Convex Optimization

(EE227A: UC Berkeley)

Lecture 3 (Convex sets and functions)

29 Jan, 2013

Suvrit Sra

Course organization

- http://people.kyb.tuebingen.mpg.de/suvrit/teach/ee227a/
- Relevant texts / references:
 - ♡ *Convex optimization* Boyd & Vandenberghe (BV)
 - Introductory lectures on convex optimisation Nesterov
 - ♡ *Nonlinear programming* Bertsekas
 - Convex Analysis Rockafellar
 - V Numerical optimization Nocedal & Wright
 - ♡ Lectures on modern convex optimization Nemirovski
 - ♡ *Optimization for Machine Learning* Sra, Nowozin, Wright
- Instructor: Suvrit Sra (suvrit@gmail.com) (Max Planck Institute for Intelligent Systems, Tübingen, Germany)
- HW + Quizzes (40%); Midterm (30%); Project (30%)
- TA Office hours to be posted soon
- 🔹 l don't have an office yet Ӱ
- If you email me, please put EE227A in Subject:

Linear algebra recap

Def. If $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Consider the equation

 $Ax = \lambda x, \qquad x \neq 0, \quad \lambda \in \mathbb{C}.$

If scalar λ and vector x satisfy this equation, then λ is called an eigenvalue and x and eigenvector of A.

Def. If $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Consider the equation

$$Ax = \lambda x, \qquad x \neq 0, \quad \lambda \in \mathbb{C}.$$

If scalar λ and vector x satisfy this equation, then λ is called an eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

Thus, λ is an eigenvalue, if and only if

$$\det(\lambda I - A) = 0.$$

Def. If $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Consider the equation

$$Ax = \lambda x, \qquad x \neq 0, \quad \lambda \in \mathbb{C}.$$

If scalar λ and vector x satisfy this equation, then λ is called an eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

Thus, λ is an eigenvalue, if and only if

$$\det(\lambda I - A) = 0.$$

Def. $p_A(t) := \det(tI - A)$ is called **characteristic polynomial**.

Def. If $A \in \mathbb{C}^{n \times n}$ and $x \in \mathbb{C}^n$. Consider the equation

$$Ax = \lambda x, \qquad x \neq 0, \quad \lambda \in \mathbb{C}.$$

If scalar λ and vector x satisfy this equation, then λ is called an eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as

$$(\lambda I - A)x = 0, \quad x \neq 0.$$

Thus, λ is an eigenvalue, if and only if

$$\det(\lambda I - A) = 0.$$

Def. $p_A(t) := \det(tI - A)$ is called characteristic polynomial.

Eigenvalues are roots of characteristic polynomial.

Theorem Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$\operatorname{Tr}(A) = \sum_{i} a_{ii} = \sum_{i} \lambda_{i}, \quad \det(A) = \prod_{i} \lambda_{i}.$$

Theorem Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$\operatorname{Tr}(A) = \sum_{i} a_{ii} = \sum_{i} \lambda_{i}, \quad \det(A) = \prod_{i} \lambda_{i}.$$

Def. Matrix $U \in \mathbb{C}^{n \times n}$ unitary if $U^*U = I([U^*]_{ij} = [\bar{u}_{ji}])$

Theorem Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$\operatorname{Tr}(A) = \sum_{i} a_{ii} = \sum_{i} \lambda_{i}, \quad \det(A) = \prod_{i} \lambda_{i}.$$

Def. Matrix $U \in \mathbb{C}^{n \times n}$ unitary if $U^*U = I([U^*]_{ij} = [\bar{u}_{ji}])$

Theorem (Schur factorization). If $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, then there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ (i.e., $U^*U = I$), such that

$$U^*AU = T = [t_{ij}]$$

is upper triangular with diagonal entries $t_{ii} = \lambda_i$.

Theorem Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$\operatorname{Tr}(A) = \sum_{i} a_{ii} = \sum_{i} \lambda_{i}, \quad \det(A) = \prod_{i} \lambda_{i}.$$

Def. Matrix $U \in \mathbb{C}^{n \times n}$ unitary if $U^*U = I([U^*]_{ij} = [\bar{u}_{ji}])$

Theorem (Schur factorization). If $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, then there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ (i.e., $U^*U = I$), such that

$$U^*AU = T = [t_{ij}]$$

is upper triangular with diagonal entries $t_{ii} = \lambda_i$.

Corollary. If $A^*A = AA^*$, then there exists a unitary U such that $A = U\Lambda U^*$. We will call this the **Eigenvector Decomposition**.

Theorem Let $\lambda_1, \ldots, \lambda_n$ be eigenvalues of $A \in \mathbb{C}^{n \times n}$. Then,

$$\operatorname{Tr}(A) = \sum_{i} a_{ii} = \sum_{i} \lambda_{i}, \quad \det(A) = \prod_{i} \lambda_{i}.$$

Def. Matrix $U \in \mathbb{C}^{n \times n}$ unitary if $U^*U = I([U^*]_{ij} = [\bar{u}_{ji}])$

Theorem (Schur factorization). If $A \in \mathbb{C}^{n \times n}$ with eigenvalues $\lambda_1, \ldots, \lambda_n$, then there is a unitary matrix $U \in \mathbb{C}^{n \times n}$ (i.e., $U^*U = I$), such that

$$U^*AU = T = [t_{ij}]$$

is upper triangular with diagonal entries $t_{ii} = \lambda_i$.

Corollary. If $A^*A = AA^*$, then there exists a unitary U such that $A = U\Lambda U^*$. We will call this the **Eigenvector Decomposition**.

Proof. $A = VTV^*$, $A^* = VT^*V^*$, so $AA^* = TT^* = T^*T = A^*A$. But T is upper triangular, so only way for $TT^* = T^*T$, some easy but tedious induction shows that T must be diagonal. Hence, $T = \Lambda$.

Singular value decomposition

Theorem (SVD) Let $A \in \mathbb{C}^{m \times n}$. There are unitaries s.t. U and V $U^*AV = \text{Diag}(\sigma_1, \dots, \sigma_p), \quad p = \min(m, n),$ where $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_p \ge 0$. Usually written as $A = U\Sigma V^*.$

Singular value decomposition

Theorem (SVD) Let $A \in \mathbb{C}^{m \times n}$. There are unitaries s.t. U and V $U^*AV = \text{Diag}(\sigma_1, \dots, \sigma_p), \quad p = \min(m, n),$ where $\sigma_1 \ge \sigma_2 \ge \cdots \sigma_p \ge 0$. Usually written as $A = U\Sigma V^*.$

left singular vectors U are eigenvectors of AA^* right singular vectors V are eigenvectors of A^*A nonzero singular values $\sigma_i = \sqrt{\lambda_i(AA^*)} = \sqrt{\lambda_i(A^*A)}$

Def. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, i.e., $a_{ij} = a_{ji}$. Then, A is called **positive definite** if

$$x^T A x = \sum_{ij} x_i a_{ij} x_j > 0, \quad \forall \ x \neq 0.$$

If > replaced by \geq , we call A **positive semidefinite**.

Def. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, i.e., $a_{ij} = a_{ji}$. Then, A is called **positive definite** if

$$x^T A x = \sum_{ij} x_i a_{ij} x_j > 0, \quad \forall \ x \neq 0.$$

If > replaced by \ge , we call A **positive semidefinite**.

Theorem A symmetric real matrix is positive semidefinite (positive definite) iff all its eigenvalues are nonnegative (positive).

Def. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, i.e., $a_{ij} = a_{ji}$. Then, A is called **positive definite** if

$$x^T A x = \sum_{ij} x_i a_{ij} x_j > 0, \quad \forall \ x \neq 0.$$

If > replaced by \ge , we call A **positive semidefinite**.

Theorem A symmetric real matrix is positive semidefinite (positive definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as $B^T B$

Exercise: Prove this claim. Also prove converse.

Def. Let $A \in \mathbb{R}^{n \times n}$ be symmetric, i.e., $a_{ij} = a_{ji}$. Then, A is called **positive definite** if

$$x^T A x = \sum_{ij} x_i a_{ij} x_j > 0, \quad \forall \ x \neq 0.$$

If > replaced by \ge , we call A **positive semidefinite**.

Theorem A symmetric real matrix is positive semidefinite (positive definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as $B^T B$

Exercise: Prove this claim. Also prove converse.

Notation: $A \succ 0$ (posdef) or $A \succeq 0$ (semidef)

Amongst most important objects in convex optimization!

$$\begin{array}{c|c} f(x) & \nabla f(x) \\ \hline x^T a = \sum_i x_i a_i & a \end{array}$$

$$\begin{array}{c|c} f(x) & \nabla f(x) \\ \hline x^T a = \sum_i x_i a_i & a \\ x^T A x = \sum_{ij} x_i a_{ij} x_j & (A + A^T) x \end{array}$$

f(x)	$\nabla f(x)$
$x^T a = \sum_i x_i a_i$	a
$x^T A x = \sum_{ij} x_i a_{ij} x_j$	$(A + A^T)x$
$\log \det(X)$	X^{-1}

f(x)	$\nabla f(x)$
$x^T a = \sum_i x_i a_i$	a
$x^T A x = \sum_{ij} x_i a_{ij} x_j$	$(A + A^T)x$
$\log \det(X)$	X^{-1}
$\operatorname{Tr}(XA) = \sum_{ij} x_{ij} a_{ji}$	A^T

f(x)	$\nabla f(x)$
$x^T a = \sum_i x_i a_i$	a
$x^T A x = \sum_{ij} x_i a_{ij} x_j$	$(A + A^T)x$
$\log \det(X)$	X^{-1}
$\operatorname{Tr}(XA) = \sum_{ij} x_{ij} a_{ji}$	A^T
$\operatorname{Tr}(X^T A) = \sum_{ij} x_{ij} a_{ij}$	A

f(x)	$\nabla f(x)$
$x^T a = \sum_i x_i a_i$	a
$x^T A x = \sum_{ij} x_i a_{ij} x_j$	$(A + A^T)x$
$\log \det(X)$	X^{-1}
$\operatorname{Tr}(XA) = \sum_{ij} x_{ij} a_{ji}$	A^T
$\operatorname{Tr}(X^T A) = \sum_{ij} x_{ij} a_{ij}$	A
$\operatorname{Tr}(X^T A X)$	$(A + A^T)X$

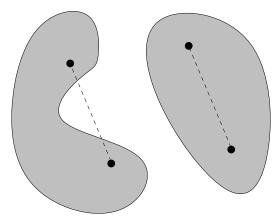
Easily derived using "brute-force" rules

f(x)	$\nabla f(x)$
$x^T a = \sum_i x_i a_i$	a
$x^T A x = \sum_{ij} x_i a_{ij} x_j$	$(A + A^T)x$
$\log \det(X)$	X^{-1}
$\operatorname{Tr}(XA) = \sum_{ij} x_{ij} a_{ji}$	A^T
$\operatorname{Tr}(X^T A) = \sum_{ij} x_{ij} a_{ij}$	A
$\operatorname{Tr}(X^T A X)$	$(A + A^T)X$

Easily derived using "brute-force" rules

Wikipedia

- My ancient notes
- Matrix cookbook
- I hope to put up notes on less brute-forced approach.



Def. A set $C \subset \mathbb{R}^n$ is called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$ (here $\theta \ge 0$) also lies in C.

Def. A set $C \subset \mathbb{R}^n$ is called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$ (here $\theta \ge 0$) also lies in C.

Combinations

▶ Convex: $\theta_1 x + \theta_2 y \in C$, where $\theta_1, \theta_2 \ge 0$ and $\theta_1 + \theta_2 = 1$.

Def. A set $C \subset \mathbb{R}^n$ is called **convex**, if for any $x, y \in C$, the line-segment $\theta x + (1 - \theta)y$ (here $\theta \ge 0$) also lies in C.

Combinations

- ▶ Convex: $\theta_1 x + \theta_2 y \in C$, where $\theta_1, \theta_2 \ge 0$ and $\theta_1 + \theta_2 = 1$.
- Linear: if restrictions on θ_1, θ_2 are dropped
- ▶ Conic: if restriction $\theta_1 + \theta_2 = 1$ is dropped

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof. If $C_1 \cap C_2 = \emptyset$, then true vacuously.

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof. If $C_1 \cap C_2 = \emptyset$, then true vacuously. Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$.

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

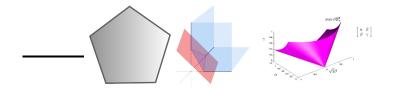
Proof. If $C_1 \cap C_2 = \emptyset$, then true vacuously. Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$. But C_1 , C_2 are convex, hence $\theta x + (1 - \theta)y \in C_1$, and also in C_2 . Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$.

Theorem (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof. If $C_1 \cap C_2 = \emptyset$, then true vacuously. Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$. But C_1, C_2 are convex, hence $\theta x + (1 - \theta)y \in C_1$, and also in C_2 . Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$. Inductively follows that $\bigcap_{i=1}^m C_i$ is also convex.

Convex sets – more examples



(psdcone image from convexoptimization.com, Dattorro)

Convex sets – more examples

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\mathsf{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\operatorname{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

 \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\mathsf{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

 \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).

 \heartsuit halfspace $\{x \mid a^T x \leq b\}$.

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\mathbf{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

- \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).
- \heartsuit halfspace $\{x \mid a^T x \leq b\}.$
- \heartsuit polyhedron $\{x \mid Ax \leq b, Cx = d\}.$

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\mathsf{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

- \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).
- \heartsuit halfspace $\{x \mid a^T x \leq b\}.$
- \heartsuit polyhedron $\{x \mid Ax \leq b, Cx = d\}.$
- \heartsuit ellipsoid $\{x \mid (x x_0)^T A(x x_0) \le 1\}$, (A: semidefinite)

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\mathsf{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

- \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).
- \heartsuit halfspace $\{x \mid a^T x \leq b\}.$
- \heartsuit polyhedron $\{x \mid Ax \leq b, Cx = d\}.$
- \heartsuit ellipsoid $\{x \mid (x x_0)^T A(x x_0) \le 1\}$, (A: semidefinite)
- \heartsuit probability simplex $\{x \mid x \ge 0, \sum_i x_i = 1\}$

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their convex hull is

$$\mathsf{co}(x_1,\ldots,x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

 \heartsuit Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).

$$\heartsuit$$
 halfspace $\{x \mid a^T x \leq b\}.$

- \heartsuit polyhedron $\{x \mid Ax \leq b, Cx = d\}.$
- \heartsuit ellipsoid $\{x \mid (x x_0)^T A(x x_0) \le 1\}$, (A: semidefinite)
- \heartsuit probability simplex $\{x \mid x \ge 0, \sum_i x_i = 1\}$

_____ O _____

Quiz: Prove that these sets are convex.

Def. Function $f: I \to \mathbb{R}$ on interval I called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

Def. Function $f: I \to \mathbb{R}$ on interval I called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

Read: f of AM is less than or equal to AM of f.

Def. Function $f: I \to \mathbb{R}$ on interval I called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

Read: f of AM is less than or equal to AM of f.

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\theta \ge 0$

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$

Def. Function $f: I \to \mathbb{R}$ on interval I called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

Read: f of AM is less than or equal to AM of f.

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\theta \ge 0$

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$

Theorem (J.L.W.V. Jensen). Let $f : I \to \mathbb{R}$ be continuous. Then, f is convex *if and only if* it is midpoint convex.

Def. Function $f: I \to \mathbb{R}$ on interval I called **midpoint convex** if $f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}$, whenever $x, y \in I$.

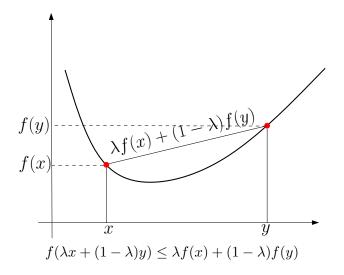
Read: f of AM is less than or equal to AM of f.

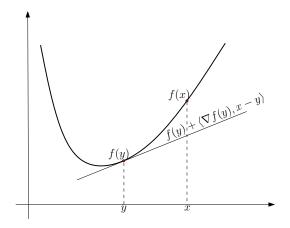
Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\theta \ge 0$

 $f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y).$

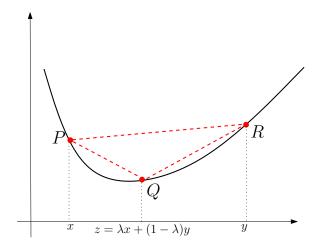
Theorem (J.L.W.V. Jensen). Let $f : I \to \mathbb{R}$ be continuous. Then, f is convex *if and only if* it is midpoint convex.

▶ Theorem extends to functions $f : \mathcal{X} \subseteq \mathbb{R}^n \to \mathbb{R}$. Very useful to checking convexity of a given function.





 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$



slope PQ \leq slope PR \leq slope QR

Recognizing convex functions

 \blacklozenge If f is continuous and midpoint convex, then it is convex.

Recognizing convex functions

- \blacklozenge If f is continuous and midpoint convex, then it is convex.
- If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.

Recognizing convex functions

- \blacklozenge If f is continuous and midpoint convex, then it is convex.
- ♦ If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.

• Linear: $f(\theta_1 x + \theta_2 y) = \theta_1 f(x) + \theta_2 f(y)$; θ_1, θ_2 unrestricted

• Concave: $f(\theta x + (1 - \theta)y) \ge \theta f(x) + (1 - \theta)f(y)$

• Strictly convex: If inequality is strict for $x \neq y$

Example The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \max_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Example The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \max_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Example Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Example The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in some "index set" \mathcal{Y} , then

$$f(x) := \max_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of x (set \mathcal{Y} is arbitrary).

Example Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify truth of above examples.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Theorem Let $\mathcal Y$ be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$.

Theorem Let $\mathcal Y$ be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$. Since $f(u) = \inf_y L(u, y)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$,

Theorem Let $\mathcal Y$ be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$. Since $f(u) = \inf_y L(u, y)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$.

Theorem Let $\mathcal Y$ be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$. Since $f(u) = \inf_y L(u, y)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$. Similarly, there is $y_2 \in \mathcal{Y}$, such that $L(v, y_2) \leq f(v) + \frac{\epsilon}{2}$.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

$$f(\lambda u + (1 - \lambda)v) = \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y)$$

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

$$f(\lambda u + (1 - \lambda)v) = \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y)$$

$$\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2)$$

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

$$\begin{aligned} f(\lambda u + (1 - \lambda)v) &= \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y) \\ &\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2) \\ &\leq \lambda L(u, y_1) + (1 - \lambda)L(v, y_2) \end{aligned}$$

Theorem Let \mathcal{Y} be a nonempty convex set. Suppose L(x,y) is convex in (x,y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of x, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom } f$. Since $f(u) = \inf_y L(u, y)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$. Similarly, there is $y_2 \in \mathcal{Y}$, such that $L(v, y_2) \leq f(v) + \frac{\epsilon}{2}$. Now we prove that $f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v)$ directly.

$$f(\lambda u + (1 - \lambda)v) = \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y)$$

$$\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2)$$

$$\leq \lambda L(u, y_1) + (1 - \lambda)L(v, y_2)$$

$$\leq \lambda f(u) + (1 - \lambda)f(v) + \epsilon.$$

Since $\epsilon > 0$ is arbitrary, claim follows.

Let A, B, C be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the Schur complement $A - BC^{-1}B^T \succeq 0$.

Let A, B, C be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the Schur complement $A - BC^{-1}B^T \succeq 0$. *Proof.* $L(x,y) = [x,y]^T Z[x,y]$ is convex in (x,y) since $Z \succeq 0$

Let A, B, C be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the Schur complement $A - BC^{-1}B^T \succeq 0$. *Proof.* $L(x,y) = [x,y]^T Z[x,y]$ is convex in (x,y) since $Z \succeq 0$

Observe that $f(x) = \inf_y L(x,y) = x^T (A - BC^{-1}B^T) x$ is convex.

Let A, B, C be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the Schur complement $A - BC^{-1}B^T \succeq 0$. *Proof.* $L(x,y) = [x,y]^T Z[x,y]$ is convex in (x,y) since $Z \succeq 0$

Observe that $f(x) = \inf_y L(x,y) = x^T (A - BC^{-1}B^T) x$ is convex.

(We skipped ahead and solved $\nabla_y L(x, y) = 0$ to minimize).

Recognizing convex functions

- \blacklozenge If f is continuous and midpoint convex, then it is convex.
- ♦ If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.

Recognizing convex functions

- \blacklozenge If f is continuous and midpoint convex, then it is convex.
- ♦ If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- By showing f to be a pointwise max of convex functions

Recognizing convex functions

- \blacklozenge If f is continuous and midpoint convex, then it is convex.
- ♦ If f is differentiable, then f is convex if and only if dom f is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom } f$.
- ♠ If f is twice differentiable, then f is convex if and only if dom f is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- \blacklozenge By showing f to be a pointwise max of convex functions
- ♠ By showing $f : \operatorname{dom}(f) \to \mathbb{R}$ is convex *if and only if* its restriction to **any** line that intersects $\operatorname{dom}(f)$ is convex. That is, for any $x \in \operatorname{dom}(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in \operatorname{dom}(f)\}$).
- See exercises (Ch. 3) in Boyd & Vandenberghe for more ways

Pointwise maximum: $f(x) = \sup_{y \in \mathcal{Y}} f(y; x)$

Pointwise maximum: $f(x) = \sup_{y \in \mathcal{Y}} f(y; x)$

Conic combination: Let $a_1, \ldots, a_n \ge 0$; let f_1, \ldots, f_n be convex functions. Then, $f(x) := \sum_i a_i f_i(x)$ is convex.

Pointwise maximum: $f(x) = \sup_{y \in \mathcal{Y}} f(y; x)$

Conic combination: Let $a_1, \ldots, a_n \ge 0$; let f_1, \ldots, f_n be convex functions. Then, $f(x) := \sum_i a_i f_i(x)$ is convex.

Remark: The set of all convex functions is a *convex cone*.

Pointwise maximum: $f(x) = \sup_{y \in \mathcal{Y}} f(y; x)$

Conic combination: Let $a_1, \ldots, a_n \ge 0$; let f_1, \ldots, f_n be convex functions. Then, $f(x) := \sum_i a_i f_i(x)$ is convex.

Remark: The set of all convex functions is a *convex cone*.

Affine composition: f(x) := g(Ax + b), where g is convex.

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$.

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$.

 $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$.

 $\begin{array}{rcl} f(\lambda x + (1-\lambda)y) &\leq & \lambda f(x) + (1-\lambda)f(y) \\ g(f(\lambda x + (1-\lambda)y)) &\leq & g\big(\lambda f(x) + (1-\lambda)f(y)\big) \end{array}$

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$.

$$\begin{aligned} f(\lambda x + (1 - \lambda)y) &\leq \lambda f(x) + (1 - \lambda)f(y) \\ g(f(\lambda x + (1 - \lambda)y)) &\leq g(\lambda f(x) + (1 - \lambda)f(y)) \\ &\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)). \end{aligned}$$

Theorem Let $f: I_1 \to \mathbb{R}$ and $g: I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$.

$$\begin{aligned} f(\lambda x + (1 - \lambda)y) &\leq \lambda f(x) + (1 - \lambda)f(y) \\ g(f(\lambda x + (1 - \lambda)y)) &\leq g(\lambda f(x) + (1 - \lambda)f(y)) \\ &\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)). \end{aligned}$$

Read Section 3.2.4 of BV for more

Examples

Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. What is: $\nabla^2 f(x)$?

Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0$, $b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. What is: $\nabla^2 f(x)$? $\nabla f(x) = 2Ax + b$, $\nabla^2 f(x) = A \succeq 0$, hence f is convex.

Indicator

Let $\mathbb{I}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{I}_{\mathcal{X}}(x) := \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ \infty & \text{otherwise.} \end{cases}$$

Indicator

Let $\mathbb{I}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{I}_{\mathcal{X}}(x) := egin{cases} 0 & ext{if } x \in \mathcal{X}, \ \infty & ext{otherwise.} \end{cases}$$

Note: $\mathbb{I}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

Distance to a set

Example Let \mathcal{Y} be a convex set. Let $x \in \mathbb{R}^n$ be some point. The distance of x to the set \mathcal{Y} is defined as

$$\mathsf{dist}(x,\mathcal{Y}) := \inf_{y \in \mathcal{Y}} \quad \|x - y\|.$$

Because ||x - y|| is jointly convex in (x, y), the function dist (x, \mathcal{Y}) is a convex function of x.

Norms

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a function that satisfies

1 $f(x) \ge 0$, and f(x) = 0 if and only if x = 0 (definiteness)

2
$$f(\lambda x) = |\lambda| f(x)$$
 for any $\lambda \in \mathbb{R}$ (positive homogeneity)

3 $f(x+y) \le f(x) + f(y)$ (subadditivity)

Such a function is called a *norm*. We usually denote norms by ||x||.

Norms

Let $f:\mathbb{R}^n\to\mathbb{R}$ be a function that satisfies

1 $f(x) \ge 0$, and f(x) = 0 if and only if x = 0 (definiteness)

2 $f(\lambda x) = |\lambda| f(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)

3 $f(x+y) \le f(x) + f(y)$ (subadditivity)

Such a function is called a *norm*. We usually denote norms by ||x||.

Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.

Example (ℓ_2 -norm): Let $x \in \mathbb{R}^n$. The Euclidean or ℓ_2 -norm is $\|x\|_2 = \left(\sum_i x_i^2\right)^{1/2}$

Example (ℓ_2 -norm): Let $x \in \mathbb{R}^n$. The Euclidean or ℓ_2 -norm is $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example (ℓ_p -norm): Let $p \ge 1$. $\|x\|_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Exercise: Verify that $||x||_p$ is indeed a norm.

Example (ℓ_2 -norm): Let $x \in \mathbb{R}^n$. The Euclidean or ℓ_2 -norm is $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example (ℓ_p -norm): Let $p \ge 1$. $||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Exercise: Verify that $||x||_p$ is indeed a norm.

Example (ℓ_{∞} -norm): $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example (ℓ_2 -norm): Let $x \in \mathbb{R}^n$. The Euclidean or ℓ_2 -norm is $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example (ℓ_p -norm): Let $p \ge 1$. $||x||_p = \left(\sum_i |x_i|^p\right)^{1/p}$

Exercise: Verify that $||x||_p$ is indeed a norm.

Example (ℓ_{∞} -norm): $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n}$. The Frobenius norm of A is $||A||_{\mathsf{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$; that is, $||A||_{\mathsf{F}} = \sqrt{\operatorname{Tr}(A^*A)}$.

Mixed norms

Def. Let $x \in \mathbb{R}^{n_1+n_2+\dots+n_G}$ be a vector partitioned into subvectors $x_j \in \mathbb{R}^{n_j}$, $1 \leq j \leq G$. Let $p := (p_0, p_1, p_2, \dots, p_G)$, where $p_j \geq 1$. Consider the vector $\xi := (||x_1||_{p_1}, \dots, ||x_G||_{p_G})$. Then, we define the **mixed-norm** of x as

$$||x||_{\mathbf{p}} := ||\xi||_{p_0}.$$

Mixed norms

Def. Let $x \in \mathbb{R}^{n_1+n_2+\dots+n_G}$ be a vector partitioned into subvectors $x_j \in \mathbb{R}^{n_j}$, $1 \leq j \leq G$. Let $p := (p_0, p_1, p_2, \dots, p_G)$, where $p_j \geq 1$. Consider the vector $\xi := (||x_1||_{p_1}, \dots, ||x_G||_{p_G})$. Then, we define the **mixed-norm** of x as

$$||x||_{\mathbf{p}} := ||\xi||_{p_0}.$$

Example $\ell_{1,q}$ -norm: Let x be as above.

$$||x||_{1,q} := \sum_{i=1}^{G} ||x_i||_q.$$

This norm is popular in machine learning, statistics.

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\| \cdot \|$ be any vector norm. We define an induced matrix norm as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}.$$

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\| \cdot \|$ be any vector norm. We define an induced matrix norm as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}.$$

Verify that above definition yields a norm.

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}$$

Verify that above definition yields a norm.

- Clearly, ||A|| = 0 iff A = 0 (definiteness)
- ► $\|\alpha A\| = |\alpha| \|A\|$ (homogeneity) ► $\|A + B\| = \sup \frac{\|(A+B)x\|}{\|x\|} \le \sup \frac{\|Ax\| + \|Bx\|}{\|x\|} \le \|A\| + \|B\|.$

Example Let A be any matrix. Then, the **operator norm** of A is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

 $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

Example Let A be any matrix. Then, the **operator norm** of A is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

 $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

• Warning! Generally, largest eigenvalue of a matrix is not a norm!

Example Let A be any matrix. Then, the **operator norm** of A is

$$|A||_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$$

 $\|A\|_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue of a matrix is not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.

Example Let A be any matrix. Then, the **operator norm** of A is

$$|A||_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$$

 $\|A\|_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue of a matrix is not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $\|A\|_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$

Operator norm

Example Let A be any matrix. Then, the **operator norm** of A is

$$|A||_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$$

 $\|A\|_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue of a matrix is not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- Schatten *p*-norm: ℓ_p -norm of vector of singular value.

Operator norm

Example Let A be any matrix. Then, the **operator norm** of A is

$$|A||_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$$

 $\|A\|_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue of a matrix is not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- Schatten *p*-norm: ℓ_p -norm of vector of singular value.
- Exercise: Let $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$||A||_{(k)} := \sum_{i=1}^{k} \sigma_i(A),$$

is a norm; $1 \le k \le n$.

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is $\|u\|_* := \sup \left\{ u^T x \mid \|x\| \le 1 \right\}.$

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its dual norm is

$$||u||_* := \sup \{ u^T x \mid ||x|| \le 1 \}.$$

Exercise: Verify that $||u||_*$ is a norm.

Exercise: Let 1/p + 1/q = 1, where $p, q \ge 1$. Show that $\|\cdot\|_q$ is dual to $\|\cdot\|_p$. In particular, the ℓ_2 -norm is self-dual.

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (regardless of f).

Example $+\infty$ and $-\infty$ conjugate to each other.

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (regardless of f).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{I}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (regardless of f).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{I}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

 $f^*(z) = \sup_x z^T x - \|x\|. \text{ If } \|z\|_* > 1 \text{, then by definition of the dual norm, there is } u \text{ s.t. } \|u\| \leq 1 \text{ and } u^T z > 1.$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (regardless of f).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{I}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

 $f^*(z) = \sup_x z^T x - ||x||$. If $||z||_* > 1$, then by definition of the dual norm, there is u s.t. $||u|| \le 1$ and $u^T z > 1$. Now select $x = \alpha u$ and let $\alpha \to \infty$.

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (regardless of f).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{I}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

$$\begin{split} f^*(z) &= \sup_x z^T x - \|x\|. \text{ If } \|z\|_* > 1 \text{, then by definition of the dual} \\ \text{norm, there is } u \text{ s.t. } \|u\| \leq 1 \text{ and } u^T z > 1. \text{ Now select } x = \alpha u \text{ and let} \\ \alpha \to \infty. \text{ Then, } z^T x - \|x\| = \alpha (z^T u - \|u\|) \to \infty. \end{split}$$

Def. The **Fenchel conjugate** of a function f is

$$f^*(z) := \sup_{x \in \text{dom } f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over x) sup of linear functions of z. Hence, it is always convex (regardless of f).

Example $+\infty$ and $-\infty$ conjugate to each other.

Example Let f(x) = ||x||. We have $f^*(z) = \mathbb{I}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

$$\begin{split} f^*(z) &= \sup_x z^T x - \|x\|. \text{ If } \|z\|_* > 1 \text{, then by definition of the dual} \\ \text{norm, there is } u \text{ s.t. } \|u\| \leq 1 \text{ and } u^T z > 1. \text{ Now select } x = \alpha u \text{ and let} \\ \alpha \to \infty. \text{ Then, } z^T x - \|x\| = \alpha (z^T u - \|u\|) \to \infty. \text{ If } \|z\|_* \leq 1 \text{, then} \\ z^T x \leq \|x\| \|z\|_*, \text{ which implies the sup must be zero.} \end{split}$$

Example
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_x zx - (ax + b)$

Example f(x) = ax + b; then, $f^*(z) = \sup_x zx - (ax + b)$ $= \infty$, if $(z - a) \neq 0$.

Example
$$f(x) = ax + b$$
; then,

$$f^*(z) = \sup_{x} zx - (ax + b)$$

$$= \infty, \quad \text{if } (z - a) \neq 0.$$
Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example f(x) = ax + b; then, $f^*(z) = \sup_x zx - (ax + b)$ $= \infty$, if $(z - a) \neq 0$. Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example f(x) = ax + b; then, $f^*(z) = \sup_x zx - (ax + b)$ $= \infty$, if $(z - a) \neq 0$.

Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Example f(x) = ax + b; then, $f^*(z) = \sup_x zx - (ax + b)$ $= \infty$, if $(z - a) \neq 0$.

Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Example $f(x) = \max(0, 1-x)$. Now $f^*(z) = \sup_x zx - \max(0, 1-x)$. Note that dom f^* is [-1, 0] (else sup is unbounded); within this domain, $f^*(z) = z$.

Misc Convexity

& Log-convex: $\log f$ is convex; \log -cvx \implies cvx;

- **& Log-convex:** $\log f$ is convex; \log -cvx \implies cvx;
- Log-concavity: log f concave; not closed under addition!

- **& Log-convex:** $\log f$ is convex; \log -cvx; \implies cvx;
- Log-concavity: log f concave; not closed under addition!
- **♣** Exponentially convex: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n

- **& Log-convex:** $\log f$ is convex; \log -cvx; \implies cvx;
- Log-concavity: log f concave; not closed under addition!
- **&** Exponentially convex: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- **4** Operator convex: $f(\lambda X + (1 \lambda)Y) \preceq \lambda f(X) + (1 \lambda)f(Y)$

- **& Log-convex:** $\log f$ is convex; \log -cvx; \implies cvx;
- Log-concavity: log f concave; not closed under addition!
- **&** Exponentially convex: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- **4** Operator convex: $f(\lambda X + (1 \lambda)Y) \preceq \lambda f(X) + (1 \lambda)f(Y)$
- **4** Quasiconvex: $f(\lambda x + (1 \lambda y)) \le \max \{f(x), f(y)\}$

- **& Log-convex:** $\log f$ is convex; \log -cvx; \implies cvx;
- Log-concavity: log f concave; not closed under addition!
- **♣** Exponentially convex: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- **4** Operator convex: $f(\lambda X + (1 \lambda)Y) \preceq \lambda f(X) + (1 \lambda)f(Y)$
- **4** Quasiconvex: $f(\lambda x + (1 \lambda y)) \le \max \{f(x), f(y)\}$
- **♣ Pseudoconvex:** $\langle \nabla f(y), x y \rangle \ge 0 \implies f(x) \ge f(y)$

- **& Log-convex:** $\log f$ is convex; \log -cvx; \implies cvx;
- Log-concavity: log f concave; not closed under addition!
- **♣** Exponentially convex: $[f(x_i + x_j)] \succeq 0$, for x_1, \ldots, x_n
- **4** Operator convex: $f(\lambda X + (1 \lambda)Y) \preceq \lambda f(X) + (1 \lambda)f(Y)$
- **4** Quasiconvex: $f(\lambda x + (1 \lambda y)) \le \max \{f(x), f(y)\}$
- $\clubsuit \text{ Pseudoconvex: } \langle \nabla f(y), \, x y \rangle \geq 0 \implies f(x) \geq f(y)$
- **A** Discrete convexity: $f : \mathbb{Z}^n \to \mathbb{Z}$; "convexity + matroid theory."