Convex Optimization

(EE227A: UC Berkeley)

Lecture 4 (Conjugates, subdifferentials) 31 Jan, 2013

Suvrit Sra

Organizational

- \heartsuit HW1 due: **14th Feb 2013** in class.
- \heartsuit Please \square TEX your solutions (contact TA if this is an issue)
- \heartsuit Discussion with classmates is ok
- $\heartsuit\,$ Each person must submit his/her individual solutions
- \heartsuit Acknowledge any help you receive
- \heartsuit Do not copy!
- \heartsuit Make sure you understand the solution you submit
- $\heartsuit\,$ Cite any source that you use
- \heartsuit Have fun solving problems!

Recap

- ► Eigenvalues, singular values, positive definiteness
- ▶ Convex sets, $\theta_1 x + \theta_2 y \in C$, $\theta_1 + \theta_2 = 1$, $\theta_i \ge 0$
- ► Convex functions, midpoint convex, recognizing convexity
- ▶ Norms, mixed-norms, matrix norms, dual norms
- ▶ Indicator, distance function, minimum of jointly convex
- ▶ Brief mention of other forms of convexity

$$\begin{split} f\left(\frac{x+y}{2}\right) &\leq \frac{1}{2}[f(x)+f(y)] + \text{continuity} \implies f \text{ is cvx} \\ \nabla^2 f(x) \succeq 0 \text{ implies } f \text{ is cvx.} \end{split}$$

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is $\|u\|_* := \sup \{u^T x \mid \|x\| \le 1\}.$

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is $\|u\|_* := \sup \{u^T x \mid \|x\| \le 1\}.$

Exercise: Verify that we may write $||u||_* = \sup_{x \neq 0} \frac{u^T x}{||x||}$

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is $\|u\|_* := \sup \{u^T x \mid \|x\| \le 1\}.$ **Exercise:** Verify that we may write $\|u\|_* = \sup_{x \ne 0} \frac{u^T x}{\|x\|}$ **Exercise:** Verify that $\|u\|_*$ is a norm.

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is $\|u\|_* := \sup \{u^T x \mid \|x\| \le 1\}.$ **Exercise:** Verify that we may write $\|u\|_* = \sup_{x \ne 0} \frac{u^T x}{\|x\|}$

Exercise: Verify that $||u||_*$ is a norm.

- $\blacktriangleright \ \|u+v\|_* = \sup\left\{(u+v)^T x \mid \|x\| \le 1\right\}$
- ▶ But $\sup (A + B) \leq \sup A + \sup B$

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is

$$||u||_* := \sup \{ u^T x \mid ||x|| \le 1 \}.$$

Exercise: Verify that we may write $||u||_* = \sup_{x \neq 0} \frac{u^T x}{||x||}$ **Exercise:** Verify that $||u||_*$ is a norm.

•
$$||u+v||_* = \sup\left\{(u+v)^T x \mid ||x|| \le 1\right\}$$

▶ But
$$\sup (A + B) \le \sup A + \sup B$$

Exercise: Let 1/p + 1/q = 1, where $p, q \ge 1$. Show that $\|\cdot\|_q$ is dual to $\|\cdot\|_p$. In particular, the ℓ_2 -norm is self-dual.

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is

$$||u||_* := \sup \{ u^T x \mid ||x|| \le 1 \}.$$

Exercise: Verify that we may write $||u||_* = \sup_{x \neq 0} \frac{u^T x}{||x||}$ **Exercise:** Verify that $||u||_*$ is a norm.

•
$$||u+v||_* = \sup\left\{(u+v)^T x \mid ||x|| \le 1\right\}$$

▶ But
$$\sup (A + B) \le \sup A + \sup B$$

Exercise: Let 1/p + 1/q = 1, where $p, q \ge 1$. Show that $\|\cdot\|_q$ is dual to $\|\cdot\|_p$. In particular, the ℓ_2 -norm is self-dual.

Hint: Use *Hölder's inequality*: $u^T v \leq ||u||_p ||v||_q$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} \quad x^T z - f(x).$$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{I}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

• Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ▶ Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ▶ $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||);$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ▶ $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- ▶ Then, $z^T x \|x\| = \alpha z^T u \|\alpha u\| = \alpha (z^T u \|u\|); \rightarrow \infty$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ▶ $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- ▶ Then, $z^Tx \|x\| = \alpha z^Tu \|\alpha u\| = \alpha (z^Tu \|u\|); \rightarrow \infty$
- Case (ii): Since $z^T x \leq ||x|| ||z||_*$,

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ▶ Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ▶ $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- ▶ Then, $z^T x \|x\| = \alpha z^T u \|\alpha u\| = \alpha (z^T u \|u\|); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ▶ Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ▶ $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- ► Then, $z^T x \|x\| = \alpha z^T u \|\alpha u\| = \alpha (z^T u \|u\|); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.
- x = 0 maximizes $||x|| (||z||_* 1)$, hence f(z) = 0.

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* pointwise (over x) sup of linear functions of z, so cvx!

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ▶ Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ▶ $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- ► Then, $z^T x \|x\| = \alpha z^T u \|\alpha u\| = \alpha (z^T u \|u\|); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.
- ▶ x = 0 maximizes $||x|| (||z||_* 1)$, hence f(z) = 0.
- ▶ Thus, $f(z) = +\infty$ if (i), and 0 if (ii), as desired.

Example f(x) = ax + b; then,

$$f^*(z) = \sup_x zx - (ax+b)$$

Example f(x) = ax + b; then,

$$f^*(z) = \sup_{x} zx - (ax + b)$$

= ∞ , if $(z - a) \neq 0$.

Example f(x) = ax + b; then, $f^*(z) = \sup_{x} zx - (ax + b)$ $= \infty, \quad \text{if } (z - a) \neq 0.$ Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example f(x) = ax + b; then, $f^*(z) = \sup_{x} zx - (ax + b)$ $= \infty, \quad \text{if } (z - a) \neq 0.$ Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example f(x) = ax + b; then, $f^*(z) = \sup_{x} zx - (ax + b)$ $= \infty, \quad \text{if } (z - a) \neq 0.$ Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Example f(x) = ax + b; then, $f^*(z) = \sup_x zx - (ax + b)$ $= \infty$, if $(z - a) \neq 0$. Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Exercise: If $f(x) = \max(0, 1 - x)$, then dom f^* is [-1, 0], and within this domain, $f^*(z) = z$. **Hint:** Analyze cases: $\max(0, 1 - x) = 0$; and $\max(0, 1 - x) = 1 - x$

Subdifferentials

First order global underestimator

 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$

First order global underestimator

 $f(x) \geq f(y) + \langle g, x - y \rangle$

Subgradients

Subgradients – basic facts

- $\blacktriangleright~f$ is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is **globally** smaller than f(x).
- ▶ Usually, one subgradient costs approx. as much as f(x)

Subgradients – basic facts

- $\blacktriangleright~f$ is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is **globally** smaller than f(x).
- \blacktriangleright Usually, one subgradient costs approx. as much as $f(\boldsymbol{x})$
- Determining all subgradients at a given point difficult.
- ► Subgradient calculus—a great achievement in convex analysis

Subgradients – basic facts

- $\blacktriangleright~f$ is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is **globally** smaller than f(x).
- \blacktriangleright Usually, one subgradient costs approx. as much as $f(\boldsymbol{x})$
- Determining all subgradients at a given point difficult.
- Subgradient calculus—a great achievement in convex analysis
- ▶ Without convexity, things become wild! advanced course

Subgradients – example

 $f(x) := \max(f_1(x), f_2(x))$; both f_1, f_2 convex, differentiable

 $\star~f_1(x)>f_2(x)$: unique subgradient of f is $f_1'(x)$

 $f(x) := \max(f_1(x), f_2(x))$; both f_1, f_2 convex, differentiable

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$ * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$

- \star $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$
- $\star~f_1(x) < f_2(x)$: unique subgradient of f is $f_2'(x)$
- * $f_1(y) = f_2(y)$: subgradients, the segment $[f'_1(y), f'_2(y)]$ (imagine all supporting lines turning about point y)

Subgradients

Def. A vector $g \in \mathbb{R}^n$ is called a **subgradient** at a point y, if for all $x \in \text{dom } f$, it holds that

$$f(x) \ge f(y) + \langle g, x - y \rangle$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:

♣ If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called **subdifferential** of f at y

If f is convex, $\partial f(x)$ is nice:

& If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty

♣ If f differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:

- **4** If $x \in$ relative interior of dom f, then $\partial f(x)$ nonempty
- **♣** If f differentiable at x, then $\partial f(x) = \{\nabla f(x)\}$
- $\clubsuit~$ If $\partial f(x)=\{g\},$ then f is differentiable and $g=\nabla f(x)$

Subdifferential – example

$$f(x) = |x|$$

Subdifferential – example

Subdifferential – example

Example $f(x) = ||x||_2$. Then, $\partial f(x) := \begin{cases} ||x||_2^{-1}x & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Example $f(x) = ||x||_2$. Then, $\partial f(x) := \begin{cases} ||x||_2^{-1}x & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Proof.

$$||z||_2 \ge ||x||_2 + \langle g, z - x \rangle$$

Example $f(x) = ||x||_2$. Then, $\partial f(x) := \begin{cases} ||x||_2^{-1}x & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Proof.

$$\begin{aligned} \|z\|_2 &\geq & \|x\|_2 + \langle g, \, z - x \rangle \\ \|z\|_2 &\geq & \langle g, \, z \rangle \end{aligned}$$

Example $f(x) = ||x||_2$. Then, $\partial f(x) := \begin{cases} ||x||_2^{-1}x & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Proof.

$$\begin{aligned} \|z\|_2 &\geq \|x\|_2 + \langle g, \, z - x \rangle \\ \|z\|_2 &\geq \langle g, \, z \rangle \\ &\implies \|g\|_2 \leq 1. \end{aligned}$$

Example A convex function need not be subdifferentiable everywhere. Let

$$f(x) := \begin{cases} -(1 - \|x\|_2^2)^{1/2} & \text{if } \|x\|_2 \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

f diff. for all x with $||x||_2 < 1$, but $\partial f(x) = \emptyset$ whenever $||x||_2 \ge 1$.

Calculus

Recall basic calculus

If f and k are differentiable, we know that

Addition:
$$\nabla(f+k)(x) = \nabla f(x) + \nabla k(x)$$

Scaling:
$$\nabla(\alpha f(x)) = \alpha \nabla f(x)$$

Recall basic calculus

If f and k are differentiable, we know that

Addition:
$$\nabla (f+k)(x) = \nabla f(x) + \nabla k(x)$$

Scaling:
$$\nabla(\alpha f(x)) = \alpha \nabla f(x)$$

Chain rule

If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $k : \mathbb{R}^m \to \mathbb{R}^p$. Let $h : \mathbb{R}^n \to \mathbb{R}^p$ be the composition $h(x) = (k \circ f)(x) = k(f(x))$. Then, Dh(x) = Dk(f(x))Df(x).

Recall basic calculus

If f and k are differentiable, we know that

Addition:
$$\nabla (f+k)(x) = \nabla f(x) + \nabla k(x)$$

Scaling:
$$\nabla(\alpha f(x)) = \alpha \nabla f(x)$$

Chain rule

If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $k : \mathbb{R}^m \to \mathbb{R}^p$. Let $h : \mathbb{R}^n \to \mathbb{R}^p$ be the composition $h(x) = (k \circ f)(x) = k(f(x))$. Then, Dh(x) = Dk(f(x))Df(x).

Example If $f : \mathbb{R}^n \to \mathbb{R}$ and $k : \mathbb{R} \to \mathbb{R}$, then using the fact that $\nabla h(x) = [Dh(x)]^T$, we obtain

$$\nabla h(x) = k'(f(x))\nabla f(x).$$

• Finding one subgradient within $\partial f(x)$

- Finding one subgradient within $\partial f(x)$
- \clubsuit Determining entire subdifferential $\partial f(x)$ at a point x

- **\blacklozenge** Finding one subgradient within $\partial f(x)$
- \clubsuit Determining entire subdifferential $\partial f(x)$ at a point x
- Do we have the chain rule?

- **\blacklozenge** Finding one subgradient within $\partial f(x)$
- \clubsuit Determining entire subdifferential $\partial f(x)$ at a point x
- Do we have the chain rule?
- ♦ Usually not easy!

 \oint If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$

- \oint If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$
- $\oint \text{ Scaling } \alpha > 0 \text{, } \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \}$

- \oint If f is differentiable, $\partial f(x) = \{\nabla f(x)\}$
- $\oint \text{ Scaling } \alpha > 0 \text{, } \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \}$
- $\oint \text{ Addition}^*: \ \partial(f+k)(x) = \partial f(x) + \partial k(x) \text{ (set addition)}$

 $\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$ $\oint \text{ Scaling } \alpha > 0, \ \partial(\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$ $\oint \text{ Addition*: } \partial(f+k)(x) = \partial f(x) + \partial k(x) \text{ (set addition)}$ $\oint \text{ Chain rule*: Let } A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ f : \mathbb{R}^m \to \mathbb{R}, \text{ and }$ $h : \mathbb{R}^n \to \mathbb{R} \text{ be given by } h(x) = f(Ax+b). \text{ Then,}$ $\partial h(x) = A^T \partial f(Ax+b).$

$$\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$$

$$\oint \text{ Scaling } \alpha > 0, \ \partial(\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$$

$$\oint \text{ Addition}^*: \ \partial(f+k)(x) = \partial f(x) + \partial k(x) \text{ (set addition)}$$

$$\oint \text{ Chain rule}^*: \text{ Let } A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ f: \mathbb{R}^m \to \mathbb{R}, \text{ and }$$

$$h: \mathbb{R}^n \to \mathbb{R} \text{ be given by } h(x) = f(Ax+b). \text{ Then,}$$

$$\partial h(x) = A^T \partial f(Ax+b).$$

 $\oint \text{ Chain rule}^*: h(x) = f \circ k, \text{ where } k: X \to Y \text{ is diff.}$ $\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$

∮ If f is differentiable,
$$\partial f(x) = \{\nabla f(x)\}$$

∮ Scaling $\alpha > 0$, $\partial(\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$

∮ Addition*: $\partial(f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)

∮ Chain rule*: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, and $h : \mathbb{R}^n \to \mathbb{R}$ be given by $h(x) = f(Ax + b)$. Then,

 $\partial h(x) = A^T \partial f(Ax + b).$

 $\oint \text{ Chain rule}^*: h(x) = f \circ k, \text{ where } k: X \to Y \text{ is diff.}$ $\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$

 $\oint \text{ Max function}^*: \text{ If } f(x) := \max_{1 \le i \le m} f_i(x), \text{ then}$ $\partial f(x) = \operatorname{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$

convex hull over subdifferentials of "active" functions at \boldsymbol{x}

$$\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$$

$$\oint \text{ Scaling } \alpha > 0, \ \partial(\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$$

$$\oint \text{ Addition*: } \partial(f+k)(x) = \partial f(x) + \partial k(x) \text{ (set addition)}$$

$$\oint \text{ Chain rule*: Let } A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m, \ f : \mathbb{R}^m \to \mathbb{R}, \text{ and }$$

$$h : \mathbb{R}^n \to \mathbb{R} \text{ be given by } h(x) = f(Ax+b). \text{ Then,}$$

$$\partial h(x) = A^T \partial f(Ax+b).$$

 $\oint \text{ Chain rule}^*: h(x) = f \circ k, \text{ where } k : X \to Y \text{ is diff.}$ $\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$

 $\oint \text{ Max function}^*: \text{ If } f(x) := \max_{1 \le i \le m} f_i(x), \text{ then}$ $\partial f(x) = \operatorname{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$

convex hull over subdifferentials of "active" functions at $x \oint$ Conjugation: $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$

Examples

It can happen that $\partial(f_1+f_2)\neq\partial f_1+\partial f_2$
It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = \max\{f_1, f_2\} = \mathbb{I}_0$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = \max\{f_1, f_2\} = \mathbb{I}_0$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

However, $\partial f_1(x) + \partial f_2(x) \subset \partial (f_1 + f_2)(x)$ always holds.

Example $f(x) = ||x||_{\infty}$. Then, $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\}$, where e_i is *i*-th canonical basis vector (column of identity matrix).

Example $f(x) = ||x||_{\infty}$. Then, $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\}$, where e_i is *i*-th canonical basis vector (column of identity matrix).

To prove, notice that $f(x) = \max_{1 \le i \le n} \{ |e_i^T x| \}.$

Example Let $f(x) = \max \left\{ s^T x \mid s_i \in \{-1, 1\} \right\}$ (2ⁿ members)

Example Let $f(x) = \max \{s^T x \mid s_i \in \{-1, 1\}\}$ (2ⁿ members)

Example Let $f(x) = \max \left\{ s^T x \mid s_i \in \{-1, 1\} \right\}$ (2ⁿ members)

Rules for subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

▶ Pick any y^* for which $h(x, y^*) = f(x)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

- $\blacktriangleright \ {\rm Pick \ any} \ y^* \ {\rm for \ which} \ h(x,y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

- \blacktriangleright Pick any y^* for which $h(x,y^*)=f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

- \blacktriangleright Pick any y^* for which $h(x,y^*)=f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$h(z, y^*) \geq h(x, y^*) + g^T(z - x)$$

$$h(z, y^*) \geq f(x) + g^T(z - x)$$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

- \blacktriangleright Pick any y^* for which $h(x,y^*)=f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$\begin{array}{rcl} h(z,y^*) & \geq & h(x,y^*) + g^T(z-x) \\ h(z,y^*) & \geq & f(x) + g^T(z-x) \\ f(z) & \geq & h(z,y) & (\text{because of sup}) \\ f(z) & \geq & f(x) + g^T(z-x). \end{array}$$

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)

• Suppose $f(x) = a_k^T x + b_k$ for some index k

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)

▶ Suppose $f(x) = a_k^T x + b_k$ for some index k

• Here
$$f(x;y) = f_k(x) = a_k^T x + b_k$$
, and $\partial f_k(x) = \{\nabla f_k(x)\}$

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This f a max (in fact, over a finite number of terms)

• Suppose $f(x) = a_k^T x + b_k$ for some index k

• Here
$$f(x; y) = f_k(x) = a_k^T x + b_k$$
, and $\partial f_k(x) = \{\nabla f_k(x)\}$

▶ Hence,
$$a_k \in \partial f(x)$$
 works!

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

 $\blacktriangleright \ \, {\rm For \ each} \ \, u \ \, {\rm choose} \ \, {\rm any} \ \, g(x,u) \in \partial_x f(x,u)$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

- $\blacktriangleright~$ For each u choose any $g(x,u)\in \partial_x f(x,u)$
- \blacktriangleright Then, $g=\int g(x,u)p(u)du=\mathbf{E}g(x,u)\in\partial f(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

For i = 1 to n, compute $g_i \in \partial f_i(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

- For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

For
$$i = 1$$
 to n , compute $g_i \in \partial f_i(x)$

• Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$

• Set
$$g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$$
; this $g \in \partial f(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

- For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set $g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$; this $g \in \partial f(x)$
- Compare with $\nabla f(x) = J \nabla h(x)$, where J matrix of $\nabla f_i(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and nondecreasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector $g \in \partial f(x)$, we may:

- For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set $g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$; this $g \in \partial f(x)$
- ▶ Compare with $\nabla f(x) = J \nabla h(x)$, where J matrix of $\nabla f_i(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \ge f(x) + g^T(z - x)$

References

- **1** R. T. Rockafellar. *Convex Analysis*
- 2 S. Boyd (Stanford); EE364b Lecture Notes.