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Relevant texts / references:

♥ Convex optimization – Boyd & Vandenberghe (BV)
♥ Introductory lectures on convex optimisation – Nesterov
♥ Nonlinear programming – Bertsekas
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♥ Lectures on modern convex optimization – Nemirovski
♥ Optimization for Machine Learning – Sra, Nowozin, Wright
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If you email me, please put EE227A in Subject:
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Eigenvalues and Eigenvectors

Def. If A ∈ Cn×n and x ∈ Cn. Consider the equation

Ax = λx, x 6= 0, λ ∈ C.
If scalar λ and vector x satisfy this equation, then λ is called an
eigenvalue and x and eigenvector of A.

Above equation may be rewritten equivalently as

(λI −A)x = 0, x 6= 0.

Thus, λ is an eigenvalue, if and only if

det(λI −A) = 0.

Def. pA(t) := det(tI −A) is called characteristic polynomial.

Eigenvalues are roots of characteristic polynomial.
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Eigenvalues and Eigenvectors

Theorem Let λ1, . . . , λn be eigenvalues of A ∈ Cn×n. Then,

Tr(A) =
∑

i
aii =

∑
i
λi, det(A) =

∏
i
λi.

Def. Matrix U ∈ Cn×n unitary if U∗U = I ([U∗]ij = [ūji])

Theorem (Schur factorization). If A ∈ Cn×n with eigenvalues
λ1, . . . , λn, then there is a unitary matrix U ∈ Cn×n (i.e., U∗U = I),
such that

U∗AU = T = [tij ]

is upper triangular with diagonal entries tii = λi.

Corollary. If A∗A = AA∗, then there exists a unitary U such that
A = UΛU∗. We will call this the Eigenvector Decomposition.

Proof. A = V TV ∗, A∗ = V T ∗V ∗, so AA∗ = TT ∗ = T ∗T = A∗A. But

T is upper triangular, so only way for TT ∗ = T ∗T , some easy but tedious

induction shows that T must be diagonal. Hence, T = Λ.
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Singular value decomposition

Theorem (SVD) Let A ∈ Cm×n. There are unitaries s.t. U and V

U∗AV = Diag(σ1, . . . , σp), p = min(m,n),

where σ1 ≥ σ2 ≥ · · ·σp ≥ 0. Usually written as

A = UΣV ∗.

left singular vectors U are eigenvectors of AA∗

right singular vectors V are eigenvectors of A∗A

nonzero singular values σi =
√
λi(AA∗) =

√
λi(A∗A)
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Positive definite matrices

Def. Let A ∈ Rn×n be symmetric, i.e., aij = aji. Then, A is called
positive definite if

xTAx =
∑

ij
xiaijxj > 0, ∀ x 6= 0.

If > replaced by ≥, we call A positive semidefinite.

Theorem A symmetric real matrix is positive semidefinite (positive
definite) iff all its eigenvalues are nonnegative (positive).

Theorem Every semidefinite matrix can be written as BTB

Exercise: Prove this claim. Also prove converse.

Notation: A � 0 (posdef) or A � 0 (semidef)

Amongst most important objects in convex optimization!
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Matrix and vector calculus

f(x) ∇f(x)

xTa =
∑

i xiai a

xTAx =
∑

ij xiaijxj (A+AT )x

log det(X) X−1

Tr(XA) =
∑

ij xijaji AT

Tr(XTA) =
∑

ij xijaij A

Tr(XTAX) (A+AT )X

Easily derived using “brute-force” rules

♣ Wikipedia

♣ My ancient notes

♣ Matrix cookbook

♣ I hope to put up notes on less brute-forced approach.
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Convex sets
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Convex sets

Def. A set C ⊂ Rn is called convex, if for any x, y ∈ C, the
line-segment θx+ (1− θ)y (here θ ≥ 0) also lies in C.

Combinations

I Convex: θ1x+ θ2y ∈ C, where θ1, θ2 ≥ 0 and θ1 + θ2 = 1.

I Linear: if restrictions on θ1, θ2 are dropped

I Conic: if restriction θ1 + θ2 = 1 is dropped
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Convex sets

Theorem (Intersection).
Let C1, C2 be convex sets. Then, C1 ∩ C2 is also convex.

Proof. If C1 ∩ C2 = ∅, then true vacuously.

Let x, y ∈ C1 ∩ C2. Then, x, y ∈ C1 and x, y ∈ C2.
But C1, C2 are convex, hence θx+ (1− θ)y ∈ C1, and also in C2.
Thus, θx+ (1− θ)y ∈ C1 ∩ C2.
Inductively follows that ∩mi=1Ci is also convex.
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Convex sets – more examples

(psdcone image from convexoptimization.com, Dattorro)

13 / 42



Convex sets – more examples

♥ Let x1, x2, . . . , xm ∈ Rn. Their convex hull is

co(x1, . . . , xm) :=
{∑

i
θixi | θi ≥ 0,

∑
i
θi = 1

}
.

♥ Let A ∈ Rm×n, and b ∈ Rm. The set {x | Ax = b} is convex (it
is an affine space over subspace of solutions of Ax = 0).

♥ halfspace
{
x | aTx ≤ b

}
.

♥ polyhedron {x | Ax ≤ b, Cx = d}.
♥ ellipsoid

{
x | (x− x0)TA(x− x0) ≤ 1

}
, (A: semidefinite)

♥ probability simplex {x | x ≥ 0,
∑

i xi = 1}

◦

Quiz: Prove that these sets are convex.
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Convex functions
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Convex functions

Def. Function f : I → R on interval I called midpoint convex if

f
(x+y

2

)
≤ f(x)+f(y)

2 , whenever x, y ∈ I.

Read: f of AM is less than or equal to AM of f .

Def. A function f : Rn → R is called convex if its domain dom(f)

is a convex set and for any x, y ∈ dom(f) and θ ≥ 0

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

Theorem (J.L.W.V. Jensen). Let f : I → R be continuous. Then,
f is convex if and only if it is midpoint convex.

I Theorem extends to functions f : X ⊆ Rn → R. Very useful to
checking convexity of a given function.
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Convex functions

x y

f (x)

f (y)

λf (x)
+ (1− λ)f (y

)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)
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Convex functions

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f(x) ≥ f(y) + 〈∇f(y), x− y〉
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Convex functions

x y

P

Q

R

z = λx+ (1− λ)y

slope PQ ≤ slope PR ≤ slope QR
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Recognizing convex functions

♠ If f is continuous and midpoint convex, then it is convex.

♠ If f is differentiable, then f is convex if and only if dom f is
convex and f(x) ≥ f(y) + 〈∇f(y), x− y〉 for all x, y ∈ dom f .

♠ If f is twice differentiable, then f is convex if and only if dom f
is convex and ∇2f(x) � 0 at every x ∈ dom f .
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Convex functions

Linear: f(θ1x+ θ2y) = θ1f(x) + θ2f(y) ; θ1, θ2 unrestricted

Concave: f(θx+ (1− θ)y) ≥ θf(x) + (1− θ)f(y)

Strictly convex: If inequality is strict for x 6= y
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Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x; y) is a convex function of x for every y in
some “index set” Y, then

f(x) := max
y∈Y

f(x; y)

is a convex function of x (set Y is arbitrary).

Example Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f(Ax+ b) is convex.

Exercise: Verify truth of above examples.

21 / 42



Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x; y) is a convex function of x for every y in
some “index set” Y, then

f(x) := max
y∈Y

f(x; y)

is a convex function of x (set Y is arbitrary).

Example Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f(Ax+ b) is convex.

Exercise: Verify truth of above examples.

21 / 42



Convex functions

Example The pointwise maximum of a family of convex functions is
convex. That is, if f(x; y) is a convex function of x for every y in
some “index set” Y, then

f(x) := max
y∈Y

f(x; y)

is a convex function of x (set Y is arbitrary).

Example Let f : Rn → R be convex. Let A ∈ Rm×n, and b ∈ Rm.
Prove that g(x) = f(Ax+ b) is convex.

Exercise: Verify truth of above examples.

21 / 42



Convex functions

Theorem Let Y be a nonempty convex set. Suppose L(x, y) is
convex in (x, y), then,

f(x) := inf
y∈Y

L(x, y)

is a convex function of x, provided f(x) > −∞.

Proof. Let u, v ∈ dom f . Since f(u) = infy L(u, y), for each ε > 0, there
is a y1 ∈ Y, s.t. f(u) + ε

2 is not the infimum. Thus, L(u, y1) ≤ f(u) + ε
2 .

Similarly, there is y2 ∈ Y, such that L(v, y2) ≤ f(v) + ε
2 .

Now we prove that f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) directly.

f(λu+ (1− λ)v) = inf
y∈Y

L(λu+ (1− λ)v, y)

≤ L(λu+ (1− λ)v, λy1 + (1− λ)y2)

≤ λL(u, y1) + (1− λ)L(v, y2)

≤ λf(u) + (1− λ)f(v) + ε.

Since ε > 0 is arbitrary, claim follows.
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Example: Schur complement

Let A,B,C be matrices such that C � 0, and let

Z :=

[
A B
BT C

]
� 0,

then the Schur complement A−BC−1BT � 0.

Proof. L(x, y) = [x, y]TZ[x, y] is convex in (x, y) since Z � 0

Observe that f(x) = infy L(x, y) = xT (A−BC−1BT )x is convex.

(We skipped ahead and solved ∇yL(x, y) = 0 to minimize).
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Recognizing convex functions

♠ If f is continuous and midpoint convex, then it is convex.

♠ If f is differentiable, then f is convex if and only if dom f is
convex and f(x) ≥ f(y) + 〈∇f(y), x− y〉 for all x, y ∈ dom f .

♠ If f is twice differentiable, then f is convex if and only if dom f
is convex and ∇2f(x) � 0 at every x ∈ dom f .

♠ By showing f to be a pointwise max of convex functions

♠ By showing f : dom(f)→ R is convex if and only if its
restriction to any line that intersects dom(f) is convex. That is,
for any x ∈ dom(f) and any v, the function g(t) = f(x+ tv) is
convex (on its domain {t | x+ tv ∈ dom(f)}).

♠ See exercises (Ch. 3) in Boyd & Vandenberghe for more ways
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Operations preserving
convexity
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Operations preserving convexity

Pointwise maximum: f(x) = supy∈Y f(y;x)

Conic combination: Let a1, . . . , an ≥ 0; let f1, . . . , fn be convex
functions. Then, f(x) :=

∑
i aifi(x) is convex.

Remark: The set of all convex functions is a convex cone.

Affine composition: f(x) := g(Ax+ b), where g is convex.
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Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(f(λx+ (1− λ)y)) ≤ g
(
λf(x) + (1− λ)f(y)

)
≤ λg

(
f(x)

)
+ (1− λ)g

(
f(y)

)
.

Read Section 3.2.4 of BV for more

27 / 42



Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(f(λx+ (1− λ)y)) ≤ g
(
λf(x) + (1− λ)f(y)

)
≤ λg

(
f(x)

)
+ (1− λ)g

(
f(y)

)
.

Read Section 3.2.4 of BV for more

27 / 42



Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(f(λx+ (1− λ)y)) ≤ g
(
λf(x) + (1− λ)f(y)

)
≤ λg

(
f(x)

)
+ (1− λ)g

(
f(y)

)
.

Read Section 3.2.4 of BV for more

27 / 42



Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(f(λx+ (1− λ)y)) ≤ g
(
λf(x) + (1− λ)f(y)

)

≤ λg
(
f(x)

)
+ (1− λ)g

(
f(y)

)
.

Read Section 3.2.4 of BV for more

27 / 42



Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(f(λx+ (1− λ)y)) ≤ g
(
λf(x) + (1− λ)f(y)

)
≤ λg

(
f(x)

)
+ (1− λ)g

(
f(y)

)
.

Read Section 3.2.4 of BV for more

27 / 42



Operations preserving convexity

Theorem Let f : I1 → R and g : I2 → R, where range(f) ⊆ I2. If
f and g are convex, and g is increasing, then g ◦ f is convex on I1

Proof. Let x, y ∈ I1, and let λ ∈ (0, 1).

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

g(f(λx+ (1− λ)y)) ≤ g
(
λf(x) + (1− λ)f(y)

)
≤ λg

(
f(x)

)
+ (1− λ)g

(
f(y)

)
.

Read Section 3.2.4 of BV for more

27 / 42



Examples
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Quadratic

Let f(x) = xTAx+ bTx+ c, where A � 0, b ∈ Rn, and c ∈ R.

What is: ∇2f(x)?

∇f(x) = 2Ax+ b, ∇2f(x) = A � 0, hence f is convex.
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Indicator

Let IX be the indicator function for X defined as:

IX (x) :=

{
0 if x ∈ X ,
∞ otherwise.

Note: IX (x) is convex if and only if X is convex.
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Distance to a set

Example Let Y be a convex set. Let x ∈ Rn be some point. The
distance of x to the set Y is defined as

dist(x,Y) := inf
y∈Y

‖x− y‖.

Because ‖x− y‖ is jointly convex in (x, y), the function dist(x,Y)
is a convex function of x.
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Norms

Let f : Rn → R be a function that satisfies

1 f(x) ≥ 0, and f(x) = 0 if and only if x = 0 (definiteness)

2 f(λx) = |λ|f(x) for any λ ∈ R (positive homogeneity)

3 f(x+ y) ≤ f(x) + f(y) (subadditivity)

Such a function is called a norm. We usually denote norms by ‖x‖.

Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.

32 / 42



Norms

Let f : Rn → R be a function that satisfies

1 f(x) ≥ 0, and f(x) = 0 if and only if x = 0 (definiteness)

2 f(λx) = |λ|f(x) for any λ ∈ R (positive homogeneity)

3 f(x+ y) ≤ f(x) + f(y) (subadditivity)

Such a function is called a norm. We usually denote norms by ‖x‖.
Theorem Norms are convex.

Proof. Immediate from subadditivity and positive homogeneity.

32 / 42



Vector norms

Example (`2-norm): Let x ∈ Rn. The Euclidean or `2-norm is

‖x‖2 =
(∑

i x
2
i

)1/2

Example (`p-norm): Let p ≥ 1. ‖x‖p =
(∑

i |xi|p
)1/p

Exercise: Verify that ‖x‖p is indeed a norm.

Example (`∞-norm): ‖x‖∞ = max1≤i≤n |xi|

Example (Frobenius-norm): Let A ∈ Rm×n. The Frobenius norm

of A is ‖A‖F :=
√∑

ij |aij |2; that is, ‖A‖F =
√

Tr(A∗A).
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Mixed norms

Def. Let x ∈ Rn1+n2+···+nG be a vector partitioned into subvectors
xj ∈ Rnj , 1 ≤ j ≤ G. Let p := (p0, p1, p2, . . . , pG), where pj ≥ 1.
Consider the vector ξ := (‖x1‖p1 , · · · , ‖xG‖pG). Then, we define
the mixed-norm of x as

‖x‖p := ‖ξ‖p0 .

Example `1,q-norm: Let x be as above.

‖x‖1,q :=
∑G

i=1
‖xi‖q.

This norm is popular in machine learning, statistics.

34 / 42



Mixed norms

Def. Let x ∈ Rn1+n2+···+nG be a vector partitioned into subvectors
xj ∈ Rnj , 1 ≤ j ≤ G. Let p := (p0, p1, p2, . . . , pG), where pj ≥ 1.
Consider the vector ξ := (‖x1‖p1 , · · · , ‖xG‖pG). Then, we define
the mixed-norm of x as

‖x‖p := ‖ξ‖p0 .

Example `1,q-norm: Let x be as above.

‖x‖1,q :=
∑G

i=1
‖xi‖q.

This norm is popular in machine learning, statistics.

34 / 42



Matrix Norms

Induced norm

Let A ∈ Rm×n, and let ‖·‖ be any vector norm. We define an
induced matrix norm as

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖ .

Verify that above definition yields a norm.

I Clearly, ‖A‖ = 0 iff A = 0 (definiteness)

I ‖αA‖ = |α| ‖A‖ (homogeneity)

I ‖A+B‖ = sup ‖(A+B)x‖
‖x‖ ≤ sup ‖Ax‖+‖Bx‖

‖x‖ ≤ ‖A‖ + ‖B‖.
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Operator norm

Example Let A be any matrix. Then, the operator norm of A is

‖A‖2 := sup
‖x‖2 6=0

‖Ax‖2
‖x‖2

.

‖A‖2 = σmax(A), where σmax is the largest singular value of A.

• Warning! Generally, largest eigenvalue of a matrix is not a norm!

• ‖A‖1 and ‖A‖∞—max-abs-column and max-abs-row sums.

• ‖A‖p generally NP-Hard to compute for p 6∈ {1, 2,∞}
• Schatten p-norm: `p-norm of vector of singular value.

• Exercise: Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be singular values of a
matrix A ∈ Rm×n. Prove that

‖A‖(k) :=
∑k

i=1
σi(A),

is a norm; 1 ≤ k ≤ n.
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Dual norms

Def. Let ‖·‖ be a norm on Rn. Its dual norm is

‖u‖∗ := sup
{
uTx | ‖x‖ ≤ 1

}
.

Exercise: Verify that ‖u‖∗ is a norm.

Exercise: Let 1/p+ 1/q = 1, where p, q ≥ 1. Show that ‖·‖q is
dual to ‖·‖p. In particular, the `2-norm is self-dual.
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Fenchel Conjugate
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Fenchel conjugate

Def. The Fenchel conjugate of a function f is

f∗(z) := sup
x∈dom f

xT z − f(x).

Note: f∗ is pointwise (over x) sup of linear functions of z. Hence,
it is always convex (regardless of f).

Example +∞ and −∞ conjugate to each other.

Example Let f(x) = ‖x‖. We have f∗(z) = I‖·‖∗≤1(z). That is,
conjugate of norm is the indicator function of dual norm ball.

f∗(z) = supx z
Tx− ‖x‖. If ‖z‖∗ > 1, then by definition of the dual

norm, there is u s.t. ‖u‖ ≤ 1 and uT z > 1. Now select x = αu and let

α→∞. Then, zTx− ‖x‖ = α(zTu− ‖u‖)→∞. If ‖z‖∗ ≤ 1, then

zTx ≤ ‖x‖‖z‖∗, which implies the sup must be zero.
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Fenchel conjugate

Example f(x) = ax+ b; then,

f∗(z) = sup
x
zx− (ax+ b)

= ∞, if (z − a) 6= 0.

Thus, dom f∗ = {a}, and f∗(a) = −b.

Example Let a ≥ 0, and set f(x) = −
√
a2 − x2 if |x| ≤ a, and +∞

otherwise. Then, f∗(z) = a
√

1 + z2.

Example f(x) = 1
2x

TAx, where A � 0. Then, f∗(z) = 1
2z

TA−1z.

Example f(x) = max(0, 1−x). Now f∗(z) = supx zx−max(0, 1−
x). Note that dom f∗ is [−1, 0] (else sup is unbounded); within this
domain, f∗(z) = z.
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Example f(x) = ax+ b; then,

f∗(z) = sup
x
zx− (ax+ b)

= ∞, if (z − a) 6= 0.

Thus, dom f∗ = {a}, and f∗(a) = −b.

Example Let a ≥ 0, and set f(x) = −
√
a2 − x2 if |x| ≤ a, and +∞

otherwise. Then, f∗(z) = a
√

1 + z2.
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Misc Convexity
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Other forms of convexity

♣ Log-convex: log f is convex; log-cvx =⇒ cvx;

♣ Log-concavity: log f concave; not closed under addition!

♣ Exponentially convex: [f(xi + xj)] � 0, for x1, . . . , xn

♣ Operator convex: f(λX + (1− λ)Y ) � λf(X) + (1− λ)f(Y )

♣ Quasiconvex: f(λx+ (1− λy)) ≤ max {f(x), f(y)}
♣ Pseudoconvex: 〈∇f(y), x− y〉 ≥ 0 =⇒ f(x) ≥ f(y)

♣ Discrete convexity: f : Zn → Z; “convexity + matroid theory.”
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