
Convex Optimization
(EE227A: UC Berkeley)

Lecture 25
(Newton, quasi-Newton)

23 Apr, 2013

◦

Suvrit Sra

Admin

♠ Project poster presentations:

Soda 306 HP Auditorium
Fri May 10, 2013 4pm – 8pm

♠ HW5 due on May 02, 2013
Will be released today.

2 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x

I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Recall numerical analysis: Newton method for solving equations

g(x) = 0 x ∈ R.

I Key idea: linear approximation.

I Suppose we are at some x close to x∗ (the root)

g(x+ ∆x) = g(x) + g′(x)∆x+ o(|∆x|).

I Equation g(x+ ∆x) = 0 approximated by

g(x) + g′(x)∆x = 0 =⇒ ∆x = −g(x)/g′(x).

I If x is close to x∗, we can expect ∆x ≈ ∆x∗ = x∗ − x
I Thus, we may write

x∗ ≈ x− g(x)

g′(x)

I Which suggests the iterative process

xk+1 ← xk −
g(xk)

g′(xk)

3 / 25

Newton method

I Suppose we have a system of nonlinear equations

G(x) = 0 G : Rn → Rn.

I Again, arguing as above we arrive at the Newton system

G(x) +G′(x)∆x = 0,

where G′(x) is the Jacobian.

I Assume G′(x) is non-degenerate (invertible), we obtain

xk+1 = xk − [G′(xk)]
−1G(xk).

I This is Newton’s method for solving nonlinear equations

4 / 25

Newton method

I Suppose we have a system of nonlinear equations

G(x) = 0 G : Rn → Rn.

I Again, arguing as above we arrive at the Newton system

G(x) +G′(x)∆x = 0,

where G′(x) is the Jacobian.

I Assume G′(x) is non-degenerate (invertible), we obtain

xk+1 = xk − [G′(xk)]
−1G(xk).

I This is Newton’s method for solving nonlinear equations

4 / 25

Newton method

I Suppose we have a system of nonlinear equations

G(x) = 0 G : Rn → Rn.

I Again, arguing as above we arrive at the Newton system

G(x) +G′(x)∆x = 0,

where G′(x) is the Jacobian.

I Assume G′(x) is non-degenerate (invertible), we obtain

xk+1 = xk − [G′(xk)]
−1G(xk).

I This is Newton’s method for solving nonlinear equations

4 / 25

Newton method

I Suppose we have a system of nonlinear equations

G(x) = 0 G : Rn → Rn.

I Again, arguing as above we arrive at the Newton system

G(x) +G′(x)∆x = 0,

where G′(x) is the Jacobian.

I Assume G′(x) is non-degenerate (invertible), we obtain

xk+1 = xk − [G′(xk)]
−1G(xk).

I This is Newton’s method for solving nonlinear equations

4 / 25

Newton method

min f(x) such that x ∈ Rn

∇f(x) = 0 is necessary for optimality

Newton system

∇f(x) +∇2f(x)∆x = 0,

which leads to

xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

the Newton method for optimization

5 / 25

Newton method

min f(x) such that x ∈ Rn

∇f(x) = 0 is necessary for optimality

Newton system

∇f(x) +∇2f(x)∆x = 0,

which leads to

xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

the Newton method for optimization

5 / 25

Newton method

min f(x) such that x ∈ Rn

∇f(x) = 0 is necessary for optimality

Newton system

∇f(x) +∇2f(x)∆x = 0,

which leads to

xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

the Newton method for optimization

5 / 25

Newton method – remarks

I Newton method for equations is more general than minimizing
f(x) by finding roots of ∇f(x) = 0

I Reason: Not every function G : Rn → Rn is a derivative!

Example Consider the linear system

Ax− b = 0.

Unless A is symmetric, does not correspond to a derivative (Why?)

I If it were a derivative, then its own derivative is a Hessian, and
we know that Hessians must be symmetric, QED.

6 / 25

Newton method – remarks

I Newton method for equations is more general than minimizing
f(x) by finding roots of ∇f(x) = 0

I Reason: Not every function G : Rn → Rn is a derivative!

Example Consider the linear system

Ax− b = 0.

Unless A is symmetric, does not correspond to a derivative (Why?)

I If it were a derivative, then its own derivative is a Hessian, and
we know that Hessians must be symmetric, QED.

6 / 25

Newton method – remarks

I Newton method for equations is more general than minimizing
f(x) by finding roots of ∇f(x) = 0

I Reason: Not every function G : Rn → Rn is a derivative!

Example Consider the linear system

Ax− b = 0.

Unless A is symmetric, does not correspond to a derivative (Why?)

I If it were a derivative, then its own derivative is a Hessian, and
we know that Hessians must be symmetric, QED.

6 / 25

Newton method – remarks

I In general, Newton method highly nontrivial to analyze

Example Consider the iteration

xk+1 = xk − 1
xk
, x0 = 2.

May be viewed as iter for ex
2/2 = 0 (which has no real solution)

Unknown whether this iteration generates a bounded sequence!

Newton fractals (Complex dynamics)

z3 − 2z + 2 x8 + 15x4 − 16

7 / 25

Newton method – remarks

I In general, Newton method highly nontrivial to analyze

Example Consider the iteration

xk+1 = xk − 1
xk
, x0 = 2.

May be viewed as iter for ex
2/2 = 0 (which has no real solution)

Unknown whether this iteration generates a bounded sequence!

Newton fractals (Complex dynamics)

z3 − 2z + 2 x8 + 15x4 − 16

7 / 25

Newton method – remarks

I In general, Newton method highly nontrivial to analyze

Example Consider the iteration

xk+1 = xk − 1
xk
, x0 = 2.

May be viewed as iter for ex
2/2 = 0 (which has no real solution)

Unknown whether this iteration generates a bounded sequence!

Newton fractals (Complex dynamics)

z3 − 2z + 2 x8 + 15x4 − 16

7 / 25

Newton method – alternative view

Quadratic approximation

φ(x) := f(x) + 〈∇f(xk), x− xk〉+ 1
2〈∇

2f(xk)(x− xk), x− xk〉.

Assuming ∇2f(xk) � 0, choose xk+1 as argmin of φ(x)

φ′(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk) = 0.

8 / 25

Newton method – alternative view

Quadratic approximation

φ(x) := f(x) + 〈∇f(xk), x− xk〉+ 1
2〈∇

2f(xk)(x− xk), x− xk〉.

Assuming ∇2f(xk) � 0, choose xk+1 as argmin of φ(x)

φ′(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk) = 0.

8 / 25

Newton method – alternative view

Quadratic approximation

φ(x) := f(x) + 〈∇f(xk), x− xk〉+ 1
2〈∇

2f(xk)(x− xk), x− xk〉.

Assuming ∇2f(xk) � 0, choose xk+1 as argmin of φ(x)

φ′(xk+1) = ∇f(xk) +∇2f(xk)(xk+1 − xk) = 0.

8 / 25

Newton method – convergence

I Method breaks down if ∇2f(xk) 6� 0

I Only locally convergent

Example Find the root of

g(x) =
x√

1 + x2
.

Clearly, x∗ = 0.

Exercise: Analyze behavior of Newton method for this problem.
Hint: Consider the cases: |x0| < 1, x0 = ±1 and |x0| > 1.

Damped Newton method

xk+1 = xk − αk[∇2f(xk)]
−1∇f(xk)

9 / 25

Newton method – convergence

I Method breaks down if ∇2f(xk) 6� 0

I Only locally convergent

Example Find the root of

g(x) =
x√

1 + x2
.

Clearly, x∗ = 0.

Exercise: Analyze behavior of Newton method for this problem.
Hint: Consider the cases: |x0| < 1, x0 = ±1 and |x0| > 1.

Damped Newton method

xk+1 = xk − αk[∇2f(xk)]
−1∇f(xk)

9 / 25

Newton method – convergence

I Method breaks down if ∇2f(xk) 6� 0

I Only locally convergent

Example Find the root of

g(x) =
x√

1 + x2
.

Clearly, x∗ = 0.

Exercise: Analyze behavior of Newton method for this problem.
Hint: Consider the cases: |x0| < 1, x0 = ±1 and |x0| > 1.

Damped Newton method

xk+1 = xk − αk[∇2f(xk)]
−1∇f(xk)

9 / 25

Newton – local convergence rate

I Suppose method generates sequence {xk} → x∗

I where x∗ is a local min, i.e., ∇f(x∗) = 0 and ∇2f(x∗) � 0

I Let g(xk) ≡ ∇f(xk); Taylor’s theorem:

0 = g(x∗) = g(xk) + 〈∇g(xk), x
∗ − xk〉+ o(‖xk − x∗‖)

I Multiply by [∇g(xk)]
−1 to obtain

xk − x∗ − [∇g(xk)]
−1g(xk) = o(‖xk − x∗‖)

I Newton iteration is: xk+1 = xk − [∇g(xk)]
−1g(xk), so

xk+1 − x∗ = o(‖xk − x∗‖),

I So for xk 6= x∗ we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= lim
k→∞

o(‖xk+1 − x∗‖)
‖xk − x∗‖

= 0.

Local superlinear convergence rate

10 / 25

Newton – local convergence rate

I Suppose method generates sequence {xk} → x∗

I where x∗ is a local min, i.e., ∇f(x∗) = 0 and ∇2f(x∗) � 0

I Let g(xk) ≡ ∇f(xk); Taylor’s theorem:

0 = g(x∗) = g(xk) + 〈∇g(xk), x
∗ − xk〉+ o(‖xk − x∗‖)

I Multiply by [∇g(xk)]
−1 to obtain

xk − x∗ − [∇g(xk)]
−1g(xk) = o(‖xk − x∗‖)

I Newton iteration is: xk+1 = xk − [∇g(xk)]
−1g(xk), so

xk+1 − x∗ = o(‖xk − x∗‖),

I So for xk 6= x∗ we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= lim
k→∞

o(‖xk+1 − x∗‖)
‖xk − x∗‖

= 0.

Local superlinear convergence rate

10 / 25

Newton – local convergence rate

I Suppose method generates sequence {xk} → x∗

I where x∗ is a local min, i.e., ∇f(x∗) = 0 and ∇2f(x∗) � 0

I Let g(xk) ≡ ∇f(xk); Taylor’s theorem:

0 = g(x∗) = g(xk) + 〈∇g(xk), x
∗ − xk〉+ o(‖xk − x∗‖)

I Multiply by [∇g(xk)]
−1 to obtain

xk − x∗ − [∇g(xk)]
−1g(xk) = o(‖xk − x∗‖)

I Newton iteration is: xk+1 = xk − [∇g(xk)]
−1g(xk), so

xk+1 − x∗ = o(‖xk − x∗‖),

I So for xk 6= x∗ we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= lim
k→∞

o(‖xk+1 − x∗‖)
‖xk − x∗‖

= 0.

Local superlinear convergence rate

10 / 25

Newton – local convergence rate

I Suppose method generates sequence {xk} → x∗

I where x∗ is a local min, i.e., ∇f(x∗) = 0 and ∇2f(x∗) � 0

I Let g(xk) ≡ ∇f(xk); Taylor’s theorem:

0 = g(x∗) = g(xk) + 〈∇g(xk), x
∗ − xk〉+ o(‖xk − x∗‖)

I Multiply by [∇g(xk)]
−1 to obtain

xk − x∗ − [∇g(xk)]
−1g(xk) = o(‖xk − x∗‖)

I Newton iteration is: xk+1 = xk − [∇g(xk)]
−1g(xk), so

xk+1 − x∗ = o(‖xk − x∗‖),

I So for xk 6= x∗ we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= lim
k→∞

o(‖xk+1 − x∗‖)
‖xk − x∗‖

= 0.

Local superlinear convergence rate

10 / 25

Newton – local convergence rate

I Suppose method generates sequence {xk} → x∗

I where x∗ is a local min, i.e., ∇f(x∗) = 0 and ∇2f(x∗) � 0

I Let g(xk) ≡ ∇f(xk); Taylor’s theorem:

0 = g(x∗) = g(xk) + 〈∇g(xk), x
∗ − xk〉+ o(‖xk − x∗‖)

I Multiply by [∇g(xk)]
−1 to obtain

xk − x∗ − [∇g(xk)]
−1g(xk) = o(‖xk − x∗‖)

I Newton iteration is: xk+1 = xk − [∇g(xk)]
−1g(xk), so

xk+1 − x∗ = o(‖xk − x∗‖),

I So for xk 6= x∗ we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= lim
k→∞

o(‖xk+1 − x∗‖)
‖xk − x∗‖

= 0.

Local superlinear convergence rate

10 / 25

Newton – local convergence rate

I Suppose method generates sequence {xk} → x∗

I where x∗ is a local min, i.e., ∇f(x∗) = 0 and ∇2f(x∗) � 0

I Let g(xk) ≡ ∇f(xk); Taylor’s theorem:

0 = g(x∗) = g(xk) + 〈∇g(xk), x
∗ − xk〉+ o(‖xk − x∗‖)

I Multiply by [∇g(xk)]
−1 to obtain

xk − x∗ − [∇g(xk)]
−1g(xk) = o(‖xk − x∗‖)

I Newton iteration is: xk+1 = xk − [∇g(xk)]
−1g(xk), so

xk+1 − x∗ = o(‖xk − x∗‖),

I So for xk 6= x∗ we get

lim
k→∞

‖xk+1 − x∗‖
‖xk − x∗‖

= lim
k→∞

o(‖xk+1 − x∗‖)
‖xk − x∗‖

= 0.

Local superlinear convergence rate

10 / 25

Newton method – local convergence

Assumptions

• Lipschitz Hessian: ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖
• Local strong convexity: There exists a local minimum x∗ with

∇2f(x∗) � µI, µ > 0.

• Locality: Starting point x0 “close enough” to x∗

Theorem Suppose x0 satisfies

‖x0 − x∗‖ < r :=
2µ

3M
.

Then, ‖xk − x∗‖ < r, ∀k and the NM converges quadratically

‖xk+1 − x∗‖ ≤
M‖xk − x∗‖2

2(µ−M‖xk − x∗‖)

Reading assignment: Read §9.5.3 of Boyd-Vandenberghe

11 / 25

Newton method – local convergence

Assumptions

• Lipschitz Hessian: ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖
• Local strong convexity: There exists a local minimum x∗ with

∇2f(x∗) � µI, µ > 0.

• Locality: Starting point x0 “close enough” to x∗

Theorem Suppose x0 satisfies

‖x0 − x∗‖ < r :=
2µ

3M
.

Then, ‖xk − x∗‖ < r, ∀k and the NM converges quadratically

‖xk+1 − x∗‖ ≤
M‖xk − x∗‖2

2(µ−M‖xk − x∗‖)

Reading assignment: Read §9.5.3 of Boyd-Vandenberghe

11 / 25

Newton method – local convergence

Assumptions

• Lipschitz Hessian: ‖∇2f(x)−∇2f(y)‖ ≤M‖x− y‖
• Local strong convexity: There exists a local minimum x∗ with

∇2f(x∗) � µI, µ > 0.

• Locality: Starting point x0 “close enough” to x∗

Theorem Suppose x0 satisfies

‖x0 − x∗‖ < r :=
2µ

3M
.

Then, ‖xk − x∗‖ < r, ∀k and the NM converges quadratically

‖xk+1 − x∗‖ ≤
M‖xk − x∗‖2

2(µ−M‖xk − x∗‖)

Reading assignment: Read §9.5.3 of Boyd-Vandenberghe

11 / 25

Quasi-Newton

12 / 25

Gradient and Newton

(Grad) xk+1 = xk − αk∇f(xk), αk > 0

(Newton) xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

Viewpoint for the gradient method. Consider approximation

φ1(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2α
‖x− xk‖2

Optimality condition yields

φ′(x∗) = ∇f(xk) + 1
α(x∗ − xk) = 0

x∗ = xk − α∇f(xk)

If α ∈ (0, 1
L], φ1(x) is global overestimator

f(x) ≤ φ1(x), ∀x ∈ Rn.

13 / 25

Gradient and Newton

(Grad) xk+1 = xk − αk∇f(xk), αk > 0

(Newton) xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

Viewpoint for the gradient method.

Consider approximation

φ1(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2α
‖x− xk‖2

Optimality condition yields

φ′(x∗) = ∇f(xk) + 1
α(x∗ − xk) = 0

x∗ = xk − α∇f(xk)

If α ∈ (0, 1
L], φ1(x) is global overestimator

f(x) ≤ φ1(x), ∀x ∈ Rn.

13 / 25

Gradient and Newton

(Grad) xk+1 = xk − αk∇f(xk), αk > 0

(Newton) xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

Viewpoint for the gradient method. Consider approximation

φ1(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2α
‖x− xk‖2

Optimality condition yields

φ′(x∗) = ∇f(xk) + 1
α(x∗ − xk) = 0

x∗ = xk − α∇f(xk)

If α ∈ (0, 1
L], φ1(x) is global overestimator

f(x) ≤ φ1(x), ∀x ∈ Rn.

13 / 25

Gradient and Newton

(Grad) xk+1 = xk − αk∇f(xk), αk > 0

(Newton) xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

Viewpoint for the gradient method. Consider approximation

φ1(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2α
‖x− xk‖2

Optimality condition yields

φ′(x∗) = ∇f(xk) + 1
α(x∗ − xk) = 0

x∗ = xk − α∇f(xk)

If α ∈ (0, 1
L], φ1(x) is global overestimator

f(x) ≤ φ1(x), ∀x ∈ Rn.

13 / 25

Gradient and Newton

(Grad) xk+1 = xk − αk∇f(xk), αk > 0

(Newton) xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

Viewpoint for the gradient method. Consider approximation

φ1(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2α
‖x− xk‖2

Optimality condition yields

φ′(x∗) = ∇f(xk) + 1
α(x∗ − xk) = 0

x∗ = xk − α∇f(xk)

If α ∈ (0, 1
L], φ1(x) is global overestimator

f(x) ≤ φ1(x), ∀x ∈ Rn.

13 / 25

Gradient and Newton

(Grad) xk+1 = xk − αk∇f(xk), αk > 0

(Newton) xk+1 = xk − [∇2f(xk)]
−1∇f(xk).

Viewpoint for the gradient method. Consider approximation

φ1(x) := f(xk) + 〈∇f(xk), x− xk〉+
1

2α
‖x− xk‖2

Optimality condition yields

φ′(x∗) = ∇f(xk) + 1
α(x∗ − xk) = 0

x∗ = xk − α∇f(xk)

If α ∈ (0, 1
L], φ1(x) is global overestimator

f(x) ≤ φ1(x), ∀x ∈ Rn.

13 / 25

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

φ2(x) := f(xk)+〈∇f(xk), x− xk〉+
1

2
〈∇2f(xk)(x− xk), x− xk〉.

Minimum of this function is

x∗ = xk − [∇2f(xk)]
−1∇f(xk).

Something better than φ1, less expensive than φ2?

14 / 25

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

φ2(x) := f(xk)+〈∇f(xk), x− xk〉+
1

2
〈∇2f(xk)(x− xk), x− xk〉.

Minimum of this function is

x∗ = xk − [∇2f(xk)]
−1∇f(xk).

Something better than φ1, less expensive than φ2?

14 / 25

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

φ2(x) := f(xk)+〈∇f(xk), x− xk〉+
1

2
〈∇2f(xk)(x− xk), x− xk〉.

Minimum of this function is

x∗ = xk − [∇2f(xk)]
−1∇f(xk).

Something better than φ1, less expensive than φ2?

14 / 25

Quasi-Newton methods

Generic Quadratic Model

φD(x) := f(xk) + 〈∇f(xk), x− xk〉+ 1
2〈Hk(x− xk), x− xk〉.

I Matrix Hk � 0, some posdef matrix

I Leads to optimum

x∗ = xk −H−1k ∇f(xk)

x∗ = xk − Sk∇f(xk).

I The first-order methods that form a sequence of matrices

{Hk} : Hk → ∇2f(x∗)

where Hk is constructed using only gradient information,are
called variable metric or quasi-Newton methods.

xk+1 = xk −H−1k ∇f(xk) k = 0, 1, . . .

xk+1 = xk − Sk∇f(xk) k = 0, 1, . . .

15 / 25

Quasi-Newton methods

Generic Quadratic Model

φD(x) := f(xk) + 〈∇f(xk), x− xk〉+ 1
2〈Hk(x− xk), x− xk〉.

I Matrix Hk � 0, some posdef matrix

I Leads to optimum

x∗ = xk −H−1k ∇f(xk)

x∗ = xk − Sk∇f(xk).

I The first-order methods that form a sequence of matrices

{Hk} : Hk → ∇2f(x∗)

where Hk is constructed using only gradient information,are
called variable metric or quasi-Newton methods.

xk+1 = xk −H−1k ∇f(xk) k = 0, 1, . . .

xk+1 = xk − Sk∇f(xk) k = 0, 1, . . .

15 / 25

Quasi-Newton methods

Generic Quadratic Model

φD(x) := f(xk) + 〈∇f(xk), x− xk〉+ 1
2〈Hk(x− xk), x− xk〉.

I Matrix Hk � 0, some posdef matrix

I Leads to optimum

x∗ = xk −H−1k ∇f(xk)

x∗ = xk − Sk∇f(xk).

I The first-order methods that form a sequence of matrices

{Hk} : Hk → ∇2f(x∗)

where Hk is constructed using only gradient information,

are
called variable metric or quasi-Newton methods.

xk+1 = xk −H−1k ∇f(xk) k = 0, 1, . . .

xk+1 = xk − Sk∇f(xk) k = 0, 1, . . .

15 / 25

Quasi-Newton methods

Generic Quadratic Model

φD(x) := f(xk) + 〈∇f(xk), x− xk〉+ 1
2〈Hk(x− xk), x− xk〉.

I Matrix Hk � 0, some posdef matrix

I Leads to optimum

x∗ = xk −H−1k ∇f(xk)

x∗ = xk − Sk∇f(xk).

I The first-order methods that form a sequence of matrices

{Hk} : Hk → ∇2f(x∗)

where Hk is constructed using only gradient information,are
called variable metric or quasi-Newton methods.

xk+1 = xk −H−1k ∇f(xk) k = 0, 1, . . .

xk+1 = xk − Sk∇f(xk) k = 0, 1, . . .

15 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)
2 stepsize: search for good αk > 0
3 update: xk+1 = xk − αkdk
4 compute f(xk+1) and ∇f(xk+1)
5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)

2 stepsize: search for good αk > 0
3 update: xk+1 = xk − αkdk
4 compute f(xk+1) and ∇f(xk+1)
5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)
2 stepsize: search for good αk > 0

3 update: xk+1 = xk − αkdk
4 compute f(xk+1) and ∇f(xk+1)
5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)
2 stepsize: search for good αk > 0
3 update: xk+1 = xk − αkdk

4 compute f(xk+1) and ∇f(xk+1)
5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)
2 stepsize: search for good αk > 0
3 update: xk+1 = xk − αkdk
4 compute f(xk+1) and ∇f(xk+1)

5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)
2 stepsize: search for good αk > 0
3 update: xk+1 = xk − αkdk
4 compute f(xk+1) and ∇f(xk+1)
5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton method

◦ Choose x0 ∈ Rn. Let H0 = I.
Compute f(x0) and ∇f(x0)

◦ For k ≥ 0:
1 descent direction: dk ← Sk∇f(xk)
2 stepsize: search for good αk > 0
3 update: xk+1 = xk − αkdk
4 compute f(xk+1) and ∇f(xk+1)
5 QN update: Sk → Sk+1

QN schemes differ in how Sk ≡ H−1k are updated!

16 / 25

Quasi-Newton methods

Secant equation / QN rule

Sk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk.

I Quadratic models from iteration k → k + 1

φk(x) = ak + 〈gk, x− xk〉+ 1
2〈H(x− xk), x− xk〉

φk+1(x) = ak+1 + 〈gk+1, x− xk+1〉+ 1
2〈H(x− xk+1), x− xk+1〉

I φ′k(x)− φ′k+1(x) = gk − gk+1 +H(xk+1 − xk)
I Setting this to zero, we get

gk+1 − gk = H(xk+1 − xk)
S(gk+1 − gk) = xk+1 − xk.

I So we construct Hk → Hk+1 or Sk → Sk+1 to respect this.

17 / 25

Quasi-Newton methods

Secant equation / QN rule

Sk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk.

I Quadratic models from iteration k → k + 1

φk(x) = ak + 〈gk, x− xk〉+ 1
2〈H(x− xk), x− xk〉

φk+1(x) = ak+1 + 〈gk+1, x− xk+1〉+ 1
2〈H(x− xk+1), x− xk+1〉

I φ′k(x)− φ′k+1(x) = gk − gk+1 +H(xk+1 − xk)
I Setting this to zero, we get

gk+1 − gk = H(xk+1 − xk)
S(gk+1 − gk) = xk+1 − xk.

I So we construct Hk → Hk+1 or Sk → Sk+1 to respect this.

17 / 25

Quasi-Newton methods

Secant equation / QN rule

Sk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk.

I Quadratic models from iteration k → k + 1

φk(x) = ak + 〈gk, x− xk〉+ 1
2〈H(x− xk), x− xk〉

φk+1(x) = ak+1 + 〈gk+1, x− xk+1〉+ 1
2〈H(x− xk+1), x− xk+1〉

I φ′k(x)− φ′k+1(x) = gk − gk+1 +H(xk+1 − xk)

I Setting this to zero, we get

gk+1 − gk = H(xk+1 − xk)
S(gk+1 − gk) = xk+1 − xk.

I So we construct Hk → Hk+1 or Sk → Sk+1 to respect this.

17 / 25

Quasi-Newton methods

Secant equation / QN rule

Sk+1(∇f(xk+1)−∇f(xk)) = xk+1 − xk.

I Quadratic models from iteration k → k + 1

φk(x) = ak + 〈gk, x− xk〉+ 1
2〈H(x− xk), x− xk〉

φk+1(x) = ak+1 + 〈gk+1, x− xk+1〉+ 1
2〈H(x− xk+1), x− xk+1〉

I φ′k(x)− φ′k+1(x) = gk − gk+1 +H(xk+1 − xk)
I Setting this to zero, we get

gk+1 − gk = H(xk+1 − xk)
S(gk+1 − gk) = xk+1 − xk.

I So we construct Hk → Hk+1 or Sk → Sk+1 to respect this.

17 / 25

Hessian updates

I Barzilai-Borwein stepsize. Let yk = gk+1 − gk, sk = xk+1 − xk:

min
H
‖Hsk − yk‖, H = αI.

I Davidon-Fletcher-Powell (DFP): β := 1/〈yk, sk〉

Hk+1 = (I − βyksTk)Hk(I − βskyTk) + βyky
T
k

Sk+1 = Sk −
Sksks

T
k Sk

〈Sksk, sk〉
+ βyky

T
k .

I Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Sk+1 = (I − βskyTk)Sk(I − βyksTk) + βsks
T
k

Hk+1 = Hk −
Hksks

T
kHk

〈Hksk, sk〉
+ βykykT.

BFGS believed to be most stable, best scheme.

I Notice, updates computationally “cheap”

18 / 25

Hessian updates

I Barzilai-Borwein stepsize. Let yk = gk+1 − gk, sk = xk+1 − xk:

min
H
‖Hsk − yk‖, H = αI.

I Davidon-Fletcher-Powell (DFP): β := 1/〈yk, sk〉

Hk+1 = (I − βyksTk)Hk(I − βskyTk) + βyky
T
k

Sk+1 = Sk −
Sksks

T
k Sk

〈Sksk, sk〉
+ βyky

T
k .

I Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Sk+1 = (I − βskyTk)Sk(I − βyksTk) + βsks
T
k

Hk+1 = Hk −
Hksks

T
kHk

〈Hksk, sk〉
+ βykykT.

BFGS believed to be most stable, best scheme.

I Notice, updates computationally “cheap”

18 / 25

Hessian updates

I Barzilai-Borwein stepsize. Let yk = gk+1 − gk, sk = xk+1 − xk:

min
H
‖Hsk − yk‖, H = αI.

I Davidon-Fletcher-Powell (DFP): β := 1/〈yk, sk〉

Hk+1 = (I − βyksTk)Hk(I − βskyTk) + βyky
T
k

Sk+1 = Sk −
Sksks

T
k Sk

〈Sksk, sk〉
+ βyky

T
k .

I Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Sk+1 = (I − βskyTk)Sk(I − βyksTk) + βsks
T
k

Hk+1 = Hk −
Hksks

T
kHk

〈Hksk, sk〉
+ βykykT.

BFGS believed to be most stable, best scheme.

I Notice, updates computationally “cheap”

18 / 25

Hessian updates

I Barzilai-Borwein stepsize. Let yk = gk+1 − gk, sk = xk+1 − xk:

min
H
‖Hsk − yk‖, H = αI.

I Davidon-Fletcher-Powell (DFP): β := 1/〈yk, sk〉

Hk+1 = (I − βyksTk)Hk(I − βskyTk) + βyky
T
k

Sk+1 = Sk −
Sksks

T
k Sk

〈Sksk, sk〉
+ βyky

T
k .

I Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Sk+1 = (I − βskyTk)Sk(I − βyksTk) + βsks
T
k

Hk+1 = Hk −
Hksks

T
kHk

〈Hksk, sk〉
+ βykykT.

BFGS believed to be most stable, best scheme.

I Notice, updates computationally “cheap”

18 / 25

Hessian updates

I Barzilai-Borwein stepsize. Let yk = gk+1 − gk, sk = xk+1 − xk:

min
H
‖Hsk − yk‖, H = αI.

I Davidon-Fletcher-Powell (DFP): β := 1/〈yk, sk〉

Hk+1 = (I − βyksTk)Hk(I − βskyTk) + βyky
T
k

Sk+1 = Sk −
Sksks

T
k Sk

〈Sksk, sk〉
+ βyky

T
k .

I Broyden-Fletcher-Goldfarb-Shanno (BFGS)

Sk+1 = (I − βskyTk)Sk(I − βyksTk) + βsks
T
k

Hk+1 = Hk −
Hksks

T
kHk

〈Hksk, sk〉
+ βykykT.

BFGS believed to be most stable, best scheme.

I Notice, updates computationally “cheap”

18 / 25

Limited memory methods

Hessian storage and update has O(n2) cost

Estimate Hk or Sk using only previous few iterations; so
essentially, use only O(mn) storage, where m ≈ 5-17

I Each step of BFGS is: xk+1 = xk − αkSk∇f(xk)

I Sk is updated at every iteration using

Sk+1 = V T
k SkVk + βksks

T
k

where, with sk := xk+1 − xk and yk := ∇f(xk+1)−∇f(xk),

βk =
1

yTk sk
, Vk = I − βkyksTk ,

I We use m vector pairs (si, yi), for i = k −m, . . . , k − 1

19 / 25

Limited memory methods

Hessian storage and update has O(n2) cost

Estimate Hk or Sk using only previous few iterations; so
essentially, use only O(mn) storage, where m ≈ 5-17

I Each step of BFGS is: xk+1 = xk − αkSk∇f(xk)

I Sk is updated at every iteration using

Sk+1 = V T
k SkVk + βksks

T
k

where, with sk := xk+1 − xk and yk := ∇f(xk+1)−∇f(xk),

βk =
1

yTk sk
, Vk = I − βkyksTk ,

I We use m vector pairs (si, yi), for i = k −m, . . . , k − 1

19 / 25

Limited memory methods

Hessian storage and update has O(n2) cost

Estimate Hk or Sk using only previous few iterations; so
essentially, use only O(mn) storage, where m ≈ 5-17

I Each step of BFGS is: xk+1 = xk − αkSk∇f(xk)

I Sk is updated at every iteration using

Sk+1 = V T
k SkVk + βksks

T
k

where, with sk := xk+1 − xk and yk := ∇f(xk+1)−∇f(xk),

βk =
1

yTk sk
, Vk = I − βkyksTk ,

I We use m vector pairs (si, yi), for i = k −m, . . . , k − 1

19 / 25

Limited memory methods

Hessian storage and update has O(n2) cost

Estimate Hk or Sk using only previous few iterations; so
essentially, use only O(mn) storage, where m ≈ 5-17

I Each step of BFGS is: xk+1 = xk − αkSk∇f(xk)

I Sk is updated at every iteration using

Sk+1 = V T
k SkVk + βksks

T
k

where, with sk := xk+1 − xk and yk := ∇f(xk+1)−∇f(xk),

βk =
1

yTk sk
, Vk = I − βkyksTk ,

I We use m vector pairs (si, yi), for i = k −m, . . . , k − 1

19 / 25

Limited memory methods

Hessian storage and update has O(n2) cost

Estimate Hk or Sk using only previous few iterations; so
essentially, use only O(mn) storage, where m ≈ 5-17

I Each step of BFGS is: xk+1 = xk − αkSk∇f(xk)

I Sk is updated at every iteration using

Sk+1 = V T
k SkVk + βksks

T
k

where, with sk := xk+1 − xk and yk := ∇f(xk+1)−∇f(xk),

βk =
1

yTk sk
, Vk = I − βkyksTk ,

I We use m vector pairs (si, yi), for i = k −m, . . . , k − 1

19 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Limited memory methods

Unroll the Sk update loop for m iterations to obtain

Sk = (V T
k−1 · · ·V T

k−m)S0
k(Vk−m · · ·Vk−1)

+ βk−m(V T
k−1 · · ·V T

k−m+1)sk−ms
T
k−m(V T

k−m+1 · · ·V T
k−1)

+ βk−m+1(V
T
k−1 · · ·V T

k−m+2)sk−m+1s
T
k−m+1(V

T
k−m+2 · · ·V T

k−1)

+ · · ·
+ βk−1sk−1s

T
k−1.

Ultimate aim is to efficiently compute: Sk∇f(xk)

Exercise: Implement procedure to compute Sk∇f(xk) efficiently.

I Typical choice for S0
k =

sTk−1yk−1

yTk−1yk−1
I

I This is related to the BB stepsize!

20 / 25

Constrained problems

Two-metric projection method

xk+1 = PX (xk − αkSk∇f(xk))

I Fundamental problem: not a descent iteration!

I We may have f(xk+1) > f(xk) for all αk > 0

I Method might not even recognize a stationary point!

21 / 25

Constrained problems

Two-metric projection method

xk+1 = PX (xk − αkSk∇f(xk))

I Fundamental problem: not a descent iteration!

I We may have f(xk+1) > f(xk) for all αk > 0

I Method might not even recognize a stationary point!

21 / 25

Constrained problems

Two-metric projection method

xk+1 = PX (xk − αkSk∇f(xk))

I Fundamental problem: not a descent iteration!

I We may have f(xk+1) > f(xk) for all αk > 0

I Method might not even recognize a stationary point!

21 / 25

Constrained problems

Two-metric projection method

xk+1 = PX (xk − αkSk∇f(xk))

I Fundamental problem: not a descent iteration!

I We may have f(xk+1) > f(xk) for all αk > 0

I Method might not even recognize a stationary point!

21 / 25

Constrained problems

Two-metric projection method

xk+1 = PX (xk − αkSk∇f(xk))

I Fundamental problem: not a descent iteration!

I We may have f(xk+1) > f(xk) for all αk > 0

I Method might not even recognize a stationary point!

21 / 25

Failure of projected-Newton methods

rf(xk)
x1xk

xk � �Dkrf(xk) level sets of f
�x = xk � (GTG)�1(GTGxk �GTh)x�

P+[xk � �Dkrf(xk)℄P+[xk � (GTG)�1(GTGxk �GTh)℄
x2

22 / 25

Constrained problems

I Projected-gradient works! BUT

I Projected Newton or Quasi-Newton do not work!

I More careful selection of Sk (or Hk) needed

I See e.g., Bertsekas and Gafni (Projected QN) (1984)

I With simple bound constraints: LBFGS-B

23 / 25

Constrained problems

I Projected-gradient works! BUT

I Projected Newton or Quasi-Newton do not work!

I More careful selection of Sk (or Hk) needed

I See e.g., Bertsekas and Gafni (Projected QN) (1984)

I With simple bound constraints: LBFGS-B

23 / 25

Constrained problems

I Projected-gradient works! BUT

I Projected Newton or Quasi-Newton do not work!

I More careful selection of Sk (or Hk) needed

I See e.g., Bertsekas and Gafni (Projected QN) (1984)

I With simple bound constraints: LBFGS-B

23 / 25

Constrained problems

I Projected-gradient works! BUT

I Projected Newton or Quasi-Newton do not work!

I More careful selection of Sk (or Hk) needed

I See e.g., Bertsekas and Gafni (Projected QN) (1984)

I With simple bound constraints: LBFGS-B

23 / 25

Constrained problems

I Projected-gradient works! BUT

I Projected Newton or Quasi-Newton do not work!

I More careful selection of Sk (or Hk) needed

I See e.g., Bertsekas and Gafni (Projected QN) (1984)

I With simple bound constraints: LBFGS-B

23 / 25

Nonsmooth problems

We did not cover many interesting ideas

♠ Proximal Newton methods

♠ f(x) + r(x) problems (see book chapter)

♠ Nonsmooth BFGS – Lewis, Overton

♠ Nonsmooth LBFGS

24 / 25

References

♥ Y. Nesterov. Introductory Lectures on Convex Optimization (2004).

♥ J. Nocedal, S. J. Wright. Numerical Optimization (1999).

♥ M. Schmidt, D. Kim, S. Sra. Newton-type methods in machine
learning, Chapter 13 in Optimization for Machine Learning (2011).

25 / 25

