Convex Optimization

(EE227A: UC Berkeley)

Lecture 24
(Parallel, Distributed — I1)

18 Apr, 2013

o

Suvrit Sra



Admin

& Reviews due 19 Apr 2013 by 5pm

Login to easychair as “PC-Member” to enter reviews

22



Admin

& Reviews due 19 Apr 2013 by 5pm
Login to easychair as “PC-Member” to enter reviews
& Please take the review seriously:
m As a reviewer—it'll be graded
m As an author—your peers are providing valuable feedback

)

N



Admin

& Reviews due 19 Apr 2013 by 5pm
Login to easychair as “PC-Member” to enter reviews
& Please take the review seriously:
m As a reviewer—it'll be graded
m As an author—your peers are providing valuable feedback

& Make up for missed lectures:

m |'ll ask you to view two video lectures
m HW5 slightly delayed; shorter, simpler
m Will include questions related to videos

)

N



Admin

& Reviews due 19 Apr 2013 by 5pm

Login to easychair as “PC-Member” to enter reviews

& Please take the review seriously:
m As a reviewer—it'll be graded
m As an author—your peers are providing valuable feedback

& Make up for missed lectures:

m |'ll ask you to view two video lectures
m HW5 slightly delayed; shorter, simpler
m Will include questions related to videos

& Project poster presentations:

Soda 306 HP Auditorium
Fri May 10, 2013 4pm — 8pm

)

N



Parallel computation — high level views

» Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

22



Parallel computation — high level views

» Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

» Not insisting on exact computation allows more parallelism

22



Parallel computation — high level views

» Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

» Not insisting on exact computation allows more parallelism

» Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

22



Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism

Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations

3/22



Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism
Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations
Distributed optimization across machines: synchronization and
communication biggest burden;



Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism

Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations

Distributed optimization across machines: synchronization and
communication biggest burden; node failure, network failure,
load-balancing, etc.



Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism

Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations
Distributed optimization across machines: synchronization and
communication biggest burden; node failure, network failure,
load-balancing, etc.

Synchronous vs. asynchronous computation



Poor man'’s parallelism
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Separable optimization

. m
min  f(z) := Zi:l fi(z) zeR"™
Product space trick
» Introduce (local) variables (z1,...,2m)
» Problem is now over H™ :=H x H x --- X H (m-times)

» Consensus constraint: £1 = z9 = ... = o,
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Separable optimization

mmin f(x) + Iz(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

» Can solve using DR method
» Each component of f;(x;) independently in parallel

» Communicate / synchronize to ensure consensus
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The ADMM view

Let us see separable objective with constraints

min  f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables
» The constraint prevents a trivial decoupling

» Introduce augmented lagrangian (AL)
Ly(2,2,y) == f(2)+9(2) +y" (Az+Bz—c)+5|| Az + Bz — ¢|3

» Now, a Gauss-Seidel style update to the AL
Te+1 = argminx Lp(xvzk‘yyk‘)
Zpy1 = argming Ly(Try1, 2, Yk)
Ye+t1 = Yk + p(AZki1 + Bzp — o)
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» The AL is
Lp(x,2,9) i= (@) +9(z)+y" (Av+Bz—c)+§||Av + Bz — cll3
» Combine linear and quadratic terms in L,, so we have

Ly(z,2,y) = f(z) + g(2) + §||Az + Bz — ¢ + d||3 + constants

where we use di, = (1/p)yx as a new variable.

» Exercise: Verify above algebra.
Scaled ADMM

Ty = argming f(x) + §||Ax + Bz —c+ di||3
Zk+1 argmin, g(z) + g”Al“k-s—l 4+ Bz —c+ dk||%
di+1 = di+ (Azg41 + Bagr —©)

22



ADMM - Parallel / distributed version

win /() = ¥, fi(a)

/22



ADMM - Parallel / distributed version

min f(z) = >, fi(x)

Product space form for ADMM
min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

22



ADMM - Parallel / distributed version

min f(z) = >, fi(z)
Product space form for ADMM

min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

& Local variables z; — one vector per processor / cluster node



ADMM - Parallel / distributed version

min f(z) = >, fi(z)
Product space form for ADMM

min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

& Local variables z; — one vector per processor / cluster node
# 2 is the global, shared variable



ADMM - Parallel / distributed version

min f(z) = >, fi(x)

Product space form for ADMM
min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

& Local variables z; — one vector per processor / cluster node
# 2 is the global, shared variable

& 1; — 2 =0 is called consensus constraint
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Augmented Lagrangian
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ADMM updates
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ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) + ] (xi = 2) + §llas — 2I13)

ADMM updates

[zilker = argming, fi(ws) + Wi} (v — 2e) + §llai — 23
el = o Z ( et + 5 wilk )
Wilkrr = [Wilk + p([Tilkr1 — 2k+1)
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ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) + ] (xi = 2) + §llas — 2I13)

ADMM updates

[zilker = argming, fi(ws) + Wi} (v — 2e) + §llai — 23
el = o Z ( et + 5 wilk )
Wilkrr = [Wilk + p([Tilkr1 — 2k+1)

Exercise: Verify the above updates (use unscaled ADMM)

» The x; updates in parallel; synchronize to update z and y
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Trivial methods so far

min f(z) = Y0, filr) veX

Tp1 = Pr(zp — g Zj; gi(zr)),

where g; € Of;(zy) — so that ). g; € Of (zx)
& The sum has m components
& Trivial parallelization: compute each g;(xy) on diff. processor
& Then collect the answers on a master node
& Update ay, and xj1 in serial
& Share / Broadcast zy.1 and repeat
& Highly synchronized computation

& Makes sense if computing a single subgradient takes much
longer than the involved costs of synchronization
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Partially asynchronous methods

If even one of the processors is slow in computing its subgradient
gi(xr), the whole update gets blocked due to synchronization

Asynchronous updates
m
Tpp1 =2k — o Y gi(k —7)
i=1
where g;(k — 7;) is a delayed subgradient.
Notation: We write g;(k) = g;(xy)

» Master slave architecture

13 /22
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ol ot

If no delay, then 7; = 0 — synchronized case
Each processor can have its own arbitrary delay 7;
If gi(k) not available from node i, don’t block the update

instead we go ahead and use the most recently available
subgradient g;(k — 7;) from processor i

Partial asynchrony: delays can be arbitrary but bounded

Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence ‘

Delay 7, leads to convergence rate: O(+/7/T).

14 /22
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Partially asynchronous methods

Algorithm 1: Projected subgradient
Gavg (k) := ZZ Aigi(k — ;)

. 1
f41 — argmin {<gavg<k>, 2) + -z — a:ku%}
reX (873

Algorithm 2: Mirror descent version
. 1
Tp4+1 = argmin {(gavg(k), z) + —Dy(z, zk)}
T Qf

Dy(x,y) is some strongly convex Bregman divergence

15 /22
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Partially asynchronous methods

» Method also works for stochastic optimization, if g;(k — 7;) is a
stochastic subgradient.

» Since i.i.d. sampling of subgradients assumed, each processor
can sample its own subgradients concurrently; subsequent
averaging to use g,yg reduces variance.

» Convergence rates depend on: network topology, delay process,
and objective smoothness (by choosing stepsize ay)

16 /22
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Comparison: syn vs asyn

v

v

v

Suppose we iterate = Ax where A = [cbt Z}

The iteration updates are

1 < axi + bxo

Ty < bxr1 + axs.

Suppose processor 1 updates x1; processor 2 updates xo
After updates, 1 and x2 communicated to each other

Say update requires 1 unit of time, and communication
requires 7 > 1 units of time

17 /22
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Comparison: syn vs asyn

v

Synchronous: values received at times 7+ 1,2(7 + 1),...
Say x;(t) is value at processor i at time ¢
So in the synchronous case we have

z1(t+1) < axi(t — 1) + bxa(t — 1)
xo(t +1) < bxi(t —7) + axa(t — 7).

Asynchronous: processor ¢ updates own variable regardless of
whether it has the latest value from the other processor

Thus, in the asynchronous case we have

z1(t+1) < axi(t) + bra(t — 7)
xo(t+ 1) < bxy(t — 7) + axa(t).

In both cases, use base case: z;(t) = x;(0) for —D <t <0

18 /22



Comparison: syn vs asyn

» Can be shown if |a| + |b| < 1 then both syn and asyn converge
to z* = (0,0)
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Comparison: syn vs asyn

» Can be shown if |a| + |b| < 1 then both syn and asyn converge
to z* = (0,0)
» Say we have p > 0 such that

lalp™" + [blp™" < p,
then the synchronous sequence x;(t) satisfies
lz;(t)] < Cpt, Yt=0,1,...,

where C' = max {|z1(0)|, |x2(0)|}
» Exercise: Use induction on ¢ to prove above claim.
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Comparison: syn vs asyn

vvyyvyy

Smallest synchronous p is ps = (|a| + |b)*/(7+1)

For asynchronous case, if we have
lal + [b]p™" < p,

then inductively can show that |z;(t)| < Cp' (same C' as above)
Smallest valid p is p4 > 0 that solves |a| + [b|p," = pa

Verify that p4 < pg

Thus, the asynchronous version converges faster

But it requires more message transmissions

20 /22



Distributed optimization

Foundations of distributed computation
http://videolectures.net/nipsworkshops2010_tsitsiklis_aad /
Implementation oriented talk

http://videolectures.net/nipsworkshops2012_smola_parameter_server/
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