Convex Optimization

(EE227A: UC Berkeley)

Lecture 4
(Conjugates, subdifferentials)

31 Jan, 2013

o
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Organizational

CEECEECERCERC AR CRRCEECRRG

HW1 due: 14th Feb 2013 in class.

Please IATEX your solutions (contact TA if this is an issue)
Discussion with classmates is ok

Each person must submit his/her individual solutions
Acknowledge any help you receive

Do not copy!

Make sure you understand the solution you submit

Cite any source that you use

Have fun solving problems!

N

30



Recap

vVvyyvyVvyyy

Eigenvalues, singular values, positive definiteness

Convex sets, 1z + 6y € C, 01 +60:=1,6,>0

Convex functions, midpoint convex, recognizing convexity
Norms, mixed-norms, matrix norms, dual norms
Indicator, distance function, minimum of jointly convex

Brief mention of other forms of convexity

f(55Y) < 31f(x) + f(y)] + continuity = f is cvx
V2f(x) = 0 implies f is cvx.
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Fenchel Conjugate



Dual norms

Def. Let ||-|| be a norm on R™. Its dual norm is

Jull. := sup {u"x | ] < 1}.
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Exercise: Verify that we may write||ul[. = sup, ﬁ
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Exercise: Verify that ||u/|. is a norm.

» [[u+olls =sup{(utv)Tz ||zl <1}
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Exercise: Let 1/p+1/q =1, where p,q > 1. Show that |||, is
dual to [|-||,. In particular, the ¢2-norm is self-dual.



Dual norms

Def. Let ||-|| be a norm on R™. Its dual norm is

Jull. := sup {u"x | ] < 1}.

Exercise: Verify that we may write||ul[. = sup, ﬁ
Exercise: Verify that ||u/|. is a norm.

» [[u+olls =sup{(utv)Tz ||zl <1}

» But sup (A+ B) <supA+supB

Exercise: Let 1/p+1/q =1, where p,q > 1. Show that |||, is
dual to [|-||,. In particular, the ¢2-norm is self-dual.

Hint: Use Hélder's inequality: uTv < |jullp||v|lq



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(z) == sup 'z — f(x).

z€dom f

6/30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

6/30
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Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.
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Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z]|« > 1; (ii) ||z]|« <1
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Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.
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flu| <1and 2Tu > 1

6



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z« > 1; (i) ||z]|« < 1

» Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
flu| <1and 2Tu > 1

» f*(2) =sup, 272z — f(x). Rewrite z = au, and let & — oo

6

30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z« > 1; (i) ||z]|« < 1

» Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
flu| <1and 2Tu > 1

» f*(2) =sup, 272z — f(x). Rewrite z = au, and let & — oo

» Then, 27z — ||z|| = azTu — |Jau| = a(zTu — ||Jul]);

6

30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

» Consider two cases: (i) ||z« > 1; (i) ||z]|« < 1

» Case (i), by definition of dual norm (sup over zTu) there is a u s.t.
flu| <1and 2Tu > 1

» f*(2) =sup, 272z — f(x). Rewrite z = au, and let & — oo

» Then, 27z — ||z|| = azTu — [Jau|| = a(zTu — ||Jul]); = oo

6

30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

v

Consider two cases: (i) ||zl > 1; (i) ||z]|« < 1

Case (i), by definition of dual norm (sup over z7u) there is a u s.t.
flu| <1and 2Tu > 1

f*(2) = sup, 272 — f(z). Rewrite x = au, and let o — oo

Then, 27z — ||z]| = azTu — |lau| = a(zTu — ||lu|); = o

» Case (ii): Since 27z < ||z||||2]
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.
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Consider two cases: (i) ||zl > 1; (i) ||z]|« < 1

Case (i), by definition of dual norm (sup over z7u) there is a u s.t.
flu| <1and 2Tu > 1

f*(2) = sup, 272 — f(z). Rewrite x = au, and let o — oo
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» Case (ii): Since 27z < ||z||||2]l«, 2Tz — ||z|| < ||=]|(||z]|« — 1) < 0.

v

vy

6

30



Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

v

Consider two cases: (i) ||zl > 1; (i) ||z]|« < 1

Case (i), by definition of dual norm (sup over z7u) there is a u s.t.
flu| <1and 2Tu > 1

f*(2) = sup, 272 — f(z). Rewrite x = au, and let o — oo

Then, 27z — ||z]| = azTu — |lau| = a(zTu — ||lu|); = o

Case (ii): Since 27z < ||z||||2]l«, 2Tz — ||z|| < [|=]|(||z]|« — 1) < 0.
x = 0 maximizes ||z| (||z]|« — 1), hence f(z) = 0.
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f*(2):= sup  alz— f(x).
z€dom f

’Note: f* pointwise (over x) sup of linear functions of z, so cvx!

Example Let f(x) = ||z|. We have f*(z) = [,,<1(2). Thatis,
conjugate of norm is the indicator function of dual norm ball.

v

Consider two cases: (i) ||zl > 1; (i) ||z]|« < 1

Case (i), by definition of dual norm (sup over z7u) there is a u s.t.
flu| <1and 2Tu > 1

f*(2) = sup, 272 — f(z). Rewrite x = au, and let o — oo

Then, 27z — ||z]| = azTu — |lau| = a(zTu — ||lu|); = o

Case (ii): Since 27z < ||z||||2]l«, 2Tz — ||z|| < [|=]|(||z]|« — 1) < 0.
x = 0 maximizes ||z| (||z]|« — 1), hence f(z) = 0.

Thus, f(z) = +oo if (i), and 0 if (ii), as desired.
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Fenchel conjugate

Example f(z) = ax + b; then,
f*(z) = supzz— (ax+Db)
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Fenchel conjugate

Example f(z) = ax + b; then,
f(2)

sup zz — (ax + b)
x

Thus, dom f* = {a}, and f*(a) = —b.

oo, if(z—a)#0.
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Fenchel conjugate

Example f(z) = ax + b; then,
f*(z) = supzz— (ax+Db)

xT

= oo, if(z—a)#0.
Thus, dom f* = {a}, and f*(a) = —b.

Example Let a > 0, and set f(z) = —va? — 22 if || < a, and 400
otherwise. Then, f*(z) = aV1 + 22.
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Fenchel conjugate
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Fenchel conjugate

Example f(z) = ax + b; then,
f*(z) = supzz— (ax+Db)

xT

= oo, if(z—a)#0.

Thus, dom f* = {a}, and f*(a) = —b.

Example Let a > 0, and set f(z) = —va? — 22 if || < a, and 400
otherwise. Then, f*(z) = aV1 + 22.

Example f(z) = $27 Az, where A = 0. Then, f*(2) = $2TA 12

Exercise: If f(z) = max(0,1 — z), then dom f* is [—1,0], and
within this domain, f*(z) = z.

Hint: Analyze cases: max(0,1 — z) = 0; and
max(0,1—z)=1—2x



Subdifferentials



First order global underestimator

A
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First order global underestimator

A
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Subgradients

g1, g2, g3 are subgradients at y
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Subgradients — basic facts

» [ is convex, differentiable: V f(y) the unique subgradient at y

» A vector g is a subgradient at a point y if and only if
f(y) + {g, x — y) is globally smaller than f(x).
» Usually, one subgradient costs approx. as much as f(x)
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Subgradients — basic facts

f is convex, differentiable: V f(y) the unique subgradient at y
A vector g is a subgradient at a point y if and only if

f(y) + {g, x — y) is globally smaller than f(x).

Usually, one subgradient costs approx. as much as f(x)
Determining all subgradients at a given point — difficult.
Subgradient calculus—a great achievement in convex analysis

Without convexity, things become wild! — advanced course
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Subgradients — example

f(x) :=max(fi(x), fo(x)); both f1, fo convex, differentiable
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Subgradients — example

| f(x) == max(f1(z), fo(x)); both fi, fa convex, differentiable

J

* fi(x) > fa(z): unique subgradient of f is fi(x)
* fi(z) < fao(z): unique subgradient of f is f}(x
* fi1(y) = fa(y): subgradients, the segment [f1(y), f5(y)]

/
2\y
(imagine all supporting lines turning about point y)
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Subgradients

Def. A vector g € R" is called a subgradient at a point y, if for all
x € dom f, it holds that

f(x) = fly) + (g, z —y)
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Subdifferential

Def. The set of all subgradients at y denoted by 0f(y). This set is
called subdifferential of f at y
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Subdifferential

Def. The set of all subgradients at y denoted by 0f(y). This set is
called subdifferential of f at y

If fis convex, Of(x) is nice:
& If = € relative interior of dom f, then 0 f(x) nonempty
& If f differentiable at x, then 0f(z) = {V f(z)}
& If 0f(x) = {g}, then f is differentiable and g = V f(z)

14 /30



Subdifferential — example

fz) = ||
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Subdifferential — example
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Subdifferential — example

fz) = ||

2\ Of(x)

+1

-1 x <0,
Jlz| = ¢ +1 x>0,

[-1,1] z=0.

15/30



More examples

Example f(z) = ||z||2. Then,

[kl w0,
o= {{z el <1} w=o0.
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Izl =zl + (g, 2 = 2)
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More examples

Example f(z) = ||z||2. Then,

[kl w0,
o= {{z el <1} w=o0.

Proof.

Izl =zl + (g, 2 = 2)
Izl = (g, 2)
= gl < 1.

16 /30



More examples

Example A convex function need not be subdifferentiable everywhere.

Let
flw) = {_(1_”95”3)1/2 i ol <1,

+o00 otherwise.

f diff. for all x with ||z||2 < 1, but 9f(x) = () whenever ||z|j2 > 1.
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Calculus
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Recall basic calculus

If f and k are differentiable, we know that
m Addition: V(f + k)(z) = Vf(z) + Vk(z)
m Scaling: V(af(z)) = aVf(z)
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Recall basic calculus

If f and k are differentiable, we know that
m Addition: V(f + k)(z) = Vf(z) + Vk(z)
m Scaling: V(af(z)) = aVf(z)

Chain rule

If f:R" — R™ and k : R — RP. Let h : R® — RP be the
composition h(z) = (ko f)(z) = k(f(z)). Then,
Dh(x) = Dk(f(x))Df(x).
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Recall basic calculus

If f and k are differentiable, we know that
m Addition: V(f + k)(z) = Vf(z) + Vk(z)
m Scaling: V(af(z)) = aVf(z)

Chain rule

If f:R" — R™ and k : R — RP. Let h : R® — RP be the
composition h(z) = (ko f)(z) = k(f(z)). Then,
Dh(x) = Dk(f(x))Df(x).

Example If f: R" — R and k£ : R — R, then using the fact that
Vh(z) = [Dh(z)]T, we obtain

Vh(z) = K'(f(2)) V().
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Subgradient calculus

& Finding one subgradient within Jf(z)
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Subgradient calculus

& Finding one subgradient within 0 f(z)
& Determining entire subdifferential 0f(x) at a point z
& Do we have the chain rule?

& Usually not easy!
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Subgradient calculus

¢ If fis differentiable, 0f (z) = {V f(z)}
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Subgradient calculus

¢ If fis differentiable, 0f (z) = {V f(z)}

¢ Scaling o > 0, 9(af)(z) = adf(z) ={ag | g € Of(z)}

¢ Addition*: 9(f + k)(z) = 9f (x) + Ok(z) (set addition)

¢ Chain rule*: Let A € R™*", beR™, f:R™ — R, and
h:R™ — R be given by h(x) = f(Ax +b). Then,

Oh(z) = ATOf(Azx +b).
¢ Chain rule*: h(z) = f ok, where k: X — Y is diff.
Oh(z) = 0 (k(z)) o Dk(x) = [Dk(x)]" 0 f (k(x))
¢ Max function*: If f(x) := maxi<i<, fi(z), then

0f(x) = conv| J{0fi(2) | fi(x) = f(x)},

convex hull over subdifferentials of “active” functions at x
¢ Conjugation: z € 9f(z) if and only if z € 9f*(2)



Examples

It can happen that O(f1 + f2) # 0f1 + 0f2
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Examples

It can happen that O(f1 + f2) # 0f1 + 0f2

Example Define f1 and f2 by

—2/x ifxz >0, 400 if £ >0,
fi(z) = ve . and  fo() := .
400 if <0, —2¢/—x ifx <0.

Then, f = max{f1, fo} = Iy, whereby 9f(0) =R
But 0f; (0) = 8f2(0) = 0.
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Examples

’ It can happen that O(f1 + f2) # 0f1 + 0f2

Example Define f1 and f2 by

)2y ifx >0, . _J oo
ﬁ@y_{+m ifx <0, and h@%—{_%ﬁw

Then, f = max{f1, fo} = Iy, whereby 9f(0) =R
But 0f; (0) = 8f2(0) = 0.

if £ >0,
if x <0.

’However, Ofi(z) + 0fa(x) C O(f1 + f2)(x) always holds.
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Examples

Example f(z) = ||z|/s. Then,
0f(0) = conv{tey,...,te,},

where ¢; is i-th canonical basis vector (column of identity matrix).
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Examples

Example f(z) = ||z|/s. Then,

0f(0) = conv{=xey,...,te,},

where ¢; is i-th canonical basis vector (column of identity matrix).

To prove, notice that f(z) = maxi<;<n {|e} z|}.
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Example (s. Boyd)

Example Let f(z) = max {s"z | s; € {—1,1}} (2" members)
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Example (s. Boyd)

Example Let f(z) = max {s"z | s; € {—1,1}} (2" members)
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(lvfl)

df at z = (0,0) df at x = (1,0) of at x = (1,1)
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Rules for subgradients



Subgradient for pointwise sup

f(z) :==sup h(z,y)
yey

Getting Of(x) is complicated!

26 /30



Subgradient for pointwise sup

f(z) :=sup h(z,y)
yey

Getting Of(x) is complicated!

Simple way to obtain some g € df(z):

26 /30



Subgradient for pointwise sup

f(z) :=sup h(z,y)
yey

Getting Of(x) is complicated!

Simple way to obtain some g € df(z):
» Pick any y* for which h(x,y*) = f(z)

26 /30



Subgradient for pointwise sup

f(z) :=sup h(z,y)
yey

Getting Of(x) is complicated!

Simple way to obtain some g € df(z):
» Pick any y* for which h(x,y*) = f(z)
» Pick any subgradient g € Oh(z,y*)

26 /30



Subgradient for pointwise sup

f(z) :=sup h(z,y)
yey

Getting Of(x) is complicated!

Simple way to obtain some g € df(z):
» Pick any y* for which h(x,y*) = f(z)
» Pick any subgradient g € Oh(z,y*)
» This g € 0f(x)

26 /30



Subgradient for pointwise sup

f(z) :=sup h(z,y)
yey

Getting Of(x) is complicated!

Simple way to obtain some g € df(z):
» Pick any y* for which h(x,y*) = f(z)
» Pick any subgradient g € Oh(z,y*)
» This g € 0f(x)

h(z,y*) +g" (z — x)
f@)+g"(z—2)

h(z,y")
h(z,y")

AVARAYS
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Subgradient for pointwise sup

f(z) :=sup h(z,y)
yey

Getting Of(x) is complicated!

Simple way to obtain some g € df(z):
» Pick any y* for which h(x,y*) = f(z)
» Pick any subgradient g € Oh(z,y*)
» This g € 0f(x)

h(zy*) > hxy*) +g' (2 —x)
h(zy*) > f(z)+g"(z—2)
f(z) = h(zvy) (because of sup)
fz) = f@)+g"(z-a).

26
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Example

Suppose a; € R™ and b; € R. And

f(z) := max (a] z +b;).

1<i<n

This f a max (in fact, over a finite number of terms)
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Example

Suppose a; € R™ and b; € R. And

f(z) := max (a] z +b;).

1<i<n

This f a max (in fact, over a finite number of terms)

» Suppose f(z) = a} x + by for some index k
» Here f(z;y) = fr(x) = alz + by, and Ofy(x) = {V fe(z)}
» Hence, a; € 0f(x) works!
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Subgradient of expectation

Suppose f = Ef(x,u), where f is convex in x for each u (an r.v.)

fa) = / F (s w)p(u)du
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Subgradient of expectation

Suppose f = Ef(x,u), where f is convex in x for each u (an r.v.)

fa) = / F (s w)p(u)du

» For each u choose any g(x,u) € 0, f(z,u)
» Then, g = [ g(z,u)p(u)du = Eg(z,u) € 0f(x)

28 /30



Subgradient of composition

Suppose h : R™ — R cvx and nondecreasing; each f; cvx

f(@) = h(fi(z), fa(z), ..., ful2)).
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Subgradient of composition

Suppose h : R™ — R cvx and nondecreasing; each f; cvx

f(@) = h(fi(z), fa(z), ..., ful2)).

To find a vector g € df(x), we may:
» Fori =1 to n, compute g; € df;(x)
» Compute u € Oh(fi(z),..., fu(x))
» Set g = w191 + u2ge + -+ - + Ungn; this g € Of ()
» Compare with Vf(z) = JVh(z), where J matrix of V f;(z)

Exercise: Verify g € 0f(z) by showing f(z) > f(x) + ¢* (2 — )
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