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Admin

♥ HW3 due right now!

♥ HW4 is out! Please ask your Qs on Piazza

♥ Project 4 page reports due on 4/11/2013

♥ Poster presentations: 3hrs: When in May?
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Challenge problem

I(p) :=
√
p

∫ ∞
0

∣∣∣∣sinxx
∣∣∣∣p dx

Minimize I(p) over p ≥ 1
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Coordinate descent

So far: min f(x) =
∑

i fi(x)

Since x ∈ Rn, now consider

min f(x) = f(x1, x2, . . . , xn)

Previously, we went through f1, . . . , fm

What if we now go through x1, . . . , xn one by one?

4 / 23



Coordinate descent

So far: min f(x) =
∑

i fi(x)

Since x ∈ Rn, now consider

min f(x) = f(x1, x2, . . . , xn)

Previously, we went through f1, . . . , fm

What if we now go through x1, . . . , xn one by one?

4 / 23



Coordinate descent

Coordinate descent

� For k = 0, 1, . . .

Pick an index i from {1, . . . , n}
Optimize the ith coordinate

xk+1
i ← argmin

ξ∈R
f(xk+1

1 , . . . , xk+1
i−1︸ ︷︷ ︸

done

, ξ︸︷︷︸
current

, xki+1, . . . , x
k
n︸ ︷︷ ︸

todo

)

� Decide when/how to stop; return xk

xk+1
i overwrites value in xki (in actual implementation)
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Coordinate descent

♣ One of the simplest optimization methods

♣ Old idea: Gauss-Seidel, Jacobi methods for linear systems!

♣ Can be “slow”, but sometimes very competitive

♣ Gradient, subgradient, incremental methods also “slow”

♣ But incremental, stochastic gradient methods are scalable

♣ These days renewed interest in CD for large-scale problems

♣ Notice: in general CD is “derivative free”
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Coordinate descent – which index?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [∇f(xk)]i

Derivative free rules:

♣ Cyclic order 1, 2, . . . , n, 1, . . .

♣ Almost cyclic: Each coordinate 1 ≤ i ≤ n picked at least once
every B successive iterations (B ≥ n)

♣ Double sweep, 1, . . . , n then n− 1, . . . , 1, repeat

♣ Cylic with permutation: random order each cycle

♣ Random sampling: pick random index at each iteration
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Coordinate descent – Example

min ‖Ax− b‖22

Coordinate descent update

xj ←

∑m
i=1 aij

(
bi −

∑
l 6=j ailxl

)
∑m

i=1 a
2
ij

(dropped superscripts, since we overwrite)
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Coordinate descent – some remarks

Advantages

♦ Each iteration usually cheap (single variable optimization)

♦ No extra storage vectors needed

♦ No stepsize tuning

♦ No other pesky parameters (usually) that must be tuned

♦ Simple to implement (like all other methods we’ve seen so far)

♦ Works well for large-scale problems

♦ Currently quite popular; parallel versions exist

Disadvantages

♠ Tricky if single variable optimization is hard

♠ Convergence theory can be complicated

♠ Can be slower near optimum than more sophisticated methods

♠ Nonsmooth case more tricky
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Block coordinate descent (BCD)

min f(x) := f(x1, . . . ,xm)

x ∈ X1 ×X2 × · · · × Xm.

Gauss-Seidel style

xk+1
i ← argmin

ξ∈Xi

f(xk+1
1 , . . . ,xk+1

i−1︸ ︷︷ ︸
done

, ξ︸︷︷︸
current

,xki+1, . . . ,x
k
m︸ ︷︷ ︸

todo

)

Jacobi style (easy to parallelize)

xk+1
i ← argmin

ξ∈Xi

f(xk1, . . . ,x
k
i−1︸ ︷︷ ︸

don′t clobber

, ξ︸︷︷︸
current

,xki+1, . . . ,x
k
m︸ ︷︷ ︸

todo

)
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BCD – convergence

Theorem Let f be continuously differentiable over X := "mi=1Xi.
Further, assume for each block i and x ∈ X , the minimum

min
ξ∈Xi

f(x1, . . . ,xi+1, ξ,xi+1, . . . ,xm)

is uniquely attained. Every limit point of the sequence
{
xk
}

gen-
erated by BCD, is a stationary point of f .

Corollary. If f is in addition convex, then every limit point of the
BCD sequence

{
xk
}

is a global minimum.

I Unique solutions of subproblems not always possible

I Above result is only asymptotic (holds in the limit)

I Warning! BCD may cycle indefinitely without converging, if
the number of blocks is > 2 and the objective is nonconvex.
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BCD – convergence

Two block BCD

minimize f(x) = f(x1,x2) x ∈ X1 ×X2.

Theorem (Grippo & Sciandrone (2000)). Let f be continuously dif-
ferentiable, and the sets X1, X2 be closed and convex. Assume that
the both BCD subproblems have solutions, and that the sequence{
xk
}

has limit points. Then, every limit point of
{
xk
}

is stationary.

I No need of unique solutions to subproblems

I BCD for 2 blocks is also called: Alternating Minimization
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CD for convex problems
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CD for smooth convex problems

min f(Ax) + 〈b, x〉 subject to x ≥ 0

I Function f is strictly convex and smooth

I Matrix A ∈ Rm×n (possibly rank-deficient)

I Apply CD to this problem

I With some more assumptions: it works!

I Even rate of convergence analysis (asymptotic)

I Here’s the theorem
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CD – convergence theorem

Assumptions:

1 Matrix A has no entirely zero column

2 The set of optimal solutions X ∗ is nonempty

3 dom f is open, and f is strictly convex twice continuously
differentiable on dom f

4 f tends to +∞ at the boundary of its effective domain

5 The Hessian ∇2f(Ax∗) � 0 for all x∗ ∈ X ∗

Theorem (Luo, Tseng (1992)). Let
{
xk
}

be a sequence of iterates
generated by the CD method using the almost cyclic or the Gauss-
Southwell rule for picking indices. Then,

{
xk
}

converges at least
linearly to an element of X ∗.

Proof is intricate; see Luo & Tseng’s paper on bSpace.
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Proof is intricate; see Luo & Tseng’s paper on bSpace.
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CD – application

Projection onto convex sets

min 1
2‖x− y‖22

s.t. x ∈ C1 ∩ C2 ∩ · · · ∩ Cm.

Solution 1: Rewrite using indicator functions

min 1
2‖x− y‖

2
2 +

∑m

i=1
δCi(x).

I Now invoke Douglas-Rachford using the product-space trick

Solution 2: Take dual of the above formulation
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Convex calculus time

min 1
2
‖x− y‖22 + f(x) + h(x)

L(x, z, w, ν, µ) := 1
2‖x− y‖

2
2+f(z)+h(w)+ν

T (x−z)+µT (x−w)

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y − ν − µ
g(ν, µ) = −1

2‖ν + µ‖22 + (ν + µ)T y − f∗(ν)− h∗(µ)

Dual as minimization problem

min k(ν, µ) := 1
2‖ν + µ− y‖22 + f∗(ν) + h∗(µ)
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Proximal-Dykstra method as CD

Apply CD to k(ν, µ)

νk+1 = argminν k(ν, µk)

µk+1 = argminµ k(νk+1, µ)

I 0 ∈ ν + µk − y + ∂f∗(ν)

I 0 ∈ νk+1 + µ− y + ∂h∗(µ)

I y − µk ∈ ν + ∂f∗(ν) = (I + ∂f∗)(ν)
=⇒ ν = proxf∗(y − µk) =⇒ ν = y − µk − proxf (y − µk)

I Similarly, we see that
µ = y − νk+1 − proxh(y − νk+1)

νk+1 ← y − µk − proxf (y − µk)
µk+1 ← y − νk+1 − proxh(y − νk+1)
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Proximal-Dykstra as CD

� Simplify, and use Lagrangian stationarity to obtain primal

x = y − ν − µ =⇒ y − µ = x+ ν

� Thus, the CD iteration may be rewritten as

tk ← proxf (xk + νk)

νk+1 ← xk + νk − tk
xk+1 ← proxh(µk + tk)

µk+1 ← µk + tk − xk+1

� We used: proxh(y − νk+1) = µk+1 − y − νk+1 = xk+1

� This is the proximal-Dykstra method!
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CD for nonsmooth convex problems

min |x1 − x2|+ 1
2 |x1 + x2|
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CD for separable nonsmoothness

I Nonsmooth part is separable

min
x∈Rn

f(x) +
∑n

i=1
ri(xi)

Theorem If f is convex, continuously differentiable, each gi(x) is
closed, convex, and each coordinate admits a unique solution. Fur-
ther, assume we go through all coordinates in an essentially cyclic
way. Then, the sequence

{
xk
}

generated by CD is bounded, and
every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness

(under more assumptions), can be found in: “Convergence of Block Coordinate

Descent Method for Nondifferentiable Minimization” by P. Tseng (2001).

21 / 23



CD for separable nonsmoothness

I Nonsmooth part is separable

min
x∈Rn

f(x) +
∑n

i=1
ri(xi)

Theorem If f is convex, continuously differentiable, each gi(x) is
closed, convex, and each coordinate admits a unique solution. Fur-
ther, assume we go through all coordinates in an essentially cyclic
way. Then, the sequence

{
xk
}

generated by CD is bounded, and
every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness

(under more assumptions), can be found in: “Convergence of Block Coordinate

Descent Method for Nondifferentiable Minimization” by P. Tseng (2001).

21 / 23



CD for separable nonsmoothness

I Nonsmooth part is separable

min
x∈Rn

f(x) +
∑n

i=1
ri(xi)

Theorem If f is convex, continuously differentiable, each gi(x) is
closed, convex, and each coordinate admits a unique solution. Fur-
ther, assume we go through all coordinates in an essentially cyclic
way. Then, the sequence

{
xk
}

generated by CD is bounded, and
every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness

(under more assumptions), can be found in: “Convergence of Block Coordinate

Descent Method for Nondifferentiable Minimization” by P. Tseng (2001).

21 / 23



CD global convergence

I So far, we saw CD based on essentially cyclic rules

I It is difficult to prove global convergence and almost impossible
to estimate global rate of convergence

I Above results highlighted at best local (asymptotic) rates

� Consider the unconstrained problem min f(x), s.t., x ∈ Rn

� Assume f is convex, with componentwise Lipschitz gradients

|∇if(x+ hei)−∇if(x)| ≤ Li|h|, x ∈ Rn, h ∈ R.

Here ei denotes the ith canonical basis vector

Choose x0 ∈ Rn. Let M = maxi Li; For k ≥ 0

ik = argmax1≤i≤n |∇if(xk)|
xk+1 = xk − 1

M
∇ikf(xk)eik .
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CD global convergence

Theorem Let
{
xk
}

be iterate sequence generated by above greedy
CD method. Then,

f(xk)− f∗ ≤
2nM‖x0 − x∗‖22

k + 4
, k ≥ 0.

I Looks like gradient-descent O(1/k) bound for C1
L cvx

I Notice factor of n in the numerator!

I But this method is impractical

I At each step, it requires access to full gradient

I With full gradient, might as well use ordinary gradient methods!

I Also, if f ∈ C1
L, it can easily happen that M ≥ L

I So above rate is in general, worse than gradient methods
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Randomized CD

NEXT LECTURE:

I Randomized BCD (aka Stochastic BCD)

I Parallel BCD

I Dual decomposition, ADMM, etc.
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