Convex Optimization

 (EE227A: UC Berkeley)Lecture 26
Interior point methods

25 Apr, 2013

Suvrit Sra

Interior point methods

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable
- Newton method: $x_{k+1} \leftarrow x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable
- Newton method: $x_{k+1} \leftarrow x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
- How to solve general convex problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad A x=b
\end{aligned}
$$

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable
- Newton method: $x_{k+1} \leftarrow x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
- How to solve general convex problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad A x=b
\end{aligned}
$$

- Assume finite p^{*} attained; strict feasibility $(\Longrightarrow$ strong duality)

Interior point methods

- Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be twice continuously differentiable
- Newton method: $x_{k+1} \leftarrow x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
- How to solve general convex problem

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad A x=b .
\end{aligned}
$$

- Assume finite p^{*} attained; strict feasibility (\Longrightarrow strong duality)
- Interior Point Methods build on the Newton method to ultimately tackle the above convex optimization problem

Preliminaries

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F
- F is smooth, strictly convex on $\operatorname{int}(\mathcal{X})$;

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F
- F is smooth, strictly convex on $\operatorname{int}(\mathcal{X}) ; F\left(x_{k}\right) \rightarrow+\infty$ for every sequence $\left\{x_{k}\right\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F
- F is smooth, strictly convex on $\operatorname{int}(\mathcal{X}) ; F\left(x_{k}\right) \rightarrow+\infty$ for every sequence $\left\{x_{k}\right\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- Barrier family of objective functions

$$
F_{t}(x):=t f_{0}(x)+F(x),
$$

where $t>0$ is the penalty parameter.

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F
- F is smooth, strictly convex on $\operatorname{int}(\mathcal{X}) ; F\left(x_{k}\right) \rightarrow+\infty$ for every sequence $\left\{x_{k}\right\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- Barrier family of objective functions

$$
F_{t}(x):=t f_{0}(x)+F(x),
$$

where $t>0$ is the penalty parameter.

- Say \mathcal{X} is bounded, then every $F_{t}(x)$ attains its minimum in $\operatorname{int}(\mathcal{X})$; call this $x^{*}(t)$ (unique since $F(x)$ is strictly convex)

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F
- F is smooth, strictly convex on $\operatorname{int}(\mathcal{X}) ; F\left(x_{k}\right) \rightarrow+\infty$ for every sequence $\left\{x_{k}\right\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- Barrier family of objective functions

$$
F_{t}(x):=t f_{0}(x)+F(x),
$$

where $t>0$ is the penalty parameter.

- Say \mathcal{X} is bounded, then every $F_{t}(x)$ attains its minimum in $\operatorname{int}(\mathcal{X})$; call this $x^{*}(t)$ (unique since $F(x)$ is strictly convex)
- Let central path be $\left\{x^{*}(t) \mid t \geq 0\right\}$;

Barrier functions

$$
\min \{f(x) \mid x \in \mathcal{X}\}
$$

- $\mathcal{X} \subset \mathbb{R}^{n}$, closed, convex set with nonempty interior
- Equip \mathcal{X} with an internal penalty or barrier function F
- F is smooth, strictly convex on $\operatorname{int}(\mathcal{X}) ; F\left(x_{k}\right) \rightarrow+\infty$ for every sequence $\left\{x_{k}\right\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- Barrier family of objective functions

$$
F_{t}(x):=t f_{0}(x)+F(x),
$$

where $t>0$ is the penalty parameter.

- Say \mathcal{X} is bounded, then every $F_{t}(x)$ attains its minimum in $\operatorname{int}(\mathcal{X})$; call this $x^{*}(t)$ (unique since $F(x)$ is strictly convex)
- Let central path be $\left\{x^{*}(t) \mid t \geq 0\right\}$; as $t \rightarrow \infty$, central path converges to solution of original problem.

1 Suppose we have $t_{k}>0$ and some $x_{k} \in \operatorname{int}(\mathcal{X})$ such that x_{k} is "close" to $x^{*}\left(t_{k}\right)$

Path-following pseudo code

1 Suppose we have $t_{k}>0$ and some $x_{k} \in \operatorname{int}(\mathcal{X})$ such that x_{k} is "close" to $x^{*}\left(t_{k}\right)$
2 Repeat the following updates until needed:
1 Replace penalty t_{k} by a larger value t_{k+1}
2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_{k} until a point x_{k+1} "close" to $x^{*}\left(t_{k+1}\right)$ is found
3 New pair $\left(t_{k+1}, x_{k+1}\right)$ is close to the "path"

Path-following pseudo code

1 Suppose we have $t_{k}>0$ and some $x_{k} \in \operatorname{int}(\mathcal{X})$ such that x_{k} is "close" to $x^{*}\left(t_{k}\right)$
2 Repeat the following updates until needed:
1 Replace penalty t_{k} by a larger value t_{k+1}
2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_{k} until a point x_{k+1} "close" to $x^{*}\left(t_{k+1}\right)$ is found
3 New pair $\left(t_{k+1}, x_{k+1}\right)$ is close to the "path"

Fairly old idea, 60s or even earlier!

Path-following pseudo code

1 Suppose we have $t_{k}>0$ and some $x_{k} \in \operatorname{int}(\mathcal{X})$ such that x_{k} is "close" to $x^{*}\left(t_{k}\right)$
2 Repeat the following updates until needed:
1 Replace penalty t_{k} by a larger value t_{k+1}
2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_{k} until a point x_{k+1} "close" to $x^{*}\left(t_{k+1}\right)$ is found
3 New pair $\left(t_{k+1}, x_{k+1}\right)$ is close to the "path"

Fairly old idea, 60s or even earlier!

- Any unconstrained method to solve for x_{k+1}

Path-following pseudo code

1 Suppose we have $t_{k}>0$ and some $x_{k} \in \operatorname{int}(\mathcal{X})$ such that x_{k} is "close" to $x^{*}\left(t_{k}\right)$
2 Repeat the following updates until needed:
1 Replace penalty t_{k} by a larger value t_{k+1}
2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_{k} until a point x_{k+1} "close" to $x^{*}\left(t_{k+1}\right)$ is found
3 New pair $\left(t_{k+1}, x_{k+1}\right)$ is close to the "path"

Fairly old idea, 60s or even earlier!

- Any unconstrained method to solve for x_{k+1}
- What is complexity of such a scheme?

Path-following pseudo code

1 Suppose we have $t_{k}>0$ and some $x_{k} \in \operatorname{int}(\mathcal{X})$ such that x_{k} is "close" to $x^{*}\left(t_{k}\right)$
2 Repeat the following updates until needed:
1 Replace penalty t_{k} by a larger value t_{k+1}
2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_{k} until a point x_{k+1} "close" to $x^{*}\left(t_{k+1}\right)$ is found
3 New pair $\left(t_{k+1}, x_{k+1}\right)$ is close to the "path"

Fairly old idea, 60s or even earlier!

- Any unconstrained method to solve for x_{k+1}
- What is complexity of such a scheme?
- Numerical problems when t_{k} becomes large; breakdown?
- Standard theory of unconstrained minimization predicts slowdown as t_{k} becomes larger ...

A Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming

A Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
A In particular, for linear-programming with feasible set

$$
\mathcal{X}=\left\{x \mid a_{i}^{T} x \leq b_{i}, 1 \leq i \leq m\right\},
$$

A Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
A In particular, for linear-programming with feasible set

$$
\mathcal{X}=\left\{x \mid a_{i}^{T} x \leq b_{i}, 1 \leq i \leq m\right\},
$$

they used the logarithmic barrier

$$
F(x):=-\sum_{i} \log \left(b_{i}-a_{i}^{T} x\right)
$$

A Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
A In particular, for linear-programming with feasible set

$$
\mathcal{X}=\left\{x \mid a_{i}^{T} x \leq b_{i}, 1 \leq i \leq m\right\},
$$

they used the logarithmic barrier

$$
F(x):=-\sum_{i} \log \left(b_{i}-a_{i}^{T} x\right)
$$

A And with this $F(x)$, they showed a Newton-method based path-following can be made polynomial time.

A Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
A In particular, for linear-programming with feasible set

$$
\mathcal{X}=\left\{x \mid a_{i}^{T} x \leq b_{i}, 1 \leq i \leq m\right\},
$$

they used the logarithmic barrier

$$
F(x):=-\sum_{i} \log \left(b_{i}-a_{i}^{T} x\right)
$$

A And with this $F(x)$, they showed a Newton-method based path-following can be made polynomial time.
A Breakthrough result, though ad-hoc analysis of NM

Better barriers?

A Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
© In particular, for linear-programming with feasible set

$$
\mathcal{X}=\left\{x \mid a_{i}^{T} x \leq b_{i}, 1 \leq i \leq m\right\},
$$

they used the logarithmic barrier

$$
F(x):=-\sum_{i} \log \left(b_{i}-a_{i}^{T} x\right)
$$

A And with this $F(x)$, they showed a Newton-method based path-following can be made polynomial time.
A Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic properties of the log-barrier made it work!

Newton method - affine invariance
Consider $f(x)$ and $\phi(y)=f(A y)$, where A is invertible

Consider $f(x)$ and $\phi(y)=f(A y)$, where A is invertible
Lemma Let $\left\{x_{k}\right\}$ be generated by Newton method for f :

$$
x_{k+1}=x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right) \quad k \geq 0 .
$$

Let $\left\{y_{k}\right\}$ be seq. generated by NM for ϕ :

$$
y_{k+1}=y_{k}-\left[\phi^{\prime \prime}\left(y_{k}\right)\right]^{-1} \phi^{\prime}\left(y_{k}\right),
$$

with $A y_{0}=x_{0}$. Then, $A y_{k}=x_{k}$ for all $k \geq 0$.

Consider $f(x)$ and $\phi(y)=f(A y)$, where A is invertible
Lemma Let $\left\{x_{k}\right\}$ be generated by Newton method for f :

$$
x_{k+1}=x_{k}-\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right) \quad k \geq 0
$$

Let $\left\{y_{k}\right\}$ be seq. generated by NM for ϕ :

$$
y_{k+1}=y_{k}-\left[\phi^{\prime \prime}\left(y_{k}\right)\right]^{-1} \phi^{\prime}\left(y_{k}\right)
$$

with $A y_{0}=x_{0}$. Then, $A y_{k}=x_{k}$ for all $k \geq 0$.
Newton method remains same-strong contrast to gradient method! Stopping condition:

$$
\left\langle\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right), f^{\prime}\left(x_{k}\right)\right\rangle<\epsilon
$$

independent of choice of basis A !

Newton method - local convergence

Assumptions

- Lipschitz Hessian: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq M\|x-y\|$
- Local strong convexity: There exists a local minimum x^{*} with

$$
\nabla^{2} f\left(x^{*}\right) \succeq \mu I, \quad \mu>0
$$

- Locality: Starting point x_{0} "close enough" to x^{*}

Theorem Suppose x_{0} satisfies

$$
\left\|x_{0}-x^{*}\right\|<r:=\frac{2 \mu}{3 M}
$$

Then, $\left\|x_{k}-x^{*}\right\|<r, \forall k$ and the NM converges quadratically

$$
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M\left\|x_{k}-x^{*}\right\|^{2}}{2\left(\mu-M\left\|x_{k}-x^{*}\right\|\right)}
$$

Newton method - local convergence

What's wrong / missing?

Newton method - local convergence

What's wrong / missing?

- Convergence analysis depends on μ, and M

What's wrong / missing?

- Convergence analysis depends on μ, and M
- These quantities are not basis independent!

What's wrong / missing?

- Convergence analysis depends on μ, and M
- These quantities are not basis independent!
- Mismatch between geometry of method and its convergence analysis

What's missing
恽 Key condition used was $\left\|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right\| \leq M\|x-y\|$

呢 Key condition used was $\left\|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right\| \leq M\|x-y\|$
몽ㅇ Third derivative in direction $u \in \mathbb{R}^{n}$ is

$$
f^{\prime \prime \prime}(x)[u]=\lim _{\alpha \rightarrow 0} \frac{f^{\prime \prime}(x+\alpha u)-f^{\prime \prime}(x)}{\alpha}
$$

What＇s missing

趴 Key condition used was $\left\|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right\| \leq M\|x-y\|$
喀 Third derivative in direction $u \in \mathbb{R}^{n}$ is

$$
f^{\prime \prime \prime}(x)[u]=\lim _{\alpha \rightarrow 0} \frac{f^{\prime \prime}(x+\alpha u)-f^{\prime \prime}(x)}{\alpha}
$$

咦 Lipschitz Hessian equivalent（prove！）to

$$
\left\|f^{\prime \prime \prime}(x)[u]\right\| \leq M\|u\|
$$

What＇s missing

嚴 Key condition used was $\left\|f^{\prime \prime}(x)-f^{\prime \prime}(y)\right\| \leq M\|x-y\|$
㴟 Third derivative in direction $u \in \mathbb{R}^{n}$ is

$$
f^{\prime \prime \prime}(x)[u]=\lim _{\alpha \rightarrow 0} \frac{f^{\prime \prime}(x+\alpha u)-f^{\prime \prime}(x)}{\alpha}
$$

四 Lipschitz Hessian equivalent（prove！）to

$$
\left\|f^{\prime \prime \prime}(x)[u]\right\| \leq M\|u\|
$$

唯 Thus，at $x \in \operatorname{dom} f$ ，and any $u, v \in \mathbb{R}^{n}$ we have

$$
\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle \leq M\|u\|\|v\|^{2}
$$

Tㅜㅇ Using $x \leftarrow A y, u^{\prime} \leftarrow A u, v^{\prime} \leftarrow A v, \phi(y)=f(A y)$

$$
\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle=\left\langle\phi^{\prime \prime \prime}(x)\left[u^{\prime}\right] v^{\prime}, v^{\prime}\right\rangle
$$

What's missing

웅 Using $x \leftarrow A y, u^{\prime} \leftarrow A u, v^{\prime} \leftarrow A v, \phi(y)=f(A y)$

$$
\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle=\left\langle\phi^{\prime \prime \prime}(x)\left[u^{\prime}\right] v^{\prime}, v^{\prime}\right\rangle
$$

㖘 Thus, in the inequality $\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle \leq M\|u\|\|v\|^{2}$, Ihs is affine invariant, but rhs is not

What's missing

중 Using $x \leftarrow A y, u^{\prime} \leftarrow A u, v^{\prime} \leftarrow A v, \phi(y)=f(A y)$

$$
\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle=\left\langle\phi^{\prime \prime \prime}(x)\left[u^{\prime}\right] v^{\prime}, v^{\prime}\right\rangle
$$

傕 Thus, in the inequality $\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle \leq M\|u\|\|v\|^{2}$, Ihs is affine invariant, but rhs is not
nT웅 What can be a quick fix? Observation, use local norms on rhs

$$
\|u\|_{f^{\prime \prime}(x)}:=\left\langle f^{\prime \prime}(x) u, u\right\rangle^{1 / 2}=\sqrt{u^{T} f^{\prime \prime}(x) u}
$$

What's missing

중 Using $x \leftarrow A y, u^{\prime} \leftarrow A u, v^{\prime} \leftarrow A v, \phi(y)=f(A y)$

$$
\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle=\left\langle\phi^{\prime \prime \prime}(x)\left[u^{\prime}\right] v^{\prime}, v^{\prime}\right\rangle
$$

傕 Thus, in the inequality $\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle \leq M\|u\|\|v\|^{2}$, Ihs is affine invariant, but rhs is not
nT웅 What can be a quick fix? Observation, use local norms on rhs

$$
\|u\|_{f^{\prime \prime}(x)}:=\left\langle f^{\prime \prime}(x) u, u\right\rangle^{1 / 2}=\sqrt{u^{T} f^{\prime \prime}(x) u}
$$

Then, we immediately have

$$
\left\|A^{-1} u\right\|_{f^{\prime \prime}(A x)}=\|u\|_{f^{\prime \prime}(x)}
$$

What's missing

중 Using $x \leftarrow A y, u^{\prime} \leftarrow A u, v^{\prime} \leftarrow A v, \phi(y)=f(A y)$

$$
\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle=\left\langle\phi^{\prime \prime \prime}(x)\left[u^{\prime}\right] v^{\prime}, v^{\prime}\right\rangle
$$

傕 Thus, in the inequality $\left\langle f^{\prime \prime \prime}(x)[u] v, v\right\rangle \leq M\|u\|\|v\|^{2}$, Ihs is affine invariant, but rhs is not
nT웅 What can be a quick fix? Observation, use local norms on rhs

$$
\|u\|_{f^{\prime \prime}(x)}:=\left\langle f^{\prime \prime}(x) u, u\right\rangle^{1 / 2}=\sqrt{u^{T} f^{\prime \prime}(x) u}
$$

Then, we immediately have

$$
\left\|A^{-1} u\right\|_{f^{\prime \prime}(A x)}=\|u\|_{f^{\prime \prime}(x)}
$$

傕 This brings us to the idea of self-concordance

Self-concordant functions

- Let $f \in C^{3}(\operatorname{dom} f)$ be a closed, convex with open domain
- Let $f \in C^{3}(\operatorname{dom} f)$ be a closed, convex with open domain
- Fix $x \in \operatorname{dom} f$ and a direction vector $u \in \mathbb{R}^{n}$

Self-concordant functions

- Let $f \in C^{3}(\operatorname{dom} f)$ be a closed, convex with open domain
- Fix $x \in \operatorname{dom} f$ and a direction vector $u \in \mathbb{R}^{n}$
- Denote restriction to line $\phi(x ; t):=f(x+t u)$

Derivatives

$$
\begin{aligned}
& D f(x)[u]=\phi^{\prime}(x ; t)=\left\langle f^{\prime}(x), u\right\rangle \\
& D^{2} f(x)[u, u]=\phi^{\prime \prime}(x ; t)=\left\langle f^{\prime \prime}(x) u, u\right\rangle=\|u\|_{f^{\prime \prime}(x)}^{2} \\
& D^{3} f(x)[u, u, u]=\phi^{\prime \prime \prime}(x ; t)=\left\langle D^{3} f(x)[u] u, u\right\rangle
\end{aligned}
$$

- Let $f \in C^{3}(\operatorname{dom} f)$ be a closed, convex with open domain
- Fix $x \in \operatorname{dom} f$ and a direction vector $u \in \mathbb{R}^{n}$
- Denote restriction to line $\phi(x ; t):=f(x+t u)$

Derivatives

$$
\left.\left.\begin{array}{rl}
D f(x)[u] & =\phi^{\prime}(x ; t)
\end{array}=\left\langle f^{\prime}(x), u\right\rangle\right) \text { D } D^{2} f(x)[u, u]=\phi^{\prime \prime}(x ; t)=\left\langle f^{\prime \prime}(x) u, u\right\rangle=\|u\|_{f^{\prime \prime}(x)}^{2}\right)=\phi^{3 \prime \prime}(x ; t)=\left\langle D^{3} f(x)[u] u, u\right\rangle
$$

Note: Third derivative: symmetric trilinear operator, so it operates on $\left[u_{1}, u_{2}, u_{3}\right]$ to yield a trilinear symmetric form.
$D^{p} f(x)\left[u_{1}, \ldots, u_{p}\right]=\left.\frac{\partial^{p}}{\partial t_{1} \cdots \partial t_{p}}\right|_{t_{1}=\cdots=t_{p}=0} f\left(x+t_{1} u_{1}+\cdots+t_{p} u_{p}\right)$

Self-concordant functions and barriers

Def. (Self-concordant). Let \mathcal{X} be a closed convex set. A function $f: \operatorname{int}(\mathcal{X}) \rightarrow \mathbb{R}$ called self-concordant (SC) on \mathcal{X} if榢 $f \in C^{3}(\mathcal{X})$ with $f\left(x_{k}\right) \rightarrow+\infty$ if $x_{k} \rightarrow \bar{x} \in \partial \mathcal{X}$
뭉 f satisfies the $\mathbf{S C}$ inequality

$$
\left|D^{3} f(x)[u, u, u]\right| \leq 2\left(D^{2} f(x)[u, u]\right)^{3 / 2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^{n}
$$

Self-concordant functions and barriers

Def. (Self-concordant). Let \mathcal{X} be a closed convex set. A function $f: \operatorname{int}(\mathcal{X}) \rightarrow \mathbb{R}$ called self-concordant (SC) on \mathcal{X} if榢 $f \in C^{3}(\mathcal{X})$ with $f\left(x_{k}\right) \rightarrow+\infty$ if $x_{k} \rightarrow \bar{x} \in \partial \mathcal{X}$
멍 f satisfies the $\mathbf{S C}$ inequality

$$
\left|D^{3} f(x)[u, u, u]\right| \leq 2\left(D^{2} f(x)[u, u]\right)^{3 / 2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^{n}
$$

Def. Given a real $\vartheta \geq 1, F$ is called a ϑ-self-concordant barrier (SCB) for \mathcal{X} if F is SC and

$$
|D F(x)[u]| \leq \vartheta^{1 / 2}\left(D^{2} f(x)[u, u]\right)^{1 / 2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^{n}
$$

Self-concordant functions and barriers

Def. (Self-concordant). Let \mathcal{X} be a closed convex set. A function $f: \operatorname{int}(\mathcal{X}) \rightarrow \mathbb{R}$ called self-concordant (SC) on \mathcal{X} if
榢 $f \in C^{3}(\mathcal{X})$ with $f\left(x_{k}\right) \rightarrow+\infty$ if $x_{k} \rightarrow \bar{x} \in \partial \mathcal{X}$
傕 f satisfies the $\mathbf{S C}$ inequality

$$
\left|D^{3} f(x)[u, u, u]\right| \leq 2\left(D^{2} f(x)[u, u]\right)^{3 / 2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^{n}
$$

Def. Given a real $\vartheta \geq 1, F$ is called a ϑ-self-concordant barrier (SCB) for \mathcal{X} if F is SC and

$$
|D F(x)[u]| \leq \vartheta^{1 / 2}\left(D^{2} f(x)[u, u]\right)^{1 / 2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^{n}
$$

- Exponents $3 / 2$ and $1 / 2$ crucial—ensure both sides have same degree of homogeneity in u (for affine invariance)
- Factor 2 can be scaled by scaling f; chosen for convenience; equiv. to $D^{2} f$ Lipschitz with constant 2 in norm $\|\cdot\|_{f^{\prime \prime}(x)}$

Self-concordant barriers

- SC functions well-suited to Newton minimization.
- SC functions well-suited to Newton minimization.

Example $f(x)=-\log x: \mathbb{R}_{++} \rightarrow \mathbb{R}$ is a 1 -SCB for \mathbb{R}_{+}
Proof: $f^{\prime \prime}(x)=x^{-2}, f^{\prime \prime \prime}(x)=-2 x^{-3}$; directly verifies.

Self-concordant barriers

- SC functions well-suited to Newton minimization.

Example $f(x)=-\log x: \mathbb{R}_{++} \rightarrow \mathbb{R}$ is a 1 -SCB for \mathbb{R}_{+}
Proof: $f^{\prime \prime}(x)=x^{-2}, f^{\prime \prime \prime}(x)=-2 x^{-3}$; directly verifies.

- Linear functions are SC; $f^{\prime \prime \prime}(x)=0$
- Convex quadratic functions; $f^{\prime \prime \prime}(x)=0$
- Log-barrier for $\phi(x)=a+\langle b, x\rangle-\frac{1}{2} x^{T} A x ; f(x)=-\log \phi(x)$ Show: $\left|D^{3} f(x)[u, u, u]\right|=\left|2 \omega_{1}^{3}+3 \omega_{1} \omega_{2}\right|$, where $\omega_{1}=D f(x)[u]$, $\omega_{2}=\frac{1}{\phi(x)} u^{T} A u$; also show that $D^{2} f(x)[u, u]=\omega_{1}^{2}+\omega_{2}$.

Self-concordant barriers

- SC functions well-suited to Newton minimization.

Example $f(x)=-\log x: \mathbb{R}_{++} \rightarrow \mathbb{R}$ is a 1 -SCB for \mathbb{R}_{+}
Proof: $f^{\prime \prime}(x)=x^{-2}, f^{\prime \prime \prime}(x)=-2 x^{-3}$; directly verifies.

- Linear functions are SC; $f^{\prime \prime \prime}(x)=0$
- Convex quadratic functions; $f^{\prime \prime \prime}(x)=0$
- Log-barrier for $\phi(x)=a+\langle b, x\rangle-\frac{1}{2} x^{T} A x ; f(x)=-\log \phi(x)$ Show: $\left|D^{3} f(x)[u, u, u]\right|=\left|2 \omega_{1}^{3}+3 \omega_{1} \omega_{2}\right|$, where $\omega_{1}=D f(x)[u]$, $\omega_{2}=\frac{1}{\phi(x)} u^{T} A u$; also show that $D^{2} f(x)[u, u]=\omega_{1}^{2}+\omega_{2}$.

Lemma A function f is SC iff for any $x \in \operatorname{int}(\mathcal{X})$, and $u_{1}, u_{2}, u_{3} \in \mathbb{R}^{n}$

$$
\left|D^{3} f(x)\left[u_{1}, u_{2}, u_{3}\right]\right| \leq 2\left\|u_{1}\right\|_{f^{\prime \prime}(x)}\left\|u_{1}\right\|_{f^{\prime \prime}(x)}\left\|u_{1}\right\|_{f^{\prime \prime}(x)}
$$

Proof: Essentially generalized Cauchy-Schwarz (some work).

SC Optimization

Key quantities

- Let $f(x)$ be SC, and that $f^{\prime \prime}(x) \succ 0$ within $\operatorname{dom} f$
- Simplified notation for the local norms at x

$$
\begin{aligned}
& \|u\|_{x} \quad:=\left\langle f^{\prime \prime}(x) u, u\right\rangle^{1 / 2} \\
& \|v\|_{x}^{*}=\left\langle\left[f^{\prime \prime}(x)\right]^{-1} v, v\right\rangle^{1 / 2}
\end{aligned}
$$

Key quantities

- Let $f(x)$ be SC, and that $f^{\prime \prime}(x) \succ 0$ within $\operatorname{dom} f$
- Simplified notation for the local norms at x

$$
\begin{aligned}
\|u\|_{x} & :=\left\langle f^{\prime \prime}(x) u, u\right\rangle^{1 / 2} \\
\|v\|_{x}^{*} & =\left\langle\left[f^{\prime \prime}(x)\right]^{-1} v, v\right\rangle^{1 / 2}
\end{aligned}
$$

- Let us use these to state three crucial observations

웅 At any point $x \in \operatorname{dom} f=\operatorname{int}(\mathcal{X})$, there is an ellipsoid

$$
W(x):=\left\{y \in \mathbb{R}^{n} \mid\|y-x\|_{x} \leq 1\right\} \subset \operatorname{dom} f .
$$

웅 At any point $x \in \operatorname{dom} f=\operatorname{int}(\mathcal{X})$, there is an ellipsoid

$$
W(x):=\left\{y \in \mathbb{R}^{n} \mid\|y-x\|_{x} \leq 1\right\} \subset \operatorname{dom} f
$$

Wios Within this ellipsoid (aka Dinkin ellipsoid), f is almost quadratic

$$
\begin{aligned}
& r:=\|u\|_{x}<1 \\
&(1-r)^{2} f^{\prime \prime}(x) \preceq f^{\prime \prime}(x+u) \\
& \preceq \frac{1}{(1-r)^{2}} f^{\prime \prime}(x)
\end{aligned}
$$

Three key facts

At any point $x \in \operatorname{dom} f=\operatorname{int}(\mathcal{X})$, there is an ellipsoid

$$
W(x):=\left\{y \in \mathbb{R}^{n} \mid\|y-x\|_{x} \leq 1\right\} \subset \operatorname{dom} f
$$

Wase Within this ellipsoid (aka Dinkin ellipsoid), f is almost quadratic

$$
\begin{aligned}
& r:=\|u\|_{x}<1 \\
&(1-r)^{2} f^{\prime \prime}(x) \preceq f^{\prime \prime}(x+u) \\
& \preceq \frac{1}{(1-r)^{2}} f^{\prime \prime}(x)
\end{aligned}
$$

뭉 Moreover, it also holds that
$f(x)+\left\langle f^{\prime}(x), u\right\rangle+\rho(-r) \leq f(x+u) \leq f(x)+\left\langle f^{\prime}(x), u\right\rangle+\rho(r)$,
where $\rho(r):=-\log (1-r)-s=s^{2} / 2+s^{3} / 3+\cdots$
Proof: See Chap. 4 of Nesterov (2004).

Newton decrement

$$
\lambda_{f}(x):=\left\langle\left[f^{\prime \prime}(x)\right]^{-1} f^{\prime}(x), f^{\prime}(x)\right\rangle^{1 / 2}
$$

Observe: $\lambda_{f}(x)=\left\|f^{\prime}(x)\right\|_{x}^{*}$ (local, dual-norm of gradient).

Newton decrement

$$
\lambda_{f}(x):=\left\langle\left[f^{\prime \prime}(x)\right]^{-1} f^{\prime}(x), f^{\prime}(x)\right\rangle^{1 / 2}
$$

Observe: $\lambda_{f}(x)=\left\|f^{\prime}(x)\right\|_{x}^{*}$ (local, dual-norm of gradient).

$$
\lambda_{f}(x)=\max _{u}\left\{D f(x)[u] \mid D^{2} f(x)[u, u] \leq 1\right\}
$$

- $\lambda_{f}(x)$ if a finite continuous function of $x \in \operatorname{dom} f$
- It vanishes at the (unique, if any) minimizer x_{f}^{*} of f on $\operatorname{dom} f$

Newton decrement

$$
\lambda_{f}(x):=\left\langle\left[f^{\prime \prime}(x)\right]^{-1} f^{\prime}(x), f^{\prime}(x)\right\rangle^{1 / 2}
$$

Observe: $\lambda_{f}(x)=\left\|f^{\prime}(x)\right\|_{x}^{*}$ (local, dual-norm of gradient).

$$
\lambda_{f}(x)=\max _{u}\left\{D f(x)[u] \mid D^{2} f(x)[u, u] \leq 1\right\}
$$

- $\lambda_{f}(x)$ if a finite continuous function of $x \in \operatorname{dom} f$
- It vanishes at the (unique, if any) minimizer x_{f}^{*} of f on $\operatorname{dom} f$

Theorem If $\lambda_{f}(x)<1$ for some $x \in \operatorname{dom} f$. Then, $\min f(x)$ s.t., $x \in \operatorname{dom} f$, has a unique optimal solution.

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$.

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$. Then, $\left\|x_{k+1}-x_{k}\right\|_{x}=\frac{\lambda}{1+\lambda}=\omega^{\prime}(\lambda)$.

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$. Then, $\left\|x_{k+1}-x_{k}\right\|_{x}=\frac{\lambda}{1+\lambda}=\omega^{\prime}(\lambda)$. Thus, using one of the key facts

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$. Then, $\left\|x_{k+1}-x_{k}\right\|_{x}=\frac{\lambda}{1+\lambda}=\omega^{\prime}(\lambda)$. Thus, using one of the key facts

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\omega^{*}\left(\left\|x_{k+1}-x_{k}\right\|_{x}\right)
$$

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$. Then, $\left\|x_{k+1}-x_{k}\right\|_{x}=\frac{\lambda}{1+\lambda}=\omega^{\prime}(\lambda)$. Thus, using one of the key facts

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\omega^{*}\left(\left\|x_{k+1}-x_{k}\right\|_{x}\right) \\
& =f\left(x_{k}\right)-\frac{\lambda^{2}}{1+\lambda}+\omega^{*}\left(\omega^{\prime}(\lambda)\right)
\end{aligned}
$$

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$. Then, $\left\|x_{k+1}-x_{k}\right\|_{x}=\frac{\lambda}{1+\lambda}=\omega^{\prime}(\lambda)$. Thus, using one of the key facts

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\omega^{*}\left(\left\|x_{k+1}-x_{k}\right\|_{x}\right) \\
& =f\left(x_{k}\right)-\frac{\lambda^{2}}{1+\lambda}+\omega^{*}\left(\omega^{\prime}(\lambda)\right) \\
& =f\left(x_{k}\right)-\lambda \omega^{\prime}(\lambda)+\omega^{*}\left(\omega^{\prime}(\lambda)\right)=f\left(x_{k}\right)-\omega(\lambda) .
\end{aligned}
$$

Damped Newton method

1 Select $x_{0} \in \operatorname{dom} f$
2 For $k \geq 0: x_{k+1}=x_{k}-\frac{1}{1+\lambda_{f}\left(x_{k}\right)}\left[f^{\prime \prime}\left(x_{k}\right)\right]^{-1} f^{\prime}\left(x_{k}\right)$
Theorem For any $k \geq 0$, the iterates of the damped NM satisfy

$$
f\left(x_{k+1}\right) \leq f\left(x_{k}\right)-\rho\left(-\lambda_{f}\left(x_{k}\right)\right)
$$

Proof: Denote $\lambda=\lambda_{f}\left(x_{k}\right)$. Also, set $\omega(t):=\rho(-t)$. Then, $\left\|x_{k+1}-x_{k}\right\|_{x}=\frac{\lambda}{1+\lambda}=\omega^{\prime}(\lambda)$. Thus, using one of the key facts

$$
\begin{aligned}
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle f^{\prime}\left(x_{k}\right), x_{k+1}-x_{k}\right\rangle+\omega^{*}\left(\left\|x_{k+1}-x_{k}\right\|_{x}\right) \\
& =f\left(x_{k}\right)-\frac{\lambda^{2}}{1+\lambda}+\omega^{*}\left(\omega^{\prime}(\lambda)\right) \\
& =f\left(x_{k}\right)-\lambda \omega^{\prime}(\lambda)+\omega^{*}\left(\omega^{\prime}(\lambda)\right)=f\left(x_{k}\right)-\omega(\lambda) .
\end{aligned}
$$

At each step, $f(x)$ decreases by at least $\omega(\lambda)$

Damped Newton method

- Globally convegent; iteration complexity can be derived.
- Local quadratic convergence: $\lambda_{f}\left(x_{k+1}\right) \leq 2 \lambda_{f}\left(x_{k}\right)^{2}$ for small enough $\lambda_{f}\left(x_{k}\right)$
- Though, better to start with DN, and switch to pure Newton after N iterations, where

$$
N \leq \frac{1}{\omega(\beta)\left[f\left(x_{0}\right)-f\left(x_{f}^{*}\right)\right]}
$$

and $\lambda_{f}\left(x_{k}\right) \geq \beta$, where $\beta \in(0,0.3819 \ldots)$

Minimization using SC Barriers

- class of ϑ-SCB smaller than general SC.

Minimization using SC Barriers

- class of ϑ-SCB smaller than general SC.

Standard convex problem

$$
\min \quad c^{T} x \quad x \in \mathcal{X},
$$

where \mathcal{X} is a compact set for which $\operatorname{dom} F \equiv \mathcal{X}$.

Minimization using SC Barriers

- class of ϑ-SCB smaller than general SC.

Standard convex problem

$$
\min \quad c^{T} x \quad x \in \mathcal{X},
$$

where \mathcal{X} is a compact set for which $\operatorname{dom} F \equiv \mathcal{X}$.

- Recall path-following scheme

$$
x^{*}(t)=\underset{x \in \operatorname{dom} F}{\operatorname{argmin}} \quad t c^{T} x+F(x), \quad t \geq 0 .
$$

- Any point of the central path (set $\left.\left\{x^{*}(t)\right\}\right)$ satisfies

$$
t c+F^{\prime}\left(x^{*}(t)\right)=0
$$

Minimization using SC Barriers

- class of ϑ-SCB smaller than general SC.

Standard convex problem

$$
\min \quad c^{T} x \quad x \in \mathcal{X},
$$

where \mathcal{X} is a compact set for which $\operatorname{dom} F \equiv \mathcal{X}$.

- Recall path-following scheme

$$
x^{*}(t)=\underset{x \in \operatorname{dom} F}{\operatorname{argmin}} \quad t c^{T} x+F(x), \quad t \geq 0 .
$$

- Any point of the central path (set $\left.\left\{x^{*}(t)\right\}\right)$ satisfies

$$
t c+F^{\prime}\left(x^{*}(t)\right)=0
$$

- Aim is to iteratively find points close to central path

Approximate solution:

$$
\lambda_{F_{t}}(x):=\left\|F_{t}^{\prime}(x)\right\|_{x}^{*}=\left\|t c+F^{\prime}(x)\right\|_{x}^{*} \leq \beta,
$$

where β is the centering parameter (approx. solution quality).

Minimization using SCBs

Approximate solution:

$$
\lambda_{F_{t}}(x):=\left\|F_{t}^{\prime}(x)\right\|_{x}^{*}=\left\|t c+F^{\prime}(x)\right\|_{x}^{*} \leq \beta,
$$

where β is the centering parameter (approx. solution quality).
Theorem For any $t>0$, we have

$$
c^{T} x^{*}(t)-c^{T} x^{*} \leq \frac{\vartheta}{t}
$$

If a point x is an approximate solution (close to $x^{*}(t)$), then

$$
c^{T} x-c^{T} x^{*} \leq \frac{1}{t}\left(\vartheta+\frac{\beta(\beta+\sqrt{\vartheta})}{1-\beta}\right)
$$

Path-following algorithm

1 Set $t_{0}=0$. Choose accuracy $\epsilon>0$ and $x_{0} \in \operatorname{dom} F$ such that

$$
\left\|F^{\prime}\left(x_{0}\right)\right\|_{x_{0}}^{*} \leq \beta
$$

Path-following algorithm

1 Set $t_{0}=0$. Choose accuracy $\epsilon>0$ and $x_{0} \in \operatorname{dom} F$ such that

$$
\left\|F^{\prime}\left(x_{0}\right)\right\|_{x_{0}}^{*} \leq \beta
$$

2 At k-th iteration, set

$$
\begin{aligned}
t_{k+1} & =t_{k}+\frac{\gamma}{\|c\|_{x_{k}}^{*}}, \quad \gamma=\frac{\sqrt{\beta}}{1-\sqrt{\beta}}-\beta \\
x_{k+1} & =x_{k}-\left[F^{\prime \prime}\left(x_{k}\right)\right]^{-1}\left(t_{k+1} c+F^{\prime}\left(x_{k}\right)\right)
\end{aligned}
$$

Path-following algorithm

1 Set $t_{0}=0$. Choose accuracy $\epsilon>0$ and $x_{0} \in \operatorname{dom} F$ such that

$$
\left\|F^{\prime}\left(x_{0}\right)\right\|_{x_{0}}^{*} \leq \beta
$$

2 At k-th iteration, set

$$
\begin{aligned}
t_{k+1} & =t_{k}+\frac{\gamma}{\|c\|_{x_{k}}^{*}}, \quad \gamma=\frac{\sqrt{\beta}}{1-\sqrt{\beta}}-\beta \\
x_{k+1} & =x_{k}-\left[F^{\prime \prime}\left(x_{k}\right)\right]^{-1}\left(t_{k+1} c+F^{\prime}\left(x_{k}\right)\right)
\end{aligned}
$$

3 Stop the process if

$$
\epsilon t_{k} \geq \vartheta+\frac{\beta(\beta+\sqrt{\vartheta})}{1-\beta}
$$

Path-following algorithm

1 Set $t_{0}=0$. Choose accuracy $\epsilon>0$ and $x_{0} \in \operatorname{dom} F$ such that

$$
\left\|F^{\prime}\left(x_{0}\right)\right\|_{x_{0}}^{*} \leq \beta
$$

2 At k-th iteration, set

$$
\begin{aligned}
t_{k+1} & =t_{k}+\frac{\gamma}{\|c\|_{x_{k}}^{*}}, \quad \gamma=\frac{\sqrt{\beta}}{1-\sqrt{\beta}}-\beta \\
x_{k+1} & =x_{k}-\left[F^{\prime \prime}\left(x_{k}\right)\right]^{-1}\left(t_{k+1} c+F^{\prime}\left(x_{k}\right)\right)
\end{aligned}
$$

3 Stop the process if

$$
\epsilon t_{k} \geq \vartheta+\frac{\beta(\beta+\sqrt{\vartheta})}{1-\beta}
$$

Theorem Above scheme yields $c^{T} x_{N}-c^{T} x^{*} \leq \epsilon$ after no more than N steps, where

$$
N \leq O\left(\sqrt{\vartheta} \log \frac{\vartheta\|c\|_{x^{*}}^{*}}{\epsilon}\right)
$$

We've barely scratched the surface!

We've barely scratched the surface!

- Much more to interior point methods.
- See references for fuller picture.

Also read: Ch. 9,10,11 of BV for high-level overview.

References

\bigcirc A. Nemirovski, M. J. Todd. Interior-point methods for optimization. (2008)
\bigcirc Y. Nesterov. Introductory lectures on convex optimization (2004).
\bigcirc Y. Nesterov, A. Nemirovski. Interior-Point Polynomial Algorithms in Convex Programming (1994).

