Convex Optimization

(EE227A: UC Berkeley)

Lecture 5
(Optimization problems)
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Organizational

Homeworks due in class: 2/14/2013

No late homeworks will be accepted

Team up for projects into groups of 3—4 (max)
Talk to me if special concerns

We're using Piazza for Q/A — sign up!

Bspace has the rest (course material, links, etc.)

N
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Challenge

Consider the following functions on strictly positive variables:

1
hl(l’) = ;
1 1 1
ho(z,y) = ;Jr;fx_'_y
1 1 1 1 1 1 1
h = -4 -4 - - — —
3(2,9,2) :r+y z x+y y+z Ttz zxtytz

O Prove that hy, h2, hs, and in general h,, are convex!
QO Prove that in fact each 1/h, is concave
Q Generalize to where denom. replaced by g(z), g(z + ), g(x +y + 2), etc.



Challenge

Consider the following functions on strictly positive variables:

1
hl(l’) = ;
1 1 1
ho(z,y) = ;Jr;fx_'_y
1 1 1 1 1 1 1
h = -4 -4 - - — —
3(2,9,2) sc+y z x+y y+z Ttz zxtytz

O Prove that hy, h2, hs, and in general h,, are convex!
QO Prove that in fact each 1/h, is concave

Q Generalize to where denom. replaced by g(z), g(z + ), g(x +y + 2), etc.

V2h,(x) = 0 is not reccommended <
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Optimization problems

Let f; : R™ — R (0 <i < m). Generic nonlinear program

min  fo(x)
st. fi(x) <0, 1<i<m,
x € {dom fy Ndom f; ---Ndom fp,}.
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Optimization problems

Let f; : R™ — R (0 <4 <m). Generic nonlinear program

min  fo(z)
st. fi(x) <0, 1<i<m,
x € {dom fy Ndom f; ---Ndom fp,}.

Henceforth, we drop condition on domains for brevity.

o If f; are differentiable — smooth optimization

e If any of the f; is non-differentiable — nonsmooth optimization
e If all f; are convex — convex optimization

e If m =0, i.e,, only fy is there — unconstrained minimization
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Convex optimization problems

Standard form
min  fo(x)
sit. fi(x) <0, 1<i<m,
Ax =b.
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Convex optimization problems

Standard form

min  fo(7)
st fi(z) <0, 1<i<m,
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Convex optimization problems

Standard form

min  fo(7)
st fi(z) <0, 1<i<m,
Ax = b.

Some observations

» All f; are convex

» Direction of inequality f;(z) < 0 crucial

» The only equality constraints we allow are affine

» This ensures, set of feasible solutions is also convex

35



Convex optimization problems

Def. We denote by X the feasible set
X:={zxeR"| fi(x) <0, 1 <i<m, Az = b}.
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Convex optimization problems

Def. We denote by X the feasible set
X :={xeR"| fi(x) <0, 1 <i<m, Az = b}.

Def. We denote by p* the optimal value of the problem.
p*i=1inf {fo(z) | x € X}

If X is empty, we say problem is infeasible

By convention, we set p* = 400 for infeasible problems

>
>
» If p* = —o0, we say problem is unbounded below.
» Example, minx on R, or min —logx on R4

>

Sometimes minimum doesn’t exist (as x — £00)
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Convex optimization problems

Def. We denote by X the feasible set

X

={zeR"| fi(z) <0, 1 <i<m, Az =b}.

Def. We denote by p* the optimal value of the problem.

p*i=1inf {fo(z) | x € X}

vVvyYvyvyyvyy

If X is empty, we say problem is infeasible

By convention, we set p* = 400 for infeasible problems
If p* = —o0, we say problem is unbounded below.
Example, minz on R, or min —logx on R, ¢
Sometimes minimum doesn’t exist (as x — £00)

Say fo(x) = 0, problem is called convex feasibility
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Optimality

Def. A point z* € X is locally optimal if f(z*) < f(z) for all z in
a neighborhood of z*. Global if f(z*) < f(z) for all x € X.
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» Let z* be a local minimizer of f(z) on X
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Optimality

Def. A point z* € X is locally optimal if f(2*) < f(x) for all = in
a neighborhood of z*. Global if f(z*) < f(z) for all z € X.

Theorem For convex problems, locally optimal point also global.

» Let z* be a local minimizer of f(z) on X

» Let y € X be any other feasible point.

» We need to show that f(y) > f(x*) = p*.

» If y & dom f, then by definition f(y) = +o0; nothing to prove
» X is cvx., so we have g = 0y + (1 — 0)z* € X for 0 € (0,1)
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Optimality

Def. A point z* € X is locally optimal if f(2*) < f(x) for all = in
a neighborhood of z*. Global if f(z*) < f(z) for all z € X.

Theorem For convex problems, locally optimal point also global.

» Let z* be a local minimizer of f(z) on X

» Let y € X be any other feasible point.

» We need to show that f(y) > f(x*) = p*.

» If y & dom f, then by definition f(y) = +o0; nothing to prove
» X is cvx., so we have g = 0y + (1 — 0)z* € X for 0 € (0,1)
» Since f is cvx, and z*,y € dom f, we have

fzo) = f(z") < O0(f(y) — f(z")).
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Optimality

Def. A point z* € X is locally optimal if f(2*) < f(x) for all = in
a neighborhood of z*. Global if f(z*) < f(z) for all z € X.

Theorem For convex problems, locally optimal point also global.

» Let z* be a local minimizer of f(z) on X

» Let y € X be any other feasible point.

» We need to show that f(y) > f(x*) = p*.

» If y & dom f, then by definition f(y) = +o0; nothing to prove
» X is cvx., so we have g = 0y + (1 — 0)z* € X for 0 € (0,1)
» Since f is cvx, and z*,y € dom f, we have

fzo) = f(z") < O0(f(y) — f(z")).

» Since z* is a local minimizer, for small enough 6 > 0, lhs > 0.
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Optimality

Def. A point z* € X is locally optimal if f(2*) < f(x) for all = in
a neighborhood of z*. Global if f(z*) < f(z) for all z € X.

Theorem For convex problems, locally optimal point also global.

» Let z* be a local minimizer of f(z) on X

» Let y € X be any other feasible point.

» We need to show that f(y) > f(x*) = p*.

» If y & dom f, then by definition f(y) = +o0; nothing to prove
» X is cvx., so we have g = 0y + (1 — 0)z* € X for 0 € (0,1)
» Since f is cvx, and z*,y € dom f, we have

flzg) — f(a*) <O(f(y) — f(z)).
» Since z* is a local minimizer, for small enough 6 > 0, lhs > 0.
» So rhs is also nonnegative, proving f(y) > f(z*) as desired.
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Optimal set

‘ The set of optimal solutions X'* may be empty

’Example If X =0, i.e., no feasible solutions, then X'*

0
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Optimal set

‘ The set of optimal solutions X'* may be empty ‘

’Example If X =0, i.e., no feasible solutions, then X* = ()

Example When only inf and not min, e.g., infe® as z — —©
orinf1/x as x — 00; so sometimes we have to worry about X* = ()




Optimal set

‘ The set of optimal solutions X'* may be empty ‘

’Example If X =0, i.e., no feasible solutions, then X* = () ‘

Example When only inf and not min, e.g., infe® as z — —©
orinf1/x as x — 00; so sometimes we have to worry about X* = ()

Exercise: Verify that X'* is always convex.



First-order optimality conditions

Theorem Let f : R” — R be continuously differentiable in an open
set .S containing z*, a local minimum of f. Then, Vf(z*) = 0.
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Proof. Consider function g(t) = f(z* + td), where d € R"; t > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).
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Proof. Consider function g(t) = f(z* + td), where d € R"; t > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).

flz" +td) — f(z7)

0<L
t

35



First-order optimality conditions

Theorem Let f : R” — R be continuously differentiable in an open
set .S containing z*, a local minimum of f. Then, Vf(z*) = 0.

Proof. Consider function g(t) = f(z* + td), where d € R"; t > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).

0 <t L 1D — f()
tl0 t
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First-order optimality conditions

Theorem Let f : R” — R be continuously differentiable in an open
set .S containing z*, a local minimum of f. Then, Vf(z*) = 0.

Proof. Consider function g(t) = f(z* + td), where d € R"; t > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).
f(a* +td) — f(z") _ dg(0)

0< i _
= o ¢ dt
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First-order optimality conditions

Theorem Let f : R” — R be continuously differentiable in an open
set .S containing z*, a local minimum of f. Then, Vf(z*) = 0.

Proof. Consider function g(t) = f(z* + td), where d € R"; t > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).

) < i T 1) = f(a) _ dg(0)

£0 t =—— =(Vf(a"), d).
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First-order optimality conditions

Theorem Let f : R” — R be continuously differentiable in an open
set .S containing z*, a local minimum of f. Then, Vf(z*) = 0.

Proof. Consider function g(t) = f(z* + td), where d € R"; t > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).

St td) = f@r)  dg(0) o
0< 1;&)1 . == = (Vf(z"), d).

Similarly, using —d it follows that (V f(z*), d) <0, so
(Vf(z*), d) = 0 must hold. Since d is arbitrary, V f(z*) = 0.
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First-order optimality conditions

Theorem Let f : R” — R be continuously differentiable in an open
set .S containing z*, a local minimum of f. Then, Vf(z*) = 0.

Proof. Consider function g(t) = f(x* + td), where d € R™; ¢ > 0.
Since x* is a local min, for small enough ¢, f(z* +td) > f(x*).

St td) = f@r)  dg(0) o
0< lt%l . == = (Vf(z"), d).

Similarly, using —d it follows that (V f(z*), d) <0, so
(Vf(z*), d) = 0 must hold. Since d is arbitrary, V f(z*) = 0.

Exercise: Prove that if f is convex, then V f(z*) = 0 is actually
sufficient for global optimality! For general f this is not true.
(This property that makes convex optimization speciall)



Optimality conditions — constrained

& For every z,y € dom f, we have f(y) > f(z) + (Vf(x), y — z).
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Optimality conditions — constrained

& For every z,y € dom f, we have f(y) > f(z) + (Vf(z), y — x).
& Thus, z* is optimal if and only if

(Vf(x"),y—2") >0, forall y e X.
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Optimality conditions — constrained

& For every z,y € dom f, we have f(y) > f(z) + (Vf(z), y — x).

& Thus, z* is optimal if and only if
(Vf(z*), y—z*) >0, forall ye X.
& If X =R", this reduces to Vf(z*) =0

& If Vf(x*) #0, it defines supporting hyperplane to X" at x*

10/35



Optimality conditions — constrained

vy

Suppose Jy € X such that (Vf(z*), y —2*) <0
Using mean-value theorem of calculus, 3¢ € [0, 1] s.t.

@™ +t(y — %) = f(@%) +(Vf(a" + &ty —27)), ty — 7))

(we applied MVT to ¢(t) := f(z* + t(y — z*)))

For sufficiently small ¢, since V f continuous, by assump on y,
(V@™ + &ty — %)),y —a") <0

This in turn implies that f(z* + t(y — z*)) < f(z*)

Since X is convex, z* + t(y — z*) € X is also feasible

Contradiction to local optimality of x*

11/35



Optimality — nonsmooth

Theorem (Fermat's rule): Let fy : R™ — (—o0,+00]. Then,

Argmin fo = zer(0fy) :={x € R" |0 € 0fo(x)} .

12/35



Optimality — nonsmooth

Theorem (Fermat's rule): Let fy : R™ — (—o0,+00]. Then,

Argmin fo = zer(0fy) :={x € R" |0 € 0fo(x)} .

Proof: z € Argmin fy implies that fo(x) < fo(y) for all y € R™.

12/35



Optimality — nonsmooth

Theorem (Fermat's rule): Let fy : R™ — (—o0,+00]. Then,

Argmin fo = zer(0fy) :={x € R" |0 € 0fo(x)} .

Proof: z € Argmin fy implies that fo(x) < fo(y) for all y € R™.

Equivalently, fo(y) > fo(z) + (0, y —x) Vy,

12/35



Optimality — nonsmooth

Theorem (Fermat's rule): Let fy : R™ — (—o0,+00]. Then,

Argmin fo = zer(0fy) :={x € R" |0 € 0fo(x)} .

Proof: z € Argmin fy implies that fo(x) < fo(y) for all y € R™.
Equivalently, fo(y) > fo(x) + (0, y —x) Vy, <> 0 € dfp(x).

12/35



Optimality — nonsmooth

Theorem (Fermat's rule): Let fy : R™ — (—o0,+00]. Then,

Argmin fo = zer(0fy) :={x € R" |0 € 0fo(x)} .

Proof: z € Argmin fy implies that fo(x) < fo(y) for all y € R™.

Equivalently, fo(y) > fo(x) + (0, y —x) Vy, <> 0 € dfp(x).

Nonsmooth optimality

min Jo(x) st.ze X
min fo(z) + Lx(2).
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Optimality — nonsmooth

» Minimizing x must satisfy: 0 € 9(fo + Lx)(x)
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» Minimizing x must satisfy: 0 € 9(fo + Lx)(x)
» (CQ) Assuming ri(dom fo) Nri(X) # 0, 0 € dfo(x) + Olx (x)
» Recall, g € Oly(x) iff Ix(y) > Ly (z) + (g, y — ) for all y.
» So g€ dly(x) meansx € X and 0 > (g, y — x) Yy € X.
» Normal cone:
Nig(e) = {g €R" 0> (g, y—z) Vye X}

Application. min fy(xz) st. z€ X:
& If fo is diff., we get 0 € V f(a*) + Ny (z*%)
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Optimality — nonsmooth

» Minimizing x must satisfy: 0 € 9(fo + Lx)(x)
» (CQ) Assuming ri(dom fo) Nri(X) # 0, 0 € dfo(x) + Olx (x)
» Recall, g € Oly(x) iff Ix(y) > Ly (z) + (g, y — ) for all y.
» So g€ dly(x) meansx € X and 0 > (g, y — x) Yy € X.
» Normal cone:
Nig(e) = {g €R" 0> (g, y—z) Vye X}

Application. min fy(xz) st. z€ X:
O If fo is diff., we get 0 € Vf(2*) + Ny (z*)
O =V f(x*) € Ny(a*) <= (Vf(z*), y —az*) >0 forall y € X.
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Example

min

f(z)

ol < L.
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Example
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A point x is optimal if and only if

zedomf, [ <1,

14 /35



Example

| min  f(z) ol <1. |

A point x is optimal if and only if

zedomf, [z <1Lvyst |yl <1 = Vf(z)"(y—=z)>0.

14 /35



Example

| min  f(z) ol <1. |

A point x is optimal if and only if

zedomf, [z <1Lvyst |yl <1 = Vf(z)"(y—=z)>0.

In other words
Viy| <1, Vf)y
Yyl <1, =Vf(z)"y

Vf(x)Ta:

>
< —Vf@)
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Example

| min  f(z) ol <1. |

A point x is optimal if and only if

zedomf, [z <1Lvyst |yl <1 = Vf(z)"(y—=z)>0.

In other words

Vigl <1, Vf@)Ty > Vf@) =
Yyl <1, -Vf(@)'y < -Vf@) =
sup{-Vf(x)Ty ||yl <1} < -Vf(@)
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Example

| min  f(z) ol <1. |

A point x is optimal if and only if

zedomf, [z <1Lvyst |yl <1 = Vf(z)"(y—=z)>0.

In other words
Viyl <1, Vf@)y > V@) e

Vil <1, -Vf@)'y < -Vi@) 'z
sup{—Vf(z)"y | |yl <1} < —Vf(@@)'=z
|-Vf@)). < V()T
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Example

| min  f(z) ol <1. |

A point x is optimal if and only if

zedomf, [z <1Lvyst |yl <1 = Vf(z)"(y—=z)>0.

In other words
Viyl <1, Vf@)y > V@) e
—Vf(x)T

Yyl <1, -Vf@)'y < (z) @
sup{—Vf(z)"y | |yl <1} < —Vf(@@)'=z
|-Vf@)). < V()T

IVF@)s < Vi)

Observe: If constraint not satisfied strictly at optimum (||z|| < 1), then
Vf(x) =0 (else we'd violate the last inequality above).
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Equivalent Problems
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Monotonic transformation

Standard form

min  fo(z)

st. fi(x) <0, 1<i<m,
Ax = b.
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Monotonic transformation

Standard form

min  fo(x)
st fi(x) <0, 1<i<m,
Ax = b.

» Say 7o : R — R is monotone increasing
» ¢ : R — Rsatisfy ¢;(u) <0 iff u <0
» h(z) =0iff z=0.

Transformed problem

min o (fo())

sit. Yi(fi(x) <0, i=1,...,m
h(Az —b) = 0.

Can destroy convexity
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Example

min ||Az — b
min | Az — b||?
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Example

min ||Az — b

min  ||Az — b|)?

& Set of optimal points same

& Problems equivalent but not same
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Example

min ||Az — b||
min | Az — b||?

& Set of optimal points same
& Problems equivalent but not same
& First problem is nondifferentiable

& Second is differentiable — solvable in closed form!
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Slack variables

To turn inequalities into equalities

min  f(z) st. Az <b
min  f(z) st. Av+s=0b, s>0.

z,s

18/35



Epigraph form

Standard form; optimal value p*
min  fo(2)
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Standard form; optimal value p*

min  fo(2)
s.tt. fi(z) <0, 1<i<m,
Az =b.

ming t
s.it. fo(z) —t<0
fiz) <0, 1<i<m,
Ax =10

At the optimum, t = p*.

19/35



Epigraph form

Standard form; optimal value p*

min  fo(2)
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ming t
s.it. fo(z) —t<0
fi(x) <0, 1<i<m,
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At the optimum, t = p*.

In other words: Define sublevel set L; := {z | fo(z) <t} t € R.
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Epigraph form

Standard form; optimal value p*

min  fo(2)
s.tt. fi(z) <0, 1<i<m,
Az =b.

ming t
s.it. fo(z) —t<0
fiz) <0, 1<i<m,
Ax =10

At the optimum, t = p*.

In other words: Define sublevel set L; := {z | fo(z) <t} t € R.

We seek smallest ¢ such that L; intersects with constraint set X'.
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Epigraph form — geometrically
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Variable elimination

min  fo(z,y) st fi(x) <0, i=1,...,m.
x?y

Recall, since fj is convex in (z,y), inf, fo(x,y) is still convex.
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min  fo(z,y) st fi(x) <0, i=1,...,m.
x?y

Recall, since fj is convex in (z,y), inf, fo(x,y) is still convex.

Variable elimination
min  fo(z) st fi(z) <0, i=1,...,m
X

where fo(z) := iry1f folz,y).
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Variable elimination

ngrcliyn folz,y) st fi(x) <0, i=1,....,m.
Recall, since fj is convex in (z,y), inf, fo(x,y) is still convex.
Variable elimination
H}Tin fo(z) st. fi(x) <0, i=1,....m
where fo(z) := iry1f folz,y).

More generally: fo(z) := inf {fo(z,y) | gi(y) < 0,i=1,...,m'}
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Variable elimination

Ileinl folz,y) st fi(x) <0, i=1,....,m.
Recall, since fj is convex in (z,y), inf, fo(x,y) is still convex.
Variable elimination
mxin fo(z) st. fi(x) <0, i=1,....m
where fo(z) := inlf folz,y).

More generally: fo(z) := inf {fo(z,y) | gi(y) < 0,i=1,...,m'}

Independent constraints important here.
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Equality constraint elimination

Standard form

min  fo(x)
st. fi(z) <0, 1<i<m,
Az =b.
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Equality constraint elimination

Standard form

min  fo(x)
st. fi(z) <0, 1<i<m,
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» For Ax = b to be feasible, b € R(A).
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Equality constraint elimination

Standard form

min  fo(z)
st. fi(z) <0, 1<i<m,
Az =b.

» For Ax = b to be feasible, b € R(A).
» Let xg be any solution to Ax = b.
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Equality constraint elimination

Standard form

min  fo(z)
st. fi(z) <0, 1<i<m,
Az =b.

» For Ax = b to be feasible, b € R(A).
» Let zg be any solution to Az = b.
» Let F be a matrix with R(F) = N (A); so AFz=0
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Equality constraint elimination

Standard form

min  fo(z)
st. fi(z) <0, 1<i<m,
Az =b.

» For Ax = b to be feasible, b € R(A).
» Let zg be any solution to Az = b.
» Let F be a matrix with R(F) = N (A); so AFz=0

» General solution to Az = b is of form: Fz + xg
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Equality constraint elimination

Standard form

min  fo(z)
st. fi(z) <0, 1<i<m,
Az =b.

» For Ax = b to be feasible, b € R(A).
» Let zg be any solution to Az = b.
» Let F' be a matrix with R(F) = N (A); so AFz=0

» General solution to Az = b is of form: Fz + xg

Elimination form
min  fo(Fz + xp)
sit. fi(Fz+x0) <0, 1<i<m.



Introducing equality constraints

Separable function

min Zj:l f(m’(.%‘)

st. fi(x) <0, i=1,...,m.
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Introducing equality constraints

Separable function

T
min Zi:l foi()
st. fi(x) <0, i=1,...,m.

Often useful trick: variable splitting

. T
min § —Joi(xi)
L1, TT,2 =1

st. fi(2) <0, i=1,....m

r=z 1=1,...,T.
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Introducing equality constraints

Separable function
T
min Zi:l f(m'(l‘)
st. fi(x) <0, i=1,...,m.

Often useful trick: variable splitting

. T
min E —Joi(xi)
X1 yeees T2 =1

st. fi(z) <0, i=1,...,m

r=z 1=1,...,T.

Almost separate problems! Useful for distributed computing.
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Constraint removal

Constrained problem

min  fo(z) st zeX.
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Constraint removal

Constrained problem

min  fo(z) st zeX.

Unconstrained problem
min  fo(z) + Ix(x)
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Constraint removal

Constrained problem

min  fo(z) st zeX.

Unconstrained problem
min  fo(z) + Ix(x)

Penalized form (approximate)
min fO(x)—i_pHma‘X{O?f(x)}H%?

where f(z) = [fi(z),..., fm(x)]T; p>>0.
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Constraint removal

Constrained problem

min  fo(z) st zeX.
Unconstrained problem
min  fo(z) + Ix(x)
Penalized form (approximate)
min fo(a:)—l—p||max{0,f(x)}H§,

where f(z) = [fi(z),..., fm(x)]T; p>>0.

Reducing number of constraints
min fo(z) st fi(z) <0, i=1,...,m

= min fo(z) st [g(z):= max, fi(z)] <0.

1<
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Implicit constraints

min Lz — Zm . log(b; — al'z),
1=

where ¢ € R, b € R™, and a! are rows of A € R™*".
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Implicit constraints

. T m T
min ¢ x — Zi:l log(b; — a; x),
where ¢ € R, b € R™, and a! are rows of A € R™*".

» Implicit constraint: b; — alz € dom(—log z) (else +00)
» Thus, = must be in strict interior of P = {z | Az < b}.
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Implicit constraints

. T m T
min ¢ x — Zi:l log(b; — a; x),
where ¢ € R, b € R™, and a! are rows of A € R™*".

» Implicit constraint: b; — alz € dom(—log z) (else +00)
» Thus, = must be in strict interior of P = {z | Az < b}.

Idea comes up again in interior point methods
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Problem classes
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Linear Programming

min clx

st. Az <b, Cr=d.

27/35



Linear Programming

min clx

st. Az <b, Cr=d.
Piecewise linear minimization

min f(x) = 1I<nizi}7<n(aiTx + b;)

()
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Linear Programming

min clx

st. Az <b, Cr=d.
Piecewise linear minimization

min f(x) = 1I<nizi}7<n(aiTx + b;)

()

min ¢ s.t. a?:v—l—bigt, 1=1,...,m.

x,t

» Linear program with variables z,t € R.

27 /35



LP Exercises

<& Formulate min [[Az —b||; as an LP (||z[j1 = >_; ||)

¥ Formulate min ||Az — b||s as an LP (||z]|cc = maxi<i<n |2i])
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Quadratic Programming

min %xTAx +bTx+c st. Gz <h.

We assume A = 0 (semidefinite).
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Quadratic Programming

min %xTAx +bTx+c st. Gz <h.

We assume A = 0 (semidefinite).
Exercise: Say no constraints; does this QP always have a solution?
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Quadratic Programming

min %xTAx +bTx+c st. Gz <h.

We assume A = 0 (semidefinite).
Exercise: Say no constraints; does this QP always have a solution?

Nonnegative least squares (NNLS)

min || Az — b|> st.xz>0.

Exercise: Prove that NNLS always has a solution.
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Regularized least-squares

Lasso
min %”Al’ — bH% + Az||;-

Exercise: How large must A > 0 so that x = 0 is the optimum?
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Regularized least-squares

Lasso
min %HA&: — bH% + Az||;-

Exercise: How large must A > 0 so that x = 0 is the optimum?

Total-variation denoising
. 1 2 n—1
min §||A3:—b|]2—l—)\zi:1 |Tiv1 — x4l

Exercise: Is the total-variation term a norm? Prove or disprove.
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Regularized least-squares

Lasso
min %HA&: — ng + Az||;-

Exercise: How large must A > 0 so that x = 0 is the optimum?

Total-variation denoising
-1
. 1 2 n
min 5[ Az —b[|3 + A E oy T =il
Exercise: Is the total-variation term a norm? Prove or disprove.

Group Lasso

' 1 T 2 T
min = o b— ijl Ajx; ; + )\ijl llz]|2.

L] yeeeyXT
Notice non-differentiable regularizers
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Second order cone program (SOCP)

min  flz

st. Az +blla <clax+di, i=1,...,m.
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Second order cone program (SOCP)

min  flz

s.t. HAZ.’L'—FI)ZHQ SClT(L'—i-di, 1=1,...,m.

» Linear objective

» Nonlinear, nondifferentiable constraints

» Generalization of LP, QP: allows cone constraints

> Recall Q" := {(z,t) € R"™ | ||lz||]z < t} is a convex cone
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Example — robust LP

min ¢z, s.t. a;fpx <b; Va; €&;
& :=A{ai+ Pu | [lul2 < 1}

The constraints are uncertain but with bounded uncertainty.
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Example — robust LP

min ¢z, s.t. a?m <b; Va; €&;
& :=A{ai+ Pu | [lul2 < 1}

The constraints are uncertain but with bounded uncertainty.

min sup {cTa: | aiTa: <b;, a;€ 51-}
x
ull2<1
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Example — robust LP

min ¢z, s.t. a;-rx <b; Va; €&;
& :=A{ai+ Pu | [lul2 < 1}

The constraints are uncertain but with bounded uncertainty.

min sup {cTa: | aiTa: <b;, a;€ 51-}
x
ull2<1

SOCP formulation

min ¢z, st. |Plzllys < —alz+b,i=1,...,m.
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Example — robust LP

min ¢z, s.t. a;-rx <b; Va; €&;
& :=A{ai+ Pu | [lul2 < 1}

The constraints are uncertain but with bounded uncertainty.

min sup {cTa: | aiTa: <b;, a;€ 51-}
x
ull2<1

SOCP formulation

min ¢z, st. |Plzllys < —alz+b,i=1,...,m.
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Semidefinite Program (SDP)

min ¢’z
reR™

st. A(z) = Ag+ 2141 + A2+ ... + 1,4, = 0.
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Semidefinite Program (SDP)

min ¢’z
TeR™

s.t. A(l‘) = Ag+x11A1 + 29495 + ...+ x, A, = 0.
» Ag,..., A, are real, symmetric matrices

» Inequality A < B means B — A is semidefinite

» Also a cone program (conic optimization problem)
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Semidefinite Program (SDP)

vVvYyyvyy

min ¢’z
reR™

s.t. A(l‘) = Ag +x21A41 + 2040+ ...+ 2,4, = 0.

Ag, ..., A, are real, symmetric matrices
Inequality A = B means B — A is semidefinite
Also a cone program (conic optimization problem)
SDP D SOCP > QP O LP

Exercise: Write LPs, QPs, and SOCPs as SDPs
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Ag, ..., A, are real, symmetric matrices
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Exercise: Write LPs, QPs, and SOCPs as SDPs

Feasible set of SDP is {semidefinite cone () hyperplanes}
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Semidefinite Program (SDP)

vVvvyvVvYvYyyypwy

min ¢’z
TeR™

s.t. A(l‘) = Ag +x21A41 + 2040+ ...+ 2,4, = 0.

Ag, ..., A, are real, symmetric matrices

Inequality A = B means B — A is semidefinite

Also a cone program (conic optimization problem)

SDP D SOCP > QP O LP

Exercise: Write LPs, QPs, and SOCPs as SDPs

Feasible set of SDP is {semidefinite cone () hyperplanes}

When is a convex problem representable as an SDP?
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Examples

& Eigenvalue optimization: min Apax(A(x))

min ¢ st A(x) 2 tl.
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Examples
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Examples

& Eigenvalue optimization: min Ay,ax(A(z))

min ¢ st A(x) 2 tl.

& Norm minimization: min ||A(z)]|

& Many more examples! See CVX documentation also.
& SDP relaxations of nonconvex problems — powerful, important

& More on this next lecture
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