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Admin

♠ Reviews due 19 Apr 2013 by 5pm
Login to easychair as “PC-Member” to enter reviews

♠ Please take the review seriously:
As a reviewer–it’ll be graded
As an author–your peers are providing valuable feedback

♠ Make up for missed lectures:

I’ll ask you to view two video lectures
HW5 slightly delayed; shorter, simpler
Will include questions related to videos

♠ Project poster presentations:

Soda 306 HP Auditorium
Fri May 10, 2013 4pm – 8pm
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Parallel computation – high level views

I Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

I Not insisting on exact computation allows more parallelism

I Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is ≤ 1/f

I Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations

I Distributed optimization across machines: synchronization and
communication biggest burden; node failure, network failure,
load-balancing, etc.

I Synchronous vs. asynchronous computation
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Poor man’s parallelism
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Separable optimization

min f(x) :=
∑m

i=1
fi(x) x ∈ Rn.

Product space trick

I Introduce (local) variables (x1, . . . , xm)

I Problem is now over Hm := H×H× · · · × H (m-times)

I Consensus constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.
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Separable optimization

min
x

f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Can solve using DR method

I Each component of fi(xi) independently in parallel

I Communicate / synchronize to ensure consensus
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The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



The ADMM view

Let us see separable objective with constraints

min f(x) + g(z)

s.t. Ax+Bz = c.

I Objective function is separable into two sets x and z variables

I The constraint prevents a trivial decoupling

I Introduce augmented lagrangian (AL)

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Now, a Gauss-Seidel style update to the AL

xk+1 = argminx Lρ(x, zk, yk)

zk+1 = argminz Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

7 / 22



ADMM – scaled version

I The AL is

Lρ(x, z, y) := f(x)+g(z)+yT (Ax+Bz−c)+ ρ
2‖Ax+Bz − c‖22

I Combine linear and quadratic terms in Lρ, so we have

Lρ(x, z, y) = f(x) + g(z) + ρ
2‖Ax+Bz − c+ d‖22 + constants

where we use dk = (1/ρ)yk as a new variable.

I Exercise: Verify above algebra.

Scaled ADMM

xk+1 = argminx f(x) +
ρ
2‖Ax+Bzk − c+ dk‖22

zk+1 = argminz g(z) +
ρ
2‖Axk+1 +Bz − c+ dk‖22

dk+1 = dk + (Axk+1 +Bzk+1 − c)
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ADMM – Parallel / distributed version

min f(x) =
∑

i fi(x)

Product space form for ADMM

min
x1,...,xm,z

∑m

i=1
fi(xi)

s.t. xi − z = 0, i = 1, . . . ,m.

♠ Local variables xi – one vector per processor / cluster node

♠ z is the global, shared variable

♠ xi − z = 0 is called consensus constraint
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ADMM – Parallel / distributed version

Augmented Lagrangian

Lρ(x, z, y) :=
∑m

i=1

(
fi(xi) + yTi (xi − z) +

ρ
2‖xi − z‖

2
2

)

ADMM updates

[xi]k+1 = argminxi fi(xi) + [yi]
T
k (xi − zk) +

ρ
2‖xi − zk‖

2
2

zk+1 = 1
m

∑
i

(
[xi]k+1 +

1
ρ [yi]k

)
[yi]k+1 = [yi]k + ρ([xi]k+1 − zk+1)

Exercise: Verify the above updates (use unscaled ADMM)

I The xi updates in parallel; synchronize to update z and y
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Asynchronous methods

11 / 22



Trivial methods so far

min f(x) =
∑m

i=1 fi(x) x ∈ X

xk+1 = PX (xk − αk
∑m

i=1
gi(xk)),

where gi ∈ ∂fi(xk) — so that
∑

i gi ∈ ∂f(xk)

♣ The sum has m components

♣ Trivial parallelization: compute each gi(xk) on diff. processor

♣ Then collect the answers on a master node

♣ Update αk and xk+1 in serial

♣ Share / Broadcast xk+1 and repeat

♣ Highly synchronized computation

♣ Makes sense if computing a single subgradient takes much
longer than the involved costs of synchronization
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♣ Share / Broadcast xk+1 and repeat

♣ Highly synchronized computation

♣ Makes sense if computing a single subgradient takes much
longer than the involved costs of synchronization
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Partially asynchronous methods

If even one of the processors is slow in computing its subgradient
gi(xk), the whole update gets blocked due to synchronization

Asynchronous updates

xk+1 = xk − αk
m∑
i=1

gi(k − τi)

where gi(k − τi) is a delayed subgradient.

Notation: We write gi(k) ≡ gi(xk)

I Master slave architecture
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Partially asynchronous methods

♣ If no delay, then τi = 0 — synchronized case

♣ Each processor can have its own arbitrary delay τi

♣ If gi(k) not available from node i, don’t block the update

♣ instead we go ahead and use the most recently available
subgradient gi(k − τi) from processor i

♣ Partial asynchrony: delays can be arbitrary but bounded

♣ Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

Delay τ , leads to convergence rate: O(
√
τ/T ).
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Partially asynchronous methods

Algorithm 1: Projected subgradient

gavg(k) :=
∑

i
λigi(k − τi)

xk+1 = argmin
x∈X

{
〈gavg(k), x〉+

1

αk
‖x− xk‖22

}

Algorithm 2: Mirror descent version

xk+1 = argmin
x

{
〈gavg(k), x〉+

1

αk
Dφ(x, xk)

}
Dφ(x, y) is some strongly convex Bregman divergence
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Partially asynchronous methods

I Method also works for stochastic optimization, if gi(k − τi) is a
stochastic subgradient.

I Since i.i.d. sampling of subgradients assumed, each processor
can sample its own subgradients concurrently; subsequent
averaging to use gavg reduces variance.

I Convergence rates depend on: network topology, delay process,
and objective smoothness (by choosing stepsize αk)
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Comparison: syn vs asyn

I Suppose we iterate x = Ax where A =

[
a b
b a

]

I The iteration updates are

x1 ← ax1 + bx2

x2 ← bx1 + ax2.

I Suppose processor 1 updates x1; processor 2 updates x2

I After updates, x1 and x2 communicated to each other

I Say update requires 1 unit of time, and communication
requires τ ≥ 1 units of time
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Comparison: syn vs asyn

I Synchronous: values received at times τ + 1, 2(τ + 1), . . .

I Say xi(t) is value at processor i at time t

I So in the synchronous case we have

x1(t+ 1)← ax1(t− τ) + bx2(t− τ)
x2(t+ 1)← bx1(t− τ) + ax2(t− τ).

I Asynchronous: processor i updates own variable regardless of
whether it has the latest value from the other processor

I Thus, in the asynchronous case we have

x1(t+ 1)← ax1(t) + bx2(t− τ)
x2(t+ 1)← bx1(t− τ) + ax2(t).

I In both cases, use base case: xi(t) = xi(0) for −D ≤ t < 0
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Comparison: syn vs asyn

I Can be shown if |a|+ |b| < 1 then both syn and asyn converge
to x∗ = (0, 0)

I Say we have ρ > 0 such that

|a|ρ−τ + |b|ρ−τ ≤ ρ,

then the synchronous sequence xi(t) satisfies

|xi(t)| ≤ Cρt, ∀t = 0, 1, . . . ,

where C = max {|x1(0)|, |x2(0)|}
I Exercise: Use induction on t to prove above claim.
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Comparison: syn vs asyn

I Smallest synchronous ρ is ρS = (|a|+ |b|)1/(τ+1)

I For asynchronous case, if we have

|a|+ |b|ρ−τ ≤ ρ,

then inductively can show that |xi(t)| ≤ Cρt (same C as above)

I Smallest valid ρ is ρA > 0 that solves |a|+ |b|ρ−τA = ρA

I Verify that ρA ≤ ρS
I Thus, the asynchronous version converges faster

I But it requires more message transmissions
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Distributed optimization

Foundations of distributed computation

http://videolectures.net/nipsworkshops2010 tsitsiklis aad/

Implementation oriented talk

http://videolectures.net/nipsworkshops2012 smola parameter server/
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