Convex Optimization (EE227A: UC Berkeley)

Lecture 22 (Parallel, Distributed Optimization) 11 Apr, 2013

Suvrit Sra

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

\clubsuit The sum has *m* components

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Easy parallelization: compute each $g_i(x_k)$ on diff. processor

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i\in\partial f_i(x_k)$ — so that $\sum_i g_i\in\partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Easy parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i\in\partial f_i(x_k)$ — so that $\sum_i g_i\in\partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Easy parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **♣** Update α_k and x_{k+1} in serial

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i\in\partial f_i(x_k)$ — so that $\sum_i g_i\in\partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Easy parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **♣** Update α_k and x_{k+1} in serial
- \clubsuit Share / Broadcast x_{k+1} and repeat

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Easy parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **♣** Update α_k and x_{k+1} in serial
- \clubsuit Share / Broadcast x_{k+1} and repeat
- Highly synchronized computation

$$\min f(x) = \sum_{i=1}^{m} f_i(x)$$

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(x_k),$$

where $g_i \in \partial f_i(x_k)$ — so that $\sum_i g_i \in \partial f(x_k)$

- **\clubsuit** The sum has m components
- **&** Easy parallelization: compute each $g_i(x_k)$ on diff. processor
- Then collect the answers on a master node
- **♣** Update α_k and x_{k+1} in serial
- \clubsuit Share / Broadcast x_{k+1} and repeat
- Highly synchronized computation
- Makes sense if computing a single g_i is much slower than the involved costs of synchronization

If even one of the processors is slow in computing its subgradient $g_i(x_k)$, the whole update gets blocked due to synchronization

If even one of the processors is slow in computing its subgradient $g_i(x_k)$, the whole update gets blocked due to synchronization

Asynchronous updates

$$x_{k+1} = x_k - \alpha_k \sum_{i=1}^m g_i(k - \delta_i)$$

where $g_i(k - \delta_i)$ is a *delayed subgradient*.

Notation: We write $g_i(k) \equiv g_i(x_k)$

 \clubsuit If no delay, then $\delta_i=0$ – synchronized case

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- \clubsuit instead we go ahead and use the most recently available subgradient $g_i(k-\delta_i)$ from processor i

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- \clubsuit instead we go ahead and use the most recently available subgradient $g_i(k-\delta_i)$ from processor i
- The delays can be random / arbitrary but bounded

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- \clubsuit instead we go ahead and use the most recently available subgradient $g_i(k-\delta_i)$ from processor i
- The delays can be random / arbitrary but bounded
- Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- \clubsuit instead we go ahead and use the most recently available subgradient $g_i(k-\delta_i)$ from processor i
- **&** The delays can be random / arbitrary but **bounded**
- Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

- \clubsuit If no delay, then $\delta_i=0$ synchronized case
- \clubsuit Each processor can have its own delay δ_i
- **4** If $g_i(k)$ not available from node *i*, don't block the update
- \clubsuit instead we go ahead and use the most recently available subgradient $g_i(k-\delta_i)$ from processor i
- The delays can be random / arbitrary but bounded
- Key idea to analyze: view asynchronous method as an iterative gradient-method with deterministic or stochastic errors.

Delays impact speed of convergence

Delay δ , leads to convergence rate: $O(\sqrt{\delta/T})$.

Algorithm

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \quad \left\{ \langle g_i(k - \delta_i), x \rangle + \frac{1}{\alpha_k} \|x - x_k\|_2^2 \right\}$$

Algorithm

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \quad \left\{ \langle g_i(k-\delta_i), x \rangle + \frac{1}{\alpha_k} \|x - x_k\|_2^2 \right\}$$

Algorithm 2: Mirror descent version $x_{k+1} = \underset{x}{\operatorname{argmin}} \quad \left\{ \langle g_i(k - \delta_i), x \rangle + \frac{1}{\alpha_k} \frac{D_{\phi}(x, x_k)}{D_{\phi}(x, x_k)} \right\}$

 $D_{\phi}(x,y)$ is some strongly convex Bregman divergence

Algorithm

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \quad \left\{ \langle g_i(k-\delta_i), x \rangle + \frac{1}{\alpha_k} \|x - x_k\|_2^2 \right\}$$

Algorithm 2: Mirror descent version $x_{k+1} = \underset{x}{\operatorname{argmin}} \left\{ \langle g_i(k - \delta_i), x \rangle + \frac{1}{\alpha_k} D_{\phi}(x, x_k) \right\}$

 $D_{\phi}(x,y)$ is some strongly convex Bregman divergence

The above methods work for *stochastic optimization*

Algorithm

$$x_{k+1} = \underset{x}{\operatorname{argmin}} \quad \left\{ \langle g_i(k-\delta_i), x \rangle + \frac{1}{\alpha_k} \|x - x_k\|_2^2 \right\}$$

Algorithm 2: Mirror descent version $x_{k+1} = \underset{x}{\operatorname{argmin}} \quad \left\{ \langle g_i(k - \delta_i), x \rangle + \frac{1}{\alpha_k} D_{\phi}(x, x_k) \right\}$

 $D_{\phi}(x,y)$ is some strongly convex Bregman divergence

The above methods work for *stochastic optimization*

Rates depend on: *network topology* and *delay process*