Convex Optimization (EE227A: UC Berkeley)

Lecture 21
(BCD - II, Parallel algorithms)
09 Apr, 2013

Suvrit Sra

Admin

- Use following URL to submit your project material
- https://www.easychair.org/conferences/?conf=ee227a2013
- You'll have to sign up at easychair for submitting
- Make sure each author is in the system
- Deadline: 4/12/2013; 5pm

Admin

- Use following URL to submit your project material
- https://www.easychair.org/conferences/?conf=ee227a2013
- You'll have to sign up at easychair for submitting
- Make sure each author is in the system
- Deadline: 4/12/2013; 5pm
- I'll assign the papers for review via easychair

Admin

- Use following URL to submit your project material
- https://www.easychair.org/conferences/?conf=ee227a2013
- You'll have to sign up at easychair for submitting
- Make sure each author is in the system
- Deadline: 4/12/2013; 5pm
- I'll assign the papers for review via easychair
- You'll have to upload review to easychair
- Use following URL to submit your project material
- https://www.easychair.org/conferences/?conf=ee227a2013
- You'll have to sign up at easychair for submitting
- Make sure each author is in the system
- Deadline: 4/12/2013; 5pm
- I'll assign the papers for review via easychair
- You'll have to upload review to easychair
- Reviews are per person
- No class on 4/11
- Again: project submissions are electronic only!

Randomized BCD

- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Say block 1 contains coordinates $\{1,3,5\}$.
- We write $x^{(1)}=\left(x_{1}, x_{3}, x_{5}\right)$
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Say block 1 contains coordinates $\{1,3,5\}$.
- We write $x^{(1)}=\left(x_{1}, x_{3}, x_{5}\right)$
- Alternatively, $x^{(i)}=x_{1} \boldsymbol{e}_{1}+x_{3} \boldsymbol{e}_{3}+x_{5} \boldsymbol{e}_{5}$
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Say block 1 contains coordinates $\{1,3,5\}$.
- We write $x^{(1)}=\left(x_{1}, x_{3}, x_{5}\right)$
- Alternatively, $x^{(i)}=x_{1} \boldsymbol{e}_{1}+x_{3} \boldsymbol{e}_{3}+x_{5} \boldsymbol{e}_{5}$
- Define $E_{1}:=\left[\boldsymbol{e}_{1}, \boldsymbol{e}_{3}, \boldsymbol{e}_{5}\right](N \times 3$ matrix $)$
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Say block 1 contains coordinates $\{1,3,5\}$.
- We write $x^{(1)}=\left(x_{1}, x_{3}, x_{5}\right)$
- Alternatively, $x^{(i)}=x_{1} \boldsymbol{e}_{1}+x_{3} \boldsymbol{e}_{3}+x_{5} \boldsymbol{e}_{5}$
- Define $E_{1}:=\left[e_{1}, e_{3}, e_{5}\right](N \times 3$ matrix $)$
- Then, $x^{(1)}=E_{1}^{T} \boldsymbol{x}$
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Say block 1 contains coordinates $\{1,3,5\}$.
- We write $x^{(1)}=\left(x_{1}, x_{3}, x_{5}\right)$
- Alternatively, $x^{(i)}=x_{1} \boldsymbol{e}_{1}+x_{3} \boldsymbol{e}_{3}+x_{5} \boldsymbol{e}_{5}$
- Define $E_{1}:=\left[e_{1}, e_{3}, e_{5}\right](N \times 3$ matrix $)$
- Then, $x^{(1)}=E_{1}^{T} \boldsymbol{x}$
- More generally, say π is a random perm of $[N]:=\{1,2, \ldots, N\}$
- Let $\boldsymbol{x} \in \mathbb{R}^{N}$
- Any vector $\boldsymbol{x}=\sum_{i=1}^{N} x_{i} \boldsymbol{e}_{i}$, where \boldsymbol{e}_{i} is i th canonical basis vector (i th column of the identity matrix)
- Decompose \boldsymbol{x} into n blocks of size N_{i}
- Say block 1 contains coordinates $\{1,3,5\}$.
- We write $x^{(1)}=\left(x_{1}, x_{3}, x_{5}\right)$
- Alternatively, $x^{(i)}=x_{1} \boldsymbol{e}_{1}+x_{3} \boldsymbol{e}_{3}+x_{5} \boldsymbol{e}_{5}$
- Define $E_{1}:=\left[e_{1}, e_{3}, e_{5}\right](N \times 3$ matrix $)$
- Then, $x^{(1)}=E_{1}^{T} \boldsymbol{x}$
- More generally, say π is a random perm of $[N]:=\{1,2, \ldots, N\}$
- Let E be the permutation of I induced by π

BCD - Decomposition

- Decomposition: $E=\left[E_{1}, \ldots, E_{n}\right]$ into n blocks
- Decomposition: $E=\left[E_{1}, \ldots, E_{n}\right]$ into n blocks
- Corresponding decomposition of x is

$$
(\underbrace{E_{1}^{T} \boldsymbol{x}}_{N_{1}+}, \underbrace{E_{2}^{T} \boldsymbol{x}}_{N_{2}+}, \ldots, \underbrace{E_{n}^{T} \boldsymbol{x}}_{+N_{n}=N})=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)
$$

- Decomposition: $E=\left[E_{1}, \ldots, E_{n}\right]$ into n blocks
- Corresponding decomposition of x is

$$
(\underbrace{E_{1}^{T} \boldsymbol{x}}_{N_{1}+}, \underbrace{E_{2}^{T} \boldsymbol{x}}_{N_{2}+}, \ldots, \underbrace{E_{n}^{T} \boldsymbol{x}}_{\cdots+N_{n}=N})=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)
$$

- Observation:

$$
E_{i}^{T} E_{j}= \begin{cases}I_{N_{i}} & i=j \\ 0_{N_{i}, N_{j}} & i \neq j\end{cases}
$$

- Decomposition: $E=\left[E_{1}, \ldots, E_{n}\right]$ into n blocks
- Corresponding decomposition of x is

$$
(\underbrace{E_{1}^{T} \boldsymbol{x}}_{N_{1}+}, \underbrace{E_{2}^{T} \boldsymbol{x}}_{N_{2}+}, \ldots, \underbrace{E_{n}^{T} \boldsymbol{x}}_{\cdots+N_{n}=N})=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)
$$

- Observation:

$$
E_{i}^{T} E_{j}= \begin{cases}I_{N_{i}} & i=j \\ 0_{N_{i}, N_{j}} & i \neq j\end{cases}
$$

- So the $E_{i} \mathrm{~s}$ define our partitioning of the coordinates
- Decomposition: $E=\left[E_{1}, \ldots, E_{n}\right]$ into n blocks
- Corresponding decomposition of x is

$$
(\underbrace{E_{1}^{T} \boldsymbol{x}}_{N_{1}+}, \underbrace{E_{2}^{T} \boldsymbol{x}}_{N_{2}+}, \ldots, \underbrace{E_{n}^{T} \boldsymbol{x}}_{\cdots N_{n}=N})=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)
$$

- Observation:

$$
E_{i}^{T} E_{j}= \begin{cases}I_{N_{i}} & i=j \\ 0_{N_{i}, N_{j}} & i \neq j\end{cases}
$$

- So the $E_{i} \mathrm{~s}$ define our partitioning of the coordinates
- Just fancier notation for a random partition of coordinates
- Now with this notation...

BCD - Setup

$\min f(\boldsymbol{x})$ where $\boldsymbol{x} \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous**

$\min f(\boldsymbol{x})$ where $\boldsymbol{x} \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(\boldsymbol{x})$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$

BCD - Setup

$\min f(\boldsymbol{x})$ where $\boldsymbol{x} \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(\boldsymbol{x})$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$ ** - each block can use its own norm

BCD - Setup

$\min f(\boldsymbol{x})$ where $\boldsymbol{x} \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(\boldsymbol{x})$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$ ** - each block can use its own norm

Block Coordinate "Gradient" Descent

BCD - Setup

$\min f(\boldsymbol{x})$ where $\boldsymbol{x} \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(\boldsymbol{x})$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$ ** - each block can use its own norm

Block Coordinate "Gradient" Descent

- Using the descent lemma, we have blockwise upper bounds

$$
f\left(\boldsymbol{x}+E_{i} h\right) \leq f(\boldsymbol{x})+\left\langle\nabla_{i} f(\boldsymbol{x}), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, n .
$$

$\min f(\boldsymbol{x})$ where $\boldsymbol{x} \in \mathbb{R}^{N}$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(\boldsymbol{x})$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$ ** - each block can use its own norm

Block Coordinate "Gradient" Descent

- Using the descent lemma, we have blockwise upper bounds

$$
f\left(\boldsymbol{x}+E_{i} h\right) \leq f(\boldsymbol{x})+\left\langle\nabla_{i} f(\boldsymbol{x}), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, n .
$$

- At each step, minimize these upper bounds!
- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- Pick a block i from $[n]$ with probability $p_{i}>0$
- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- Pick a block i from $[n]$ with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- Pick a block i from $[n]$ with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
h & =\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
h & =-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of \boldsymbol{x}, formally
- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- Pick a block i from $[n]$ with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
h & =\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
h & =-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of \boldsymbol{x}, formally

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}+h \\
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- Pick a block i from [n] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
h & =\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
h & =-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of \boldsymbol{x}, formally

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}+h \\
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Notice: Original BCD had: $x_{k}^{(i)}=\operatorname{argmin}_{h} f(\ldots, \underbrace{h}_{\text {block } i}, \ldots)$

- For $k \geq 0$ (no init. of \boldsymbol{x} necessary)
- Pick a block i from $[n]$ with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
h & =\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
h & =-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of \boldsymbol{x}, formally

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}+h \\
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Notice: Original BCD had: $x_{k}^{(i)}=\operatorname{argmin}_{h} f(\ldots, \underbrace{h}, \ldots)$
We'll call this BCM (Block Coordinate Minimization)

Randomized BCD — slight extension

$$
\min f(\boldsymbol{x})+r(\boldsymbol{x})
$$

Randomized BCD - slight extension

$$
\min f(\boldsymbol{x})+r(\boldsymbol{x})
$$

- If block separable $r(\boldsymbol{x}):=\sum_{i=1}^{n} r_{i}\left(x^{(i)}\right)$

Randomized BCD - slight extension

$$
\min f(\boldsymbol{x})+r(\boldsymbol{x})
$$

- If block separable $r(\boldsymbol{x}):=\sum_{i=1}^{n} r_{i}\left(x^{(i)}\right)$

$$
\begin{aligned}
& x_{k}^{(i)}=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}+r_{i}\left(E_{i}^{T} \boldsymbol{x}_{k}+h\right) \\
& x_{k}^{(i)}=\operatorname{prox}_{r_{i}}(\cdots)
\end{aligned}
$$

Exercise: Fill in the dots

Randomized BCD - slight extension

$$
\min f(\boldsymbol{x})+r(\boldsymbol{x})
$$

- If block separable $r(\boldsymbol{x}):=\sum_{i=1}^{n} r_{i}\left(x^{(i)}\right)$

$$
\begin{aligned}
& x_{k}^{(i)}=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}+r_{i}\left(E_{i}^{T} \boldsymbol{x}_{k}+h\right) \\
& x_{k}^{(i)}=\operatorname{prox}_{r_{i}}(\cdots)
\end{aligned}
$$

Exercise: Fill in the dots

$$
h=\operatorname{prox}_{(1 / L) r_{i}}\left(E_{i}^{T} \boldsymbol{x}_{k}-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+E_{i} h \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
\end{aligned}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+E_{i} h \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+E_{i} h \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right) \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{1}{L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}+\frac{L_{i}}{2}\left\|-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}
\end{aligned}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
\boldsymbol{x}_{k+1}= & \boldsymbol{x}_{k}+E_{i} h \\
f\left(\boldsymbol{x}_{k+1}\right) \leq & f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
\boldsymbol{x}_{k+1}= & \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right) \\
f\left(\boldsymbol{x}_{k+1}\right) \leq & f\left(\boldsymbol{x}_{k}\right)-\frac{1}{L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}+\frac{L_{i}}{2}\left\|-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
f\left(\boldsymbol{x}_{k+1}\right) \leq & f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \frac{1}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}
\end{aligned}
$$

Expected descent:

$$
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right]=\sum_{i=1}^{n} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right)
$$

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{n} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{n} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}
\end{aligned}
$$

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{n} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{n} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& \left.=\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{W}^{2} \quad \text { (suitable } W\right) .
\end{aligned}
$$

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{n} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{n} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& \left.=\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{W}^{2} \quad \text { (suitable } W\right) .
\end{aligned}
$$

Exercise: What is the expected descent with uniform probabilities?

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{n} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{n} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& \left.=\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{W}^{2} \quad \text { (suitable } W\right) .
\end{aligned}
$$

Exercise: What is the expected descent with uniform probabilities?
Descent combined with some more notation and hard work yields

$$
O\left(\frac{n}{\epsilon} \sum_{i} L_{i}\left\|x_{0}^{(i)}-x_{*}^{(i)}\right\|^{2}\right)
$$

as the iteration complexity of obtaining $\mathbb{E}\left[f\left(\boldsymbol{x}_{k}\right)\right]-f^{*} \leq \epsilon$

- Recall Lasso problem: $\min \frac{1}{2}\|A x-b\|^{2}+\lambda\|x\|_{1}$
- Here $x \in \mathbb{R}^{N}$
- Make $n=N$ blocks
- Show what the Randomized BCD iterations look like
- Notice, 1D prox operations for $\lambda|\cdot|$ arise
- Try to implement it as efficiently as you can (i.e., do not copy or update vectors / coordinates than necessary)

Assuming $n=N$ blocks, each update is scalar valued.

- Let $x_{0}=0 ; y_{0}=A x_{0}-b=-b$
- For $k \geq 0$
- Pick random coordinate j
- Compute $\alpha \leftarrow\left\langle a_{j}, y\right\rangle$ - i.e., $\nabla_{j} f\left(\boldsymbol{x}_{k}\right)$
- Min $\alpha h+\frac{L_{i}}{2} h^{2}+\lambda|h|$

$$
\begin{aligned}
& h=\operatorname{prox}_{\lambda|\cdot|}\left(x_{j}-\frac{1}{L_{j}} \alpha\right) \\
& h=\operatorname{sgn}\left(x_{j}-\frac{1}{L_{j}} \alpha\right) \max \left(\left|x_{j}-\frac{1}{L_{j}} \alpha\right|-\lambda, 0\right)
\end{aligned}
$$

Assuming $n=N$ blocks, each update is scalar valued.

- Let $x_{0}=0 ; y_{0}=A x_{0}-b=-b$
- For $k \geq 0$
- Pick random coordinate j
- Compute $\alpha \leftarrow\left\langle a_{j}, y\right\rangle$ - i.e., $\nabla_{j} f\left(\boldsymbol{x}_{k}\right)$
- Min $\alpha h+\frac{L_{i}}{2} h^{2}+\lambda|h|$

$$
\begin{aligned}
& h=\operatorname{prox}_{\lambda|\cdot|}\left(x_{j}-\frac{1}{L_{j}} \alpha\right) \\
& h=\operatorname{sgn}\left(x_{j}-\frac{1}{L_{j}} \alpha\right) \max \left(\left|x_{j}-\frac{1}{L_{j}} \alpha\right|-\lambda, 0\right)
\end{aligned}
$$

- Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+h \boldsymbol{e}_{j}$

Assuming $n=N$ blocks, each update is scalar valued.

- Let $x_{0}=0 ; y_{0}=A x_{0}-b=-b$
- For $k \geq 0$
- Pick random coordinate j
- Compute $\alpha \leftarrow\left\langle a_{j}, y\right\rangle$ - i.e., $\nabla_{j} f\left(\boldsymbol{x}_{k}\right)$
- Min $\alpha h+\frac{L_{i}}{2} h^{2}+\lambda|h|$

$$
\begin{aligned}
& h=\operatorname{prox}_{\lambda|\cdot|}\left(x_{j}-\frac{1}{L_{j}} \alpha\right) \\
& h=\operatorname{sgn}\left(x_{j}-\frac{1}{L_{j}} \alpha\right) \max \left(\left|x_{j}-\frac{1}{L_{j}} \alpha\right|-\lambda, 0\right)
\end{aligned}
$$

- Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+h \boldsymbol{e}_{j}$
- Update: $y_{k+1} \leftarrow y_{k}+h a_{j}$

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

What if?

$$
\min f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

What if?

$$
\min f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

- Can solve all n problems independently in parallel
- In theory: n times speedup possible compared to serial case

Parallel BCD

Previously

$$
\min f(x)=f\left(x_{1}, \ldots, x_{n}\right)
$$

What if?

$$
\min f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

- Can solve all n problems independently in parallel
- In theory: n times speedup possible compared to serial case
- So if objective functions are "almost separable" we would still expect high speedup, diminished by amount of separability
- Big data problems often have this "almost separable" structure!

Partial Separability

Consider the sparse data matrix

$$
\left(\begin{array}{cccc}
d_{11} & d_{12} & & \\
& d_{22} & d_{23} & \\
& & \ddots & \ddots
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

Partial Separability

Consider the sparse data matrix

$$
\left(\begin{array}{cccc}
d_{11} & d_{12} & & \\
& d_{22} & d_{23} & \\
& & \ddots & \ddots
\end{array}\right) \in \mathbb{R}^{m \times n}
$$

- Objective $f(x)=\|D x-b\|_{2}^{2}=\sum_{i=1}^{m}\left(d_{i}^{T} x-b_{i}\right)^{2}$ also equals

$$
\left(d_{11} x_{1}+d_{12} x_{2}-b_{1}\right)^{2}+\left(d_{22} x_{2}+d_{23} x_{3}-b_{2}\right)^{2}+\cdots
$$

- Each term depends on only 2 coordinates
- Formally, we could write this as

$$
f(x)=\sum_{J \in \mathscr{J}} f_{J}(x)
$$

where $\mathscr{J}=\{\{1,2\},\{2,3\}, \cdots\}$

- Key point: $f_{J}(x)$ depends only on x_{j} for $j \in J$.

Partial Separability

$$
\min f(x) \text { s.t. } x \in \mathbb{R}^{n}
$$

Def. Let \mathscr{J} be a collection of subsets of $\{1, \ldots, n\}$. We say f is partially separable of degree ω if it can be written as

$$
f(x)=\sum_{J \in \mathscr{J}} f_{J}(x),
$$

where each f_{J} depends only on x_{j} for $j \in J$, and

$$
|J| \leq \omega \quad \forall J \in \mathscr{J} .
$$

Example: If $D_{m \times n}$ is a sparse matrix, then $\omega=\max _{1 \leq i \leq m}\left\|d_{i}^{T}\right\|_{0}$

Partial Separability

$$
\overline{\min } f(x) \text { s.t. } x \in \mathbb{R}^{n}
$$

Def. Let \mathscr{J} be a collection of subsets of $\{1, \ldots, n\}$. We say f is partially separable of degree ω if it can be written as

$$
f(x)=\sum_{J \in \mathscr{J}} f_{J}(x)
$$

where each f_{J} depends only on x_{j} for $j \in J$, and

$$
|J| \leq \omega \quad \forall J \in \mathscr{J} .
$$

Example: If $D_{m \times n}$ is a sparse matrix, then $\omega=\max _{1 \leq i \leq m}\left\|d_{i}^{T}\right\|_{0}$ Exercise: Extend this notion to $\boldsymbol{x}=\left(x^{(1)}, \ldots, x^{(n)}\right)$ Hint: Now, f_{J} will depend only on $x^{(j)}$ for $j \in J$

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$

$$
x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}
$$

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$

$$
x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}
$$

- Atomic update only for $x_{j} \leftarrow x_{j}-a$ (not for gradient)

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$

$$
x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}
$$

- Atomic update only for $x_{j} \leftarrow x_{j}-a$ (not for gradient)
- Since the actual coordinate j can arise in various J, processors can overwrite each others' work.

Each core runs the computation:
1 Sample coordinates J from $\{1, \ldots, n\}$ (all sets of variables)
2 Read current state of x_{J} from shared memory
3 For each individual coordinate $j \in J$

$$
x_{j} \leftarrow x_{j}-\alpha_{k}\left[\nabla f_{J}\left(x_{J}\right)\right]_{j}
$$

- Atomic update only for $x_{j} \leftarrow x_{j}-a$ (not for gradient)
- Since the actual coordinate j can arise in various J, processors can overwrite each others' work.
- But if partial overlaps (separability), coordinate j does not appear in too many different subsets J, method works fine!

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2. For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
\boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2. For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
\boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω
A Uniform sampling of blocks (or just coordinates)
A More careful sampling leads to better guarantees

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2 For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
\boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω
A Uniform sampling of blocks (or just coordinates)
© More careful sampling leads to better guarantees
© Theory requires atomic updates

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2. For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
\boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω
© Uniform sampling of blocks (or just coordinates)
© More careful sampling leads to better guarantees
© Theory requires atomic updates
© Useful to implement asynchronously (i.e., use whatever latest $x^{(i)}$ a given core has access to)

Parallel BCD

1 Choose initial point $x_{0} \in \mathbb{R}^{N}$
2. For $k \geq 0$

- Randomly pick (in parallel) a set of blocks $S_{k} \subset\{1, \ldots, n\}$
- Perform BCD updates (in parallel) for $i \in S_{k}$

$$
\boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}-\frac{1}{\beta w_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
$$

$\longrightarrow w_{i}$ typically $L_{i} ; \beta$ depends on degree of separability ω
© Uniform sampling of blocks (or just coordinates)
© More careful sampling leads to better guarantees
A Theory requires atomic updates
© Useful to implement asynchronously (i.e., use whatever latest $x^{(i)}$ a given core has access to)
© Theory of above method requires guaranteed descent

ADMM \& Co.

Background

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A x=b .
\end{aligned}
$$

Background

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A x=b .
\end{aligned}
$$

Typical approach:
\& Form the Lagrangian: $L(x, y)=f(x)+y^{T}(A x-b)$

Background

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A x=b .
\end{aligned}
$$

Typical approach:
\& Form the Lagrangian: $L(x, y)=f(x)+y^{T}(A x-b)$
\& Compute dual function

$$
g(y):=\min _{x} L(x, y)
$$

Background

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A x=b
\end{aligned}
$$

Typical approach:
\& Form the Lagrangian: $L(x, y)=f(x)+y^{T}(A x-b)$
\& Compute dual function

$$
g(y):=\min _{x} L(x, y)
$$

\& Solve dual problem: $\max _{y} g(y)$ to get y^{*}

Background

$$
\begin{aligned}
\min & f(x) \\
\text { s.t. } & A x=b
\end{aligned}
$$

Typical approach:
\& Form the Lagrangian: $L(x, y)=f(x)+y^{T}(A x-b)$
\& Compute dual function

$$
g(y):=\min _{x} L(x, y)
$$

\& Solve dual problem: $\max _{y} g(y)$ to get y^{*}
\& Recover primal solution: $x^{*}=\operatorname{argmin} L\left(x, y^{*}\right)$

Use some gradient method on dual!

Use some gradient method on dual!

$$
y_{k+1}=y_{k}+\alpha_{k} \nabla g\left(y_{k}\right)
$$

(notice $+\alpha_{k}$ since we are doing ascent)

How to solve dual?

Use some gradient method on dual!

$$
y_{k+1}=y_{k}+\alpha_{k} \nabla g\left(y_{k}\right)
$$

(notice $+\alpha_{k}$ since we are doing ascent)
But what is $\nabla g(y)$?

How to solve dual?

Use some gradient method on dual!

$$
y_{k+1}=y_{k}+\alpha_{k} \nabla g\left(y_{k}\right)
$$

(notice $+\alpha_{k}$ since we are doing ascent)

But what is $\nabla g(y)$?

$$
\begin{aligned}
g(y) & =\min _{x} f(x)+y^{T}(A x-b) \\
\nabla g\left(y_{k}\right) & =A \bar{x}-b \\
\bar{x} & =\underset{x}{\operatorname{argmin}} L\left(x, y_{k}\right)
\end{aligned}
$$

Dual ascent method

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin} L\left(x, y_{k}\right) \\
y_{k+1} & =y_{k}+\alpha_{k}\left(A x_{k+1}-b\right)
\end{aligned}
$$

Dual ascent method

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin} L\left(x, y_{k}\right) \\
y_{k+1} & =y_{k}+\alpha_{k}\left(A x_{k+1}-b\right)
\end{aligned}
$$

Works, but expensive; needs strong technical assumptions on $f(x)$

Dual ascent method

$$
\begin{aligned}
x_{k+1} & =\operatorname{argmin} L\left(x, y_{k}\right) \\
y_{k+1} & =y_{k}+\alpha_{k}\left(A x_{k+1}-b\right)
\end{aligned}
$$

Works, but expensive; needs strong technical assumptions on $f(x)$
What if fully separable f

$$
f(x)=\sum_{i} f_{i}\left(x_{i}\right)
$$

Dual ascent - fully separable

For fully separable f, the Lagrangian is also fully separable

$$
L(x, y)=\sum_{i}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right)-y^{T} b
$$

Dual ascent - fully separable

For fully separable f, the Lagrangian is also fully separable

$$
L(x, y)=\sum_{i}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right)-y^{T} b
$$

Thus, $\operatorname{argmin} L\left(x, y_{k}\right)$ splits into n separate minimizations

$$
\left(x_{i}\right)_{k+1}=\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right)
$$

Dual decomposition
The above idea leads to dual decomposition-classic idea from the 60s (Everett, Danzig, Wolfe, Benders, ...)

Dual decomposition

The above idea leads to dual decomposition-classic idea from the 60s (Everett, Danzig, Wolfe, Benders, ...)

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right) \quad i=1, \ldots, n \\
y_{k+1} & =y_{k}+\alpha_{k}\left(\sum_{i=1}^{n} A_{i}\left[x_{i}\right]_{k+1}-b\right)
\end{aligned}
$$

Dual decomposition

The above idea leads to dual decomposition-classic idea from the 60s (Everett, Danzig, Wolfe, Benders, ...)

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right) \quad i=1, \ldots, n \\
y_{k+1} & =y_{k}+\alpha_{k}\left(\sum_{i=1}^{n} A_{i}\left[x_{i}\right]_{k+1}-b\right)
\end{aligned}
$$

distributed processing

- distribute y_{k}

Dual decomposition

The above idea leads to dual decomposition-classic idea from the 60s (Everett, Danzig, Wolfe, Benders, ...)

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right) \quad i=1, \ldots, n \\
y_{k+1} & =y_{k}+\alpha_{k}\left(\sum_{i=1}^{n} A_{i}\left[x_{i}\right]_{k+1}-b\right)
\end{aligned}
$$

distributed processing

- distribute y_{k}
- compute $\left(x_{i}\right)_{k+1}$ (simultaneously)

Dual decomposition

The above idea leads to dual decomposition-classic idea from the 60s (Everett, Danzig, Wolfe, Benders, ...)

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right) \quad i=1, \ldots, n \\
y_{k+1} & =y_{k}+\alpha_{k}\left(\sum_{i=1}^{n} A_{i}\left[x_{i}\right]_{k+1}-b\right)
\end{aligned}
$$

distributed processing

- distribute y_{k}
- compute $\left(x_{i}\right)_{k+1}$ (simultaneously)
- collect updated values $A_{i}\left(x_{i}\right)_{k+1}$

Dual decomposition

The above idea leads to dual decomposition-classic idea from the 60s (Everett, Danzig, Wolfe, Benders, ...)

$$
\begin{aligned}
{\left[x_{i}\right]_{k+1} } & =\underset{x_{i}}{\operatorname{argmin}}\left(f_{i}\left(x_{i}\right)+y^{T} A_{i} x_{i}\right) \quad i=1, \ldots, n \\
y_{k+1} & =y_{k}+\alpha_{k}\left(\sum_{i=1}^{n} A_{i}\left[x_{i}\right]_{k+1}-b\right)
\end{aligned}
$$

distributed processing

- distribute y_{k}
- compute $\left(x_{i}\right)_{k+1}$ (simultaneously)
- collect updated values $A_{i}\left(x_{i}\right)_{k+1}$
- centralize to compute y_{k+1}

This method works but can be often very slow.

- ADMM for distributed computation
- Basic methods in distributed optimization

References

A P. Richtárik, M. Takáč. Parallel Coordniate Descent Methods for Big Data Optimization (Dec. 2012)
↔ F. Niu, et al. Hogwild!: A lock-free approach to parallelizing stochastic gradient descent
© S. P. Boyd. Slides on ADMM.

