Convex Optimization

(EE227A: UC Berkeley)

Lecture 25
(Newton, quasi-Newton)

23 Apr, 2013

Suvrit Sra

Admin

© Project poster presentations:

> Soda 306 HP Auditorium
> Fri May 10, 2013 4pm - 8pm
© HW5 due on May 02, 2013
Will be released today.

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R}
$$

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R} .
$$

- Key idea: linear approximation.

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R}
$$

- Key idea: linear approximation.
- Suppose we are at some x close to x^{*} (the root)

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R}
$$

- Key idea: linear approximation.
- Suppose we are at some x close to x^{*} (the root)

$$
g(x+\Delta x)=g(x)+g^{\prime}(x) \Delta x+o(|\Delta x|) .
$$

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R} .
$$

- Key idea: linear approximation.
- Suppose we are at some x close to x^{*} (the root)

$$
g(x+\Delta x)=g(x)+g^{\prime}(x) \Delta x+o(|\Delta x|)
$$

- Equation $g(x+\Delta x)=0$ approximated by

$$
g(x)+g^{\prime}(x) \Delta x=0 \quad \Longrightarrow \Delta x=-g(x) / g^{\prime}(x)
$$

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R} .
$$

- Key idea: linear approximation.
- Suppose we are at some x close to x^{*} (the root)

$$
g(x+\Delta x)=g(x)+g^{\prime}(x) \Delta x+o(|\Delta x|)
$$

- Equation $g(x+\Delta x)=0$ approximated by

$$
g(x)+g^{\prime}(x) \Delta x=0 \quad \Longrightarrow \Delta x=-g(x) / g^{\prime}(x)
$$

- If x is close to x^{*}, we can expect $\Delta x \approx \Delta x^{*}=x^{*}-x$

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R} .
$$

- Key idea: linear approximation.
- Suppose we are at some x close to x^{*} (the root)

$$
g(x+\Delta x)=g(x)+g^{\prime}(x) \Delta x+o(|\Delta x|)
$$

- Equation $g(x+\Delta x)=0$ approximated by

$$
g(x)+g^{\prime}(x) \Delta x=0 \quad \Longrightarrow \Delta x=-g(x) / g^{\prime}(x)
$$

- If x is close to x^{*}, we can expect $\Delta x \approx \Delta x^{*}=x^{*}-x$
- Thus, we may write

$$
x^{*} \approx x-\frac{g(x)}{g^{\prime}(x)}
$$

Newton method

- Recall numerical analysis: Newton method for solving equations

$$
g(x)=0 \quad x \in \mathbb{R}
$$

- Key idea: linear approximation.
- Suppose we are at some x close to x^{*} (the root)

$$
g(x+\Delta x)=g(x)+g^{\prime}(x) \Delta x+o(|\Delta x|) .
$$

- Equation $g(x+\Delta x)=0$ approximated by

$$
g(x)+g^{\prime}(x) \Delta x=0 \quad \Longrightarrow \Delta x=-g(x) / g^{\prime}(x)
$$

- If x is close to x^{*}, we can expect $\Delta x \approx \Delta x^{*}=x^{*}-x$
- Thus, we may write

$$
x^{*} \approx x-\frac{g(x)}{g^{\prime}(x)}
$$

- Which suggests the iterative process

$$
x_{k+1} \leftarrow x_{k}-\frac{g\left(x_{k}\right)}{g^{\prime}\left(x_{k}\right)}
$$

- Suppose we have a system of nonlinear equations

$$
G(x)=0 \quad G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

Newton method

- Suppose we have a system of nonlinear equations

$$
G(x)=0 \quad G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

- Again, arguing as above we arrive at the Newton system

$$
G(x)+G^{\prime}(x) \Delta x=0
$$

where $G^{\prime}(x)$ is the Jacobian.

Newton method

- Suppose we have a system of nonlinear equations

$$
G(x)=0 \quad G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

- Again, arguing as above we arrive at the Newton system

$$
G(x)+G^{\prime}(x) \Delta x=0
$$

where $G^{\prime}(x)$ is the Jacobian.

- Assume $G^{\prime}(x)$ is non-degenerate (invertible), we obtain

$$
x_{k+1}=x_{k}-\left[G^{\prime}\left(x_{k}\right)\right]^{-1} G\left(x_{k}\right) .
$$

Newton method

- Suppose we have a system of nonlinear equations

$$
G(x)=0 \quad G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}
$$

- Again, arguing as above we arrive at the Newton system

$$
G(x)+G^{\prime}(x) \Delta x=0
$$

where $G^{\prime}(x)$ is the Jacobian.

- Assume $G^{\prime}(x)$ is non-degenerate (invertible), we obtain

$$
x_{k+1}=x_{k}-\left[G^{\prime}\left(x_{k}\right)\right]^{-1} G\left(x_{k}\right) .
$$

- This is Newton's method for solving nonlinear equations

Newton method
min $\quad f(x)$ such that $x \in \mathbb{R}^{n}$

min $\quad f(x)$ such that $x \in \mathbb{R}^{n}$

$\nabla f(x)=0$ is necessary for optimality

$\nabla f(x)=0$ is necessary for optimality

Newton system

$$
\begin{gathered}
\nabla f(x)+\nabla^{2} f(x) \Delta x=0, \\
\text { which leads to } \\
x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) .
\end{gathered}
$$

the Newton method for optimization

Newton method - remarks

- Newton method for equations is more general than minimizing $f(x)$ by finding roots of $\nabla f(x)=0$

Newton method - remarks

- Newton method for equations is more general than minimizing $f(x)$ by finding roots of $\nabla f(x)=0$
- Reason: Not every function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a derivative!

Example Consider the linear system

$$
A x-b=0
$$

Unless A is symmetric, does not correspond to a derivative (Why?)

Newton method - remarks

- Newton method for equations is more general than minimizing $f(x)$ by finding roots of $\nabla f(x)=0$
- Reason: Not every function $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is a derivative!

Example Consider the linear system

$$
A x-b=0
$$

Unless A is symmetric, does not correspond to a derivative (Why?)

- If it were a derivative, then its own derivative is a Hessian, and we know that Hessians must be symmetric, QED.

Newton method - remarks

- In general, Newton method highly nontrivial to analyze

Example Consider the iteration

$$
x_{k+1}=x_{k}-\frac{1}{x_{k}}, \quad x_{0}=2
$$

May be viewed as iter for $e^{x^{2} / 2}=0$ (which has no real solution)

Newton method - remarks

- In general, Newton method highly nontrivial to analyze

Example Consider the iteration

$$
x_{k+1}=x_{k}-\frac{1}{x_{k}}, \quad x_{0}=2
$$

May be viewed as iter for $e^{x^{2} / 2}=0$ (which has no real solution)
Unknown whether this iteration generates a bounded sequence!

Newton method - remarks

- In general, Newton method highly nontrivial to analyze

Example Consider the iteration

$$
x_{k+1}=x_{k}-\frac{1}{x_{k}}, \quad x_{0}=2
$$

May be viewed as iter for $e^{x^{2} / 2}=0$ (which has no real solution)
Unknown whether this iteration generates a bounded sequence!
Newton fractals (Complex dynamics)

$z^{3}-2 z+2$

$x^{8}+15 x^{4}-16$

Quadratic approximation

$$
\phi(x):=f(x)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle
$$

Quadratic approximation

$\phi(x):=f(x)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle$.
Assuming $\nabla^{2} f\left(x_{k}\right) \succ 0$, choose x_{k+1} as argmin of $\phi(x)$

Newton method - alternative view

Quadratic approximation
$\phi(x):=f(x)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle$.
Assuming $\nabla^{2} f\left(x_{k}\right) \succ 0$, choose x_{k+1} as argmin of $\phi(x)$

$$
\phi^{\prime}\left(x_{k+1}\right)=\nabla f\left(x_{k}\right)+\nabla^{2} f\left(x_{k}\right)\left(x_{k+1}-x_{k}\right)=0 .
$$

Newton method - convergence

- Method breaks down if $\nabla^{2} f\left(x_{k}\right) \nsucc 0$
- Only locally convergent

Example Find the root of

$$
g(x)=\frac{x}{\sqrt{1+x^{2}}}
$$

Clearly, $x^{*}=0$.

Newton method - convergence

- Method breaks down if $\nabla^{2} f\left(x_{k}\right) \nsucc 0$
- Only locally convergent

Example Find the root of

$$
g(x)=\frac{x}{\sqrt{1+x^{2}}} .
$$

Clearly, $x^{*}=0$.
Exercise: Analyze behavior of Newton method for this problem. Hint: Consider the cases: $\left|x_{0}\right|<1, x_{0}= \pm 1$ and $\left|x_{0}\right|>1$.

Newton method - convergence

- Method breaks down if $\nabla^{2} f\left(x_{k}\right) \nsucc 0$
- Only locally convergent

Example Find the root of

$$
g(x)=\frac{x}{\sqrt{1+x^{2}}} .
$$

Clearly, $x^{*}=0$.
Exercise: Analyze behavior of Newton method for this problem. Hint: Consider the cases: $\left|x_{0}\right|<1, x_{0}= \pm 1$ and $\left|x_{0}\right|>1$.

Damped Newton method

$$
x_{k+1}=x_{k}-\alpha_{k}\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

Newton - local convergence rate

- Suppose method generates sequence $\left\{x_{k}\right\} \rightarrow x^{*}$
- Suppose method generates sequence $\left\{x_{k}\right\} \rightarrow x^{*}$
- where x^{*} is a local min, i.e., $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$

Newton - local convergence rate

- Suppose method generates sequence $\left\{x_{k}\right\} \rightarrow x^{*}$
- where x^{*} is a local min, i.e., $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$
- Let $g\left(x_{k}\right) \equiv \nabla f\left(x_{k}\right)$; Taylor's theorem:

$$
0=g\left(x^{*}\right)=g\left(x_{k}\right)+\left\langle\nabla g\left(x_{k}\right), x^{*}-x_{k}\right\rangle+o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

Newton - local convergence rate

- Suppose method generates sequence $\left\{x_{k}\right\} \rightarrow x^{*}$
- where x^{*} is a local min, i.e., $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$
- Let $g\left(x_{k}\right) \equiv \nabla f\left(x_{k}\right)$; Taylor's theorem:

$$
0=g\left(x^{*}\right)=g\left(x_{k}\right)+\left\langle\nabla g\left(x_{k}\right), x^{*}-x_{k}\right\rangle+o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

- Multiply by $\left[\nabla g\left(x_{k}\right)\right]^{-1}$ to obtain

$$
x_{k}-x^{*}-\left[\nabla g\left(x_{k}\right)\right]^{-1} g\left(x_{k}\right)=o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

Newton - local convergence rate

- Suppose method generates sequence $\left\{x_{k}\right\} \rightarrow x^{*}$
- where x^{*} is a local min, i.e., $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$
- Let $g\left(x_{k}\right) \equiv \nabla f\left(x_{k}\right)$; Taylor's theorem:

$$
0=g\left(x^{*}\right)=g\left(x_{k}\right)+\left\langle\nabla g\left(x_{k}\right), x^{*}-x_{k}\right\rangle+o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

- Multiply by $\left[\nabla g\left(x_{k}\right)\right]^{-1}$ to obtain

$$
x_{k}-x^{*}-\left[\nabla g\left(x_{k}\right)\right]^{-1} g\left(x_{k}\right)=o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

- Newton iteration is: $x_{k+1}=x_{k}-\left[\nabla g\left(x_{k}\right)\right]^{-1} g\left(x_{k}\right)$, so

$$
x_{k+1}-x^{*}=o\left(\left\|x_{k}-x^{*}\right\|\right),
$$

- Suppose method generates sequence $\left\{x_{k}\right\} \rightarrow x^{*}$
- where x^{*} is a local min, i.e., $\nabla f\left(x^{*}\right)=0$ and $\nabla^{2} f\left(x^{*}\right) \succ 0$
- Let $g\left(x_{k}\right) \equiv \nabla f\left(x_{k}\right)$; Taylor's theorem:

$$
0=g\left(x^{*}\right)=g\left(x_{k}\right)+\left\langle\nabla g\left(x_{k}\right), x^{*}-x_{k}\right\rangle+o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

- Multiply by $\left[\nabla g\left(x_{k}\right)\right]^{-1}$ to obtain

$$
x_{k}-x^{*}-\left[\nabla g\left(x_{k}\right)\right]^{-1} g\left(x_{k}\right)=o\left(\left\|x_{k}-x^{*}\right\|\right)
$$

- Newton iteration is: $x_{k+1}=x_{k}-\left[\nabla g\left(x_{k}\right)\right]^{-1} g\left(x_{k}\right)$, so

$$
x_{k+1}-x^{*}=o\left(\left\|x_{k}-x^{*}\right\|\right),
$$

- So for $x_{k} \neq x^{*}$ we get

$$
\lim _{k \rightarrow \infty} \frac{\left\|x_{k+1}-x^{*}\right\|}{\left\|x_{k}-x^{*}\right\|}=\lim _{k \rightarrow \infty} \frac{o\left(\left\|x_{k+1}-x^{*}\right\|\right)}{\left\|x_{k}-x^{*}\right\|}=0
$$

Local superlinear convergence rate

Newton method - local convergence

Assumptions

- Lipschitz Hessian: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq M\|x-y\|$
- Local strong convexity: There exists a local minimum x^{*} with

$$
\nabla^{2} f\left(x^{*}\right) \succeq \mu I, \quad \mu>0 .
$$

- Locality: Starting point x_{0} "close enough" to x^{*}

Newton method - local convergence

Assumptions

- Lipschitz Hessian: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq M\|x-y\|$
- Local strong convexity: There exists a local minimum x^{*} with

$$
\nabla^{2} f\left(x^{*}\right) \succeq \mu I, \quad \mu>0
$$

- Locality: Starting point x_{0} "close enough" to x^{*}

Theorem Suppose x_{0} satisfies

$$
\left\|x_{0}-x^{*}\right\|<r:=\frac{2 \mu}{3 M}
$$

Then, $\left\|x_{k}-x^{*}\right\|<r, \forall k$ and the NM converges quadratically

$$
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M\left\|x_{k}-x^{*}\right\|^{2}}{2\left(\mu-M\left\|x_{k}-x^{*}\right\|\right)}
$$

Newton method - local convergence

Assumptions

- Lipschitz Hessian: $\left\|\nabla^{2} f(x)-\nabla^{2} f(y)\right\| \leq M\|x-y\|$
- Local strong convexity: There exists a local minimum x^{*} with

$$
\nabla^{2} f\left(x^{*}\right) \succeq \mu I, \quad \mu>0
$$

- Locality: Starting point x_{0} "close enough" to x^{*}

Theorem Suppose x_{0} satisfies

$$
\left\|x_{0}-x^{*}\right\|<r:=\frac{2 \mu}{3 M} .
$$

Then, $\left\|x_{k}-x^{*}\right\|<r, \forall k$ and the NM converges quadratically

$$
\left\|x_{k+1}-x^{*}\right\| \leq \frac{M\left\|x_{k}-x^{*}\right\|^{2}}{2\left(\mu-M\left\|x_{k}-x^{*}\right\|\right)}
$$

Reading assignment: Read $\S 9.5 .3$ of Boyd-Vandenberghe

Quasi-Newton

Gradient and Newton

(Grad) $\quad x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}>0$
(Newton) $\quad x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)$.

$$
\begin{aligned}
(\mathrm{Grad}) & x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}>0 \\
(\text { Newton }) & x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
\end{aligned}
$$

Viewpoint for the gradient method.

$$
\begin{aligned}
(\text { Grad }) & x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}>0 \\
(\text { Newton }) & x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
\end{aligned}
$$

Viewpoint for the gradient method. Consider approximation

$$
\phi_{1}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 \alpha}\left\|x-x_{k}\right\|^{2}
$$

$$
\begin{aligned}
(\mathrm{Grad}) & x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}>0 \\
(\text { Newton }) & x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) .
\end{aligned}
$$

Viewpoint for the gradient method. Consider approximation

$$
\phi_{1}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 \alpha}\left\|x-x_{k}\right\|^{2}
$$

Optimality condition yields

$$
\phi^{\prime}\left(x^{*}\right)=\nabla f\left(x_{k}\right)+\frac{1}{\alpha}\left(x^{*}-x_{k}\right)=0
$$

Gradient and Newton

$$
\begin{aligned}
(\mathrm{Grad}) & x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}>0 \\
(\text { Newton }) & x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) .
\end{aligned}
$$

Viewpoint for the gradient method. Consider approximation

$$
\phi_{1}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 \alpha}\left\|x-x_{k}\right\|^{2}
$$

Optimality condition yields

$$
\begin{aligned}
\phi^{\prime}\left(x^{*}\right) & =\nabla f\left(x_{k}\right)+\frac{1}{\alpha}\left(x^{*}-x_{k}\right)=0 \\
x^{*} & =x_{k}-\alpha \nabla f\left(x_{k}\right)
\end{aligned}
$$

Gradient and Newton

$$
\begin{aligned}
(\mathrm{Grad}) & x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right), \quad \alpha_{k}>0 \\
(\text { Newton }) & x_{k+1}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) .
\end{aligned}
$$

Viewpoint for the gradient method. Consider approximation

$$
\phi_{1}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2 \alpha}\left\|x-x_{k}\right\|^{2}
$$

Optimality condition yields

$$
\begin{aligned}
\phi^{\prime}\left(x^{*}\right) & =\nabla f\left(x_{k}\right)+\frac{1}{\alpha}\left(x^{*}-x_{k}\right)=0 \\
x^{*} & =x_{k}-\alpha \nabla f\left(x_{k}\right)
\end{aligned}
$$

If $\alpha \in\left(0, \frac{1}{L}\right], \phi_{1}(x)$ is global overestimator

$$
f(x) \leq \phi_{1}(x), \quad \forall x \in \mathbb{R}^{n}
$$

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

$$
\phi_{2}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle .
$$

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

$$
\phi_{2}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle
$$

Minimum of this function is

$$
x^{*}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right) .
$$

Gradient and Newton

Viewpoint for Newton method. Consider quadratic approx

$$
\phi_{2}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle\nabla^{2} f\left(x_{k}\right)\left(x-x_{k}\right), x-x_{k}\right\rangle
$$

Minimum of this function is

$$
x^{*}=x_{k}-\left[\nabla^{2} f\left(x_{k}\right)\right]^{-1} \nabla f\left(x_{k}\right)
$$

Something better than ϕ_{1}, less expensive than ϕ_{2} ?

Quasi-Newton methods

Generic Quadratic Model

$$
\phi_{D}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle H_{k}\left(x-x_{k}\right), x-x_{k}\right\rangle .
$$

Quasi-Newton methods

Generic Quadratic Model

$$
\phi_{D}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle H_{k}\left(x-x_{k}\right), x-x_{k}\right\rangle
$$

- Matrix $H_{k} \succ 0$, some posdef matrix
- Leads to optimum

$$
\begin{aligned}
x^{*} & =x_{k}-H_{k}^{-1} \nabla f\left(x_{k}\right) \\
x^{*} & =x_{k}-S_{k} \nabla f\left(x_{k}\right) .
\end{aligned}
$$

Quasi-Newton methods

Generic Quadratic Model

$$
\phi_{D}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle H_{k}\left(x-x_{k}\right), x-x_{k}\right\rangle
$$

- Matrix $H_{k} \succ 0$, some posdef matrix
- Leads to optimum

$$
\begin{aligned}
& x^{*}=x_{k}-H_{k}^{-1} \nabla f\left(x_{k}\right) \\
& x^{*}=x_{k}-S_{k} \nabla f\left(x_{k}\right) .
\end{aligned}
$$

- The first-order methods that form a sequence of matrices

$$
\left\{H_{k}\right\}: H_{k} \rightarrow \nabla^{2} f\left(x^{*}\right)
$$

where H_{k} is constructed using only gradient information,

Quasi-Newton methods

Generic Quadratic Model

$$
\phi_{D}(x):=f\left(x_{k}\right)+\left\langle\nabla f\left(x_{k}\right), x-x_{k}\right\rangle+\frac{1}{2}\left\langle H_{k}\left(x-x_{k}\right), x-x_{k}\right\rangle .
$$

- Matrix $H_{k} \succ 0$, some posdef matrix
- Leads to optimum

$$
\begin{aligned}
& x^{*}=x_{k}-H_{k}^{-1} \nabla f\left(x_{k}\right) \\
& x^{*}=x_{k}-S_{k} \nabla f\left(x_{k}\right) .
\end{aligned}
$$

- The first-order methods that form a sequence of matrices

$$
\left\{H_{k}\right\}: H_{k} \rightarrow \nabla^{2} f\left(x^{*}\right)
$$

where H_{k} is constructed using only gradient information, are called variable metric or quasi-Newton methods.

$$
\begin{aligned}
& x_{k+1}=x_{k}-H_{k}^{-1} \nabla f\left(x_{k}\right) \quad k=0,1, \ldots \\
& x_{k+1}=x_{k}-S_{k} \nabla f\left(x_{k}\right) \quad k=0,1, \ldots
\end{aligned}
$$

Quasi-Newton method

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$.

Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$. Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$
- For $k \geq 0$:

1 descent direction: $d_{k} \leftarrow S_{k} \nabla f\left(x_{k}\right)$

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$. Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$
- For $k \geq 0$:

1 descent direction: $d_{k} \leftarrow S_{k} \nabla f\left(x_{k}\right)$
2 stepsize: search for good $\alpha_{k}>0$

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$.

Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$

- For $k \geq 0$:

1 descent direction: $d_{k} \leftarrow S_{k} \nabla f\left(x_{k}\right)$
2 stepsize: search for good $\alpha_{k}>0$
3 update: $x_{k+1}=x_{k}-\alpha_{k} d_{k}$

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$.

Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$

- For $k \geq 0$:

1 descent direction: $d_{k} \leftarrow S_{k} \nabla f\left(x_{k}\right)$
2 stepsize: search for good $\alpha_{k}>0$
3 update: $x_{k+1}=x_{k}-\alpha_{k} d_{k}$
4 compute $f\left(x_{k+1}\right)$ and $\nabla f\left(x_{k+1}\right)$

Quasi-Newton method

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$.

Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$

- For $k \geq 0$:

1 descent direction: $d_{k} \leftarrow S_{k} \nabla f\left(x_{k}\right)$
2 stepsize: search for good $\alpha_{k}>0$
3 update: $x_{k+1}=x_{k}-\alpha_{k} d_{k}$
4 compute $f\left(x_{k+1}\right)$ and $\nabla f\left(x_{k+1}\right)$
5 QN update: $S_{k} \rightarrow S_{k+1}$

Quasi-Newton method

- Choose $x_{0} \in \mathbb{R}^{n}$. Let $H_{0}=I$. Compute $f\left(x_{0}\right)$ and $\nabla f\left(x_{0}\right)$
- For $k \geq 0$:

1 descent direction: $d_{k} \leftarrow S_{k} \nabla f\left(x_{k}\right)$
2 stepsize: search for good $\alpha_{k}>0$
3 update: $x_{k+1}=x_{k}-\alpha_{k} d_{k}$
4 compute $f\left(x_{k+1}\right)$ and $\nabla f\left(x_{k+1}\right)$
5 QN update: $S_{k} \rightarrow S_{k+1}$
QN schemes differ in how $S_{k} \equiv H_{k}^{-1}$ are updated!

Quasi-Newton methods

$$
\begin{gathered}
\text { Secant equation / QN rule } \\
S_{k+1}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)=x_{k+1}-x_{k}
\end{gathered}
$$

Quasi-Newton methods

Secant equation / QN rule

$$
S_{k+1}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)=x_{k+1}-x_{k} .
$$

- Quadratic models from iteration $k \rightarrow k+1$

$$
\begin{aligned}
\phi_{k}(x) & =a_{k}+\left\langle g_{k}, x-x_{k}\right\rangle+\frac{1}{2}\left\langle H\left(x-x_{k}\right), x-x_{k}\right\rangle \\
\phi_{k+1}(x) & =a_{k+1}+\left\langle g_{k+1}, x-x_{k+1}\right\rangle+\frac{1}{2}\left\langle H\left(x-x_{k+1}\right), x-x_{k+1}\right\rangle
\end{aligned}
$$

Quasi-Newton methods

Secant equation / QN rule

$$
S_{k+1}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)=x_{k+1}-x_{k}
$$

- Quadratic models from iteration $k \rightarrow k+1$

$$
\begin{aligned}
\phi_{k}(x) & =a_{k}+\left\langle g_{k}, x-x_{k}\right\rangle+\frac{1}{2}\left\langle H\left(x-x_{k}\right), x-x_{k}\right\rangle \\
\phi_{k+1}(x) & =a_{k+1}+\left\langle g_{k+1}, x-x_{k+1}\right\rangle+\frac{1}{2}\left\langle H\left(x-x_{k+1}\right), x-x_{k+1}\right\rangle
\end{aligned}
$$

- $\phi_{k}^{\prime}(x)-\phi_{k+1}^{\prime}(x)=g_{k}-g_{k+1}+H\left(x_{k+1}-x_{k}\right)$

Quasi-Newton methods

Secant equation / QN rule

$$
S_{k+1}\left(\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)\right)=x_{k+1}-x_{k}
$$

- Quadratic models from iteration $k \rightarrow k+1$

$$
\begin{aligned}
\phi_{k}(x) & =a_{k}+\left\langle g_{k}, x-x_{k}\right\rangle+\frac{1}{2}\left\langle H\left(x-x_{k}\right), x-x_{k}\right\rangle \\
\phi_{k+1}(x) & =a_{k+1}+\left\langle g_{k+1}, x-x_{k+1}\right\rangle+\frac{1}{2}\left\langle H\left(x-x_{k+1}\right), x-x_{k+1}\right\rangle
\end{aligned}
$$

- $\phi_{k}^{\prime}(x)-\phi_{k+1}^{\prime}(x)=g_{k}-g_{k+1}+H\left(x_{k+1}-x_{k}\right)$
- Setting this to zero, we get

$$
\begin{aligned}
g_{k+1}-g_{k} & =H\left(x_{k+1}-x_{k}\right) \\
S\left(g_{k+1}-g_{k}\right) & =x_{k+1}-x_{k} .
\end{aligned}
$$

- So we construct $H_{k} \rightarrow H_{k+1}$ or $S_{k} \rightarrow S_{k+1}$ to respect this.
- Barzilai-Borwein stepsize. Let $y_{k}=g_{k+1}-g_{k}, s_{k}=x_{k+1}-x_{k}$:

$$
\min _{H}\left\|H s_{k}-y_{k}\right\|, \quad H=\alpha I .
$$

- Barzilai-Borwein stepsize. Let $y_{k}=g_{k+1}-g_{k}, s_{k}=x_{k+1}-x_{k}$:

$$
\min _{H}\left\|H s_{k}-y_{k}\right\|, \quad H=\alpha I .
$$

- Davidon-Fletcher-Powell (DFP): $\beta:=1 /\left\langle y_{k}, s_{k}\right\rangle$

$$
\begin{aligned}
H_{k+1} & =\left(I-\beta y_{k} s_{k}^{T}\right) H_{k}\left(I-\beta s_{k} y_{k}^{T}\right)+\beta y_{k} y_{k}^{T} \\
S_{k+1} & =S_{k}-\frac{S_{k} s_{k} s_{k}^{T} S_{k}}{\left\langle S_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k}^{T} .
\end{aligned}
$$

Hessian updates

- Barzilai-Borwein stepsize. Let $y_{k}=g_{k+1}-g_{k}, s_{k}=x_{k+1}-x_{k}$:

$$
\min _{H}\left\|H s_{k}-y_{k}\right\|, \quad H=\alpha I .
$$

- Davidon-Fletcher-Powell (DFP): $\beta:=1 /\left\langle y_{k}, s_{k}\right\rangle$

$$
\begin{aligned}
H_{k+1} & =\left(I-\beta y_{k} s_{k}^{T}\right) H_{k}\left(I-\beta s_{k} y_{k}^{T}\right)+\beta y_{k} y_{k}^{T} \\
S_{k+1} & =S_{k}-\frac{S_{k} s_{k} s_{k}^{T} S_{k}}{\left\langle S_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k}^{T}
\end{aligned}
$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS)

$$
\begin{aligned}
S_{k+1} & =\left(I-\beta s_{k} y_{k}^{T}\right) S_{k}\left(I-\beta y_{k} s_{k}^{T}\right)+\beta s_{k} s_{k}^{T} \\
H_{k+1} & =H_{k}-\frac{H_{k} s_{k} s_{k}^{T} H_{k}}{\left\langle H_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k} T
\end{aligned}
$$

Hessian updates

- Barzilai-Borwein stepsize. Let $y_{k}=g_{k+1}-g_{k}, s_{k}=x_{k+1}-x_{k}$:

$$
\min _{H}\left\|H s_{k}-y_{k}\right\|, \quad H=\alpha I .
$$

- Davidon-Fletcher-Powell (DFP): $\beta:=1 /\left\langle y_{k}, s_{k}\right\rangle$

$$
\begin{aligned}
H_{k+1} & =\left(I-\beta y_{k} s_{k}^{T}\right) H_{k}\left(I-\beta s_{k} y_{k}^{T}\right)+\beta y_{k} y_{k}^{T} \\
S_{k+1} & =S_{k}-\frac{S_{k} s_{k} s_{k}^{T} S_{k}}{\left\langle S_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k}^{T}
\end{aligned}
$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS)

$$
\begin{aligned}
S_{k+1} & =\left(I-\beta s_{k} y_{k}^{T}\right) S_{k}\left(I-\beta y_{k} s_{k}^{T}\right)+\beta s_{k} s_{k}^{T} \\
H_{k+1} & =H_{k}-\frac{H_{k} s_{k} s_{k}^{T} H_{k}}{\left\langle H_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k} T
\end{aligned}
$$

BFGS believed to be most stable, best scheme.

Hessian updates

- Barzilai-Borwein stepsize. Let $y_{k}=g_{k+1}-g_{k}, s_{k}=x_{k+1}-x_{k}$:

$$
\min _{H}\left\|H s_{k}-y_{k}\right\|, \quad H=\alpha I .
$$

- Davidon-Fletcher-Powell (DFP): $\beta:=1 /\left\langle y_{k}, s_{k}\right\rangle$

$$
\begin{aligned}
H_{k+1} & =\left(I-\beta y_{k} s_{k}^{T}\right) H_{k}\left(I-\beta s_{k} y_{k}^{T}\right)+\beta y_{k} y_{k}^{T} \\
S_{k+1} & =S_{k}-\frac{S_{k} s_{k} s_{k}^{T} S_{k}}{\left\langle S_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k}^{T}
\end{aligned}
$$

- Broyden-Fletcher-Goldfarb-Shanno (BFGS)

$$
\begin{aligned}
S_{k+1} & =\left(I-\beta s_{k} y_{k}^{T}\right) S_{k}\left(I-\beta y_{k} s_{k}^{T}\right)+\beta s_{k} s_{k}^{T} \\
H_{k+1} & =H_{k}-\frac{H_{k} s_{k} s_{k}^{T} H_{k}}{\left\langle H_{k} s_{k}, s_{k}\right\rangle}+\beta y_{k} y_{k} T
\end{aligned}
$$

BFGS believed to be most stable, best scheme.

- Notice, updates computationally "cheap"

Limited memory methods

Hessian storage and update has $O\left(n^{2}\right)$ cost

Limited memory methods

Hessian storage and update has $O\left(n^{2}\right)$ cost

Estimate H_{k} or S_{k} using only previous few iterations; so essentially, use only $O(m n)$ storage, where $m \approx 5-17$

- Each step of BFGS is: $x_{k+1}=x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)$

Limited memory methods

Hessian storage and update has $O\left(n^{2}\right)$ cost

Estimate H_{k} or S_{k} using only previous few iterations; so essentially, use only $O(m n)$ storage, where $m \approx 5-17$

- Each step of BFGS is: $x_{k+1}=x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)$
- S_{k} is updated at every iteration using

$$
S_{k+1}=V_{k}^{T} S_{k} V_{k}+\beta_{k} s_{k} s_{k}^{T}
$$

Limited memory methods

Hessian storage and update has $O\left(n^{2}\right)$ cost

Estimate H_{k} or S_{k} using only previous few iterations; so essentially, use only $O(m n)$ storage, where $m \approx 5-17$

- Each step of BFGS is: $x_{k+1}=x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)$
- S_{k} is updated at every iteration using

$$
S_{k+1}=V_{k}^{T} S_{k} V_{k}+\beta_{k} s_{k} s_{k}^{T}
$$

where, with $s_{k}:=x_{k+1}-x_{k}$ and $y_{k}:=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$,

$$
\beta_{k}=\frac{1}{y_{k}^{T} s_{k}}, \quad V_{k}=I-\beta_{k} y_{k} s_{k}^{T}
$$

Limited memory methods

Hessian storage and update has $O\left(n^{2}\right)$ cost

Estimate H_{k} or S_{k} using only previous few iterations; so essentially, use only $O(m n)$ storage, where $m \approx 5-17$

- Each step of BFGS is: $x_{k+1}=x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)$
- S_{k} is updated at every iteration using

$$
S_{k+1}=V_{k}^{T} S_{k} V_{k}+\beta_{k} s_{k} s_{k}^{T}
$$

where, with $s_{k}:=x_{k+1}-x_{k}$ and $y_{k}:=\nabla f\left(x_{k+1}\right)-\nabla f\left(x_{k}\right)$,

$$
\beta_{k}=\frac{1}{y_{k}^{T} s_{k}}, \quad V_{k}=I-\beta_{k} y_{k} s_{k}^{T}
$$

- We use m vector pairs $\left(s_{i}, y_{i}\right)$, for $i=k-m, \ldots, k-1$

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
S_{k}=\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right)
$$

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
\begin{aligned}
S_{k} & =\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\beta_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right)
\end{aligned}
$$

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
\begin{aligned}
S_{k} & =\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\beta_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m}^{T} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right) \\
& +\beta_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2}^{T} \cdots V_{k-1}^{T}\right)
\end{aligned}
$$

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
\begin{aligned}
S_{k} & =\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\beta_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right) \\
& +\beta_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2}^{T} \cdots V_{k-1}^{T}\right) \\
& +\cdots \\
& +\beta_{k-1} s_{k-1} s_{k-1}^{T} .
\end{aligned}
$$

Ultimate aim is to efficiently compute: $S_{k} \nabla f\left(x_{k}\right)$

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
\begin{aligned}
S_{k} & =\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\beta_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right) \\
& +\beta_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2}^{T} \cdots V_{k-1}^{T}\right) \\
& +\cdots \\
& +\beta_{k-1} s_{k-1} s_{k-1}^{T} .
\end{aligned}
$$

Ultimate aim is to efficiently compute: $S_{k} \nabla f\left(x_{k}\right)$
Exercise: Implement procedure to compute $S_{k} \nabla f\left(x_{k}\right)$ efficiently.

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
\begin{aligned}
S_{k} & =\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\beta_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right) \\
& +\beta_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2}^{T} \cdots V_{k-1}^{T}\right) \\
& +\cdots \\
& +\beta_{k-1} s_{k-1} s_{k-1}^{T} .
\end{aligned}
$$

Ultimate aim is to efficiently compute: $S_{k} \nabla f\left(x_{k}\right)$
Exercise: Implement procedure to compute $S_{k} \nabla f\left(x_{k}\right)$ efficiently.

- Typical choice for $S_{k}^{0}=\frac{s_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}} I$

Limited memory methods

Unroll the S_{k} update loop for m iterations to obtain

$$
\begin{aligned}
S_{k} & =\left(V_{k-1}^{T} \cdots V_{k-m}^{T}\right) S_{k}^{0}\left(V_{k-m} \cdots V_{k-1}\right) \\
& +\beta_{k-m}\left(V_{k-1}^{T} \cdots V_{k-m+1}^{T}\right) s_{k-m} s_{k-m}^{T}\left(V_{k-m+1}^{T} \cdots V_{k-1}^{T}\right) \\
& +\beta_{k-m+1}\left(V_{k-1}^{T} \cdots V_{k-m+2}^{T}\right) s_{k-m+1} s_{k-m+1}^{T}\left(V_{k-m+2}^{T} \cdots V_{k-1}^{T}\right) \\
& +\cdots \\
& +\beta_{k-1} s_{k-1} s_{k-1}^{T} .
\end{aligned}
$$

Ultimate aim is to efficiently compute: $S_{k} \nabla f\left(x_{k}\right)$
Exercise: Implement procedure to compute $S_{k} \nabla f\left(x_{k}\right)$ efficiently.

- Typical choice for $S_{k}^{0}=\frac{s_{k-1}^{T} y_{k-1}}{y_{k-1}^{T} y_{k-1}} I$
- This is related to the BB stepsize!

Constrained problems

Constrained problems

Two-metric projection method

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)\right)
$$

Constrained problems

Two-metric projection method

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)\right)
$$

- Fundamental problem: not a descent iteration!

Constrained problems

Two-metric projection method

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)\right)
$$

- Fundamental problem: not a descent iteration!
- We may have $f\left(x_{k+1}\right)>f\left(x_{k}\right)$ for all $\alpha_{k}>0$

Constrained problems

Two-metric projection method

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} S_{k} \nabla f\left(x_{k}\right)\right)
$$

- Fundamental problem: not a descent iteration!
- We may have $f\left(x_{k+1}\right)>f\left(x_{k}\right)$ for all $\alpha_{k}>0$
- Method might not even recognize a stationary point!

Failure of projected-Newton methods

Constrained problems

- Projected-gradient works! BUT

Constrained problems

- Projected-gradient works! BUT
- Projected Newton or Quasi-Newton do not work!
- Projected-gradient works! BUT
- Projected Newton or Quasi-Newton do not work!
- More careful selection of S_{k} (or H_{k}) needed
- Projected-gradient works! BUT
- Projected Newton or Quasi-Newton do not work!
- More careful selection of S_{k} (or H_{k}) needed
- See e.g., Bertsekas and Gafni (Projected QN) (1984)
- Projected-gradient works! BUT
- Projected Newton or Quasi-Newton do not work!
- More careful selection of S_{k} (or H_{k}) needed
- See e.g., Bertsekas and Gafni (Projected QN) (1984)
- With simple bound constraints: LBFGS-B

Nonsmooth problems

We did not cover many interesting ideas

© Proximal Newton methods
© $f(x)+r(x)$ problems (see book chapter)
© Nonsmooth BFGS - Lewis, Overton
© Nonsmooth LBFGS

References

\bigcirc Y. Nesterov. Introductory Lectures on Convex Optimization (2004).
\bigcirc J. Nocedal, S. J. Wright. Numerical Optimization (1999).
\bigcirc M. Schmidt, D. Kim, S. Sra. Newton-type methods in machine learning, Chapter 13 in Optimization for Machine Learning (2011).

