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Organizational

I Homeworks due in class: 2/14/2013

I No late homeworks will be accepted

I Team up for projects into groups of 3–4 (max)

I Talk to me if special concerns

I We’re using Piazza for Q/A — sign up!

I Bspace has the rest (course material, links, etc.)
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Challenge

Consider the following functions on strictly positive variables:

h1(x) :=
1

x

h2(x, y) :=
1

x
+

1

y
− 1

x+ y

h3(x, y, z) :=
1

x
+

1

y
+

1

z
− 1

x+ y
− 1

y + z
− 1

x+ z
+

1

x+ y + z

♥ Prove that h1, h2, h3, and in general hn are convex!
♥ Prove that in fact each 1/hn is concave
♥ Generalize to where denom. replaced by g(x), g(x+ y), g(x+ y+ z), etc.

∇2hn(x) � 0 is not recommended
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Optimization problems

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

Henceforth, we drop condition on domains for brevity.

• If fi are differentiable — smooth optimization

• If any of the fi is non-differentiable — nonsmooth optimization

• If all fi are convex — convex optimization

• If m = 0, i.e., only f0 is there — unconstrained minimization
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Convex optimization problems

Standard form

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Some observations

I All fi are convex

I Direction of inequality fi(x) ≤ 0 crucial

I The only equality constraints we allow are affine

I This ensures, set of feasible solutions is also convex
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Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Convex optimization problems

Def. We denote by X the feasible set

X := {x ∈ Rn | fi(x) ≤ 0, 1 ≤ i ≤ m, Ax = b}.

Def. We denote by p∗ the optimal value of the problem.
p∗ := inf {f0(x) | x ∈ X}

I If X is empty, we say problem is infeasible

I By convention, we set p∗ = +∞ for infeasible problems

I If p∗ = −∞, we say problem is unbounded below.

I Example, minx on R, or min− log x on R++

I Sometimes minimum doesn’t exist (as x→ ±∞)

I Say f0(x) = 0, problem is called convex feasibility

6 / 35



Optimality

Def. A point x∗ ∈ X is locally optimal if f(x∗) ≤ f(x) for all x in
a neighborhood of x∗. Global if f(x∗) ≤ f(x) for all x ∈ X .

Theorem For convex problems, locally optimal point also global.

I Let x∗ be a local minimizer of f(x) on X
I Let y ∈ X be any other feasible point.
I We need to show that f(y) ≥ f(x∗) = p∗.
I If y 6∈ dom f , then by definition f(y) = +∞; nothing to prove
I X is cvx., so we have xθ = θy + (1− θ)x∗ ∈ X for θ ∈ (0, 1)
I Since f is cvx, and x∗, y ∈ dom f , we have

f(xθ)− f(x∗) ≤ θ(f(y)− f(x∗)).

I Since x∗ is a local minimizer, for small enough θ > 0, lhs ≥ 0.
I So rhs is also nonnegative, proving f(y) ≥ f(x∗) as desired.
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Optimal set

The set of optimal solutions X ∗ may be empty

Example If X = ∅, i.e., no feasible solutions, then X ∗ = ∅

Example When only inf and not min, e.g., inf ex as x→ −∞
or inf 1/x as x→∞; so sometimes we have to worry about X ∗ = ∅

Exercise: Verify that X ∗ is always convex.
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First-order optimality conditions

Theorem Let f : Rn → R be continuously differentiable in an open
set S containing x∗, a local minimum of f . Then, ∇f(x∗) = 0.

Proof: Consider function g(t) = f(x∗ + td), where d ∈ Rn; t > 0.
Since x∗ is a local min, for small enough t, f(x∗ + td) ≥ f(x∗).

0 ≤ lim
t↓0

f(x∗ + td)− f(x∗)
t

=
dg(0)

dt
= 〈∇f(x∗), d〉.

Similarly, using −d it follows that 〈∇f(x∗), d〉 ≤ 0, so
〈∇f(x∗), d〉 = 0 must hold. Since d is arbitrary, ∇f(x∗) = 0.

Exercise: Prove that if f is convex, then ∇f(x∗) = 0 is actually
sufficient for global optimality! For general f this is not true.
(This property that makes convex optimization special!)
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Optimality conditions – constrained

♠ For every x, y ∈ dom f , we have f(y) ≥ f(x) + 〈∇f(x), y − x〉.

♠ Thus, x∗ is optimal if and only if

〈∇f(x∗), y − x∗〉 ≥ 0, for all y ∈ X .
♠ If X = Rn, this reduces to ∇f(x∗) = 0

x∗

∇f(x∗)x
f(x

)

X

♠ If ∇f(x∗) 6= 0, it defines supporting hyperplane to X at x∗
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Optimality conditions – constrained

I Suppose ∃y ∈ X such that 〈∇f(x∗), y − x∗〉 < 0

I Using mean-value theorem of calculus, ∃ξ ∈ [0, 1] s.t.

f(x∗ + t(y − x∗)) = f(x∗) + 〈∇f(x∗ + ξt(y − x∗)), t(y − x∗)〉

(we applied MVT to g(t) := f(x∗ + t(y − x∗)))

I For sufficiently small t, since ∇f continuous, by assump on y,
〈∇f(x∗ + ξt(y − x∗)), y − x∗〉 < 0

I This in turn implies that f(x∗ + t(y − x∗)) < f(x∗)

I Since X is convex, x∗ + t(y − x∗) ∈ X is also feasible

I Contradiction to local optimality of x∗
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Optimality – nonsmooth

Theorem (Fermat’s rule): Let f0 : Rn → (−∞,+∞]. Then,

Argmin f0 = zer(∂f0) := {x ∈ Rn | 0 ∈ ∂f0(x)} .

Proof: x ∈ Argmin f0 implies that f0(x) ≤ f0(y) for all y ∈ Rn.
Equivalently, f0(y) ≥ f0(x) + 〈0, y − x〉 ∀y, ↔ 0 ∈ ∂f0(x).

Nonsmooth optimality

min f0(x) s.t. x ∈ X
min f0(x) + IX (x).
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Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f0 + IX )(x)

I (CQ) Assuming ri(dom f0) ∩ ri(X ) 6= ∅, 0 ∈ ∂f0(x) + ∂IX(x)

I Recall, g ∈ ∂IX (x) iff IX (y) ≥ IX (x) + 〈g, y − x〉 for all y.

I So g ∈ ∂IX (x) means x ∈ X and 0 ≥ 〈g, y − x〉 ∀y ∈ X .

I Normal cone:

NX (x) := {g ∈ Rn | 0 ≥ 〈g, y − x〉 ∀y ∈ X}

Application. min f0(x) s.t. x ∈ X :

♦ If f0 is diff., we get 0 ∈ ∇f(x∗) +NX (x∗)

♦ −∇f(x∗) ∈ NX (x∗)⇐⇒ 〈∇f(x∗), y − x∗〉 ≥ 0 for all y ∈ X .
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Example

min f(x) ‖x‖ ≤ 1.

A point x is optimal if and only if

x ∈ dom f, ‖x‖ ≤ 1,∀y s.t. ‖y‖ ≤ 1 =⇒ ∇f(x)T (y − x) ≥ 0.

In other words

∀‖y‖ ≤ 1, ∇f(x)T y ≥ ∇f(x)Tx

∀‖y‖ ≤ 1, −∇f(x)T y ≤ −∇f(x)Tx

sup{−∇f(x)T y | ‖y‖ ≤ 1} ≤ −∇f(x)Tx

‖−∇f(x)‖∗ ≤ −∇f(x)Tx

‖∇f(x)‖∗ ≤ −∇f(x)Tx.

Observe: If constraint not satisfied strictly at optimum (‖x‖ < 1), then

∇f(x) = 0 (else we’d violate the last inequality above).
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Equivalent Problems
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Monotonic transformation

Standard form
min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

I Say ψ0 : R→ R is monotone increasing

I ψi : R→ R satisfy ψi(u) ≤ 0 iff u ≤ 0

I h(z) = 0 iff z = 0.

Transformed problem

min ψ0(f0(x))

s.t. ψi(fi(x)) ≤ 0, i = 1, . . . ,m

h(Ax− b) = 0.

Can destroy convexity
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Example

min ‖Ax− b‖
min ‖Ax− b‖2

♣ Set of optimal points same

♣ Problems equivalent but not same

♣ First problem is nondifferentiable

♣ Second is differentiable – solvable in closed form!
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Slack variables

To turn inequalities into equalities

min f(x) s.t. Ax ≤ b
min
x,s

f(x) s.t. Ax+ s = b, s ≥ 0.
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Epigraph form

Standard form; optimal value p∗

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Epigraph form

min(x,t) t

s.t. f0(x)− t ≤ 0

fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

At the optimum, t = p∗.
In other words: Define sublevel set Lt := {x | f0(x) ≤ t}, t ∈ R.
We seek smallest t such that Lt intersects with constraint set X .
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Epigraph form — geometrically

X
f(x

) =
t1

f(
x)

=
t2
<
t1

t3
<
t2 x∗
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Variable elimination

min
x,y

f0(x, y) s.t. fi(x) ≤ 0, i = 1, . . . ,m.

Recall, since f0 is convex in (x, y), infy f0(x, y) is still convex.

Variable elimination

min
x

f̃0(x) s.t. fi(x) ≤ 0, i = 1, . . . ,m

where f̃0(x) := inf
y
f0(x, y).

More generally: f̃0(x) := inf {f0(x, y) | gi(y) ≤ 0, i = 1, . . . ,m′}

Independent constraints important here.
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Equality constraint elimination

Standard form

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

I For Ax = b to be feasible, b ∈ R(A).

I Let x0 be any solution to Ax = b.

I Let F be a matrix with R(F ) = N (A); so AFz = 0

I General solution to Ax = b is of form: Fz + x0

Elimination form

min f0(Fz + x0)

s.t. fi(Fz + x0) ≤ 0, 1 ≤ i ≤ m.
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Introducing equality constraints

Separable function

min
∑T

i=1
f0,i(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m.

Often useful trick: variable splitting

min
x1,...,xT ,z

∑T

i=1
f0,i(xi)

s.t. fi(z) ≤ 0, i = 1, . . . ,m

xi = z, i = 1, . . . , T.

Almost separate problems! Useful for distributed computing.
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Constraint removal

Constrained problem

min f0(x) s.t. x ∈ X .

Unconstrained problem

min f0(x) + IX(x)

Penalized form (approximate)

min f0(x) + ρ‖max {0, f(x)}‖22,

where f(x) = [f1(x), . . . , fm(x)]T ; ρ� 0.

Reducing number of constraints

min f0(x) s.t. fi(x) ≤ 0, i = 1, . . . ,m

=⇒ min f0(x) s.t. [g(x) := max
1≤i≤m

fi(x)] ≤ 0.
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Implicit constraints

min cTx−
∑m

i=1
log(bi − aTi x),

where c ∈ Rn, b ∈ Rm, and aTi are rows of A ∈ Rm×n.

I Implicit constraint: bi − aTi x ∈ dom(− log z) (else +∞)

I Thus, x must be in strict interior of P = {x | Ax ≤ b}.

Idea comes up again in interior point methods
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Problem classes
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Linear Programming

min cTx

s.t. Ax ≤ b, Cx = d.

Piecewise linear minimization

min f(x) = max
1≤i≤m

(aTi x+ bi)

f(x)

a
T
i
x
+
b i

min
x,t

t s.t. aTi x+ bi ≤ t, i = 1, . . . ,m.

I Linear program with variables x, t ∈ R.
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LP Exercises

Formulate min ‖Ax− b‖1 as an LP (‖x‖1 =
∑

i |x|)
Formulate min ‖Ax− b‖∞ as an LP (‖x‖∞ = max1≤i≤n |xi|)
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Quadratic Programming

min 1
2x

TAx+ bTx+ c s.t. Gx ≤ h.
We assume A � 0 (semidefinite).

Exercise: Say no constraints; does this QP always have a solution?

Nonnegative least squares (NNLS)

min 1
2‖Ax− b‖2 s.t. x ≥ 0.

Exercise: Prove that NNLS always has a solution.
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Regularized least-squares

Lasso

min 1
2‖Ax− b‖22 + λ‖x‖1.

Exercise: How large must λ > 0 so that x = 0 is the optimum?

Total-variation denoising

min 1
2‖Ax− b‖22 + λ

∑n−1
i=1
|xi+1 − xi|.

Exercise: Is the total-variation term a norm? Prove or disprove.

Group Lasso

min
x1,...,xT

1

2

∥∥∥∥b−∑T

j=1
Ajxj

∥∥∥∥2
2

+ λ
∑T

j=1
‖xj‖2.

Notice non-differentiable regularizers
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Second order cone program (SOCP)

min fTx

s.t. ‖Aix+ bi‖2 ≤ cTi x+ di, i = 1, . . . ,m.

I Linear objective

I Nonlinear, nondifferentiable constraints

I Generalization of LP, QP: allows cone constraints

I Recall Qn :=
{

(x, t) ∈ Rn+1 | ‖x‖2 ≤ t
}

is a convex cone
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Example – robust LP

min cTx, s.t. aTi x ≤ bi ∀ai ∈ Ei
Ei := {āi + Piu | ‖u‖2 ≤ 1}

The constraints are uncertain but with bounded uncertainty.

min
x

sup
‖u‖2≤1

{
cTx | aTi x ≤ bi, ai ∈ Ei

}
SOCP formulation

min cTx, s.t. ‖P Ti x‖2 ≤ −āTi x+ bi, i = 1, . . . ,m.
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Semidefinite Program (SDP)

min
x∈Rn

cTx

s.t. A(x) := A0 + x1A1 + x2A2 + . . .+ xnAn � 0.

I A0, . . . , An are real, symmetric matrices

I Inequality A � B means B −A is semidefinite

I Also a cone program (conic optimization problem)

I SDP ⊃ SOCP ⊃ QP ⊃ LP

I Exercise: Write LPs, QPs, and SOCPs as SDPs

I Feasible set of SDP is {semidefinite cone
⋂

hyperplanes}
I When is a convex problem representable as an SDP?
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Examples

♠ Eigenvalue optimization: minλmax(A(x))

min t s.t. A(x) � tI.

♠ Norm minimization: min ‖A(x)‖

min t s.t.

[
tI A(x)T

A(x) tI

]
� 0.

♠ Many more examples! See CVX documentation also.

♠ SDP relaxations of nonconvex problems — powerful, important

♠ More on this next lecture
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