Convex Optimization

(EE227A: UC Berkeley)

Lecture 24
(Parallel, Distributed — I1)

18 Apr, 2013

o

Suvrit Sra

Admin

& Reviews due 19 Apr 2013 by 5pm

Login to easychair as “PC-Member” to enter reviews

22

Admin

& Reviews due 19 Apr 2013 by 5pm
Login to easychair as “PC-Member” to enter reviews
& Please take the review seriously:
m As a reviewer—it'll be graded
m As an author—your peers are providing valuable feedback

)

N

Admin

& Reviews due 19 Apr 2013 by 5pm
Login to easychair as “PC-Member” to enter reviews
& Please take the review seriously:
m As a reviewer—it'll be graded
m As an author—your peers are providing valuable feedback

& Make up for missed lectures:

m |'ll ask you to view two video lectures
m HW5 slightly delayed; shorter, simpler
m Will include questions related to videos

)

N

Admin

& Reviews due 19 Apr 2013 by 5pm

Login to easychair as “PC-Member” to enter reviews

& Please take the review seriously:
m As a reviewer—it'll be graded
m As an author—your peers are providing valuable feedback

& Make up for missed lectures:

m |'ll ask you to view two video lectures
m HW5 slightly delayed; shorter, simpler
m Will include questions related to videos

& Project poster presentations:

Soda 306 HP Auditorium
Fri May 10, 2013 4pm — 8pm

)

N

Parallel computation — high level views

» Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

22

Parallel computation — high level views

» Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

» Not insisting on exact computation allows more parallelism

22

Parallel computation — high level views

» Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

» Not insisting on exact computation allows more parallelism

» Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

22

Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism

Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations

3/22

Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism
Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations
Distributed optimization across machines: synchronization and
communication biggest burden;

Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism

Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations

Distributed optimization across machines: synchronization and
communication biggest burden; node failure, network failure,
load-balancing, etc.

Parallel computation — high level views

Intuition from prev lecture: degree of separability strongly
correlated with degree of parallelism possible

Not insisting on exact computation allows more parallelism

Suppose f is the fraction of sequential computation. Then
speedup for any number of processors (cores) is < 1/f

Parallel optimization on multi-core machines: shared memory
architecture. Main penalty: synchronization / atomic operations
Distributed optimization across machines: synchronization and
communication biggest burden; node failure, network failure,
load-balancing, etc.

Synchronous vs. asynchronous computation

Poor man'’s parallelism

/22

Separable optimization

min f(z) := ZZl fi(z) zeR"™

/22

Separable optimization

min f(z) := ZZl fi(z) zeR"™

Product space trick

/22

Separable optimization

min f(z) := Zzl fi(z) zeR"™

Product space trick

» Introduce (local) variables (z1,...,2m)

22

Separable optimization

. m
min f(z) := Zi:l fi(z) zeR"™
Product space trick
» Introduce (local) variables (z1,...,2m)

» Problem is now over H™ :=H x H x --- X H (m-times)

Separable optimization

. m
min f(z) := Zi:l fi(z) zeR"™
Product space trick
» Introduce (local) variables (z1,...,2m)
» Problem is now over H™ :=H x H x --- X H (m-times)

» Consensus constraint: £1 = z9 = ... = o,

22

Separable optimization

min f(x) + Is(x)

wherez e H" and B={z € H™ | z = (z,z, ...

22

Separable optimization

win () + Is(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

» Can solve using DR method

6 /22

Separable optimization

mmin f(x) + Iz(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

» Can solve using DR method
» Each component of f;(x;) independently in parallel

» Communicate / synchronize to ensure consensus

6 /22

The ADMM view

Let us see separable objective with constraints

22

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

22

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables

» The constraint prevents a trivial decoupling

22

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables
» The constraint prevents a trivial decoupling

» Introduce augmented lagrangian (AL)

Ly(2,2,y) == f(2)+9(2) +y" (Az+Bz—c)+5|| Az + Bz — ¢|3

22

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables
» The constraint prevents a trivial decoupling

» Introduce augmented lagrangian (AL)
Ly(2,2,y) == f(2)+9(2) +y" (Az+Bz—c)+5|| Az + Bz — ¢|3

» Now, a Gauss-Seidel style update to the AL

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables
» The constraint prevents a trivial decoupling

» Introduce augmented lagrangian (AL)
Ly(2,2,y) == f(2)+9(2) +y" (Az+Bz—c)+5|| Az + Bz — ¢|3

» Now, a Gauss-Seidel style update to the AL

Te+1 = argminx Lp(xvzk‘yyk‘)

22

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables
» The constraint prevents a trivial decoupling

» Introduce augmented lagrangian (AL)
Ly(2,2,y) == f(2)+9(2) +y" (Az+Bz—c)+5|| Az + Bz — ¢|3

» Now, a Gauss-Seidel style update to the AL

Tyl = argminx Lp(xv 2k yk‘)
21 = argmin, Ly(Tgp41, 2, Yk)

22

The ADMM view

Let us see separable objective with constraints

min f(z) + g(2)
st. Arxr+ Bz=c.

» Objective function is separable into two sets x and z variables
» The constraint prevents a trivial decoupling

» Introduce augmented lagrangian (AL)
Ly(2,2,y) == f(2)+9(2) +y" (Az+Bz—c)+5|| Az + Bz — ¢|3

» Now, a Gauss-Seidel style update to the AL
Te+1 = argminx Lp(xvzk‘yyk‘)
Zpy1 = argming Ly(Try1, 2, Yk)
Ye+t1 = Yk + p(AZki1 + Bzp — o)

22

ADMM - scaled version

» The AL is

Lp(x,2,y) == f(2)+9(2)+y" (Az+ Bz—c)+§||Az + Bz — ¢|3

22

ADMM - scaled version

» The AL is
Ly(x,2,y) = f(x)+9(2)+y" (Az+Bz—c)+§|| Az + Bz — ¢[[3
» Combine linear and quadratic terms in L,, so we have
Ly(z,2,y) = f(z) + g(2) + §||Az + Bz — ¢ + d||3 + constants

where we use di, = (1/p)yx as a new variable.

» Exercise: Verify above algebra.

22

ADMM - scaled version

» The AL is
Ly(z,z,y) = f(ac)—i—g(z)—i—yT(A:U—i—Bz—c)—i—gHAx + Bz — CH%
» Combine linear and quadratic terms in L,, so we have
Ly(z,2,y) = f(z) + g(2) + §||Az + Bz — ¢ + d||3 + constants

where we use di, = (1/p)yx as a new variable.

» Exercise: Verify above algebra.
Scaled ADMM

Tpe1 = argming f(x) + §)|Ax + Bz — ¢+ d||3

22

ADMM - scaled version

» The AL is
Lp(x,2,9) i= (@) +9(z)+y" (Av+Bz—c)+§||Av + Bz — cll3
» Combine linear and quadratic terms in L,, so we have

Ly(z,2,y) = f(z) + g(2) + §||Az + Bz — ¢ + d||3 + constants

where we use di, = (1/p)yx as a new variable.

» Exercise: Verify above algebra.
Scaled ADMM

Tpe1 = argming f(x) + §)|Ax + Bz — ¢+ d||3
Zp+1 = argmin, g(z) + g”Al“k-s—l 4+ Bz —c+ dk||%

22

ADMM - scaled version

» The AL is
Lp(x,2,9) i= (@) +9(z)+y" (Av+Bz—c)+§||Av + Bz — cll3
» Combine linear and quadratic terms in L,, so we have

Ly(z,2,y) = f(z) + g(2) + §||Az + Bz — ¢ + d||3 + constants

where we use di, = (1/p)yx as a new variable.

» Exercise: Verify above algebra.
Scaled ADMM

Ty = argming f(x) + §||Ax + Bz —c+ di||3
Zk+1 argmin, g(z) + g”Al“k-s—l 4+ Bz —c+ dk||%
di+1 = di+ (Azg41 + Bagr —©)

22

ADMM - Parallel / distributed version

win /() = ¥, fi(a)

/22

ADMM - Parallel / distributed version

min f(z) = >, fi(x)

Product space form for ADMM
min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

22

ADMM - Parallel / distributed version

min f(z) = >, fi(z)
Product space form for ADMM

min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

& Local variables z; — one vector per processor / cluster node

ADMM - Parallel / distributed version

min f(z) = >, fi(z)
Product space form for ADMM

min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

& Local variables z; — one vector per processor / cluster node
2 is the global, shared variable

ADMM - Parallel / distributed version

min f(z) = >, fi(x)

Product space form for ADMM
min ZZl filxy)

TlseeyTm,2

st. z;,—2=0, 1=1,...,m.

& Local variables z; — one vector per processor / cluster node
2 is the global, shared variable

& 1; — 2 =0 is called consensus constraint

22

ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) +] (xi = 2) + §llas — 2I13)

10/22

ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) +] (xi = 2) + §llas — 2I13)

ADMM updates

[wilke1 = argming, fi(x:) + [vilk (zi — 2) + 5@ — 23

10/22

ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) +] (xi = 2) + §llas — 2I13)

ADMM updates

[wilke1 = argming, fi(x:) + [vilk (zi — 2) + 5@ — 23

Zpt1 = mz <x2k+1+ yz]>

10/22

ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) +] (xi = 2) + §llas — 2I13)

ADMM updates

[wilke1 = argming, fi(x:) + [vilk (zi — 2) + 5@ — 23

k1 = mZ(ikl + 5 Z/z])

Wilk+1 = [ilk + p([@ilk41 — 2141

10/22

ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) +] (xi = 2) + §llas — 2I13)

ADMM updates

[zilker = argming, fi(ws) + Wi} (v — 2e) + §llai — 23
el = o Z (et + 5 wilk)
Wilkrr = [Wilk + p([Tilkr1 — 2k+1)

Exercise: Verify the above updates (use unscaled ADMM)

10/22

ADMM - Parallel / distributed version

Augmented Lagrangian

Ly(@,zy) ==Y (filw) +] (xi = 2) + §llas — 2I13)

ADMM updates

[zilker = argming, fi(ws) + Wi} (v — 2e) + §llai — 23
el = o Z (et + 5 wilk)
Wilkrr = [Wilk + p([Tilkr1 — 2k+1)

Exercise: Verify the above updates (use unscaled ADMM)

» The x; updates in parallel; synchronize to update z and y

10/22

Asynchronous methods

11/22

Trivial methods so far

min

fla) =325 filz)

reX

12/22

Trivial methods so far

min f(z)=>", filx) z€X

m
Tp1 = Pr(zp — g Zi:1 g9i(zk)),

where g; € Of;(zy) — so that). g; € Of (zx)

12 /22

Trivial methods so far

min f(z)=>", filx) z€X

Tp1 = Pr(zp — g Zj; g9i(zk)),
where g; € Of;(zy) — so that). g; € Of (zx)

& The sum has m components

12 /22

Trivial methods so far

min f(z) = Y0, filr) veX

Tp1 = Pr(zp — g Z:; g9i(zk)),
where g; € Of;(zy) — so that). g; € Of (zx)

& The sum has m components

& Trivial parallelization: compute each g;(xy) on diff. processor

12 /22

Trivial methods so far

min f(z) = Y0, filr) veX

Tp1 = Pr(zp — g Z:; g9i(zk)),
where g; € Of;(zy) — so that). g; € Of (zx)

& The sum has m components
& Trivial parallelization: compute each g;(xy) on diff. processor

& Then collect the answers on a master node

Trivial methods so far

min f(z) = Y0, filr) veX

m
Tp1 = Pr(zp — g Zi:l gi(zr)),
where g; € Of;(zy) — so that). g; € Of (zx)
& The sum has m components
& Trivial parallelization: compute each g;(xy) on diff. processor

& Then collect the answers on a master node

& Update ay, and xj1 in serial

Trivial methods so far

min f(z) = Y0, filr) veX

Tp1 = Pr(zp — g Z:; gi(zr)),
where g; € Of;(zy) — so that). g; € Of (zx)

& The sum has m components

& Trivial parallelization: compute each g;(xy) on diff. processor
& Then collect the answers on a master node

& Update ay, and xj1 in serial

& Share / Broadcast zy.1 and repeat

Trivial methods so far

min f(z) = Y0, filr) veX

Tp1 = Pr(zp — g Z:; gi(zr)),
where g; € Of;(zy) — so that). g; € Of (zx)

& The sum has m components

& Trivial parallelization: compute each g;(xy) on diff. processor
& Then collect the answers on a master node

& Update ay, and xj1 in serial

& Share / Broadcast zy.1 and repeat

& Highly synchronized computation

Trivial methods so far

min f(z) = Y0, filr) veX

Tp1 = Pr(zp — g Zj; gi(zr)),

where g; € Of;(zy) — so that). g; € Of (zx)
& The sum has m components
& Trivial parallelization: compute each g;(xy) on diff. processor
& Then collect the answers on a master node
& Update ay, and xj1 in serial
& Share / Broadcast zy.1 and repeat
& Highly synchronized computation

& Makes sense if computing a single subgradient takes much
longer than the involved costs of synchronization

Partially asynchronous methods

If even one of the processors is slow in computing its subgradient
gi(xr), the whole update gets blocked due to synchronization

13 /22

Partially asynchronous methods

If even one of the processors is slow in computing its subgradient
gi(xr), the whole update gets blocked due to synchronization

Asynchronous updates
m
Tpp1 =2k — o Y gi(k —7)
i=1
where g;(k — 7;) is a delayed subgradient.
Notation: We write g;(k) = g;(xy)

» Master slave architecture

13 /22

Partially asynchronous methods

& If no delay, then ; = 0 — synchronized case

14 /22

Partially asynchronous methods

& If no delay, then 7, = 0 — synchronized case

& Each processor can have its own arbitrary delay 7;

14 /22

Partially asynchronous methods

& If no delay, then 7, = 0 — synchronized case
& Each processor can have its own arbitrary delay 7;
& If gi(k) not available from node i, don’t block the update

14 /22

Partially asynchronous methods

& If no delay, then 7, = 0 — synchronized case
& Each processor can have its own arbitrary delay 7;
& If gi(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — 7;) from processor i

14 /22

Partially asynchronous methods

& If no delay, then 7, = 0 — synchronized case
& Each processor can have its own arbitrary delay 7;
& If gi(k) not available from node i, don’t block the update

& instead we go ahead and use the most recently available
subgradient g;(k — 7;) from processor i

& Partial asynchrony: delays can be arbitrary but bounded

14 /22

Partially asynchronous methods

ol ot

If no delay, then 7; = 0 — synchronized case
Each processor can have its own arbitrary delay 7;
If gi(k) not available from node i, don’t block the update

instead we go ahead and use the most recently available
subgradient g;(k — 7;) from processor i

Partial asynchrony: delays can be arbitrary but bounded

Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

14 /22

Partially asynchronous methods

ol ot

If no delay, then 7; = 0 — synchronized case
Each processor can have its own arbitrary delay 7;
If gi(k) not available from node i, don’t block the update

instead we go ahead and use the most recently available
subgradient g;(k — 7;) from processor i

Partial asynchrony: delays can be arbitrary but bounded

Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence

14 /22

Partially asynchronous methods

ol ot

If no delay, then 7; = 0 — synchronized case
Each processor can have its own arbitrary delay 7;
If gi(k) not available from node i, don’t block the update

instead we go ahead and use the most recently available
subgradient g;(k — 7;) from processor i

Partial asynchrony: delays can be arbitrary but bounded

Key idea to analyze: view asynchronous method as an iterative
gradient-method with deterministic or stochastic errors.

‘ Delays impact speed of convergence ‘

Delay 7, leads to convergence rate: O(+/7/T).

14 /22

Partially asynchronous methods

Algorithm 1: Projected subgradient
Gavg (k) := ZZ Aigi(k — ;)

. 1
f41 — argmin {<gavg<k>, 2)+ o — xkuz}
reX (873

15 /22

Partially asynchronous methods

Algorithm 1: Projected subgradient
Gavg (k) := ZZ Aigi(k — ;)

. 1
f41 — argmin {<gavg<k>, 2) + -z — a:ku%}
reX (873

Algorithm 2: Mirror descent version
. 1
Tp4+1 = argmin {(gavg(k), z) + —Dy(z, zk)}
T Qf

Dy(x,y) is some strongly convex Bregman divergence

15 /22

Partially asynchronous methods

» Method also works for stochastic optimization, if g;(k — 7;) is a
stochastic subgradient.

16 /22

Partially asynchronous methods

» Method also works for stochastic optimization, if g;(k — 7;) is a
stochastic subgradient.

» Since i.i.d. sampling of subgradients assumed, each processor
can sample its own subgradients concurrently; subsequent
averaging to use g,yg reduces variance.

16 /22

Partially asynchronous methods

» Method also works for stochastic optimization, if g;(k — 7;) is a
stochastic subgradient.

» Since i.i.d. sampling of subgradients assumed, each processor
can sample its own subgradients concurrently; subsequent
averaging to use g,yg reduces variance.

» Convergence rates depend on: network topology, delay process,
and objective smoothness (by choosing stepsize ay)

16 /22

Comparison: syn vs asyn

» Suppose we iterate z = Ax where A = [Z 2]

17 /22

Comparison: syn vs asyn

» Suppose we iterate z = Ax where A = [Z 2]

» The iteration updates are

T, + ary + bxo

Ty < bxr1 + axs.

17 /22

Comparison: syn vs asyn

» Suppose we iterate z = Ax where A = [Z Z}

» The iteration updates are

T, + ary + bxo

Ty < bxr1 + axs.

» Suppose processor 1 updates x1; processor 2 updates xa

» After updates, x1 and xo communicated to each other

17 /22

Comparison: syn vs asyn

v

v

v

Suppose we iterate = Ax where A = [cbt Z}

The iteration updates are

1 < axi + bxo

Ty < bxr1 + axs.

Suppose processor 1 updates x1; processor 2 updates xo
After updates, 1 and x2 communicated to each other

Say update requires 1 unit of time, and communication
requires 7 > 1 units of time

17 /22

Comparison: syn vs asyn

» Synchronous: values received at times 7+ 1,2(7 + 1),. ..

18 /22

Comparison: syn vs asyn

» Synchronous: values received at times 7+ 1,2(7 + 1),. ..

» Say x;(t) is value at processor i at time ¢

18 /22

Comparison: syn vs asyn

» Synchronous: values received at times 7+ 1,2(7 + 1),. ..

» Say x;(t) is value at processor i at time ¢

» So in the synchronous case we have

r1(t+1) « axi(t — 7) + baa(t — 7)
xo(t +1) < bxi(t —7) + axa(t — 7).

18 /22

Comparison: syn vs asyn

v

Synchronous: values received at times 7+ 1,2(7 + 1),...
Say x;(t) is value at processor i at time ¢
So in the synchronous case we have

z1(t+1) < axi(t — 1) + bxa(t — 1)
xo(t +1) < bxi(t —7) + axa(t — 7).

Asynchronous: processor ¢ updates own variable regardless of
whether it has the latest value from the other processor

Thus, in the asynchronous case we have

z1(t+1) < axi(t) + bra(t — 7)
xo(t+ 1) < bxy(t — 7) + axa(t).

In both cases, use base case: z;(t) = x;(0) for —D <t <0

18 /22

Comparison: syn vs asyn

» Can be shown if |a| + |b| < 1 then both syn and asyn converge
to z* = (0,0)

19 /22

Comparison: syn vs asyn

» Can be shown if |a| + |b| < 1 then both syn and asyn converge
to z* = (0,0)
» Say we have p > 0 such that

lalp™" + [blp™" < p,
then the synchronous sequence x;(t) satisfies
lz;(t)] < Cpt, Yt=0,1,...,

where C' = max {|z1(0)|, |x2(0)|}
» Exercise: Use induction on ¢ to prove above claim.

19 /22

Comparison: syn vs asyn

» Smallest synchronous p is pg = (|a| + |b])/ (D)

20/22

Comparison: syn vs asyn

» Smallest synchronous p is ps = (|a| + |b\)1/(7+1)

» For asynchronous case, if we have
lal + [b]p™" < p,

then inductively can show that |z;(t)| < Cp' (same C' as above)

20 /22

Comparison: syn vs asyn

» Smallest synchronous p is ps = (|a| + |b\)1/(7+1)

» For asynchronous case, if we have
lal + [b]p™" < p,

then inductively can show that |z;(t)| < Cp' (same C' as above)
» Smallest valid p is p4 > 0 that solves |a| + [b|]p," = pa

20 /22

Comparison: syn vs asyn

» Smallest synchronous p is ps = (|a| + |b\)1/(7+1)

» For asynchronous case, if we have
lal + [b]p™" < p,

then inductively can show that |z;(t)| < Cp' (same C' as above)
» Smallest valid p is p4 > 0 that solves |a| + [b|]p," = pa
» Verify that ps < pg

20 /22

Comparison: syn vs asyn

» Smallest synchronous p is ps = (|a| + |b\)1/(7+1)

» For asynchronous case, if we have
lal + [b]p™" < p,

then inductively can show that |z;(t)| < Cp' (same C' as above)
» Smallest valid p is p4 > 0 that solves |a| + [b|]p," = pa
» Verify that ps < pg

» Thus, the asynchronous version converges faster

20 /22

Comparison: syn vs asyn

vvyyvyy

Smallest synchronous p is ps = (|a| + |b)*/(7+1)

For asynchronous case, if we have
lal + [b]p™" < p,

then inductively can show that |z;(t)| < Cp' (same C' as above)
Smallest valid p is p4 > 0 that solves |a| + [b|p," = pa

Verify that p4 < pg

Thus, the asynchronous version converges faster

But it requires more message transmissions

20 /22

Distributed optimization

Foundations of distributed computation
http://videolectures.net/nipsworkshops2010_tsitsiklis_aad /
Implementation oriented talk

http://videolectures.net/nipsworkshops2012_smola_parameter_server/

21/22

http://videolectures.net/nipsworkshops2010_tsitsiklis_aad/
http://videolectures.net/nipsworkshops2012_smola_parameter_server/

References

& D. P. Bertsekas and J. N. Tsitsiklis (1997). Parallel and
Distributed Computation: Numerical methods

& S. Boyd. (2012). ADMM notes

& A. Agarwal and J. Duchi (2011). Distributed delayed stochastic
optimization

22 /22

