Convex Optimization

(EE227A: UC Berkeley)

Lecture 24 (Parallel, Distributed – II) 18 Apr, 2013

Suvrit Sra

Reviews due 19 Apr 2013 by 5pm

Login to easychair as "PC-Member" to enter reviews

Reviews due **19 Apr 2013** by 5pm

Login to easychair as "PC-Member" to enter reviews

- Please take the review seriously:
 - As a reviewer-it'll be graded
 - As an author-your peers are providing valuable feedback

Reviews due **19 Apr 2013** by 5pm

Login to easychair as "PC-Member" to enter reviews

- Please take the review seriously:
 - As a reviewer-it'll be graded
 - As an author-your peers are providing valuable feedback
- ♠ Make up for missed lectures:
 - I'll ask you to view two video lectures
 - HW5 slightly delayed; shorter, simpler
 - Will include questions related to videos

Reviews due **19 Apr 2013** by 5pm

Login to easychair as "PC-Member" to enter reviews

- Please take the review seriously:
 - As a reviewer-it'll be graded
 - As an author-your peers are providing valuable feedback
- ♠ Make up for missed lectures:
 - I'll ask you to view two video lectures
 - HW5 slightly delayed; shorter, simpler
 - Will include questions related to videos
- Project **poster** presentations:

Soda 306 HP Auditorium Fri May 10, 2013 4pm – 8pm

► Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible

- ► Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- ► Not insisting on exact computation allows more parallelism

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- ▶ Not insisting on exact computation allows more parallelism
- ► Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is $\leq 1/f$

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- ▶ Not insisting on exact computation allows more parallelism
- ► Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/f
- ► Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- ▶ Not insisting on exact computation allows more parallelism
- ► Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/f
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden;

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- ▶ Not insisting on exact computation allows more parallelism
- ► Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/f
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.

- Intuition from prev lecture: degree of separability strongly correlated with degree of parallelism possible
- ▶ Not insisting on exact computation allows more parallelism
- ► Suppose f is the fraction of sequential computation. Then speedup for any number of processors (cores) is ≤ 1/f
- Parallel optimization on multi-core machines: shared memory architecture. Main penalty: synchronization / atomic operations
- Distributed optimization across machines: synchronization and communication biggest burden; node failure, network failure, load-balancing, etc.
- ► Synchronous vs. asynchronous computation

Poor man's parallelism

min
$$f(x) := \sum_{i=1}^{m} f_i(x) \quad x \in \mathbb{R}^n.$$

min
$$f(x) := \sum_{i=1}^{m} f_i(x) \quad x \in \mathbb{R}^n.$$

Product space trick

min
$$f(x) := \sum_{i=1}^{m} f_i(x) \quad x \in \mathbb{R}^n.$$

Product space trick

▶ Introduce (local) variables (x_1, \ldots, x_m)

min
$$f(x) := \sum_{i=1}^{m} f_i(x) \quad x \in \mathbb{R}^n.$$

Product space trick

- ▶ Introduce (local) variables (x_1, \ldots, x_m)
- ▶ Problem is now over $\mathcal{H}^m := \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (*m*-times)

min
$$f(x) := \sum_{i=1}^{m} f_i(x) \quad x \in \mathbb{R}^n.$$

Product space trick

- ▶ Introduce (local) variables (x_1, \ldots, x_m)
- ▶ Problem is now over $\mathcal{H}^m := \mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (*m*-times)

• Consensus constraint: $x_1 = x_2 = \ldots = x_m$

$$\min_{\substack{(x_1,\dots,x_m)\\ \text{s.t.}}} \sum_i f_i(x_i)$$

$$\label{eq:min} \min_{\bm{x}} f(\bm{x}) + \mathbb{I}_{\mathcal{B}}(\bm{x})$$
 where $\bm{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{\bm{z} \in \mathcal{H}^m \mid \bm{z} = (x, x, \dots, x)\}$

$$\label{eq:min} \min_{\bm{x}} f(\bm{x}) + \mathbb{I}_{\mathcal{B}}(\bm{x})$$
 where $\bm{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{\bm{z} \in \mathcal{H}^m \mid \bm{z} = (x, x, \dots, x)\}$

► Can solve using DR method

$$\label{eq:min} \min_{\bm{x}} f(\bm{x}) + \mathbb{I}_{\mathcal{B}}(\bm{x})$$
 where $\bm{x} \in \mathcal{H}^m$ and $\mathcal{B} = \{\bm{z} \in \mathcal{H}^m \mid \bm{z} = (x,x,\ldots,x)\}$

- ► Can solve using DR method
- Each component of $f_i(x_i)$ independently in parallel
- ► Communicate / synchronize to ensure consensus

Let us see separable objective with constraints

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

- \blacktriangleright Objective function is separable into two sets x and z variables
- ▶ The constraint prevents a trivial decoupling

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

- \blacktriangleright Objective function is separable into two sets x and z variables
- The constraint prevents a trivial decoupling
- ► Introduce augmented lagrangian (AL)

$$L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

- \blacktriangleright Objective function is separable into two sets x and z variables
- ▶ The constraint prevents a trivial decoupling
- ► Introduce augmented lagrangian (AL)

 $L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_{2}^{2}$

▶ Now, a Gauss-Seidel style update to the AL

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

- \blacktriangleright Objective function is separable into two sets x and z variables
- ▶ The constraint prevents a trivial decoupling
- ► Introduce augmented lagrangian (AL)

 $L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_{2}^{2}$

Now, a Gauss-Seidel style update to the AL

 $x_{k+1} = \operatorname{argmin}_x L_{\rho}(x, z_k, y_k)$

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

- \blacktriangleright Objective function is separable into two sets x and z variables
- ► The constraint prevents a trivial decoupling
- ► Introduce augmented lagrangian (AL)

 $L_{\rho}(x,z,y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} \|Ax + Bz - c\|_{2}^{2}$

▶ Now, a Gauss-Seidel style update to the AL

$$\begin{aligned} x_{k+1} &= \operatorname{argmin}_x L_{\rho}(x, z_k, y_k) \\ z_{k+1} &= \operatorname{argmin}_z L_{\rho}(x_{k+1}, z, y_k) \end{aligned}$$

Let us see separable objective with constraints

 $\begin{array}{ll} \min & f(x) + g(z) \\ \text{s.t.} & Ax + Bz = c. \end{array}$

- \blacktriangleright Objective function is separable into two sets x and z variables
- ▶ The constraint prevents a trivial decoupling
- ► Introduce augmented lagrangian (AL)

$$L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

▶ Now, a Gauss-Seidel style update to the AL

$$x_{k+1} = \operatorname{argmin}_{x} L_{\rho}(x, z_{k}, y_{k})$$

$$z_{k+1} = \operatorname{argmin}_{z} L_{\rho}(x_{k+1}, z, y_{k})$$

$$y_{k+1} = y_{k} + \rho(Ax_{k+1} + Bz_{k+1} - c)$$

► The AL is

 $L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$

► The AL is

$$L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

• Combine linear and quadratic terms in L_{ρ} , so we have

$$L_{\rho}(x, z, y) = f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c + d||_{2}^{2} + \text{constants}$$

where we use $d_k = (1/\rho)y_k$ as a new variable.

Exercise: Verify above algebra.

► The AL is

$$L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

• Combine linear and quadratic terms in L_{ρ} , so we have

 $L_{\rho}(x, z, y) = f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c + d||_{2}^{2} + \text{constants}$

where we use $d_k = (1/\rho)y_k$ as a new variable.

Exercise: Verify above algebra.

Scaled ADMM

 $x_{k+1} = \operatorname{argmin}_{x} f(x) + \frac{\rho}{2} ||Ax + Bz_k - c + \frac{d_k}{2}||_2^2$

► The AL is

$$L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

• Combine linear and quadratic terms in L_{ρ} , so we have

 $L_{\rho}(x, z, y) = f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c + d||_{2}^{2} + \text{constants}$

where we use $d_k = (1/\rho)y_k$ as a new variable.

Exercise: Verify above algebra.

Scaled ADMM

$$\begin{aligned} x_{k+1} &= \arg \min_{x} f(x) + \frac{\rho}{2} \|Ax + Bz_{k} - c + d_{k}\|_{2}^{2} \\ z_{k+1} &= \arg \min_{z} g(z) + \frac{\rho}{2} \|Ax_{k+1} + Bz - c + d_{k}\|_{2}^{2} \end{aligned}$$

► The AL is

$$L_{\rho}(x, z, y) := f(x) + g(z) + y^{T}(Ax + Bz - c) + \frac{\rho}{2} ||Ax + Bz - c||_{2}^{2}$$

• Combine linear and quadratic terms in L_{ρ} , so we have

 $L_{\rho}(x, z, y) = f(x) + g(z) + \frac{\rho}{2} ||Ax + Bz - c + d||_{2}^{2} + \text{constants}$

where we use $d_k = (1/\rho)y_k$ as a new variable.

Exercise: Verify above algebra.

Scaled ADMM

$$\begin{aligned} x_{k+1} &= \arg\min_{x} f(x) + \frac{\rho}{2} \|Ax + Bz_{k} - c + d_{k}\|_{2}^{2} \\ z_{k+1} &= \arg\min_{z} g(z) + \frac{\rho}{2} \|Ax_{k+1} + Bz - c + d_{k}\|_{2}^{2} \\ d_{k+1} &= d_{k} + (Ax_{k+1} + Bz_{k+1} - c) \end{aligned}$$

ADMM – Parallel / distributed version

$$\min f(x) = \sum_{i} f_i(x)$$

ADMM – Parallel / distributed version

$$\min f(x) = \sum_{i} f_i(x)$$

Product space form for ADMM

 $\min_{\substack{x_1,\dots,x_m,z}} \quad \sum_{i=1}^m f_i(x_i)$ s.t. $x_i - z = 0, \quad i = 1,\dots,m.$
$$\min f(x) = \sum_{i} f_i(x)$$

Product space form for ADMM

 $\min_{\substack{x_1,\dots,x_m,z}} \sum_{i=1}^m f_i(x_i)$ s.t. $x_i - z = 0, \quad i = 1,\dots,m.$

♠ Local variables x_i – one vector per processor / cluster node

$$\min f(x) = \sum_{i} f_i(x)$$

Product space form for ADMM

 $\min_{\substack{x_1,\dots,x_m,z}} \sum_{i=1}^m f_i(x_i)$ s.t. $x_i - z = 0, \quad i = 1,\dots,m.$

♠ Local variables x_i - one vector per processor / cluster node
♠ z is the global, shared variable

$$\min f(x) = \sum_{i} f_i(x)$$

Product space form for ADMM

 $\min_{\substack{x_1,\dots,x_m,z}} \sum_{i=1}^m f_i(x_i)$ s.t. $x_i - z = 0, \quad i = 1,\dots,m.$

♠ Local variables x_i – one vector per processor / cluster node

- \blacklozenge z is the global, shared variable
- \blacklozenge $x_i z = 0$ is called *consensus constraint*

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, z, y) := \sum_{i=1}^{m} \left(f_i(x_i) + y_i^T(x_i - z) + \frac{\rho}{2} \|x_i - z\|_2^2 \right)$$

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, z, y) := \sum_{i=1}^{m} \left(f_i(x_i) + y_i^T(x_i - z) + \frac{\rho}{2} \|x_i - z\|_2^2 \right)$$

ADMM updates

$$[x_i]_{k+1} = \operatorname{argmin}_{x_i} f_i(x_i) + [y_i]_k^T (x_i - z_k) + \frac{\rho}{2} \|x_i - z_k\|_2^2$$

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, z, y) := \sum_{i=1}^{m} \left(f_i(x_i) + y_i^T(x_i - z) + \frac{\rho}{2} \|x_i - z\|_2^2 \right)$$

ADMM updates

$$\begin{aligned} & [x_i]_{k+1} &= \operatorname{argmin}_{x_i} f_i(x_i) + [y_i]_k^T (x_i - z_k) + \frac{\rho}{2} \|x_i - z_k\|_2^2 \\ & z_{k+1} &= \frac{1}{m} \sum_i \left([x_i]_{k+1} + \frac{1}{\rho} [y_i]_k \right) \end{aligned}$$

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, z, y) := \sum_{i=1}^{m} \left(f_i(x_i) + y_i^T(x_i - z) + \frac{\rho}{2} \|x_i - z\|_2^2 \right)$$

ADMM updates

$$\begin{aligned} & [x_i]_{k+1} &= \operatorname{argmin}_{x_i} f_i(x_i) + [y_i]_k^T (x_i - z_k) + \frac{\rho}{2} \|x_i - z_k\|_2^2 \\ & z_{k+1} &= \frac{1}{m} \sum_i \left([x_i]_{k+1} + \frac{1}{\rho} [y_i]_k \right) \\ & [y_i]_{k+1} &= [y_i]_k + \rho([x_i]_{k+1} - z_{k+1}) \end{aligned}$$

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, z, y) := \sum_{i=1}^{m} \left(f_i(x_i) + y_i^T(x_i - z) + \frac{\rho}{2} \|x_i - z\|_2^2 \right)$$

ADMM updates

$$\begin{aligned} & [x_i]_{k+1} &= \operatorname{argmin}_{x_i} f_i(x_i) + [y_i]_k^T (x_i - z_k) + \frac{\rho}{2} \|x_i - z_k\|_2^2 \\ & z_{k+1} &= \frac{1}{m} \sum_i \left([x_i]_{k+1} + \frac{1}{\rho} [y_i]_k \right) \\ & [y_i]_{k+1} &= [y_i]_k + \rho([x_i]_{k+1} - z_{k+1}) \end{aligned}$$

Exercise: Verify the above updates (use unscaled ADMM)

Augmented Lagrangian

$$L_{\rho}(\boldsymbol{x}, z, y) := \sum_{i=1}^{m} \left(f_i(x_i) + y_i^T(x_i - z) + \frac{\rho}{2} \|x_i - z\|_2^2 \right)$$

ADMM updates

$$\begin{split} & [x_i]_{k+1} = \operatorname{argmin}_{x_i} f_i(x_i) + [y_i]_k^T (x_i - z_k) + \frac{\rho}{2} \|x_i - z_k\|_2^2 \\ & z_{k+1} = \frac{1}{m} \sum_i \left([x_i]_{k+1} + \frac{1}{\rho} [y_i]_k \right) \\ & [y_i]_{k+1} = [y_i]_k + \rho([x_i]_{k+1} - z_{k+1}) \end{split}$$

Exercise: Verify the above updates (use unscaled ADMM)

 \blacktriangleright The x_i updates in parallel; synchronize to update z and y

Asynchronous methods

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

min
$$f(x) = \sum_{i=1}^{m} f_i(x)$$
 $x \in \mathcal{X}$

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

min
$$f(x) = \sum_{i=1}^{m} f_i(x)$$
 $x \in \mathcal{X}$

$$\begin{split} x_{k+1} &= P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),\\ \text{where } g_i \in \partial f_i(x_k) \text{ — so that } \sum_i g_i \in \partial f(x_k) \end{split}$$

\clubsuit The sum has *m* components

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **.** The sum has m components
- **\clubsuit** Trivial parallelization: compute each $g_i(x_k)$ on diff. processor

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **.** The sum has m components
- Trivial parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

$$\begin{aligned} x_{k+1} &= P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)), \\ \text{where } g_i \in \partial f_i(x_k) \text{ — so that } \sum_i g_i \in \partial f(x_k) \end{aligned}$$

- **\clubsuit** The sum has m components
- Trivial parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **♣** Update α_k and x_{k+1} in serial

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **\clubsuit** The sum has m components
- Trivial parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- \clubsuit Update α_k and x_{k+1} in serial
- **&** Share / Broadcast x_{k+1} and repeat

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Trivial parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **.** Update α_k and x_{k+1} in serial
- **&** Share / Broadcast x_{k+1} and repeat
- Highly synchronized computation

min
$$f(x) = \sum_{i=1}^{m} f_i(x) \quad x \in \mathcal{X}$$

$$x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k \sum_{i=1}^m g_i(x_k)),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **\clubsuit** The sum has m components
- **4** Trivial parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **♣** Update α_k and x_{k+1} in serial
- \clubsuit Share / Broadcast x_{k+1} and repeat
- Highly synchronized computation
- Makes sense if computing a single subgradient takes much longer than the involved costs of synchronization

If even one of the processors is slow in computing its subgradient $g_i(x_k)$, the whole update gets blocked due to synchronization

If even one of the processors is slow in computing its subgradient $g_i(x_k)$, the whole update gets blocked due to synchronization

Asynchronous updates

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(k - \tau_i)$$

where $g_i(k - \tau_i)$ is a **delayed subgradient**.

Notation: We write $g_i(k) \equiv g_i(x_k)$

► Master slave architecture

♣ If no delay, then $\tau_i = 0$ — synchronized case

- ♣ If no delay, then $\tau_i = 0$ synchronized case
- **&** Each processor can have its own arbitrary delay τ_i

- ♣ If no delay, then $\tau_i = 0$ synchronized case
- \clubsuit Each processor can have its own arbitrary delay τ_i
- If $g_i(k)$ not available from node i, don't block the update

- ♣ If no delay, then $\tau_i = 0$ synchronized case
- \clubsuit Each processor can have its own arbitrary delay τ_i
- **\clubsuit** If $g_i(k)$ not available from node *i*, don't block the update
- ♣ instead we go ahead and use the most recently available subgradient $g_i(k \tau_i)$ from processor i

- ♣ If no delay, then $\tau_i = 0$ synchronized case
- \clubsuit Each processor can have its own arbitrary delay au_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- ♣ instead we go ahead and use the most recently available subgradient $g_i(k \tau_i)$ from processor i
- A Partial asynchrony: delays can be arbitrary but **bounded**

- \clubsuit If no delay, then $\tau_i=0$ synchronized case
- \clubsuit Each processor can have its own arbitrary delay τ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- ♣ instead we go ahead and use the most recently available subgradient $g_i(k \tau_i)$ from processor i
- Partial asynchrony: delays can be arbitrary but bounded
- Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

- \clubsuit If no delay, then $\tau_i = 0$ synchronized case
- \clubsuit Each processor can have its own arbitrary delay au_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- ♣ instead we go ahead and use the most recently available subgradient $g_i(k \tau_i)$ from processor i
- A Partial asynchrony: delays can be arbitrary but bounded
- Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

- \clubsuit If no delay, then $\tau_i = 0$ synchronized case
- \clubsuit Each processor can have its own arbitrary delay au_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- ♣ instead we go ahead and use the most recently available subgradient $g_i(k \tau_i)$ from processor i
- Partial asynchrony: delays can be arbitrary but bounded
- Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

Delay τ , leads to convergence rate: $O(\sqrt{\tau/T})$.

Algorithm 1: Projected subgradient

$$\begin{split} g_{\mathsf{avg}}(k) &:= \sum_{i} \lambda_{i} g_{i}(k - \tau_{i}) \\ x_{k+1} &= \operatorname*{argmin}_{x \in \mathcal{X}} \quad \left\{ \langle g_{\mathsf{avg}}(k), \, x \rangle + \frac{1}{\alpha_{k}} \|x - x_{k}\|_{2}^{2} \right\} \end{split}$$

Algorithm 1: Projected subgradient

$$g_{\mathsf{avg}}(k) := \sum_{i} \lambda_{i} g_{i}(k - \tau_{i})$$
$$x_{k+1} = \underset{x \in \mathcal{X}}{\operatorname{argmin}} \left\{ \langle g_{\mathsf{avg}}(k), \, x \rangle + \frac{1}{\alpha_{k}} \|x - x_{k}\|_{2}^{2} \right\}$$

Algorithm 2: Mirror descent version

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \langle g_{\mathsf{avg}}(k), x \rangle + \frac{1}{\alpha_k} D_{\phi}(x, x_k) \right\}$$

 $D_{\phi}(x,y)$ is some strongly convex Bregman divergence

• Method also works for stochastic optimization, if $g_i(k - \tau_i)$ is a stochastic subgradient.

- Method also works for stochastic optimization, if $g_i(k \tau_i)$ is a stochastic subgradient.
- ► Since i.i.d. sampling of subgradients assumed, each processor can sample its own subgradients concurrently; subsequent averaging to use g_{avg} reduces variance.

- Method also works for stochastic optimization, if $g_i(k \tau_i)$ is a stochastic subgradient.
- Since i.i.d. sampling of subgradients assumed, each processor can sample its own subgradients concurrently; subsequent averaging to use g_{avg} reduces variance.
- Convergence rates depend on: *network topology, delay process,* and *objective smoothness* (by choosing stepsize α_k)

Comparison: syn vs asyn

• Suppose we iterate
$$x = Ax$$
 where $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

Comparison: syn vs asyn

- Suppose we iterate x = Ax where $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$
- ► The iteration updates are

$$x_1 \leftarrow ax_1 + bx_2$$
$$x_2 \leftarrow bx_1 + ax_2.$$
► Suppose we iterate
$$x = Ax$$
 where $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

► The iteration updates are

$$x_1 \leftarrow ax_1 + bx_2$$
$$x_2 \leftarrow bx_1 + ax_2.$$

- Suppose processor 1 updates x_1 ; processor 2 updates x_2
- ▶ After updates, x_1 and x_2 communicated to each other

► Suppose we iterate
$$x = Ax$$
 where $A = \begin{bmatrix} a & b \\ b & a \end{bmatrix}$

► The iteration updates are

$$x_1 \leftarrow ax_1 + bx_2$$
$$x_2 \leftarrow bx_1 + ax_2.$$

- Suppose processor 1 updates x_1 ; processor 2 updates x_2
- ▶ After updates, x_1 and x_2 communicated to each other
- ► Say update requires 1 unit of time, and communication requires τ ≥ 1 units of time

▶ Synchronous: values received at times $\tau + 1, 2(\tau + 1), \ldots$

- \blacktriangleright Synchronous: values received at times $\tau+1,2(\tau+1),\ldots$
- ▶ Say $x_i(t)$ is value at processor i at time t

- \blacktriangleright Synchronous: values received at times $\tau+1,2(\tau+1),\ldots$
- ▶ Say $x_i(t)$ is value at processor i at time t
- ► So in the synchronous case we have

$$\begin{aligned} x_1(t+1) \leftarrow a x_1(t-\tau) + b x_2(t-\tau) \\ x_2(t+1) \leftarrow b x_1(t-\tau) + a x_2(t-\tau). \end{aligned}$$

- \blacktriangleright Synchronous: values received at times $\tau+1,2(\tau+1),\ldots$
- Say $x_i(t)$ is value at processor i at time t
- ► So in the synchronous case we have

$$x_1(t+1) \leftarrow ax_1(t-\tau) + bx_2(t-\tau) x_2(t+1) \leftarrow bx_1(t-\tau) + ax_2(t-\tau).$$

- ► Asynchronous: processor *i* updates own variable regardless of whether it has the latest value from the other processor
- ► Thus, in the asynchronous case we have

$$x_1(t+1) \leftarrow ax_1(t) + bx_2(t-\tau)$$

$$x_2(t+1) \leftarrow bx_1(t-\tau) + ax_2(t).$$

▶ In both cases, use base case: $x_i(t) = x_i(0)$ for $-D \le t < 0$

 \blacktriangleright Can be shown if |a|+|b|<1 then both syn and asyn converge to $x^*=(0,0)$

- ▶ Can be shown if |a| + |b| < 1 then both syn and asyn converge to $x^* = (0, 0)$
- ▶ Say we have $\rho > 0$ such that

$$|a|\rho^{-\tau} + |b|\rho^{-\tau} \le \rho,$$

then the synchronous sequence $x_i(t)$ satisfies

$$|x_i(t)| \le C\rho^t, \quad \forall t = 0, 1, \dots,$$

where $C = \max\{|x_1(0)|, |x_2(0)|\}$

Exercise: Use induction on *t* to prove above claim.

▶ Smallest synchronous ρ is $\rho_S = (|a| + |b|)^{1/(\tau+1)}$

- ▶ Smallest synchronous ρ is $\rho_S = (|a| + |b|)^{1/(\tau+1)}$
- ► For asynchronous case, if we have

$$|a| + |b|\rho^{-\tau} \le \rho,$$

- ▶ Smallest synchronous ρ is $\rho_S = (|a| + |b|)^{1/(\tau+1)}$
- ► For asynchronous case, if we have

$$|a| + |b|\rho^{-\tau} \le \rho,$$

then inductively can show that $|x_i(t)| \leq C \rho^t$ (same C as above)

▶ Smallest valid ρ is $\rho_A > 0$ that solves $|a| + |b|\rho_A^{-\tau} = \rho_A$

- Smallest synchronous ρ is $\rho_S = (|a| + |b|)^{1/(\tau+1)}$
- ► For asynchronous case, if we have

$$|a| + |b|\rho^{-\tau} \le \rho,$$

- ▶ Smallest valid ρ is $\rho_A > 0$ that solves $|a| + |b|\rho_A^{-\tau} = \rho_A$
- Verify that $\rho_A \leq \rho_S$

- Smallest synchronous ρ is $\rho_S = (|a| + |b|)^{1/(\tau+1)}$
- ► For asynchronous case, if we have

$$|a| + |b|\rho^{-\tau} \le \rho,$$

- ▶ Smallest valid ρ is $\rho_A > 0$ that solves $|a| + |b|\rho_A^{-\tau} = \rho_A$
- ▶ Verify that $\rho_A \leq \rho_S$
- ▶ Thus, the asynchronous version converges faster

- Smallest synchronous ρ is $\rho_S = (|a| + |b|)^{1/(\tau+1)}$
- ► For asynchronous case, if we have

$$|a| + |b|\rho^{-\tau} \le \rho,$$

- ▶ Smallest valid ρ is $\rho_A > 0$ that solves $|a| + |b|\rho_A^{-\tau} = \rho_A$
- Verify that $\rho_A \leq \rho_S$
- ► Thus, the asynchronous version converges faster
- ▶ But it requires more message transmissions

Distributed optimization

Foundations of distributed computation

http://videolectures.net/nipsworkshops2010_tsitsiklis_aad/

Implementation oriented talk

http://videolectures.net/nipsworkshops2012_smola_parameter_server/

References

- D. P. Bertsekas and J. N. Tsitsiklis (1997). Parallel and Distributed Computation: Numerical methods
- ♠ S. Boyd. (2012). *ADMM notes*
- A. Agarwal and J. Duchi (2011). Distributed delayed stochastic optimization