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Admin

© HWS3 due right now!

QO HW4 is out! Please ask your Qs on Piazza
Q Project 4 page reports due on 4/11/2013
QO Poster presentations: 3hrs: When in May?
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Challenge problem

Minimize /(p) over p > 1

3/23



Coordinate descent

So far: min f(z) = ), fi(z)
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Coordinate descent

So far: min f(z) = ), fi(z)

Since x € R"®, now consider

min f(x) = f(z1,z2,...,2,)

Previously, we went through fi,..., fi

What if we now go through x4, ..., x, one by one?
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Coordinate descent

Coordinate descent
B Fork=0,1,...
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Coordinate descent

Coordinate descent
B Fork=0,1,...
m Pick an index i from {1,...,n}
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Coordinate descent

Coordinate descent

B Fork=0,1,...
m Pick an index i from {1,...,n}
m Optimize the ith coordinate
k 1 k+1 k+1 k k
e argmin f(27t 2t & LA,y
£eR \—,—/ —_——
done current todo

B Decide when/how to stop; return xk

' 21 overwrites value in ¥ (in actual implementation)
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Coordinate descent

& One of the simplest optimization methods
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Coordinate descent

& One of the simplest optimization methods

& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
& Can be “slow”, but sometimes very competitive

& Gradient, subgradient, incremental methods also “slow”

& But incremental, stochastic gradient methods are scalable
& These days renewed interest in CD for large-scale problems

& Notice: in general CD is “derivative free”

6
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Coordinate descent — which index?
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Coordinate descent — which index?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [V f(zy)];
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Coordinate descent — which index?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [V f(z)];

Derivative free rules:
& Cyclic order 1,2,...,n,1,...

& Almost cyclic: Each coordinate 1 < i < n picked at least once
every B successive iterations (B > n)

& Double sweep, 1,...,nthenn—1,...,1, repeat

& Cylic with permutation: random order each cycle
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Coordinate descent — which index?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [V f(xy)];

Derivative free rules:
& Cyclic order 1,2,...,n,1,...

& Almost cyclic: Each coordinate 1 < i < n picked at least once
every B successive iterations (B > n)

& Double sweep, 1,...,nthenn —1,...,1, repeat
& Cylic with permutation: random order each cycle

& Random sampling: pick random index at each iteration
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Coordinate descent — Example

min || Az — b||3
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Coordinate descent — Example

min || Az — b||3

Coordinate descent update
D im Gij (bi — i ailIl)
2
doimy az;

(dropped superscripts, since we overwrite)

Tj<—
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Coordinate descent — some remarks

Advantages

¢ Each iteration usually cheap (single variable optimization)
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Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
{> No extra storage vectors needed
{ No stepsize tuning <
¢ No other pesky parameters (usually) that must be tuned
¢ Simple to implement (like all other methods we've seen so far)
& Works well for large-scale problems
¢ Currently quite popular; parallel versions exist
Disadvantages
& Tricky if single variable optimization is hard
& Convergence theory can be complicated
& Can be slower near optimum than more sophisticated methods

& Nonsmooth case more tricky



Block coordinate descent (BCD)

min  f(z) = f(z1,...,25)
T EX] XXy X+ X Xy
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Block coordinate descent (BCD)

min  f(@) = f(@1,... Tm)
rE X XAy X XA

Gauss-Seidel style

kL k+1 k+1 k k
< argmin f(x7", .20, £ T, ..., x,)
gex; \—,_/ e

done current todo
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Block coordinate descent (BCD)

min  f(@) = f(@1,... Tm)
rE X XAy X XA

Gauss-Seidel style

gt k+1 k+1 k
< argmin f(x7", .. 20, £ T,
EEX; \—,_/
done current todo

Jacobi style (easy to parallelize)

kL k k k
— arsgérillnf(wl, iy, € Lzl xy)

don’t clobber current todo
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BCD - convergence

Theorem Let f be continuously differentiable over X := Xi; X;.
Further, assume for each block 7 and =z € X, the minimum

minf(mly cee 7wi+17€7wi+17 ce. ,mm)
§eX;

is uniquely attained. Every limit point of the sequence {mk} gen-
erated by BCD, is a stationary point of f.
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minf(mly cee 7wi+17€7$i+17 ce. ,mm)
§eX;

is uniquely attained. Every limit point of the sequence {mk} gen-
erated by BCD, is a stationary point of f.

Corollary. If f is in addition convex, then every limit point of the
BCD sequence {sck} is a global minimum.
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BCD - convergence

Theorem Let f be continuously differentiable over X := Xi; X;.
Further, assume for each block 7 and =z € X, the minimum

minf(mly cee 7wi+17€7$i+17 ce. ,mm)
§eX;

is uniquely attained. Every limit point of the sequence {mk} gen-
erated by BCD, is a stationary point of f.

Corollary. If f is in addition convex, then every limit point of the
BCD sequence {sck} is a global minimum.

» Unique solutions of subproblems not always possible
» Above result is only asymptotic (holds in the limit)

» Warning! BCD may cycle indefinitely without converging, if
the number of blocks is > 2 and the objective is nonconvex.
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BCD - convergence

Two block BCD

minimize f(CC) = f(:I)l,iBQ) x e X X Xs.
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BCD - convergence

Two block BCD

minimize f(:l)) = f(:l)l, 1132) x e X X Xs.

Theorem (Grippo & Sciandrone (2000)). Let f be continuously dif-
ferentiable, and the sets X, X5 be closed and convex. Assume that
the both BCD subproblems have solutions, and that the sequence
{mk} has limit points. Then, every limit point of {:L'k} is stationary.
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BCD - convergence

Two block BCD

minimize f(:l)) = f(:I)l,iBQ) x e X X Xs.

Theorem (Grippo & Sciandrone (2000)). Let f be continuously dif-
ferentiable, and the sets X, X5 be closed and convex. Assume that
the both BCD subproblems have solutions, and that the sequence

{ack} has limit points. Then, every limit point of {:L'k} is stationary.

» No need of unique solutions to subproblems

» BCD for 2 blocks is also called: Alternating Minimization

12 /23



CD for convex problems
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CD for smooth convex problems

min f(Ax) + (b, x) subject to z > 0

» Function f is strictly convex and smooth
» Matrix A € R™*™ (possibly rank-deficient)
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CD for smooth convex problems

min f(Ax) + (b, x) subject to z > 0

Function f is strictly convex and smooth
Matrix A € R™*"™ (possibly rank-deficient)

Apply CD to this problem
With some more assumptions: it works!
Even rate of convergence analysis (asymptotic)

Here's the theorem
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CD - convergence theorem

Assumptions:

Matrix A has no entirely zero column
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generated by the CD method using the almost cyclic or the Gauss-
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CD - convergence theorem

Assumptions:
Matrix A has no entirely zero column
The set of optimal solutions X'* is nonempty

dom f is open, and f is strictly convex twice continuously
differentiable on dom f

f tends to +oo at the boundary of its effective domain
The Hessian V2f(Az*) = 0 for all 2* € x*

linearly to an element of X*.

Theorem (Luo, Tseng (1992)). Let {z"} be a sequence of iterates
generated by the CD method using the almost cyclic or the Gauss-
Southwell rule for picking indices. Then, {:ck} converges at least

Proof is intricate; see Luo & Tseng's paper on bSpace.
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CD - application

Projection onto convex sets

min
s.t.

slle = yll3

xEClﬂCgﬂ--oﬂC’m.

16
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CD - application

Projection onto convex sets

min 3|z — ylf3
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Solution 1: Rewrite using indicator functions

. 1 . 2 m
min Yle -3+ 3" de,(@).
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CD - application

Projection onto convex sets

min 3|z — ylf3
S.t. xEClﬂCQQ-~ﬂCm.

Solution 1: Rewrite using indicator functions

. 2 m
win 3z -yl + 3 b, (@),
» Now invoke Douglas-Rachford using the product-space trick

Solution 2: Take dual of the above formulation

16
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Convex calculus time

min

sl —yll3 + f(z) + h(z)
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Convex calculus time

min 3|z —yl3 + f(z) + h(z)

L(z, z,w,v, 1) == gllx = yll3+F(2) +h(w) + " (z—2) + 1" (z—w)

g(v,pu) = inf Lz, z,v,p)
T,2,Ww
r—y+rv+pu=0 = z=y—v-—u
gw,m) = —glv+ulE+ @+ w)Ty = V) =)
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Convex calculus time

min 3|z —yl3 + f(z) + h(z)

L(z, z,w,v, 1) == gllx = yll3+F(2) +h(w) + " (z—2) + 1" (z—w)

gv,p) = inf L(z,z,v,p)
z,2,W
r—y+rv+pu=0 = z=y—v-—u
gv,n) = =gl a3+ @+ )Ty = V) = ()

Dual as minimization problem

min k(v, 1) == gllv+p—yl3 + () + h* (1)

17/23



Proximal-Dykstra method as CD

Apply CD to k(v, u)

Vg+1 = argmin, k(l/, Mk)

pk+1 = argming, k(vgi1,p)

18/23



Proximal-Dykstra method as CD

Apply CD to k(v, u)

Vg+1 = argmin, k(l/, Mk)

pey1 = argming k(vgi1, i)

> 0Cv+u—y+of(v)

18/23



Proximal-Dykstra method as CD

Apply CD to k(v, u)
Vg+1 = argminy k(l/, Mk)
pey1 = argming k(vgi1, i)

> 0cv+up—y+ofv)
» 0€ vpy1 +p—y+0h*(u)

18/23
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Proximal-Dykstra method as CD

Apply CD to k(v, u)

Vg+1 = argmin, k(yvﬂk)

pey1 = argming k(vgi1, i)
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Proximal-Dykstra method as CD

Apply CD to k(v, u)

Vg+1 = argmin, k(yvﬂk)

pey1 = argming k(vgi1, i)

> 0€v+pu—y+af(v)
» 0 € Vg1 +p—y+ Oh*(u)
> y—pk Ev+Of(v)=U+0f)(v)
= v =DproXp(y — px) = vV =y — pr — Prox,(y — uix)
» Similarly, we see that
[t =Y = Vg1 — Prox,(y — Vg+1)
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Proximal-Dykstra method as CD

Apply CD to k(v, u)

Vpt1 = argmin, k(v uy)

pes1 = argming k(Vgi1,p)

> 0€v+pu—y+af(v)
» 0 € Vg1 +p—y+ Oh*(u)
> y—pk Ev+Of(v)=U+0f)(v)
= UV =DproXp(y — ) = v =y — pp — prox(y — ux)
» Similarly, we see that
[t =Y = Vg1 — Prox,(y — Vg+1)

V4l S Y — Bk — PI“OXf(y — k)

Pkl < Y — Vi1 — PTOXp (Y — Viy1)

18/23



Proximal-Dykstra as CD

B Simplify, and use Lagrangian stationarity to obtain primal

rT=yYy—V—lU — Yy—pu=r+v
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Proximal-Dykstra as CD

B Simplify, and use Lagrangian stationarity to obtain primal
rT=yYy—V—lU — Yy—pu=r+v
B Thus, the CD iteration may be rewritten as

tg < proxs(wy + vk)
Vg1 ¢ T + Vg — tg
Tp+1 < proxy (ux + tx)
M1 = P+t — Thp
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Proximal-Dykstra as CD

B Simplify, and use Lagrangian stationarity to obtain primal
rT=yYy—V—lU — Yy—pu=r+v
B Thus, the CD iteration may be rewritten as

tg < proxs(wy + vk)
Vg1 ¢ T + Vg — tg
Tp+1 < proxy (ux + tx)
M1 = P+t — Thp

B We used: prox,(y — Ves1) = el — Y — Vktl = Thyl
B This is the proximal-Dykstra method!
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CD for nonsmooth convex problems

min |21 — 2| + |21 + 22
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CD for separable nonsmoothness

» Nonsmooth part is separable
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CD for separable nonsmoothness

» Nonsmooth part is separable

min f(a)+y " il

Theorem If f is convex, continuously differentiable, each g;(z) is
closed, convex, and each coordinate admits a unique solution. Fur-
ther, assume we go through all coordinates in an essentially cyclic
way. Then, the sequence {z*} generated by CD is bounded, and
every limit point of it is optimal.
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CD for separable nonsmoothness

» Nonsmooth part is separable

min f(a)+y " il

Theorem If f is convex, continuously differentiable, each g;(z) is
closed, convex, and each coordinate admits a unique solution. Fur-
ther, assume we go through all coordinates in an essentially cyclic
way. Then, the sequence {z*} generated by CD is bounded, and
every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness
(under more assumptions), can be found in: “Convergence of Block Coordinate

Descent Method for Nondifferentiable Minimization” by P. Tseng (2001).
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CD global convergence

» So far, we saw CD based on essentially cyclic rules
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CD global convergence

» So far, we saw CD based on essentially cyclic rules

» It is difficult to prove global convergence and almost impossible
to estimate global rate of convergence

» Above results highlighted at best local (asymptotic) rates

m Consider the unconstrained problem min f(z), s.t., z € R"
m Assume f is convex, with componentwise Lipschitz gradients

\Vif(z + hei) = Vif(2)| < Lilh|, z€R"heR.

Here e; denotes the ith canonical basis vector

Choose x5 € R™. Let M = max; L;; For k>0

Ip = argmaxi <<, Vif (1)

Tiy1 = Tk — %Vz‘kf(fk)eik-




CD global convergence

Theorem Let {xk} be iterate sequence generated by above greedy
CD method. Then,

2nM ||z — z*||3

k> 0.
k+4 ’ =0

flog) — f7 <
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» Looks like gradient-descent O(1/k) bound for C} cvx

» Notice factor of n in the numerator!
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CD method. Then,
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flag) — fF < k> 0.

» Looks like gradient-descent O(1/k) bound for C} cvx
» Notice factor of n in the numerator!
» But this method is impractical

» At each step, it requires access to full gradient

23/23



CD global convergence

Theorem Let {xk} be iterate sequence generated by above greedy
CD method. Then,

2nM ||xo —l’*H%
— < kE>0.

» Looks like gradient-descent O(1/k) bound for C} cvx

» Notice factor of n in the numerator!

» But this method is impractical

» At each step, it requires access to full gradient

» With full gradient, might as well use ordinary gradient methods!
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CD global convergence

Theorem Let {xk} be iterate sequence generated by above greedy
CD method. Then,
2nM ||z — z*|3
k+4

flag) — f* < , k>0.

Looks like gradient-descent O(1/k) bound for C} cvx
Notice factor of n in the numerator!

But this method is impractical

>

>

>

» At each step, it requires access to full gradient

» With full gradient, might as well use ordinary gradient methods!
>

Also, if f € C}, it can easily happen that M > L
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CD global convergence

Theorem Let {xk} be iterate sequence generated by above greedy

CD method. Then,

2nM ||z — z*|3
k+4

flag) — f* < , k>0.

Looks like gradient-descent O(1/k) bound for C} cvx

Notice factor of n in the numerator!

But this method is impractical

At each step, it requires access to full gradient

With full gradient, might as well use ordinary gradient methods!
Also, if f € C}, it can easily happen that M > L

So above rate is in general, worse than gradient methods

vVvyvyVvyyvyyy
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Randomized CD

NEXT LECTURE:
» Randomized BCD (aka Stochastic BCD)
» Parallel BCD
» Dual decomposition, ADMM, etc.
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