Convex Optimization

(EE227A: UC Berkeley)

Lecture 5
(Optimization problems)
05 Feb, 2013

Suvrit Sra

Organizational

- Homeworks due in class: 2/14/2013
- No late homeworks will be accepted
- Team up for projects into groups of 3-4 (max)
- Talk to me if special concerns
- We're using Piazza for Q/A - sign up!
- Bspace has the rest (course material, links, etc.)

Challenge

Consider the following functions on strictly positive variables:

$$
\begin{aligned}
h_{1}(x) & :=\frac{1}{x} \\
h_{2}(x, y) & :=\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y} \\
h_{3}(x, y, z) & :=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y}-\frac{1}{y+z}-\frac{1}{x+z}+\frac{1}{x+y+z}
\end{aligned}
$$

\bigcirc Prove that h_{1}, h_{2}, h_{3}, and in general h_{n} are convex!
\bigcirc Prove that in fact each $1 / h_{n}$ is concave
\bigcirc Generalize to where denom. replaced by $g(x), g(x+y), g(x+y+z)$, etc.

Challenge

Consider the following functions on strictly positive variables:

$$
\begin{aligned}
h_{1}(x) & :=\frac{1}{x} \\
h_{2}(x, y) & :=\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y} \\
h_{3}(x, y, z) & :=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y}-\frac{1}{y+z}-\frac{1}{x+z}+\frac{1}{x+y+z}
\end{aligned}
$$

\bigcirc Prove that h_{1}, h_{2}, h_{3}, and in general h_{n} are convex!
\bigcirc Prove that in fact each $1 / h_{n}$ is concave
\bigcirc Generalize to where denom. replaced by $g(x), g(x+y), g(x+y+z)$, etc.

$$
\nabla^{2} h_{n}(x) \succeq 0 \text { is not recommended }
$$

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
\min & f_{0}(x) \\
\quad \text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
x \in & \left.x \operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
\min & f_{0}(x) \\
\quad \text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
x \in & \left.x \operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

- If f_{i} are differentiable - smooth optimization
- If any of the f_{i} is non-differentiable - nonsmooth optimization
- If all f_{i} are convex - convex optimization
- If $m=0$, i.e., only f_{0} is there - unconstrained minimization

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Convex optimization problems

$$
\begin{aligned}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex

Convex optimization problems

$$
\begin{aligned}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex
- Direction of inequality $f_{i}(x) \leq 0$ crucial

Convex optimization problems

$$
\begin{aligned}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex
- Direction of inequality $f_{i}(x) \leq 0$ crucial
- The only equality constraints we allow are affine

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex
- Direction of inequality $f_{i}(x) \leq 0$ crucial
- The only equality constraints we allow are affine
- This ensures, set of feasible solutions is also convex

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set
$\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\}$.

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \rightarrow \pm \infty$)

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \rightarrow \pm \infty$)
- Say $f_{0}(x)=0$, problem is called convex feasibility

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.
- We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.
- We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
- If $y \notin \operatorname{dom} f$, then by definition $f(y)=+\infty$; nothing to prove

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.
- We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
- If $y \notin \operatorname{dom} f$, then by definition $f(y)=+\infty$; nothing to prove
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.
- We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
- If $y \notin \operatorname{dom} f$, then by definition $f(y)=+\infty$; nothing to prove
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
- Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
f\left(x_{\theta}\right)-f\left(x^{*}\right) \leq \theta\left(f(y)-f\left(x^{*}\right)\right)
$$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.
- We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
- If $y \notin \operatorname{dom} f$, then by definition $f(y)=+\infty$; nothing to prove
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
- Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
f\left(x_{\theta}\right)-f\left(x^{*}\right) \leq \theta\left(f(y)-f\left(x^{*}\right)\right)
$$

- Since x^{*} is a local minimizer, for small enough $\theta>0$, $\mathrm{lhs} \geq 0$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem For convex problems, locally optimal point also global.

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X}
- Let $y \in \mathcal{X}$ be any other feasible point.
- We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
- If $y \notin \operatorname{dom} f$, then by definition $f(y)=+\infty$; nothing to prove
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
- Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
f\left(x_{\theta}\right)-f\left(x^{*}\right) \leq \theta\left(f(y)-f\left(x^{*}\right)\right)
$$

- Since x^{*} is a local minimizer, for small enough $\theta>0$, lhs ≥ 0.
- So rhs is also nonnegative, proving $f(y) \geq f\left(x^{*}\right)$ as desired.

Optimal set

The set of optimal solutions \mathcal{X}^{*} may be empty

Example If $\mathcal{X}=\emptyset$, i.e., no feasible solutions, then $\mathcal{X}^{*}=\emptyset$

Optimal set

The set of optimal solutions \mathcal{X}^{*} may be empty

Example If $\mathcal{X}=\emptyset$, i.e., no feasible solutions, then $\mathcal{X}^{*}=\emptyset$

Example When only inf and not min, e.g., inf e^{x} as $x \rightarrow-\infty$ or $\inf 1 / x$ as $x \rightarrow \infty$; so sometimes we have to worry about $\mathcal{X}^{*}=\emptyset$

Optimal set

The set of optimal solutions \mathcal{X}^{*} may be empty

Example If $\mathcal{X}=\emptyset$, i.e., no feasible solutions, then $\mathcal{X}^{*}=\emptyset$

Example When only inf and not min, e.g., inf e^{x} as $x \rightarrow-\infty$ or $\inf 1 / x$ as $x \rightarrow \infty$; so sometimes we have to worry about $\mathcal{X}^{*}=\emptyset$

Exercise: Verify that \mathcal{X}^{*} is always convex.

First-order optimality conditions

> Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \quad \underline{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}
$$

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}
$$

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}
$$

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}
$$

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

Similarly, using $-d$ it follows that $\left\langle\nabla f\left(x^{*}\right), d\right\rangle \leq 0$, so
$\left\langle\nabla f\left(x^{*}\right), d\right\rangle=0$ must hold. Since d is arbitrary, $\nabla f\left(x^{*}\right)=0$.

First-order optimality conditions

Theorem Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local minimum of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

Similarly, using $-d$ it follows that $\left\langle\nabla f\left(x^{*}\right), d\right\rangle \leq 0$, so
$\left\langle\nabla f\left(x^{*}\right), d\right\rangle=0$ must hold. Since d is arbitrary, $\nabla f\left(x^{*}\right)=0$.
Exercise: Prove that if f is convex, then $\nabla f\left(x^{*}\right)=0$ is actually sufficient for global optimality! For general f this is not true.
(This property that makes convex optimization special!)

Optimality conditions - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.

Optimality conditions - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

Optimality conditions - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
A Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

© If $\mathcal{X}=\mathbb{R}^{n}$, this reduces to $\nabla f\left(x^{*}\right)=0$

© If $\nabla f\left(x^{*}\right) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^{*}

Optimality conditions - constrained

- Suppose $\exists y \in \mathcal{X}$ such that $\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle<0$
- Using mean-value theorem of calculus, $\exists \xi \in[0,1]$ s.t.

$$
f\left(x^{*}+t\left(y-x^{*}\right)\right)=f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}+\xi t\left(y-x^{*}\right)\right), t\left(y-x^{*}\right)\right\rangle
$$

(we applied MVT to $g(t):=f\left(x^{*}+t\left(y-x^{*}\right)\right)$)

- For sufficiently small t, since ∇f continuous, by assump on y, $\left\langle\nabla f\left(x^{*}+\xi t\left(y-x^{*}\right)\right), y-x^{*}\right\rangle<0$
- This in turn implies that $f\left(x^{*}+t\left(y-x^{*}\right)\right)<f\left(x^{*}\right)$
- Since \mathcal{X} is convex, $x^{*}+t\left(y-x^{*}\right) \in \mathcal{X}$ is also feasible
- Contradiction to local optimality of x^{*}

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f_{0}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f_{0}=\operatorname{zer}\left(\partial f_{0}\right):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f_{0}(x)\right\}
$$

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f_{0}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f_{0}=\operatorname{zer}\left(\partial f_{0}\right):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f_{0}(x)\right\}
$$

Proof: $x \in \operatorname{Argmin} f_{0}$ implies that $f_{0}(x) \leq f_{0}(y)$ for all $y \in \mathbb{R}^{n}$.

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f_{0}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f_{0}=\operatorname{zer}\left(\partial f_{0}\right):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f_{0}(x)\right\}
$$

Proof: $x \in \operatorname{Argmin} f_{0}$ implies that $f_{0}(x) \leq f_{0}(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f_{0}(y) \geq f_{0}(x)+\langle 0, y-x\rangle \quad \forall y$,

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f_{0}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f_{0}=\operatorname{zer}\left(\partial f_{0}\right):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f_{0}(x)\right\}
$$

Proof: $x \in \operatorname{Argmin} f_{0}$ implies that $f_{0}(x) \leq f_{0}(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f_{0}(y) \geq f_{0}(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f_{0}(x)$.

Optimality - nonsmooth

Theorem (Fermat's rule): Let $f_{0}: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f_{0}=\operatorname{zer}\left(\partial f_{0}\right):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f_{0}(x)\right\}
$$

Proof: $x \in \operatorname{Argmin} f_{0}$ implies that $f_{0}(x) \leq f_{0}(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f_{0}(y) \geq f_{0}(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f_{0}(x)$.

Nonsmooth optimality

$$
\begin{array}{ll}
\min & f_{0}(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f_{0}(x)+\mathbb{I}_{\mathcal{X}}(x) .
\end{array}
$$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $\left(\operatorname{dom} f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{I}_{X}(x)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{I}_{X}(x)$
- Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \geq \mathbb{I}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{I}_{X}(x)$
- Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \geq \mathbb{I}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{I}_{X}(x)$
- Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \geq \mathbb{I}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{\mathcal { N } _ { \mathcal { X } }}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $\left(\operatorname{dom} f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{I}_{X}(x)$
- Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \geq \mathbb{I}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{\mathcal { N } _ { \mathcal { X } }}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application. $\min f_{0}(x)$ s.t. $x \in \mathcal{X}$:
\diamond If f_{0} is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f_{0}+\mathbb{I}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $\left.f_{0}\right) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f_{0}(x)+\partial \mathbb{I}_{X}(x)$
- Recall, $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ iff $\mathbb{I}_{\mathcal{X}}(y) \geq \mathbb{I}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{I}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{\mathcal { N } _ { \mathcal { X } }}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application. $\min f_{0}(x)$ s.t. $x \in \mathcal{X}$:
\diamond If f_{0} is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$
$\diamond-\nabla f\left(x^{*}\right) \in \mathcal{N} \mathcal{X}\left(x^{*}\right) \Longleftrightarrow\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$ for all $y \in \mathcal{X}$.

Example

$$
\begin{array}{rrr}
\hline \min & f(x) & \|x\| \leq 1 .
\end{array}
$$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f, \quad\|x\| \leq 1
$$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f, \quad\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0 .
$$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f, \quad\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0 .
$$

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x
\end{aligned}
$$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1 .
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f, \quad\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0 .
$$

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x \\
\sup \left\{-\nabla f(x)^{T} y \mid\|y\| \leq 1\right\} & \leq-\nabla f(x)^{T} x
\end{aligned}
$$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1 .
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f, \quad\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0 .
$$

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x \\
\sup \left\{-\nabla f(x)^{T} y \mid\|y\| \leq 1\right\} & \leq-\nabla f(x)^{T} x \\
\|-\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x \\
\|\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x .
\end{aligned}
$$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f, \quad\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0 .
$$

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x \\
\sup \left\{-\nabla f(x)^{T} y \mid\|y\| \leq 1\right\} & \leq-\nabla f(x)^{T} x \\
\|-\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x \\
\|\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x .
\end{aligned}
$$

Observe: If constraint not satisfied strictly at optimum $(\|x\|<1)$, then $\nabla f(x)=0$ (else we'd violate the last inequality above).

Equivalent Problems

$$
\begin{array}{cl}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{array}
$$

$$
\begin{array}{cl}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{array}
$$

- Say $\psi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing
- $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $\psi_{i}(u) \leq 0$ iff $u \leq 0$
- $h(z)=0$ iff $z=0$.

$$
\begin{array}{cl}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{array}
$$

- Say $\psi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing
- $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $\psi_{i}(u) \leq 0$ iff $u \leq 0$
- $h(z)=0$ iff $z=0$.

Transformed problem

$$
\begin{array}{cl}
\min & \psi_{0}\left(f_{0}(x)\right) \\
\mathrm{s.t.} & \psi_{i}\left(f_{i}(x)\right) \leq 0, \quad i=1, \ldots, m \\
& h(A x-b)=0
\end{array}
$$

$$
\begin{array}{cl}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{array}
$$

- Say $\psi_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing
- $\psi_{i}: \mathbb{R} \rightarrow \mathbb{R}$ satisfy $\psi_{i}(u) \leq 0$ iff $u \leq 0$
- $h(z)=0$ iff $z=0$.

Transformed problem

$$
\begin{aligned}
\min & \psi_{0}\left(f_{0}(x)\right) \\
\mathrm{s.t.} & \psi_{i}\left(f_{i}(x)\right) \leq 0, \quad i=1, \ldots, m \\
& h(A x-b)=0
\end{aligned}
$$

Can destroy convexity

Example

$\begin{array}{cc}\min & \|A x-b\| \\ \min & \|A x-b\|^{2}\end{array}$

Example

$$
\begin{array}{cl}
\min & \|A x-b\| \\
\min & \|A x-b\|^{2}
\end{array}
$$

\& Set of optimal points same
\& Problems equivalent but not same

Example

$$
\begin{array}{cl}
\min & \|A x-b\| \\
\min & \|A x-b\|^{2}
\end{array}
$$

\& Set of optimal points same
d. Problems equivalent but not same
\& First problem is nondifferentiable
\& Second is differentiable - solvable in closed form!

Slack variables

To turn inequalities into equalities

$$
\begin{array}{ll}
\min & f(x) \\
\min _{x, s} & \text { s.t. } A x \leq b \\
& \text { s.t. } A x+s=b, s \geq 0 .
\end{array}
$$

Epigraph form

Standard form; optimal value p^{*} $\min f_{0}(x)$

$$
\begin{aligned}
& \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b .
\end{aligned}
$$

Epigraph form

Standard form; optimal value p^{*}

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Epigraph form

$$
\begin{aligned}
\min _{(x, t)} & t \\
\text { s.t. } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

At the optimum, $t=p^{*}$.

Epigraph form

Standard form; optimal value p^{*}

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Epigraph form

$$
\begin{aligned}
\min _{(x, t)} & t \\
\text { s.t. } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

At the optimum, $t=p^{*}$.
In other words: Define sublevel set $L_{t}:=\left\{x \mid f_{0}(x) \leq t\right\}, t \in \mathbb{R}$.

Epigraph form

Standard form; optimal value p^{*}

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Epigraph form

$$
\begin{aligned}
\min _{(x, t)} & t \\
\text { s.t. } & f_{0}(x)-t \leq 0 \\
& f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

At the optimum, $t=p^{*}$.
In other words: Define sublevel set $L_{t}:=\left\{x \mid f_{0}(x) \leq t\right\}, t \in \mathbb{R}$. We seek smallest t such that L_{t} intersects with constraint set \mathcal{X}.

Epigraph form - geometrically

Variable elimination

$$
\min _{x, y} \quad f_{0}(x, y) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Recall, since f_{0} is convex in $(x, y), \inf _{y} f_{0}(x, y)$ is still convex.

Variable elimination

$$
\min _{x, y} \quad f_{0}(x, y) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Recall, since f_{0} is convex in $(x, y), \inf _{y} f_{0}(x, y)$ is still convex.
Variable elimination

$$
\begin{aligned}
& \min _{x} \quad \tilde{f}_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& \text { where } \tilde{f}_{0}(x):=\inf _{y} f_{0}(x, y)
\end{aligned}
$$

Variable elimination

$$
\min _{x, y} \quad f_{0}(x, y) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Recall, since f_{0} is convex in $(x, y), \inf _{y} f_{0}(x, y)$ is still convex.
Variable elimination

$$
\begin{aligned}
& \min _{x} \quad \tilde{f}_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& \text { where } \tilde{f}_{0}(x):=\inf _{y} f_{0}(x, y)
\end{aligned}
$$

More generally: $\tilde{f}_{0}(x):=\inf \left\{f_{0}(x, y) \mid g_{i}(y) \leq 0, i=1, \ldots, m^{\prime}\right\}$

Variable elimination

$$
\min _{x, y} \quad f_{0}(x, y) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Recall, since f_{0} is convex in $(x, y), \inf _{y} f_{0}(x, y)$ is still convex.
Variable elimination

$$
\begin{aligned}
& \min _{x} \quad \tilde{f}_{0}(x) \quad \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& \text { where } \tilde{f}_{0}(x):=\inf _{y} f_{0}(x, y)
\end{aligned}
$$

More generally: $\tilde{f}_{0}(x):=\inf \left\{f_{0}(x, y) \mid g_{i}(y) \leq 0, i=1, \ldots, m^{\prime}\right\}$ Independent constraints important here.

Equality constraint elimination

\[

\]

Equality constraint elimination

$$
\begin{aligned}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

- For $A x=b$ to be feasible, $b \in \mathcal{R}(A)$.

Equality constraint elimination

$$
\begin{aligned}
& \text { Standard form } \\
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

- For $A x=b$ to be feasible, $b \in \mathcal{R}(A)$.
- Let x_{0} be any solution to $A x=b$.

Equality constraint elimination

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

- For $A x=b$ to be feasible, $b \in \mathcal{R}(A)$.
- Let x_{0} be any solution to $A x=b$.
- Let F be a matrix with $\mathcal{R}(F)=\mathcal{N}(A)$; so $A F z=0$

Equality constraint elimination

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

- For $A x=b$ to be feasible, $b \in \mathcal{R}(A)$.
- Let x_{0} be any solution to $A x=b$.
- Let F be a matrix with $\mathcal{R}(F)=\mathcal{N}(A)$; so $A F z=0$
- General solution to $A x=b$ is of form: $F z+x_{0}$

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

- For $A x=b$ to be feasible, $b \in \mathcal{R}(A)$.
- Let x_{0} be any solution to $A x=b$.
- Let F be a matrix with $\mathcal{R}(F)=\mathcal{N}(A)$; so $A F z=0$
- General solution to $A x=b$ is of form: $F z+x_{0}$

Elimination form

$$
\begin{array}{cl}
\min & f_{0}\left(F z+x_{0}\right) \\
\text { s.t. } & f_{i}\left(F z+x_{0}\right) \leq 0, \quad 1 \leq i \leq m .
\end{array}
$$

Introducing equality constraints

Separable function

$$
\begin{array}{cl}
\min & \sum_{i=1}^{T} f_{0, i}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Introducing equality constraints

Separable function

$$
\begin{array}{ll}
\min & \sum_{i=1}^{T} f_{0, i}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Often useful trick: variable splitting

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{T}, z} & \sum_{i=1}^{T} f_{0, i}\left(x_{i}\right) \\
\text { s.t. } & f_{i}(z) \leq 0, \quad i=1, \ldots, m \\
& x_{i}=z, \quad i=1, \ldots, T
\end{aligned}
$$

Introducing equality constraints

Separable function

$$
\begin{array}{ll}
\min & \sum_{i=1}^{T} f_{0, i}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m
\end{array}
$$

Often useful trick: variable splitting

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{T}, z} & \sum_{i=1}^{T} f_{0, i}\left(x_{i}\right) \\
\text { s.t. } & f_{i}(z) \leq 0, \quad i=1, \ldots, m \\
& x_{i}=z, \quad i=1, \ldots, T
\end{aligned}
$$

Almost separate problems! Useful for distributed computing.

Constraint removal

Constrained problem

$\min \quad f_{0}(x) \quad$ s.t. $\quad x \in \mathcal{X}$.

Constraint removal

Constrained problem

$\min \quad f_{0}(x) \quad$ s.t. $\quad x \in \mathcal{X}$.

Unconstrained problem

$$
\min \quad f_{0}(x)+\mathbb{I}_{X}(x)
$$

Constraint removal

Constrained problem

$$
\min \quad f_{0}(x) \quad \text { s.t. } \quad x \in \mathcal{X} .
$$

Unconstrained problem

$$
\min \quad f_{0}(x)+\mathbb{I}_{X}(x)
$$

Penalized form (approximate)

$\min f_{0}(x)+\rho\|\max \{0, f(x)\}\|_{2}^{2}$,
where $f(x)=\left[f_{1}(x), \ldots, f_{m}(x)\right]^{T} ; \rho \gg 0$.

Constraint removal

Constrained problem

$$
\min \quad f_{0}(x) \quad \text { s.t. } \quad x \in \mathcal{X} .
$$

Unconstrained problem

$$
\min \quad f_{0}(x)+\mathbb{I}_{X}(x)
$$

Penalized form (approximate)

$\min f_{0}(x)+\rho\|\max \{0, f(x)\}\|_{2}^{2}$,
where $f(x)=\left[f_{1}(x), \ldots, f_{m}(x)\right]^{T} ; \rho \gg 0$.
Reducing number of constraints

$$
\begin{aligned}
& \min f_{0}(x) \\
\hline & \text { s.t. } \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
\min f_{0}(x) & \text { s.t. } \quad\left[g(x):=\max _{1 \leq i \leq m} f_{i}(x)\right] \leq 0 .
\end{aligned}
$$

Implicit constraints

$$
\min \quad c^{T} x-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$, and a_{i}^{T} are rows of $A \in \mathbb{R}^{m \times n}$.

Implicit constraints

$$
\min \quad c^{T} x-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$, and a_{i}^{T} are rows of $A \in \mathbb{R}^{m \times n}$.

- Implicit constraint: $b_{i}-a_{i}^{T} x \in \operatorname{dom}(-\log z)$ (else $+\infty$)
- Thus, x must be in strict interior of $\mathcal{P}=\{x \mid A x \leq b\}$.

Implicit constraints

$$
\min \quad c^{T} x-\sum_{i=1}^{m} \log \left(b_{i}-a_{i}^{T} x\right)
$$

where $c \in \mathbb{R}^{n}, b \in \mathbb{R}^{m}$, and a_{i}^{T} are rows of $A \in \mathbb{R}^{m \times n}$.

- Implicit constraint: $b_{i}-a_{i}^{T} x \in \operatorname{dom}(-\log z)$ (else $+\infty$)
- Thus, x must be in strict interior of $\mathcal{P}=\{x \mid A x \leq b\}$.

Idea comes up again in interior point methods

Problem classes

Linear Programming
$\begin{aligned} \min & c^{T} x \\ \text { s.t. } & A x \leq b, \quad C x=d .\end{aligned}$

Linear Programming

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x \leq b, \quad C x=d
\end{array}
$$

Piecewise linear minimization

$$
\min \quad f(x)=\max _{1 \leq i \leq m}\left(a_{i}^{T} x+b_{i}\right)
$$

Linear Programming

$$
\begin{array}{cl}
\min & c^{T} x \\
\text { s.t. } & A x \leq b, \quad C x=d
\end{array}
$$

Piecewise linear minimization

$$
\min \quad f(x)=\max _{1 \leq i \leq m}\left(a_{i}^{T} x+b_{i}\right)
$$

$$
\min _{x, t} \quad t \quad \text { s.t. } \quad a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
$$

- Linear program with variables $x, t \in \mathbb{R}$.
(ت) Formulate min $\|A x-b\|_{1}$ as an LP $\left(\|x\|_{1}=\sum_{i} \mid x_{\mid}\right)$
ت) Formulate $\min \|A x-b\|_{\infty}$ as an LP $\left(\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|\right)$

Quadratic Programming

$$
\min \quad \frac{1}{2} x^{T} A x+b^{T} x+c \quad \text { s.t. } \quad G x \leq h
$$

We assume $A \succeq 0$ (semidefinite).

Quadratic Programming

$$
\min \quad \frac{1}{2} x^{T} A x+b^{T} x+c \quad \text { s.t. } G x \leq h .
$$

We assume $A \succeq 0$ (semidefinite).
Exercise: Say no constraints; does this QP always have a solution?

Quadratic Programming

$$
\min \quad \frac{1}{2} x^{T} A x+b^{T} x+c \quad \text { s.t. } \quad G x \leq h
$$

We assume $A \succeq 0$ (semidefinite).
Exercise: Say no constraints; does this QP always have a solution?
Nonnegative least squares (NNLS)

$$
\min \quad \frac{1}{2}\|A x-b\|^{2} \quad \text { s.t. } x \geq 0
$$

Exercise: Prove that NNLS always has a solution.

$$
\begin{gathered}
\text { Lasso } \\
\min \\
\frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
\end{gathered}
$$

Exercise: How large must $\lambda>0$ so that $x=0$ is the optimum?

$$
\begin{gathered}
\text { Lasso } \\
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
\end{gathered}
$$

Exercise: How large must $\lambda>0$ so that $x=0$ is the optimum?

Total-variation denoising

$$
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right|
$$

Exercise: Is the total-variation term a norm? Prove or disprove.

$$
\begin{gathered}
\text { Lasso } \\
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
\end{gathered}
$$

Exercise: How large must $\lambda>0$ so that $x=0$ is the optimum?

Total-variation denoising

$$
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right|
$$

Exercise: Is the total-variation term a norm? Prove or disprove.
Group Lasso

$$
\min _{x_{1}, \ldots, x_{T}} \frac{1}{2}\left\|b-\sum_{j=1}^{T} A_{j} x_{j}\right\|_{2}^{2}+\lambda \sum_{j=1}^{T}\left\|x_{j}\right\|_{2}
$$

Notice non-differentiable regularizers

Second order cone program (SOCP)

$$
\begin{array}{cl}
\min & f^{T} x \\
\text { s.t. } & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

Second order cone program (SOCP)

$$
\begin{array}{cl}
\min & f^{T} x \\
\mathrm{s.t.} & \left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
\end{array}
$$

- Linear objective
- Nonlinear, nondifferentiable constraints
- Generalization of LP, QP: allows cone constraints
- Recall $\mathcal{Q}^{n}:=\left\{(x, t) \in \mathbb{R}^{n+1} \mid\|x\|_{2} \leq t\right\}$ is a convex cone

Example - robust LP

$$
\begin{gathered}
\min \begin{array}{c}
c^{T} x, \quad \text { s.t. } \quad a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{array}, \quad \text {. }
\end{gathered}
$$

The constraints are uncertain but with bounded uncertainty.

Example - robust LP

$$
\begin{gathered}
\min \begin{array}{c}
c^{T} x, \quad \text { s.t. } \quad a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{array}, \quad \text {. }
\end{gathered}
$$

The constraints are uncertain but with bounded uncertainty.

$$
\min _{x} \sup _{\|u\|_{2} \leq 1}\left\{c^{T} x \mid a_{i}^{T} x \leq b_{i}, \quad a_{i} \in \mathcal{E}_{i}\right\}
$$

Example - robust LP

$$
\begin{gathered}
\min \quad c^{T} x, \quad \text { s.t. } \quad a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{gathered}
$$

The constraints are uncertain but with bounded uncertainty.

$$
\min _{x} \sup _{\|u\|_{2} \leq 1}\left\{c^{T} x \mid a_{i}^{T} x \leq b_{i}, \quad a_{i} \in \mathcal{E}_{i}\right\}
$$

SOCP formulation
$\min c^{T} x$,
s.t. $\left\|P_{i}^{T} x\right\|_{2} \leq-\bar{a}_{i}^{T} x+b_{i}, i=1, \ldots, m$.

Example - robust LP

$$
\begin{gathered}
\min \quad c^{T} x, \quad \text { s.t. } \quad a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{gathered}
$$

The constraints are uncertain but with bounded uncertainty.

$$
\min _{x} \sup _{\|u\|_{2} \leq 1}\left\{c^{T} x \mid a_{i}^{T} x \leq b_{i}, \quad a_{i} \in \mathcal{E}_{i}\right\}
$$

SOCP formulation
$\min c^{T} x$,
s.t. $\left\|P_{i}^{T} x\right\|_{2} \leq-\bar{a}_{i}^{T} x+b_{i}, i=1, \ldots, m$.

Semidefinite Program (SDP)

$$
\min _{x \in \mathbb{R}^{n}} c^{T} x
$$

s.t. $A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0$.

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

- A_{0}, \ldots, A_{n} are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

- A_{0}, \ldots, A_{n} are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)
- SDP \supset SOCP \supset QP \supset LP
- Exercise: Write LPs, QPs, and SOCPs as SDPs

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

- A_{0}, \ldots, A_{n} are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)
- SDP $\supset \mathrm{SOCP} \supset \mathrm{QP} \supset \mathrm{LP}$
- Exercise: Write LPs, QPs, and SOCPs as SDPs
- Feasible set of SDP is \{semidefinite cone \bigcap hyperplanes $\}$

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

- A_{0}, \ldots, A_{n} are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)
- SDP $\supset \mathrm{SOCP} \supset \mathrm{QP} \supset \mathrm{LP}$
- Exercise: Write LPs, QPs, and SOCPs as SDPs
- Feasible set of SDP is \{semidefinite cone \bigcap hyperplanes $\}$
- When is a convex problem representable as an SDP?

Examples

© Eigenvalue optimization: $\min \lambda_{\max }(A(x))$

$$
\min \quad t \quad \text { s.t. } \quad A(x) \preceq t I .
$$

© Eigenvalue optimization: $\min \lambda_{\max }(A(x))$

$$
\min \quad t \quad \text { s.t. } \quad A(x) \preceq t I .
$$

© Norm minimization: $\min \|A(x)\|$

$$
\min \quad t \quad \text { s.t. }\left[\begin{array}{cc}
t I & A(x)^{T} \\
A(x) & t I
\end{array}\right] \succeq 0 .
$$

Examples

© Eigenvalue optimization: $\min \lambda_{\max }(A(x))$

$$
\min \quad t \quad \text { s.t. } \quad A(x) \preceq t I .
$$

© Norm minimization: $\min \|A(x)\|$

$$
\begin{array}{lll}
\min & t & \text { s.t. }\left[\begin{array}{cc}
t I & A(x)^{T} \\
A(x) & t I
\end{array}\right] \succeq 0 .
\end{array}
$$

- Many more examples! See CVX documentation also.
- SDP relaxations of nonconvex problems - powerful, important
a More on this next lecture

1 L. Vandenberghe. MLSS 2012 Lecture slides.

