Convex Optimization

 (EE227A: UC Berkeley)Lecture 4
(Conjugates, subdifferentials)
31 Jan, 2013

Suvrit Sra

\bigcirc HW1 due: 14th Feb 2013 in class.
\bigcirc Please $A \operatorname{AT} T_{E X}$ your solutions (contact TA if this is an issue)
\bigcirc Discussion with classmates is ok
\bigcirc Each person must submit his/her individual solutions
\bigcirc Acknowledge any help you receive
\bigcirc Do not copy!
\bigcirc Make sure you understand the solution you submit
\bigcirc Cite any source that you use
\bigcirc Have fun solving problems!

- Eigenvalues, singular values, positive definiteness
- Convex sets, $\theta_{1} x+\theta_{2} y \in C, \theta_{1}+\theta_{2}=1, \theta_{i} \geq 0$
- Convex functions, midpoint convex, recognizing convexity
- Norms, mixed-norms, matrix norms, dual norms
- Indicator, distance function, minimum of jointly convex
- Brief mention of other forms of convexity

$$
\begin{gathered}
f\left(\frac{x+y}{2}\right) \leq \frac{1}{2}[f(x)+f(y)]+\text { continuity } \Longrightarrow f \text { is } \mathrm{cvx} \\
\nabla^{2} f(x) \succeq 0 \text { implies } f \text { is cvx. }
\end{gathered}
$$

Fenchel Conjugate

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$
Exercise: Verify that $\|u\|_{*}$ is a norm.

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$
Exercise: Verify that $\|u\|_{*}$ is a norm.

- $\|u+v\|_{*}=\sup \left\{(u+v)^{T} x \mid\|x\| \leq 1\right\}$
- But $\sup (A+B) \leq \sup A+\sup B$

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$
Exercise: Verify that $\|u\|_{*}$ is a norm.

- $\|u+v\|_{*}=\sup \left\{(u+v)^{T} x \mid\|x\| \leq 1\right\}$
- But $\sup (A+B) \leq \sup A+\sup B$

Exercise: Let $1 / p+1 / q=1$, where $p, q \geq 1$. Show that $\|\cdot\|_{q}$ is dual to $\|\cdot\|_{p}$. In particular, the ℓ_{2}-norm is self-dual.

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$
Exercise: Verify that $\|u\|_{*}$ is a norm.

- $\|u+v\|_{*}=\sup \left\{(u+v)^{T} x \mid\|x\| \leq 1\right\}$
- But $\sup (A+B) \leq \sup A+\sup B$

Exercise: Let $1 / p+1 / q=1$, where $p, q \geq 1$. Show that $\|\cdot\|_{q}$ is dual to $\|\cdot\|_{p}$. In particular, the ℓ_{2}-norm is self-dual.

Hint: Use Hölder's inequality: $u^{T} v \leq\|u\|_{p}\|v\|_{q}$

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right)$;

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}$,

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx !
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, \quad x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx!
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, \quad x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.
- $x=0$ maximizes $\|x\|\left(\|z\|_{*}-1\right)$, hence $f(z)=0$.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} pointwise (over x) sup of linear functions of z, so cvx!
Example Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{I}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, \quad x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.
- $x=0$ maximizes $\|x\|\left(\|z\|_{*}-1\right)$, hence $f(z)=0$.
- Thus, $f(z)=+\infty$ if (i), and 0 if (ii), as desired.

Fenchel conjugate

Example $f(x)=a x+b$; then,

$$
f^{*}(z)=\sup _{x} z x-(a x+b)
$$

Fenchel conjugate

Example $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0 .
\end{aligned}
$$

Fenchel conjugate

Example $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.

Fenchel conjugate

Example $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Fenchel conjugate

Example $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Example $f(x)=\frac{1}{2} x^{T} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$.

Fenchel conjugate

Example $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Example $f(x)=\frac{1}{2} x^{T} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$.
Exercise: If $f(x)=\max (0,1-x)$, then $\operatorname{dom} f^{*}$ is $[-1,0]$, and within this domain, $f^{*}(z)=z$.
Hint: Analyze cases: $\max (0,1-x)=0$; and
$\max (0,1-x)=1-x$

Subdifferentials

First order global underestimator

First order global underestimator

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Subgradients

g_{1}, g_{2}, g_{3} are subgradients at y

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus-a great achievement in convex analysis

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus-a great achievement in convex analysis
- Without convexity, things become wild! - advanced course

Subgradients - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subgradients - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$

* $f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$
$\star f_{1}(y)=f_{2}(y)$: subgradients, the segment $\left[f_{1}^{\prime}(y), f_{2}^{\prime}(y)\right]$ (imagine all supporting lines turning about point y)

Subgradients

Def. A vector $g \in \mathbb{R}^{n}$ is called a subgradient at a point y, if for all $x \in \operatorname{dom} f$, it holds that

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
\& If $\partial f(x)=\{g\}$, then f is differentiable and $g=\nabla f(x)$

Subdifferential - example

Subdifferential - example

Subdifferential - example

$$
\partial|x|= \begin{cases}-1 & x<0 \\ +1 & x>0 \\ {[-1,1]} & x=0\end{cases}
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}\|x\|_{2}^{-1} x & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}\|x\|_{2}^{-1} x & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

Proof.

$$
\|z\|_{2} \quad \geq \quad\|x\|_{2}+\langle g, z-x\rangle
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}\|x\|_{2}^{-1} x & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

Proof.

$$
\begin{aligned}
\|z\|_{2} & \geq\|x\|_{2}+\langle g, z-x\rangle \\
\|z\|_{2} & \geq\langle g, z\rangle
\end{aligned}
$$

More examples

Example $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}\|x\|_{2}^{-1} x & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0 .\end{cases}
$$

Proof.

$$
\begin{aligned}
\|z\|_{2} & \geq\|x\|_{2}+\langle g, z-x\rangle \\
\|z\|_{2} & \geq\langle g, z\rangle \\
& \Longrightarrow\|g\|_{2} \leq 1
\end{aligned}
$$

More examples

Example A convex function need not be subdifferentiable everywhere.
Let

$$
f(x):= \begin{cases}-\left(1-\|x\|_{2}^{2}\right)^{1 / 2} & \text { if }\|x\|_{2} \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

f diff. for all x with $\|x\|_{2}<1$, but $\partial f(x)=\emptyset$ whenever $\|x\|_{2} \geq 1$.

Calculus

If f and k are differentiable, we know that
■ Addition: $\nabla(f+k)(x)=\nabla f(x)+\nabla k(x)$
■ Scaling: $\nabla(\alpha f(x))=\alpha \nabla f(x)$

If f and k are differentiable, we know that

- Addition: $\nabla(f+k)(x)=\nabla f(x)+\nabla k(x)$
- Scaling: $\nabla(\alpha f(x))=\alpha \nabla f(x)$

Chain rule

$$
\begin{gathered}
\text { If } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text {, and } k: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p} \text {. Let } h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \text { be the } \\
\text { composition } h(x)=(k \circ f)(x)=k(f(x)) \text {. Then, } \\
D h(x)=D k(f(x)) D f(x) .
\end{gathered}
$$

Recall basic calculus

If f and k are differentiable, we know that

- Addition: $\nabla(f+k)(x)=\nabla f(x)+\nabla k(x)$
- Scaling: $\nabla(\alpha f(x))=\alpha \nabla f(x)$

Chain rule

$$
\begin{gathered}
\text { If } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}, \text { and } k: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p} \text {. Let } h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \text { be the } \\
\text { composition } h(x)=(k \circ f)(x)=k(f(x)) \text {. Then, } \\
D h(x)=D k(f(x)) D f(x) .
\end{gathered}
$$

Example If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $k: \mathbb{R} \rightarrow \mathbb{R}$, then using the fact that $\nabla h(x)=[D h(x)]^{T}$, we obtain

$$
\nabla h(x)=k^{\prime}(f(x)) \nabla f(x)
$$

Subgradient calculus

A Finding one subgradient within $\partial f(x)$

Subgradient calculus

A Finding one subgradient within $\partial f(x)$
© Determining entire subdifferential $\partial f(x)$ at a point x

Subgradient calculus

A Finding one subgradient within $\partial f(x)$
© Determining entire subdifferential $\partial f(x)$ at a point x
© Do we have the chain rule?

Subgradient calculus

4 Finding one subgradient within $\partial f(x)$

- Determining entire subdifferential $\partial f(x)$ at a point x
- Do we have the chain rule?

A Usually not easy!

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b) .
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b) .
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x
\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b) .
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x
\oint Conjugation: $z \in \partial f(x)$ if and only if $x \in \partial f^{*}(z)$

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Examples

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array} \quad\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0\end{cases}$
Then, $f=\max \left\{f_{1}, f_{2}\right\}=\mathbb{I}_{0}$, whereby $\partial f(0)=\mathbb{R}$
But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.

Examples

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array} \quad\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0 \\ -2 \sqrt{-x} & \text { if } x \leq 0\end{cases}$
Then, $f=\max \left\{f_{1}, f_{2}\right\}=\mathbb{I}_{0}$, whereby $\partial f(0)=\mathbb{R}$
But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.
However, $\partial f_{1}(x)+\partial f_{2}(x) \subset \partial\left(f_{1}+f_{2}\right)(x)$ always holds.

Examples

Example $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}
$$

where e_{i} is i-th canonical basis vector (column of identity matrix).

Examples

Example $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}
$$

where e_{i} is i-th canonical basis vector (column of identity matrix).
To prove, notice that $f(x)=\max _{1 \leq i \leq n}\left\{\left|e_{i}^{T} x\right|\right\}$.

Example Let $f(x)=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}\left(2^{n}\right.$ members)

Example Let $f(x)=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$ (2^{n} members)

∂f at $x=(0,0)$

Example (s. Boyd)

Example Let $f(x)=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$ (2^{n} members)

∂f at $x=(0,0)$

$$
\partial f \text { at } x=(1,0)
$$

Example (S. Boyd)

Example Let $f(x)=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}$ (2^{n} members)

∂f at $x=(0,0)$

∂f at $x=(1,0)$

∂f at $x=(1,1)$

Rules for subgradients

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
h\left(z, y^{*}\right) & \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
h\left(z, y^{*}\right) & \geq f(x)+g^{T}(z-x)
\end{aligned}
$$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
h\left(z, y^{*}\right) & \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
h\left(z, y^{*}\right) & \geq f(x)+g^{T}(z-x) \\
f(z) & \geq h(z, y) \quad \text { (because of sup) } \\
f(z) & \geq f(x)+g^{T}(z-x) .
\end{aligned}
$$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a \max (in fact, over a finite number of terms)

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $f(x ; y)=f_{k}(x)=a_{k}^{T} x+b_{k}$, and $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $f(x ; y)=f_{k}(x)=a_{k}^{T} x+b_{k}$, and $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$
- Hence, $a_{k} \in \partial f(x)$ works!

Subgradient of expectation
Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$
- Then, $g=\int g(x, u) p(u) d u=\mathbf{E} g(x, u) \in \partial f(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$
- Compare with $\nabla f(x)=J \nabla h(x)$, where J matrix of $\nabla f_{i}(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$
- Compare with $\nabla f(x)=J \nabla h(x)$, where J matrix of $\nabla f_{i}(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \geq f(x)+g^{T}(z-x)$

1 R. T. Rockafellar. Convex Analysis
2 S. Boyd (Stanford); EE364b Lecture Notes.

