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(EE227A: UC Berkeley)

Lecture 4
(Conjugates, subdifferentials)

31 Jan, 2013

◦

Suvrit Sra



Organizational

♥ HW1 due: 14th Feb 2013 in class.

♥ Please LATEX your solutions (contact TA if this is an issue)

♥ Discussion with classmates is ok

♥ Each person must submit his/her individual solutions

♥ Acknowledge any help you receive

♥ Do not copy!

♥ Make sure you understand the solution you submit

♥ Cite any source that you use

♥ Have fun solving problems!
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Recap

I Eigenvalues, singular values, positive definiteness

I Convex sets, θ1x+ θ2y ∈ C, θ1 + θ2 = 1, θi ≥ 0

I Convex functions, midpoint convex, recognizing convexity

I Norms, mixed-norms, matrix norms, dual norms

I Indicator, distance function, minimum of jointly convex

I Brief mention of other forms of convexity

f
(x+y

2

)
≤ 1

2 [f(x) + f(y)] + continuity =⇒ f is cvx

∇2f(x) � 0 implies f is cvx.
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Fenchel Conjugate
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Dual norms

Def. Let ‖·‖ be a norm on Rn. Its dual norm is

‖u‖∗ := sup
{
uTx | ‖x‖ ≤ 1

}
.

Exercise: Verify that we may write‖u‖∗ = supx6=0
uT x
‖x‖

Exercise: Verify that ‖u‖∗ is a norm.

I ‖u+ v‖∗ = sup
{
(u+ v)Tx | ‖x‖ ≤ 1

}
I But sup (A+B) ≤ supA+ supB

Exercise: Let 1/p+ 1/q = 1, where p, q ≥ 1. Show that ‖·‖q is
dual to ‖·‖p. In particular, the `2-norm is self-dual.

Hint: Use Hölder’s inequality: uT v ≤ ‖u‖p‖v‖q
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖);

→∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞

I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗,

xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.

I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.

I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
‖u‖ ≤ 1 and zTu > 1

I f∗(z) = supx x
T z − f(x). Rewrite x = αu, and let α→∞

I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖); →∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xT z − ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.
I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f(z) = 0.
I Thus, f(z) = +∞ if (i), and 0 if (ii), as desired.

6 / 30



Fenchel conjugate

Example f(x) = ax+ b; then,

f∗(z) = sup
x
zx− (ax+ b)

= ∞, if (z − a) 6= 0.

Thus, dom f∗ = {a}, and f∗(a) = −b.

Example Let a ≥ 0, and set f(x) = −
√
a2 − x2 if |x| ≤ a, and +∞

otherwise. Then, f∗(z) = a
√
1 + z2.

Example f(x) = 1
2x

TAx, where A � 0. Then, f∗(z) = 1
2z

TA−1z.

Exercise: If f(x) = max(0, 1− x), then dom f∗ is [−1, 0], and
within this domain, f∗(z) = z.

Hint: Analyze cases: max(0, 1− x) = 0; and
max(0, 1− x) = 1− x
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Subdifferentials
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First order global underestimator

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f(x) ≥ f(y) + 〈∇f(y), x− y〉
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First order global underestimator

y

f(y)

g1

g2
g3

f(y)
+ 〈g1,

x− y〉

f(x)

f(x) ≥ f(y) + 〈g, x− y〉
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Subgradients

y

f(y)

g1

g2
g3

f(y)
+ 〈g1,

x− y〉

f(x)

g1, g2, g3 are subgradients at y
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Subgradients – basic facts

I f is convex, differentiable: ∇f(y) the unique subgradient at y

I A vector g is a subgradient at a point y if and only if
f(y) + 〈g, x− y〉 is globally smaller than f(x).

I Usually, one subgradient costs approx. as much as f(x)

I Determining all subgradients at a given point — difficult.

I Subgradient calculus—a great achievement in convex analysis

I Without convexity, things become wild! — advanced course
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Subgradients – example

f(x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable
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y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f
′
2(y)]

(imagine all supporting lines turning about point y)
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Subgradients

Def. A vector g ∈ Rn is called a subgradient at a point y, if for all

x ∈ dom f , it holds that

f(x) ≥ f(y) + 〈g, x− y〉

13 / 30



Subdifferential

Def. The set of all subgradients at y denoted by ∂f(y). This set is
called subdifferential of f at y

If f is convex, ∂f(x) is nice:

♣ If x ∈ relative interior of dom f , then ∂f(x) nonempty

♣ If f differentiable at x, then ∂f(x) = {∇f(x)}
♣ If ∂f(x) = {g}, then f is differentiable and g = ∇f(x)
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Subdifferential – example

f(x) = |x|

∂f(x)

−1

+1

x

∂|x| =


−1 x < 0,

+1 x > 0,

[−1, 1] x = 0.
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More examples

Example f(x) = ‖x‖2. Then,

∂f(x) :=

{
‖x‖−12 x x 6= 0,

{z | ‖z‖2 ≤ 1} x = 0.

Proof.

‖z‖2 ≥ ‖x‖2 + 〈g, z − x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.
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More examples

Example A convex function need not be subdifferentiable everywhere.
Let

f(x) :=

{
−(1− ‖x‖22)1/2 if ‖x‖2 ≤ 1,

+∞ otherwise.

f diff. for all x with ‖x‖2 < 1, but ∂f(x) = ∅ whenever ‖x‖2 ≥ 1.

17 / 30



Calculus
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Recall basic calculus

If f and k are differentiable, we know that

Addition: ∇(f + k)(x) = ∇f(x) +∇k(x)
Scaling: ∇(αf(x)) = α∇f(x)

Chain rule

If f : Rn → Rm, and k : Rm → Rp. Let h : Rn → Rp be the
composition h(x) = (k ◦ f)(x) = k(f(x)). Then,

Dh(x) = Dk(f(x))Df(x).

Example If f : Rn → R and k : R → R, then using the fact that
∇h(x) = [Dh(x)]T , we obtain

∇h(x) = k′(f(x))∇f(x).
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Subgradient calculus

♠ Finding one subgradient within ∂f(x)

♠ Determining entire subdifferential ∂f(x) at a point x

♠ Do we have the chain rule?

♠ Usually not easy!
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Subgradient calculus∮
If f is differentiable, ∂f(x) = {∇f(x)}

∮
Scaling α > 0, ∂(αf)(x) = α∂f(x) = {αg | g ∈ ∂f(x)}∮
Addition∗: ∂(f + k)(x) = ∂f(x) + ∂k(x) (set addition)∮
Chain rule∗: Let A ∈ Rm×n, b ∈ Rm, f : Rm → R, and
h : Rn → R be given by h(x) = f(Ax+ b). Then,

∂h(x) = AT∂f(Ax+ b).∮
Chain rule∗: h(x) = f ◦ k, where k : X → Y is diff.

∂h(x) = ∂f(k(x)) ◦Dk(x) = [Dk(x)]T∂f(k(x))∮
Max function∗: If f(x) := max1≤i≤m fi(x), then

∂f(x) = conv
⋃
{∂fi(x) | fi(x) = f(x)} ,

convex hull over subdifferentials of “active” functions at x∮
Conjugation: z ∈ ∂f(x) if and only if x ∈ ∂f∗(z)
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Examples

It can happen that ∂(f1 + f2) 6= ∂f1 + ∂f2

Example Define f1 and f2 by

f1(x) :=

{
−2√x if x ≥ 0,

+∞ if x < 0,
and f2(x) :=

{
+∞ if x > 0,

−2√−x if x ≤ 0.

Then, f = max {f1, f2} = I0, whereby ∂f(0) = R
But ∂f1(0) = ∂f2(0) = ∅.

However, ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) always holds.
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Examples

Example f(x) = ‖x‖∞. Then,

∂f(0) = conv {±e1, . . . ,±en} ,

where ei is i-th canonical basis vector (column of identity matrix).

To prove, notice that f(x) = max1≤i≤n
{
|eTi x|

}
.
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Example (S. Boyd)

Example Let f(x) = max
{
sTx | si ∈ {−1, 1}

}
(2n members)

(−1, 1)

(1,−1)

∂f at x = (0, 0)

−1

+1

1

∂f at x = (1, 0)

−1

+1
(1, 1)

∂f at x = (1, 1)
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Rules for subgradients
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Subgradient for pointwise sup

f(x) := sup
y∈Y

h(x, y)

Getting ∂f(x) is complicated!

Simple way to obtain some g ∈ ∂f(x):
I Pick any y∗ for which h(x, y∗) = f(x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f(x)

h(z, y∗) ≥ h(x, y∗) + gT (z − x)
h(z, y∗) ≥ f(x) + gT (z − x)

f(z) ≥ h(z, y) (because of sup)

f(z) ≥ f(x) + gT (z − x).
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Example

Suppose ai ∈ Rn and bi ∈ R. And

f(x) := max
1≤i≤n

(aTi x+ bi).

This f a max (in fact, over a finite number of terms)

I Suppose f(x) = aTk x+ bk for some index k

I Here f(x; y) = fk(x) = aTk x+ bk, and ∂fk(x) = {∇fk(x)}
I Hence, ak ∈ ∂f(x) works!
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Subgradient of expectation

Suppose f = Ef(x, u), where f is convex in x for each u (an r.v.)

f(x) :=

∫
f(x, u)p(u)du

I For each u choose any g(x, u) ∈ ∂xf(x, u)
I Then, g =

∫
g(x, u)p(u)du = Eg(x, u) ∈ ∂f(x)
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Subgradient of composition

Suppose h : Rn → R cvx and nondecreasing; each fi cvx

f(x) := h(f1(x), f2(x), . . . , fn(x)).

To find a vector g ∈ ∂f(x), we may:

I For i = 1 to n, compute gi ∈ ∂fi(x)
I Compute u ∈ ∂h(f1(x), . . . , fn(x))
I Set g = u1g1 + u2g2 + · · ·+ ungn; this g ∈ ∂f(x)
I Compare with ∇f(x) = J∇h(x), where J matrix of ∇fi(x)

Exercise: Verify g ∈ ∂f(x) by showing f(z) ≥ f(x) + gT (z − x)
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