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Admin

I Use following URL to submit your project material

I https://www.easychair.org/conferences/?conf=ee227a2013

I You’ll have to sign up at easychair for submitting

I Make sure each author is in the system

I Deadline: 4/12/2013; 5pm

I I’ll assign the papers for review via easychair

I You’ll have to upload review to easychair

I Reviews are per person

I No class on 4/11

I Again: project submissions are electronic only!
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Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)

• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5

• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)

• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}

I Let E be the permutation of I induced by π

3 / 25



Randomized BCD

I Let x ∈ RN

I Any vector x =
∑N

i=1 xiei, where ei is ith canonical basis
vector (ith column of the identity matrix)

I Decompose x into n blocks of size Ni

I Say block 1 contains coordinates {1, 3, 5}.
• We write x(1) = (x1, x3, x5)
• Alternatively, x(i) = x1e1 + x3e3 + x5e5
• Define E1 := [e1, e3, e5] (N × 3 matrix)
• Then, x(1) = ET1 x

I More generally, say π is a random perm of [N ] := {1, 2, . . . , N}
I Let E be the permutation of I induced by π

3 / 25



BCD – Decomposition

I Decomposition: E = [E1, . . . , En] into n blocks

I Corresponding decomposition of x is

(ET1 x︸︷︷︸
N1+

, ET2 x︸︷︷︸
N2+

, . . . ,

· · ·
ETnx︸︷︷︸

+Nn=N

) = (x(1), x(2), . . . , x(n))

I Observation:

ETi Ej =

{
INi i = j

0Ni,Nj i 6= j.

I So the Eis define our partitioning of the coordinates

I Just fancier notation for a random partition of coordinates

I Now with this notation . . .
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BCD – Setup

min f(x) where x ∈ RN

Assume gradient of block i is Lipschitz continuous∗∗

‖∇if(x + Eih)−∇if(x)‖∗ ≤ Li‖h‖

Block gradient ∇if(x) is projection of full grad: ETi ∇f(x)
∗∗ — each block can use its own norm

Block Coordinate “Gradient” Descent

I Using the descent lemma, we have blockwise upper bounds

f(x + Eih) ≤ f(x) + 〈∇if(x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . , n.

I At each step, minimize these upper bounds!
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Randomized BCD

I For k ≥ 0 (no init. of x necessary)

I Pick a block i from [n] with probability pi > 0

I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f(xk) + 〈∇if(xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇if(xk)

I Update the impacted coordinates of x, formally

x
(i)
k+1 ← x

(i)
k + h

xk+1 ← xk − 1
Li
Ei∇if(xk)

Notice: Original BCD had: x
(i)
k = argminh f(. . . , h︸︷︷︸

block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)
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Randomized BCD — slight extension

min f(x) + r(x)

I If block separable r(x) :=
∑n

i=1 ri(x
(i))

x
(i)
k = argmin

h
f(xk) + 〈∇if(xk), h〉+ Li

2 ‖h‖
2 + ri(E

T
i xk + h)

x
(i)
k = proxri(· · ·)

Exercise: Fill in the dots

h = prox(1/L)ri

(
ET

i xk − 1
Li
∇if(xk)

)
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Randomized BCD – analysis

h← argminh f(xk) + 〈∇if(xk), h〉+ Li
2 ‖h‖

2

Descent:

xk+1 = xk + Eih

f(xk+1) ≤ f(xk) + 〈∇if(xk), h〉+ Li
2 ‖h‖

2

xk+1 = xk − 1
Li
Ei∇if(xk)

f(xk+1) ≤ f(xk)− 1
Li
‖∇if(xk)‖2 + Li

2

∥∥∥− 1
Li
∇if(xk)

∥∥∥2
f(xk+1) ≤ f(xk)− 1

2Li
‖∇if(xk)‖2.

f(xk)− f(xk+1) ≥ 1
2Li
‖∇if(xk)‖2

8 / 25
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Randomized BCD – analysis

Expected descent:

f(xk)− E[f(xk+1|xk)] =

n∑
i=1

pi
(
f(xk)− f(xk − 1

Li
Ei∇if(xk))

)

≥
n∑
i=1

pi
2Li
‖∇if(xk)‖2

= 1
2‖∇f(xk)‖2W (suitable W ).

Exercise: What is the expected descent with uniform probabilities?

Descent combined with some more notation and hard work yields

O(nε

∑
i
Li‖x(i)0 − x

(i)
∗ ‖2)

as the iteration complexity of obtaining E[f(xk)]− f∗ ≤ ε
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Exercise

I Recall Lasso problem: min 1
2‖Ax− b‖

2 + λ‖x‖1
I Here x ∈ RN

I Make n = N blocks

I Show what the Randomized BCD iterations look like

I Notice, 1D prox operations for λ| · | arise

I Try to implement it as efficiently as you can (i.e., do not copy or
update vectors / coordinates than necessary)

10 / 25



Exercise – details

Assuming n = N blocks, each update is scalar valued.

I Let x0 = 0; y0 = Ax0 − b = −b
I For k ≥ 0

• Pick random coordinate j
• Compute α← 〈aj , y〉 – i.e., ∇jf(xk)
• Min αh+ Li

2 h
2 + λ|h|

h = proxλ|·|(xj − 1
Lj
α)

h = sgn(xj − 1
Lj
α) max(|xj − 1

Lj
α| − λ, 0)

• Update: xk+1 = xk + hej
• Update: yk+1 ← yk + haj
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Parallel BCD
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Parallel BCD

Previously

min f(x) = f(x1, . . . , xn)

What if?

min f(x) =
∑

i fi(xi)

I Can solve all n problems independently in parallel

I In theory: n times speedup possible compared to serial case

I So if objective functions are “almost separable” we would still
expect high speedup, diminished by amount of separability

I Big data problems often have this “almost separable” structure!
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Partial Separability

Consider the sparse data matrixd11 d12
d22 d23

. . .
. . .

 ∈ Rm×n,

I Objective f(x) = ‖Dx− b‖22 =
∑m

i=1(d
T
i x− bi)2 also equals

(d11x1 + d12x2 − b1)2 + (d22x2 + d23x3 − b2)2 + · · ·

I Each term depends on only 2 coordinates

I Formally, we could write this as

f(x) =
∑

J∈J
fJ(x),

where J = {{1, 2} , {2, 3} , · · ·}
I Key point: fJ(x) depends only on xj for j ∈ J .
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Partial Separability

min f(x) s.t. x ∈ Rn

Def. Let J be a collection of subsets of {1, . . . , n}. We say f is
partially separable of degree ω if it can be written as

f(x) =
∑
J∈J

fJ(x),

where each fJ depends only on xj for j ∈ J , and

|J | ≤ ω ∀J ∈J .

Example: If Dm×n is a sparse matrix, then ω = max1≤i≤m ‖dTi ‖0

Exercise: Extend this notion to x = (x(1), . . . , x(n))
Hint: Now, fJ will depend only on x(j) for j ∈ J
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Parallel Stochastic Gradient!

Each core runs the computation:

1 Sample coordinates J from {1, . . . , n} (all sets of variables)

2 Read current state of xJ from shared memory

3 For each individual coordinate j ∈ J
xj ← xj − αk[∇fJ(xJ)]j

I Atomic update only for xj ← xj − a (not for gradient)

I Since the actual coordinate j can arise in various J ,
processors can overwrite each others’ work.

I But if partial overlaps (separability), coordinate j does not
appear in too many different subsets J , method works fine!
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Parallel BCD

1 Choose initial point x0 ∈ RN

2 For k ≥ 0

• Randomly pick (in parallel) a set of blocks Sk ⊂ {1, . . . , n}
• Perform BCD updates (in parallel) for i ∈ Sk

x
(i)
k+1 ← x

(i)
k −

1

βwi
∇if(xk)

−→ wi typically Li; β depends on degree of separability ω

♠ Uniform sampling of blocks (or just coordinates)

♠ More careful sampling leads to better guarantees

♠ Theory requires atomic updates

♠ Useful to implement asynchronously (i.e., use whatever latest
x(i) a given core has access to)

♠ Theory of above method requires guaranteed descent
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ADMM & Co.
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Background

min f(x)

s.t. Ax = b.

Typical approach:

♣ Form the Lagrangian: L(x, y) = f(x) + yT (Ax− b)
♣ Compute dual function

g(y) := min
x

L(x, y)

♣ Solve dual problem: maxy g(y) to get y∗

♣ Recover primal solution: x∗ = argminL(x, y∗)
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How to solve dual?

Use some gradient method on dual!

yk+1 = yk + αk∇g(yk)

(notice +αk since we are doing ascent)

But what is ∇g(y)?

g(y) = min
x
f(x) + yT (Ax− b)

∇g(yk) = Ax̄− b
x̄ = argmin

x
L(x, yk)
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Dual ascent method

xk+1 = argminL(x, yk)

yk+1 = yk + αk(Axk+1 − b)

Works, but expensive; needs strong technical assumptions on f(x)

What if fully separable f

f(x) =
∑

i fi(xi)
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Dual ascent – fully separable

For fully separable f , the Lagrangian is also fully separable

L(x, y) =
∑
i

(fi(xi) + yTAixi)− yT b

Thus, argminL(x, yk) splits into n separate minimizations

(xi)k+1 = argmin
xi

(fi(xi) + yTAixi)

All can be done in parallel
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Dual decomposition

The above idea leads to dual decomposition—classic idea from the
60s (Everett, Danzig, Wolfe, Benders, ...)

[xi]k+1 = argmin
xi

(fi(xi) + yTAixi) i = 1, . . . , n

yk+1 = yk + αk(

n∑
i=1

Ai[xi]k+1 − b)

distributed processing

I distribute yk

I compute (xi)k+1 (simultaneously)

I collect updated values Ai(xi)k+1

I centralize to compute yk+1

This method works but can be often very slow.
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This method works but can be often very slow.
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Dual decomposition
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Next time

I ADMM for distributed computation

I Basic methods in distributed optimization
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