Convex Optimization

(EE227A: UC Berkeley)

Lecture 24
 (Parallel, Distributed - II)

18 Apr, 2013

Suvrit Sra

Admin

- Reviews due 19 Apr 2013 by 5pm

Login to easychair as "PC-Member" to enter reviews
© Reviews due 19 Apr 2013 by 5pm
Login to easychair as "PC-Member" to enter reviews
A Please take the review seriously:

- As a reviewer-it'll be graded

■ As an author-your peers are providing valuable feedback
© Reviews due 19 Apr 2013 by 5pm
Login to easychair as "PC-Member" to enter reviews
A Please take the review seriously:
■ As a reviewer-it'll be graded

- As an author-your peers are providing valuable feedback
© Make up for missed lectures:
■ I'll ask you to view two video lectures
- HW5 slightly delayed; shorter, simpler

■ Will include questions related to videos
© Reviews due 19 Apr 2013 by 5pm
Login to easychair as "PC-Member" to enter reviews
A Please take the review seriously:

- As a reviewer-it'll be graded
- As an author-your peers are providing valuable feedback
© Make up for missed lectures:
■ I'll ask you to view two video lectures
■ HW5 slightly delayed; shorter, simpler
■ Will include questions related to videos
A Project poster presentations:

> Soda 306 HP Auditorium
> Fri May 10, 2013 4pm - 8pm

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden;

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.

Parallel computation - high level views

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- Not insisting on exact computation allows more parallelism
- Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1 / f$
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.
- Synchronous vs. asynchronous computation

Poor man's parallelism

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n}
$$

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n}
$$

Product space trick

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n}
$$

Product space trick

- Introduce (local) variables $\left(x_{1}, \ldots, x_{m}\right)$

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n} .
$$

Product space trick

- Introduce (local) variables $\left(x_{1}, \ldots, x_{m}\right)$
- Problem is now over $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)

Separable optimization

$$
\min \quad f(x):=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathbb{R}^{n}
$$

Product space trick

- Introduce (local) variables $\left(x_{1}, \ldots, x_{m}\right)$
- Problem is now over $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)
- Consensus constraint: $x_{1}=x_{2}=\ldots=x_{m}$

$$
\min _{\left(x_{1}, \ldots, x_{m}\right)} \sum_{i} f_{i}\left(x_{i}\right)
$$

$$
\text { s.t. } \quad x_{1}=x_{2}=\cdots=x_{m} .
$$

Separable optimization

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

Separable optimization

$$
\begin{gathered}
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x}) \\
\text { where } \boldsymbol{x} \in \mathcal{H}^{m} \text { and } \mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}
\end{gathered}
$$

- Can solve using DR method

Separable optimization

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Can solve using DR method
- Each component of $f_{i}\left(x_{i}\right)$ independently in parallel
- Communicate / synchronize to ensure consensus

The ADMM view

Let us see separable objective with constraints

The ADMM view

Let us see separable objective with constraints

$$
\begin{aligned}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c .
\end{aligned}
$$

The ADMM view

Let us see separable objective with constraints

$$
\begin{aligned}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c .
\end{aligned}
$$

- Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling

The ADMM view

Let us see separable objective with constraints

$$
\begin{array}{cl}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c .
\end{array}
$$

- Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling
- Introduce augmented lagrangian (AL)

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

The ADMM view

Let us see separable objective with constraints

$$
\begin{aligned}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c .
\end{aligned}
$$

- Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling
- Introduce augmented lagrangian (AL)

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Now, a Gauss-Seidel style update to the AL

The ADMM view

Let us see separable objective with constraints

$$
\begin{array}{cl}
\min & f(x)+g(z) \\
\mathrm{s.t.} & A x+B z=c .
\end{array}
$$

- Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling
- Introduce augmented lagrangian (AL)

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Now, a Gauss-Seidel style update to the AL

$$
x_{k+1}=\operatorname{argmin}_{x} L_{\rho}\left(x, z_{k}, y_{k}\right)
$$

The ADMM view

Let us see separable objective with constraints

$$
\begin{aligned}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c .
\end{aligned}
$$

- Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling
- Introduce augmented lagrangian (AL)

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Now, a Gauss-Seidel style update to the AL

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin}_{x} L_{\rho}\left(x, z_{k}, y_{k}\right) \\
z_{k+1} & =\operatorname{argmin}_{z} L_{\rho}\left(x_{k+1}, z, y_{k}\right)
\end{aligned}
$$

The ADMM view

Let us see separable objective with constraints

$$
\begin{aligned}
\min & f(x)+g(z) \\
\text { s.t. } & A x+B z=c .
\end{aligned}
$$

- Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling
- Introduce augmented lagrangian (AL)

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Now, a Gauss-Seidel style update to the AL

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin}_{x} L_{\rho}\left(x, z_{k}, y_{k}\right) \\
z_{k+1} & =\operatorname{argmin}_{z} L_{\rho}\left(x_{k+1}, z, y_{k}\right) \\
y_{k+1} & =y_{k}+\rho\left(A x_{k+1}+B z_{k+1}-c\right)
\end{aligned}
$$

ADMM - scaled version

- The AL is

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

ADMM - scaled version

- The AL is

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Combine linear and quadratic terms in L_{ρ}, so we have

$$
L_{\rho}(x, z, y)=f(x)+g(z)+\frac{\rho}{2}\|A x+B z-c+d\|_{2}^{2}+\text { constants }
$$

where we use $d_{k}=(1 / \rho) y_{k}$ as a new variable.

- Exercise: Verify above algebra.

ADMM - scaled version

- The AL is

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Combine linear and quadratic terms in L_{ρ}, so we have

$$
L_{\rho}(x, z, y)=f(x)+g(z)+\frac{\rho}{2}\|A x+B z-c+d\|_{2}^{2}+\text { constants }
$$

where we use $d_{k}=(1 / \rho) y_{k}$ as a new variable.

- Exercise: Verify above algebra.

Scaled ADMM

$$
x_{k+1}=\operatorname{argmin}_{x} f(x)+\frac{\rho}{2}\left\|A x+B z_{k}-c+d_{k}\right\|_{2}^{2}
$$

ADMM - scaled version

- The AL is

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Combine linear and quadratic terms in L_{ρ}, so we have

$$
L_{\rho}(x, z, y)=f(x)+g(z)+\frac{\rho}{2}\|A x+B z-c+d\|_{2}^{2}+\text { constants }
$$

where we use $d_{k}=(1 / \rho) y_{k}$ as a new variable.

- Exercise: Verify above algebra.

Scaled ADMM

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin}_{x} f(x)+\frac{\rho}{2}\left\|A x+B z_{k}-c+d_{k}\right\|_{2}^{2} \\
z_{k+1} & =\operatorname{argmin}_{z} g(z)+\frac{\rho}{2}\left\|A x_{k+1}+B z-c+d_{k}\right\|_{2}^{2}
\end{aligned}
$$

ADMM - scaled version

- The AL is

$$
L_{\rho}(x, z, y):=f(x)+g(z)+y^{T}(A x+B z-c)+\frac{\rho}{2}\|A x+B z-c\|_{2}^{2}
$$

- Combine linear and quadratic terms in L_{ρ}, so we have

$$
L_{\rho}(x, z, y)=f(x)+g(z)+\frac{\rho}{2}\|A x+B z-c+d\|_{2}^{2}+\text { constants }
$$

where we use $d_{k}=(1 / \rho) y_{k}$ as a new variable.

- Exercise: Verify above algebra.

Scaled ADMM

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin}_{x} f(x)+\frac{\rho}{2}\left\|A x+B z_{k}-c+d_{k}\right\|_{2}^{2} \\
z_{k+1} & =\operatorname{argmin}_{z} g(z)+\frac{\rho}{2}\left\|A x_{k+1}+B z-c+d_{k}\right\|_{2}^{2} \\
d_{k+1} & =d_{k}+\left(A x_{k+1}+B z_{k+1}-c\right)
\end{aligned}
$$

ADMM - Parallel / distributed version

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

ADMM - Parallel / distributed version

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

Product space form for ADMM

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{m}, z} & \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{i}-z=0, \quad i=1, \ldots, m
\end{aligned}
$$

ADMM - Parallel / distributed version

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

Product space form for ADMM

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{m}, z} & \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{i}-z=0, \quad i=1, \ldots, m
\end{aligned}
$$

© Local variables x_{i} - one vector per processor / cluster node

ADMM - Parallel / distributed version

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

Product space form for ADMM

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{m}, z} & \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{i}-z=0, \quad i=1, \ldots, m
\end{aligned}
$$

© Local variables x_{i} - one vector per processor / cluster node
© z is the global, shared variable

ADMM - Parallel / distributed version

$$
\min f(x)=\sum_{i} f_{i}(x)
$$

Product space form for ADMM

$$
\begin{aligned}
\min _{x_{1}, \ldots, x_{m}, z} & \sum_{i=1}^{m} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{i}-z=0, \quad i=1, \ldots, m
\end{aligned}
$$

© Local variables x_{i} - one vector per processor / cluster node
© z is the global, shared variable
© $x_{i}-z=0$ is called consensus constraint

ADMM - Parallel / distributed version

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, z, y):=\sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|_{2}^{2}\right)
$$

ADMM - Parallel / distributed version

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, z, y):=\sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|_{2}^{2}\right)
$$

ADMM updates

$$
\left[x_{i}\right]_{k+1}=\operatorname{argmin}_{x_{i}} f_{i}\left(x_{i}\right)+\left[y_{i}\right]_{k}^{T}\left(x_{i}-z_{k}\right)+\frac{\rho}{2}\left\|x_{i}-z_{k}\right\|_{2}^{2}
$$

ADMM - Parallel / distributed version

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, z, y):=\sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|_{2}^{2}\right)
$$

ADMM updates

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\operatorname{argmin}_{x_{i}} f_{i}\left(x_{i}\right)+\left[y_{i}\right]_{k}^{T}\left(x_{i}-z_{k}\right)+\frac{\rho}{2}\left\|x_{i}-z_{k}\right\|_{2}^{2} \\
z_{k+1} & =\frac{1}{m} \sum_{i}\left(\left[x_{i}\right]_{k+1}+\frac{1}{\rho}\left[y_{i}\right]_{k}\right)
\end{aligned}
$$

ADMM - Parallel / distributed version

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, z, y):=\sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|_{2}^{2}\right)
$$

ADMM updates

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\operatorname{argmin}_{x_{i}} f_{i}\left(x_{i}\right)+\left[y_{i}\right]_{k}^{T}\left(x_{i}-z_{k}\right)+\frac{\rho}{2}\left\|x_{i}-z_{k}\right\|_{2}^{2} \\
z_{k+1} & =\frac{1}{m} \sum_{i}\left(\left[x_{i}\right]_{k+1}+\frac{1}{\rho}\left[y_{i}\right]_{k}\right) \\
{\left[y_{i}\right]_{k+1} } & =\left[y_{i}\right]_{k}+\rho\left(\left[x_{i}\right]_{k+1}-z_{k+1}\right)
\end{aligned}
$$

ADMM - Parallel / distributed version

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, z, y):=\sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|_{2}^{2}\right)
$$

ADMM updates

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\operatorname{argmin}_{x_{i}} f_{i}\left(x_{i}\right)+\left[y_{i}\right]_{k}^{T}\left(x_{i}-z_{k}\right)+\frac{\rho}{2}\left\|x_{i}-z_{k}\right\|_{2}^{2} \\
z_{k+1} & =\frac{1}{m} \sum_{i}\left(\left[x_{i}\right]_{k+1}+\frac{1}{\rho}\left[y_{i}\right]_{k}\right) \\
{\left[y_{i}\right]_{k+1} } & =\left[y_{i}\right]_{k}+\rho\left(\left[x_{i}\right]_{k+1}-z_{k+1}\right)
\end{aligned}
$$

Exercise: Verify the above updates (use unscaled ADMM)

ADMM - Parallel / distributed version

Augmented Lagrangian

$$
L_{\rho}(\boldsymbol{x}, z, y):=\sum_{i=1}^{m}\left(f_{i}\left(x_{i}\right)+y_{i}^{T}\left(x_{i}-z\right)+\frac{\rho}{2}\left\|x_{i}-z\right\|_{2}^{2}\right)
$$

ADMM updates

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\operatorname{argmin}_{x_{i}} f_{i}\left(x_{i}\right)+\left[y_{i}\right]_{k}^{T}\left(x_{i}-z_{k}\right)+\frac{\rho}{2}\left\|x_{i}-z_{k}\right\|_{2}^{2} \\
z_{k+1} & =\frac{1}{m} \sum_{i}\left(\left[x_{i}\right]_{k+1}+\frac{1}{\rho}\left[y_{i}\right]_{k}\right) \\
{\left[y_{i}\right]_{k+1} } & =\left[y_{i}\right]_{k}+\rho\left(\left[x_{i}\right]_{k+1}-z_{k+1}\right)
\end{aligned}
$$

Exercise: Verify the above updates (use unscaled ADMM)

- The x_{i} updates in parallel; synchronize to update z and y

Asynchronous methods

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

where $g_{i} \in \partial f_{i}\left(x_{k}\right)$ - so that $\sum_{i} g_{i} \in \partial f\left(x_{k}\right)$

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

where $g_{i} \in \partial f_{i}\left(x_{k}\right)$ - so that $\sum_{i} g_{i} \in \partial f\left(x_{k}\right)$
\& The sum has m components

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

where $g_{i} \in \partial f_{i}\left(x_{k}\right)$ - so that $\sum_{i} g_{i} \in \partial f\left(x_{k}\right)$
\& The sum has m components
\& Trivial parallelization: compute each $g_{i}\left(x_{k}\right)$ on diff. processor

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

$$
\text { where } g_{i} \in \partial f_{i}\left(x_{k}\right) \text { - so that } \sum_{i} g_{i} \in \partial f\left(x_{k}\right)
$$

\& The sum has m components
\& Trivial parallelization: compute each $g_{i}\left(x_{k}\right)$ on diff. processor
\& Then collect the answers on a master node

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

$$
\text { where } g_{i} \in \partial f_{i}\left(x_{k}\right) \text { - so that } \sum_{i} g_{i} \in \partial f\left(x_{k}\right)
$$

\& The sum has m components
\& Trivial parallelization: compute each $g_{i}\left(x_{k}\right)$ on diff. processor
\& Then collect the answers on a master node
\& Update α_{k} and x_{k+1} in serial

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

where $g_{i} \in \partial f_{i}\left(x_{k}\right)$ - so that $\sum_{i} g_{i} \in \partial f\left(x_{k}\right)$
\& The sum has m components
\& Trivial parallelization: compute each $g_{i}\left(x_{k}\right)$ on diff. processor
\& Then collect the answers on a master node
of Update α_{k} and x_{k+1} in serial
\& Share / Broadcast x_{k+1} and repeat

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

$$
\text { where } g_{i} \in \partial f_{i}\left(x_{k}\right)-\text { so that } \sum_{i} g_{i} \in \partial f\left(x_{k}\right)
$$

\& The sum has m components
\& Trivial parallelization: compute each $g_{i}\left(x_{k}\right)$ on diff. processor
\& Then collect the answers on a master node
of Update α_{k} and x_{k+1} in serial
\& Share / Broadcast x_{k+1} and repeat
\& Highly synchronized computation

Trivial methods so far

$$
\min \quad f(x)=\sum_{i=1}^{m} f_{i}(x) \quad x \in \mathcal{X}
$$

$$
x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(x_{k}\right)\right)
$$

$$
\text { where } g_{i} \in \partial f_{i}\left(x_{k}\right)-\text { so that } \sum_{i} g_{i} \in \partial f\left(x_{k}\right)
$$

\& The sum has m components
\& Trivial parallelization: compute each $g_{i}\left(x_{k}\right)$ on diff. processor
\& Then collect the answers on a master node
of Update α_{k} and x_{k+1} in serial
\& Share / Broadcast x_{k+1} and repeat
\& Highly synchronized computation
\& Makes sense if computing a single subgradient takes much longer than the involved costs of synchronization

If even one of the processors is slow in computing its subgradient $g_{i}\left(x_{k}\right)$, the whole update gets blocked due to synchronization

If even one of the processors is slow in computing its subgradient $g_{i}\left(x_{k}\right)$, the whole update gets blocked due to synchronization Asynchronous updates

$$
x_{k+1}=x_{k}-\alpha_{k} \sum_{i=1}^{m} g_{i}\left(k-\tau_{i}\right)
$$

where $g_{i}\left(k-\tau_{i}\right)$ is a delayed subgradient.
Notation: We write $g_{i}(k) \equiv g_{i}\left(x_{k}\right)$

- Master slave architecture

Partially asynchronous methods
\& If no delay, then $\tau_{i}=0$ - synchronized case
\& If no delay, then $\tau_{i}=0$ - synchronized case
\& Each processor can have its own arbitrary delay τ_{i}
\& If no delay, then $\tau_{i}=0$ - synchronized case
\& Each processor can have its own arbitrary delay τ_{i}
\& If $g_{i}(k)$ not available from node i, don't block the update
\& If no delay, then $\tau_{i}=0$ - synchronized case
\% Each processor can have its own arbitrary delay τ_{i}
\& If $g_{i}(k)$ not available from node i, don't block the update
$\%_{0}$ instead we go ahead and use the most recently available subgradient $g_{i}\left(k-\tau_{i}\right)$ from processor i
\& If no delay, then $\tau_{i}=0$ - synchronized case
\& Each processor can have its own arbitrary delay τ_{i}
\& If $g_{i}(k)$ not available from node i, don't block the update
$\%_{0}$ instead we go ahead and use the most recently available subgradient $g_{i}\left(k-\tau_{i}\right)$ from processor i
\& Partial asynchrony: delays can be arbitrary but bounded
\& If no delay, then $\tau_{i}=0$ - synchronized case
\% Each processor can have its own arbitrary delay τ_{i}
\& If $g_{i}(k)$ not available from node i, don't block the update
$\%_{0}$ instead we go ahead and use the most recently available subgradient $g_{i}\left(k-\tau_{i}\right)$ from processor i
\& Partial asynchrony: delays can be arbitrary but bounded
\& Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.
\& If no delay, then $\tau_{i}=0$ - synchronized case
\& Each processor can have its own arbitrary delay τ_{i}
\& If $g_{i}(k)$ not available from node i, don't block the update
$\%$ instead we go ahead and use the most recently available subgradient $g_{i}\left(k-\tau_{i}\right)$ from processor i
\& Partial asynchrony: delays can be arbitrary but bounded
\& Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

Partially asynchronous methods

\& If no delay, then $\tau_{i}=0$ - synchronized case
\& Each processor can have its own arbitrary delay τ_{i}
\& If $g_{i}(k)$ not available from node i, don't block the update
\& instead we go ahead and use the most recently available subgradient $g_{i}\left(k-\tau_{i}\right)$ from processor i
\& Partial asynchrony: delays can be arbitrary but bounded
\& Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

Delay τ, leads to convergence rate: $O(\sqrt{\tau / T})$.

Partially asynchronous methods

Algorithm 1: Projected subgradient

$$
\begin{aligned}
g_{\mathrm{avg}}(k) & :=\sum_{i} \lambda_{i} g_{i}\left(k-\tau_{i}\right) \\
x_{k+1} & =\underset{x \in \mathcal{X}}{\operatorname{argmin}} \quad\left\{\left\langle g_{\mathrm{avg}}(k), x\right\rangle+\frac{1}{\alpha_{k}}\left\|x-x_{k}\right\|_{2}^{2}\right\}
\end{aligned}
$$

Partially asynchronous methods

Algorithm 1: Projected subgradient

$$
\begin{aligned}
g_{\mathrm{avg}}(k) & :=\sum_{i} \lambda_{i} g_{i}\left(k-\tau_{i}\right) \\
x_{k+1} & =\underset{x \in \mathcal{X}}{\operatorname{argmin}} \quad\left\{\left\langle g_{\mathrm{avg}}(k), x\right\rangle+\frac{1}{\alpha_{k}}\left\|x-x_{k}\right\|_{2}^{2}\right\}
\end{aligned}
$$

Algorithm 2: Mirror descent version

$$
x_{k+1}=\underset{x}{\operatorname{argmin}}\left\{\left\langle g_{\mathrm{avg}}(k), x\right\rangle+\frac{1}{\alpha_{k}} D_{\phi}\left(x, x_{k}\right)\right\}
$$

$D_{\phi}(x, y)$ is some strongly convex Bregman divergence

- Method also works for stochastic optimization, if $g_{i}\left(k-\tau_{i}\right)$ is a stochastic subgradient.
- Method also works for stochastic optimization, if $g_{i}\left(k-\tau_{i}\right)$ is a stochastic subgradient.
- Since i.i.d. sampling of subgradients assumed, each processor can sample its own subgradients concurrently; subsequent averaging to use $g_{\text {avg }}$ reduces variance.
- Method also works for stochastic optimization, if $g_{i}\left(k-\tau_{i}\right)$ is a stochastic subgradient.
- Since i.i.d. sampling of subgradients assumed, each processor can sample its own subgradients concurrently; subsequent averaging to use $g_{\text {avg }}$ reduces variance.
- Convergence rates depend on: network topology, delay process, and objective smoothness (by choosing stepsize α_{k})

Comparison: syn vs asyn

- Suppose we iterate $x=A x$ where $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$

Comparison: syn vs asyn

- Suppose we iterate $x=A x$ where $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$
- The iteration updates are

$$
\begin{aligned}
& x_{1} \leftarrow a x_{1}+b x_{2} \\
& x_{2} \leftarrow b x_{1}+a x_{2}
\end{aligned}
$$

Comparison: syn vs asyn

- Suppose we iterate $x=A x$ where $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$
- The iteration updates are

$$
\begin{aligned}
& x_{1} \leftarrow a x_{1}+b x_{2} \\
& x_{2} \leftarrow b x_{1}+a x_{2}
\end{aligned}
$$

- Suppose processor 1 updates x_{1}; processor 2 updates x_{2}
- After updates, x_{1} and x_{2} communicated to each other

Comparison: syn vs asyn

- Suppose we iterate $x=A x$ where $A=\left[\begin{array}{ll}a & b \\ b & a\end{array}\right]$
- The iteration updates are

$$
\begin{aligned}
& x_{1} \leftarrow a x_{1}+b x_{2} \\
& x_{2} \leftarrow b x_{1}+a x_{2}
\end{aligned}
$$

- Suppose processor 1 updates x_{1}; processor 2 updates x_{2}
- After updates, x_{1} and x_{2} communicated to each other
- Say update requires 1 unit of time, and communication requires $\tau \geq 1$ units of time

Comparison: syn vs asyn

- Synchronous: values received at times $\tau+1,2(\tau+1), \ldots$

Comparison: syn vs asyn

- Synchronous: values received at times $\tau+1,2(\tau+1), \ldots$
- Say $x_{i}(t)$ is value at processor i at time t

Comparison: syn vs asyn

- Synchronous: values received at times $\tau+1,2(\tau+1), \ldots$
- Say $x_{i}(t)$ is value at processor i at time t
- So in the synchronous case we have

$$
\begin{aligned}
& x_{1}(t+1) \leftarrow a x_{1}(t-\tau)+b x_{2}(t-\tau) \\
& x_{2}(t+1) \leftarrow b x_{1}(t-\tau)+a x_{2}(t-\tau)
\end{aligned}
$$

Comparison: syn vs asyn

- Synchronous: values received at times $\tau+1,2(\tau+1), \ldots$
- Say $x_{i}(t)$ is value at processor i at time t
- So in the synchronous case we have

$$
\begin{aligned}
& x_{1}(t+1) \leftarrow a x_{1}(t-\tau)+b x_{2}(t-\tau) \\
& x_{2}(t+1) \leftarrow b x_{1}(t-\tau)+a x_{2}(t-\tau) .
\end{aligned}
$$

- Asynchronous: processor i updates own variable regardless of whether it has the latest value from the other processor
- Thus, in the asynchronous case we have

$$
\begin{aligned}
& x_{1}(t+1) \leftarrow a x_{1}(t)+b x_{2}(t-\tau) \\
& x_{2}(t+1) \leftarrow b x_{1}(t-\tau)+a x_{2}(t) .
\end{aligned}
$$

- In both cases, use base case: $x_{i}(t)=x_{i}(0)$ for $-D \leq t<0$

Comparison: syn vs asyn

- Can be shown if $|a|+|b|<1$ then both syn and asyn converge to $x^{*}=(0,0)$

Comparison: syn vs asyn

- Can be shown if $|a|+|b|<1$ then both syn and asyn converge to $x^{*}=(0,0)$
- Say we have $\rho>0$ such that

$$
|a| \rho^{-\tau}+|b| \rho^{-\tau} \leq \rho,
$$

then the synchronous sequence $x_{i}(t)$ satisfies

$$
\left|x_{i}(t)\right| \leq C \rho^{t}, \quad \forall t=0,1, \ldots,
$$

where $C=\max \left\{\left|x_{1}(0)\right|,\left|x_{2}(0)\right|\right\}$

- Exercise: Use induction on t to prove above claim.

Comparison: syn vs asyn

- Smallest synchronous ρ is $\rho_{S}=(|a|+|b|)^{1 /(\tau+1)}$

Comparison: syn vs asyn

- Smallest synchronous ρ is $\rho_{S}=(|a|+|b|)^{1 /(\tau+1)}$
- For asynchronous case, if we have

$$
|a|+|b| \rho^{-\tau} \leq \rho,
$$

then inductively can show that $\left|x_{i}(t)\right| \leq C \rho^{t}$ (same C as above)

Comparison: syn vs asyn

- Smallest synchronous ρ is $\rho_{S}=(|a|+|b|)^{1 /(\tau+1)}$
- For asynchronous case, if we have

$$
|a|+|b| \rho^{-\tau} \leq \rho,
$$

then inductively can show that $\left|x_{i}(t)\right| \leq C \rho^{t}$ (same C as above)

- Smallest valid ρ is $\rho_{A}>0$ that solves $|a|+|b| \rho_{A}^{-\tau}=\rho_{A}$

Comparison: syn vs asyn

- Smallest synchronous ρ is $\rho_{S}=(|a|+|b|)^{1 /(\tau+1)}$
- For asynchronous case, if we have

$$
|a|+|b| \rho^{-\tau} \leq \rho,
$$

then inductively can show that $\left|x_{i}(t)\right| \leq C \rho^{t}$ (same C as above)

- Smallest valid ρ is $\rho_{A}>0$ that solves $|a|+|b| \rho_{A}^{-\tau}=\rho_{A}$
- Verify that $\rho_{A} \leq \rho_{S}$

Comparison: syn vs asyn

- Smallest synchronous ρ is $\rho_{S}=(|a|+|b|)^{1 /(\tau+1)}$
- For asynchronous case, if we have

$$
|a|+|b| \rho^{-\tau} \leq \rho,
$$

then inductively can show that $\left|x_{i}(t)\right| \leq C \rho^{t}$ (same C as above)

- Smallest valid ρ is $\rho_{A}>0$ that solves $|a|+|b| \rho_{A}^{-\tau}=\rho_{A}$
- Verify that $\rho_{A} \leq \rho_{S}$
- Thus, the asynchronous version converges faster

Comparison: syn vs asyn

- Smallest synchronous ρ is $\rho_{S}=(|a|+|b|)^{1 /(\tau+1)}$
- For asynchronous case, if we have

$$
|a|+|b| \rho^{-\tau} \leq \rho,
$$

then inductively can show that $\left|x_{i}(t)\right| \leq C \rho^{t}$ (same C as above)

- Smallest valid ρ is $\rho_{A}>0$ that solves $|a|+|b| \rho_{A}^{-\tau}=\rho_{A}$
- Verify that $\rho_{A} \leq \rho_{S}$
- Thus, the asynchronous version converges faster
- But it requires more message transmissions

Distributed optimization

Foundations of distributed computation

http://videolectures.net/nipsworkshops2010_tsitsiklis_aad/

Implementation oriented talk

http://videolectures.net/nipsworkshops2012_smola_parameter_server/

References

A D. P. Bertsekas and J. N. Tsitsiklis (1997). Parallel and Distributed Computation: Numerical methods
© S. Boyd. (2012). ADMM notes
A A. Agarwal and J. Duchi (2011). Distributed delayed stochastic optimization

