix} tI & A(x)^T \\ A(x) & tI \end{bmatrix} \succeq 0.$

Examples

Eigenvalue optimization: $\min \lambda_{\max}(A(x))$

min
$$t$$
 s.t. $A(x) \leq tI$.

A Norm minimization: $\min ||A(x)||$

min
$$t$$
 s.t. $\begin{bmatrix} tI & A(x)^T \\ A(x) & tI \end{bmatrix} \succeq 0.$

- ♠ Many more examples! See CVX documentation also.
- ♠ SDP relaxations of nonconvex problems powerful, important
- More on this next lecture

References

1 L. Vandenberghe. MLSS 2012 Lecture slides.