Convex Optimization

(EE227A: UC Berkeley)

Lecture 19 (Stochastic optimization)

02 Apr, 2013

Suvrit Sra

Admin

- ♠ HW3 due 4/04/2013
- ♠ HW4 on bSpace later today–due 4/18/2013
- A Project report (4 pages) due on: 11th April
- \blacklozenge $\ensuremath{\mathbb{B}}\xspace$ $\ensuremath{\mathbb{E}}\xspace$ template for projects on bSpace

Recap

- ♠ Convex sets, functions
- Convex models, LP, QP, SOCP, SDP
- Subdifferentials, basic optimality conditions
- ♠ Weak duality
- Lagrangians, strong duality, KKT conditions
- Subgradient method
- Gradient descent, feasible descent
- Optimal gradients methods
- Constrained problems, conditional gradient
- Nonsmooth problems, proximal methods
- Proximal splitting, Douglas-Rachford
- Monotone operators, product-space trick
- Incremental gradient methods

min
$$[f(x) = \sum_{i} f_i(x)] + r(x)$$

$$x^{k+1} = x^k - \alpha_k g^{i(k)}, \quad g^{i(k)} \in \partial f_{i(k)}(x^k)$$

min
$$[f(x) = \sum_{i} f_i(x)] + r(x)$$

$$x^{k+1} = x^k - \alpha_k g^{i(k)}, \quad g^{i(k)} \in \partial f_{i(k)}(x^k)$$

$$x^{k+1} = \operatorname{prox}_{\alpha_k f_{i(k)}}(x^k), \qquad k = 0, 1, \dots$$

min
$$[f(x) = \sum_{i} f_i(x)] + r(x)$$

$$\begin{aligned} x^{k+1} &= x^k - \alpha_k g^{i(k)}, \quad g^{i(k)} \in \partial f_{i(k)}(x^k) \\ x^{k+1} &= \operatorname{prox}_{\alpha_k f_{i(k)}}(x^k), \qquad k = 0, 1, \dots \\ x^{k+1} &= \operatorname{prox}_{\alpha_k r} \left(x^k - \eta_k \sum_{i=1}^m \nabla f_i(z^i) \right), \quad k = 0, 1, \dots, \\ z^1 &= x^k \\ z^{i+1} &= z^i - \alpha_k \nabla f_i(z^i), \quad i = 1, \dots, m-1. \end{aligned}$$

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k \nabla f_{i(k)}(x^k))$$

Choices of i(k)

- $\blacktriangleright Cyclic: i(k) = 1 + (k \mod m)$
- ▶ *Randomized:* Pick i(k) uniformly from $\{1, ..., m\}$

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k \nabla f_{i(k)}(x^k))$$

Choices of i(k)

- Cyclic: $i(k) = 1 + (k \mod m)$
- ▶ *Randomized:* Pick i(k) uniformly from $\{1, ..., m\}$
- Many other variations of incremental methods
- Read (omitting proofs) this nice survey by D. P. Bertsekas

Stochastic Optimization

$$\min f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

$$\min f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Recall the incremental gradient method

• Let
$$x^0 \in \mathbb{R}^n$$

▶ For
$$k \ge 0$$

$$\min f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Recall the incremental gradient method

► Let
$$x^0 \in \mathbb{R}^n$$

► For $k \ge 0$
1 Pick $i(k) \in \{1, 2, ..., m\}$ uniformly at random
2 $x^{k+1} = x^k - \alpha_k \nabla f_{i(k)}(x^k)$

$$\min f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Recall the incremental gradient method

► Let
$$x^0 \in \mathbb{R}^n$$

► For $k \ge 0$
1 Pick $i(k) \in \{1, 2, ..., m\}$ uniformly at random
2 $x^{k+1} = x^k - \alpha_k \nabla f_{i(k)}(x^k)$

 $g \equiv \nabla f_{i(k)}$ may be viewed as a stochastic gradient

$$\min f(x) = \frac{1}{m} \sum_{i=1}^{m} f_i(x)$$

Recall the incremental gradient method

► Let
$$x^0 \in \mathbb{R}^n$$

► For $k \ge 0$
1 Pick $i(k) \in \{1, 2, ..., m\}$ uniformly at random
2 $x^{k+1} = x^k - \alpha_k \nabla f_{i(k)}(x^k)$

 $g\equiv \nabla f_{i(k)}$ may be viewed as a stochastic gradient

 $g := g^{\mathsf{true}} + \mathbf{e}$, where e is mean-zero noise: $\mathbb{E}[e] = 0$

- \blacktriangleright Index i(k) chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

 $\mathbb{E}[g] =$

- \blacktriangleright Index i(k) chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

 $\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)]$

- \blacktriangleright Index i(k) chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) =$$

- \blacktriangleright Index i(k) chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla \mathbf{f}(\mathbf{x})$$

- \blacktriangleright Index i(k) chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla \mathbf{f}(\mathbf{x})$$

▶ Alternatively, $\mathbb{E}[g - g^{\mathsf{true}}] = \mathbb{E}[e] = 0.$

- $\blacktriangleright~ {\rm Index}~i(k)$ chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla \mathbf{f}(\mathbf{x})$$

- ▶ Alternatively, $\mathbb{E}[g g^{\mathsf{true}}] = \mathbb{E}[e] = 0.$
- ▶ We call g an **unbiased estimate** of the gradient

- $\blacktriangleright~ {\rm Index}~i(k)$ chosen uniformly from $\{1,\ldots,m\}$
- ► Thus, in expectation:

$$\mathbb{E}[g] = \mathbb{E}_i[\nabla f_i(x)] = \sum_i \frac{1}{m} \nabla f_i(x) = \nabla \mathbf{f}(\mathbf{x})$$

- Alternatively, $\mathbb{E}[g g^{\mathsf{true}}] = \mathbb{E}[e] = 0.$
- ▶ We call g an **unbiased estimate** of the gradient
- ► Here, we **obtained** *g* in a two step process:
 - Sample: pick an index i(k) unif. at random
 - **Oracle:** Compute a stochastic gradient based on i(k)

$$\min f(x) := \mathbb{E}_{\omega}[F(x,\omega)]$$

• ω follows some **known** distribution

$$\min f(x) := \mathbb{E}_{\omega}[F(x,\omega)]$$

- ω follows some **known** distribution
- ▶ Previous example, omega takes values in a discrete set of size m (might as well say $\omega \in \{1, ..., m\}$)

$$\min f(x) := \mathbb{E}_{\omega}[F(x,\omega)]$$

- ω follows some **known** distribution
- ▶ Previous example, omega takes values in a **discrete set** of size m (might as well say $\omega \in \{1, ..., m\}$)
- ▶ so that $F(x, \omega) = f_{\omega}(x)$; so assuming uniform distribution, we see that $f(x) = \mathbb{E}_{\omega}F(x, \omega) = \frac{1}{m}\sum_{i=1}^{m}f_i(x)$

$$\min f(x) := \mathbb{E}_{\omega}[F(x,\omega)]$$

- ω follows some **known** distribution
- ► Previous example, omega takes values in a discrete set of size m (might as well say ω ∈ {1,...,m})
- ▶ so that $F(x, \omega) = f_{\omega}(x)$; so assuming uniform distribution, we see that $f(x) = \mathbb{E}_{\omega}F(x, \omega) = \frac{1}{m}\sum_{i=1}^{m}f_i(x)$
- Usually ω will be non-discrete, and we won't be able to compute the expectation in closed form, since

$$f(x) = \int F(x,\omega)dP(\omega),$$

is going to be a difficult high-dimensional integral.

Certainty-equivalent / mean approximation

▶ Say $F(x, \omega)$ is a linear function of x

- ▶ Say $F(x, \omega)$ is a linear function of x
- \blacktriangleright Then, we may write $F(x,\omega)=\langle c(\omega),\,x\rangle$

- \blacktriangleright Say $F(x,\omega)$ is a linear function of x
- ▶ Then, we may write $F(x, \omega) = \langle c(\omega), x \rangle$

▶ In this case,
$$f(x) = \int \langle c(\omega), x \rangle dP(\omega) = \langle \mathbb{E}[c(\omega)], x \rangle$$

- \blacktriangleright Say $F(x,\omega)$ is a linear function of x
- \blacktriangleright Then, we may write $F(x,\omega)=\langle c(\omega),\,x\rangle$
- \blacktriangleright In this case, $f(x)=\int \langle c(\omega),\,x\rangle dP(\omega)=\langle \mathbb{E}[c(\omega)],\,x\rangle$
- \blacktriangleright What if $F(x,\omega)$ is convex in x for every ω

- ▶ Say $F(x, \omega)$ is a linear function of x
- \blacktriangleright Then, we may write $F(x,\omega)=\langle c(\omega),\,x\rangle$
- \blacktriangleright In this case, $f(x)=\int \langle c(\omega),\,x\rangle dP(\omega)=\langle \mathbb{E}[c(\omega)],\,x\rangle$
- ▶ What if $F(x, \omega)$ is convex in x for every ω
- ▶ Jensen's inequality gives us a trivial lower-bound

$$f(x) = \int F(x,\omega) dP(\omega) \ge F(x,\mathbb{E}[\omega])$$

Certainty-equivalent / mean approximation

- ▶ Say $F(x, \omega)$ is a linear function of x
- \blacktriangleright Then, we may write $F(x,\omega)=\langle c(\omega),\,x\rangle$
- \blacktriangleright In this case, $f(x)=\int \langle c(\omega),\,x\rangle dP(\omega)=\langle \mathbb{E}[c(\omega)],\,x\rangle$
- ▶ What if $F(x, \omega)$ is convex in x for every ω
- Jensen's inequality gives us a trivial lower-bound

$$f(x) = \int F(x,\omega) dP(\omega) \ge F(x,\mathbb{E}[\omega])$$

▶ Bound may be too weak—even useless

- ▶ Say $F(x, \omega)$ is a linear function of x
- \blacktriangleright Then, we may write $F(x,\omega)=\langle c(\omega),\,x\rangle$
- \blacktriangleright In this case, $f(x)=\int \langle c(\omega),\,x\rangle dP(\omega)=\langle \mathbb{E}[c(\omega)],\,x\rangle$
- \blacktriangleright What if $F(x,\omega)$ is convex in x for every ω
- Jensen's inequality gives us a trivial lower-bound

$$f(x) = \int F(x,\omega) dP(\omega) \ge F(x,\mathbb{E}[\omega])$$

- ▶ Bound may be too weak—even useless
- Thus, let us try to directly minimize f(x)

$$\min_{x \in \mathcal{X}} f(x) := \mathbb{E}_{\omega}[F(x, \omega)]$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^n$ nonempty, closed, bounded, convex

$$\min_{x \in \mathcal{X}} f(x) := \mathbb{E}_{\omega}[F(x, \omega)]$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^n$ nonempty, closed, bounded, convex 2. ω is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^d$; so $F : \mathcal{X} \times \Omega \to \mathbb{R}$

$$\min_{x \in \mathcal{X}} f(x) := \mathbb{E}_{\omega}[F(x, \omega)]$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^n$ nonempty, closed, bounded, convex 2. ω is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^d$; so $F : \mathcal{X} \times \Omega \to \mathbb{R}$ 3. The expectation

$$\mathbb{E}[F(x,\omega)] = \int_{\Omega} F(x,\omega) dP(\omega)$$

is well-defined and finite valued for every $x \in \mathcal{X}$.

$$\min_{x \in \mathcal{X}} f(x) := \mathbb{E}_{\omega}[F(x, \omega)]$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^n$ nonempty, closed, bounded, convex 2. ω is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^d$; so $F : \mathcal{X} \times \Omega \to \mathbb{R}$ 3. The expectation

$$\mathbb{E}[F(x,\omega)] = \int_{\Omega} F(x,\omega) dP(\omega)$$

is well-defined and finite valued for every $x \in \mathcal{X}$. 4. For every $\omega \in \Omega$, $F(\cdot, \omega)$ is convex.

Convex stochastic optimization problem
► Cannot compute expectation with high-accuracy in general

- ▶ Cannot compute expectation with high-accuracy in general
- ► So, computational techniques based on Monte Carlo sampling

- Cannot compute expectation with high-accuracy in general
- ► So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^1, \omega^2, \ldots$ Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$g(x):=\mathbb{E}[G(x,\omega)] \quad \text{s.t.} \quad g(x)\in \partial f(x).$$

- Cannot compute expectation with high-accuracy in general
- ► So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^1, \omega^2, \ldots$ Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$g(x):=\mathbb{E}[G(x,\omega)] \quad \text{s.t.} \quad g(x)\in \partial f(x).$$

▶ How to get these stochastic subgradients?

- Cannot compute expectation with high-accuracy in general
- ► So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^1, \omega^2, \ldots$ Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$g(x):=\mathbb{E}[G(x,\omega)] \quad \text{s.t.} \quad g(x)\in \partial f(x).$$

▶ How to get these stochastic subgradients?

Theorem Let $\omega \in \Omega$; If $F(\cdot, \omega)$ is convex, and $f(\cdot)$ is finite valued in a neighborhood of a point x, then

$$\partial f(x) = \mathbb{E}[\partial_x F(x,\omega)].$$

- Cannot compute expectation with high-accuracy in general
- ► So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^1, \omega^2, \ldots$ Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$g(x):=\mathbb{E}[G(x,\omega)] \quad \text{s.t.} \quad g(x)\in \partial f(x).$$

▶ How to get these stochastic subgradients?

Theorem Let $\omega \in \Omega$; If $F(\cdot, \omega)$ is convex, and $f(\cdot)$ is finite valued in a neighborhood of a point x, then

$$\partial f(x) = \mathbb{E}[\partial_x F(x,\omega)].$$

▶ So we may pick $G(x, \omega) \in \partial_x F(x, \omega)$ as stochastic subgradient.

- Stochastic Approximation (SA)
 - ▶ Sample ω^k iid

- Stochastic Approximation (SA)
 - $\blacktriangleright \text{ Sample } \omega^k \text{ iid }$
 - Generate stochastic subgradient $G(x, \omega)$

- Stochastic Approximation (SA)
 - $\blacktriangleright \text{ Sample } \omega^k \text{ iid }$
 - \blacktriangleright Generate stochastic subgradient $G(x,\omega)$
 - ▶ Use that in a subgradient method!

- Stochastic Approximation (SA)
 - $\blacktriangleright \text{ Sample } \omega^k \text{ iid }$
 - \blacktriangleright Generate stochastic subgradient $G(x,\omega)$
 - ▶ Use that in a subgradient method!
- Sample average approximation (SAA)

- Stochastic Approximation (SA)
 - $\blacktriangleright \text{ Sample } \omega^k \text{ iid }$
 - \blacktriangleright Generate stochastic subgradient $G(x,\omega)$
 - ▶ Use that in a subgradient method!
- Sample average approximation (SAA)
 - \blacktriangleright Generate N iid samples, ω^1,\ldots,ω^N

- Stochastic Approximation (SA)
 - $\blacktriangleright \text{ Sample } \omega^k \text{ iid }$
 - \blacktriangleright Generate stochastic subgradient $G(x,\omega)$
 - Use that in a subgradient method!
- Sample average approximation (SAA)
 - \blacktriangleright Generate N iid samples, ω^1,\ldots,ω^N
 - ► Consider empirical objective $\hat{f}_N := N^{-1} \sum_i F(x, \omega^i)$

- Stochastic Approximation (SA)
 - $\blacktriangleright \text{ Sample } \omega^k \text{ iid }$
 - \blacktriangleright Generate stochastic subgradient $G(x,\omega)$
 - ▶ Use that in a subgradient method!
- Sample average approximation (SAA)
 - \blacktriangleright Generate N iid samples, ω^1,\ldots,ω^N
 - ▶ Consider empirical objective $\hat{f}_N := N^{-1} \sum_i F(x, \omega^i)$
 - ► SAA refers to creation of this sample average problem
 - Minimizing \hat{f}_N still needs to be done!

Stochastic approximation – SA

SA or stochastic (sub)-gradient

- $\blacktriangleright \ {\rm Let} \ x^0 \in {\mathcal X}$
- ▶ For $k \ge 0$
 - Sample ω^k iid; generate $G(x^k, \omega^k)$
 - $\circ~$ Update $x^{k+1}=P_{\mathcal{X}}(x^k-\alpha_k G(x^k,\omega^k)),$ where $\alpha_k>0$

Stochastic approximation – SA

SA or stochastic (sub)-gradient

► Let
$$x^0 \in \mathcal{X}$$

► For $k \ge 0$
 \circ Sample ω^k iid; generate $G(x^k, \omega^k)$
 \circ Update $x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k G(x^k, \omega^k))$, where $\alpha_k > 0$

Henceforth, we'll simply write:

$$x^{k+1} = P_{\mathcal{X}} \left(x^k - \alpha_k G^k \right)$$

Stochastic approximation – SA

SA or stochastic (sub)-gradient

► Let
$$x^0 \in \mathcal{X}$$

► For $k \ge 0$
 \circ Sample ω^k iid; generate $G(x^k, \omega^k)$
 \circ Update $x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k G(x^k, \omega^k))$, where $\alpha_k > 0$

Henceforth, we'll simply write:

$$x^{k+1} = P_{\mathcal{X}} \left(x^k - \alpha_k G^k \right)$$

Does this work?

Setup

 $\blacktriangleright \ x^k$ depends on rvs $\omega^1,\ldots,\omega^{k-1},$ so itself random

Setup

- $\blacktriangleright \ x^k$ depends on rvs $\omega^1,\ldots,\omega^{k-1},$ so itself random
- \blacktriangleright Of course, x^k does not depend on ω^k

Setup

- $\blacktriangleright \ x^k$ depends on rvs $\omega^1,\ldots,\omega^{k-1},$ so itself random
- \blacktriangleright Of course, x^k does not depend on ω^k
- ▶ Subgradient method analysis hinged upon: $\|x^k x^*\|_2^2$

Setup

- $\blacktriangleright \ x^k$ depends on rvs $\omega^1,\ldots,\omega^{k-1},$ so itself random
- \blacktriangleright Of course, x^k does not depend on ω^k
- ▶ Subgradient method analysis hinged upon: $||x^k x^*||_2^2$
- \blacktriangleright Stochastic subgradient hinges upon: $\mathbb{E}[\|x^k-x^*\|_2^2]$

Setup

- $\blacktriangleright \ x^k$ depends on rvs $\omega^1,\ldots,\omega^{k-1}$, so itself random
- \blacktriangleright Of course, x^k does not depend on ω^k
- ▶ Subgradient method analysis hinged upon: $||x^k x^*||_2^2$
- ▶ Stochastic subgradient hinges upon: $\mathbb{E}[||x^k x^*||_2^2]$

Denote: $R_k := \|x^k - x^*\|_2^2$ and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x^k - x^*\|_2^2]$

Setup

- $\blacktriangleright \ x^k$ depends on rvs $\omega^1,\ldots,\omega^{k-1}$, so itself random
- \blacktriangleright Of course, x^k does not depend on ω^k
- \blacktriangleright Subgradient method analysis hinged upon: $\|x^k-x^*\|_2^2$
- \blacktriangleright Stochastic subgradient hinges upon: $\mathbb{E}[\|x^k-x^*\|_2^2]$

Denote:
$$R_k := \|x^k - x^*\|_2^2$$
 and $r_k := \mathbb{E}[R_k] = \mathbb{E}[\|x^k - x^*\|_2^2]$

Bounding R_{k+1}

$$R_{k+1} = \|x^{k+1} - x^*\|_2^2 = \|P_{\mathcal{X}}(x^k - \alpha_k G^k) - P_{\mathcal{X}}x^*\|_2^2$$

$$\leq \|x^k - x^* - \alpha_k G^k\|_2^2$$

$$= R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, x^k - x^* \rangle.$$

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

- ▶ Assume: $||G^k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G^k, x^k - x^* \rangle].$$

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

- ▶ Assume: $||G^k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G^k, \, x^k - x^* \rangle].$$

▶ We need to now get a handle on the last term

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

- ▶ Assume: $||G^k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G^k, x^k - x^* \rangle].$$

▶ We need to now get a handle on the last term
 ▶ Since x^k is independent of ω^k, we have

 $\mathbb{E}[\langle x^k - x^*, \, G(x^k, \omega^k) \rangle] \ = \$

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

- ► Assume: $||G^k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G^k, x^k - x^* \rangle].$$

▶ We need to now get a handle on the last term
 ▶ Since x^k is independent of ω^k, we have

$$\mathbb{E}[\langle x^k - x^*, G(x^k, \omega^k) \rangle] = \mathbb{E}\left\{ \mathbb{E}[\langle x^k - x^*, G(x^k, \omega^k) \rangle \mid \omega^{1..(k-1)}] \right\}$$
$$=$$

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

- ► Assume: $||G^k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G^k, x^k - x^* \rangle].$$

▶ We need to now get a handle on the last term
 ▶ Since x^k is independent of ω^k, we have

$$\mathbb{E}[\langle x^k - x^*, G(x^k, \omega^k) \rangle] = \mathbb{E}\left\{ \mathbb{E}[\langle x^k - x^*, G(x^k, \omega^k) \rangle \mid \omega^{1..(k-1)}] \right\}$$
$$= \mathbb{E}\left\{ \langle x^k - x^*, \mathbb{E}[G(x^k, \omega^k) \mid \omega^{1..k-1}] \rangle \right\}$$
$$=$$

$$R_{k+1} \le R_k + \alpha_k^2 \|G^k\|_2^2 - 2\alpha_k \langle G^k, \, x^k - x^* \rangle$$

- ► Assume: $||G^k||_2 \le M$ on \mathcal{X}
- ► Taking expectation:

$$r_{k+1} \le r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle G^k, x^k - x^* \rangle].$$

▶ We need to now get a handle on the last term
 ▶ Since x^k is independent of ω^k, we have

$$\begin{split} \mathbb{E}[\langle x^k - x^*, \, G(x^k, \omega^k) \rangle] &= \mathbb{E}\left\{ \mathbb{E}[\langle x^k - x^*, \, G(x^k, \omega^k) \rangle \mid \omega^{1..(k-1)}] \right\} \\ &= \mathbb{E}\left\{ \langle x^k - x^*, \, \mathbb{E}[G(x^k, \omega^k) \mid \omega^{1..k-1}] \rangle \right\} \\ &= \mathbb{E}[\langle x^k - x^*, \, g^k \rangle], \quad g^k \in \partial f(x^k). \end{split}$$

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, g^k \rangle]$

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, \, g^k
angle]$

▶ Since f is cvx, $f(x) \ge f(x^k) + \langle g^k, x - x^k \rangle$ for any $x \in \mathcal{X}$.

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, \, g^k
angle]$

- ▶ Since f is cvx, $f(x) \ge f(x^k) + \langle g^k, x x^k \rangle$ for any $x \in \mathcal{X}$.
- ► Thus, in particular we have

$$2\alpha_k \mathbb{E}[f(x^*) - f(x^k)] \ge 2\alpha_k \mathbb{E}[\langle g^k, x^* - x^k \rangle]$$

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, \, g^k
angle]$

• Since f is cvx, $f(x) \ge f(x^k) + \langle g^k, x - x^k \rangle$ for any $x \in \mathcal{X}$.

► Thus, in particular we have

$$2\alpha_k \mathbb{E}[f(x^*) - f(x^k)] \ge 2\alpha_k \mathbb{E}[\langle g^k, x^* - x^k \rangle]$$

Now plug this bound back into the r_{k+1} inequality

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle]$$

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, \, g^k
angle]$

▶ Since f is cvx, $f(x) \ge f(x^k) + \langle g^k, x - x^k \rangle$ for any $x \in \mathcal{X}$. ▶ Thus, in particular we have

$$2\alpha_k \mathbb{E}[f(x^*) - f(x^k)] \ge 2\alpha_k \mathbb{E}[\langle g^k, x^* - x^k \rangle]$$

Now plug this bound back into the r_{k+1} inequality

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, \, g^k
angle]$

▶ Since f is cvx, $f(x) \ge f(x^k) + \langle g^k, x - x^k \rangle$ for any $x \in \mathcal{X}$. ▶ Thus, in particular we have

$$2\alpha_k \mathbb{E}[f(x^*) - f(x^k)] \ge 2\alpha_k \mathbb{E}[\langle g^k, x^* - x^k \rangle]$$

Now plug this bound back into the r_{k+1} inequality

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.$$

Thus, we need to bound: $\mathbb{E}[\langle x^k - x^*, \, g^k
angle]$

▶ Since f is cvx, $f(x) \ge f(x^k) + \langle g^k, x - x^k \rangle$ for any $x \in \mathcal{X}$. ▶ Thus, in particular we have

$$2\alpha_k \mathbb{E}[f(x^*) - f(x^k)] \ge 2\alpha_k \mathbb{E}[\langle g^k, x^* - x^k \rangle]$$

Now plug this bound back into the r_{k+1} inequality

$$r_{k+1} \leq r_k + \alpha_k^2 M^2 - 2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle]$$

$$2\alpha_k \mathbb{E}[\langle g^k, x^k - x^* \rangle] \leq r_k - r_{k+1} + \alpha_k M^2$$

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \leq r_k - r_{k+1} + \alpha_k M^2.$$

What now?
$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $k = 1, \ldots, T$, to obtain

$$\sum_{k=1}^{T} (2\alpha_k \mathbb{E}[f(x^k) - f(x^*)]) \leq r_1 - r_{T+1} + M^2 \sum_k \alpha_k^2$$

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $k = 1, \ldots, T$, to obtain

$$\sum_{k=1}^{T} (2\alpha_k \mathbb{E}[f(x^k) - f(x^*)]) \leq r_1 - r_{T+1} + M^2 \sum_k \alpha_k^2$$

$$\leq r_1 + M^2 \sum_k \alpha_k^2.$$

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $k = 1, \ldots, T$, to obtain

$$\sum_{k=1}^{T} (2\alpha_k \mathbb{E}[f(x^k) - f(x^*)]) \leq r_1 - r_{T+1} + M^2 \sum_k \alpha_k^2$$

$$\leq r_1 + M^2 \sum_k \alpha_k^2.$$

To further analyze this sum, divide both sides by $\sum_k \alpha_k$, so

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $k = 1, \ldots, T$, to obtain

$$\sum_{k=1}^{T} (2\alpha_k \mathbb{E}[f(x^k) - f(x^*)]) \leq r_1 - r_{T+1} + M^2 \sum_k \alpha_k^2$$

$$\leq r_1 + M^2 \sum_k \alpha_k^2.$$

To further analyze this sum, divide both sides by $\sum_k \alpha_k$, so Set $\gamma_k = \frac{\alpha_k}{\sum_k^T \alpha_k}$.

▶ Thus, $\gamma_k \ge 0$ and $\sum_k \gamma_k = 1$; this allows us to write

$$2\alpha_k \mathbb{E}[f(x^k) - f(x^*)] \le r_k - r_{k+1} + \alpha_k M^2.$$

Sum up over $k = 1, \ldots, T$, to obtain

$$\sum_{k=1}^{T} (2\alpha_k \mathbb{E}[f(x^k) - f(x^*)]) \leq r_1 - r_{T+1} + M^2 \sum_k \alpha_k^2$$

$$\leq r_1 + M^2 \sum_k \alpha_k^2.$$

To further analyze this sum, divide both sides by $\sum_k \alpha_k$, so \blacktriangleright Set $\gamma_k = \frac{\alpha_k}{\sum_k^T \alpha_k}$.

▶ Thus, $\gamma_k \ge 0$ and $\sum_k \gamma_k = 1$; this allows us to write

$$\mathbb{E}\left[\sum_{k} \gamma_k f(x^k) - f(x^*)\right] \le \frac{r_1 + M^2 \sum_k \alpha_k^2}{2 \sum_k \alpha_k}$$

▶ Bound looks similar to bound in subgradient method!

- ▶ Bound looks similar to bound in subgradient method!
- ▶ But we wish to say something about x^T

- ▶ Bound looks similar to bound in subgradient method!
- ▶ But we wish to say something about x^T
- \blacktriangleright Since $\gamma_k \geq 0$ and $\sum_k \gamma_k = 1,$ and we have $\gamma_k f(x^k)$

- ▶ Bound looks similar to bound in subgradient method!
- But we wish to say something about x^T
- \blacktriangleright Since $\gamma_k \geq 0$ and $\sum_k \gamma_k = 1,$ and we have $\gamma_k f(x^k)$
- Easier to talk about average iterate

$$x_{av}^T := \sum_k^T \gamma_k x^k.$$

- ▶ Bound looks similar to bound in subgradient method!
- ▶ But we wish to say something about x^T
- \blacktriangleright Since $\gamma_k \geq 0$ and $\sum_k \gamma_k = 1,$ and we have $\gamma_k f(x^k)$
- Easier to talk about average iterate

$$x_{av}^T := \sum_k^T \gamma_k x^k.$$

$$\blacktriangleright \ f(x_{av}^T) \leq \sum_m \gamma_k f(x^k)$$
 due to convexity

- ▶ Bound looks similar to bound in subgradient method!
- ▶ But we wish to say something about x^T
- \blacktriangleright Since $\gamma_k \geq 0$ and $\sum_k \gamma_k = 1,$ and we have $\gamma_k f(x^k)$
- ► Easier to talk about average iterate

$$x_{av}^T := \sum_k^T \gamma_k x^k.$$

- $\blacktriangleright \ f(x_{av}^T) \leq \sum_m \gamma_k f(x^k)$ due to convexity
- ► So we finally obtain the inequality

$$\mathbb{E}\left[f(x_{av}) - f(x^*)\right] \le \frac{r_1 + M^2 \sum_k \alpha_k^2}{2 \sum_k \alpha_k}$$

Exercise

• Let $D_{\mathcal{X}} := \max_{x \in \mathcal{X}} \|x - x^*\|_2$

Assume $\alpha_k = \alpha$ is a constant. Then, observe that

$$\mathbb{E}[f(x_{av}^T) - f(x^*)] \le \frac{D_{\mathcal{X}}^2 + M^2 T \alpha^2}{2T\alpha}$$

- \clubsuit Minimize the rhs over $\alpha>0$ to obtain the best stepsize
- \clubsuit Show that this choice then yields: $\mathbb{E}[f(x_{av}^T) f(x^*)] \leq \frac{D_{\mathcal{X}}M}{\sqrt{T}}$
- \blacklozenge If T is not fixed in advance, then choose

$$\alpha_k = \frac{\theta D_{\mathcal{X}}}{M\sqrt{k}}, \quad k = 1, 2, \dots$$

 \clubsuit Analyze $\mathbb{E}[f(x_{av}^T) - f(x^*)]$ with this choice of stepsize

Assumption: regularization $||x||_2 \leq B$; $\omega \in \Omega$ closed, bounded.

Function estimate: $f(x) = \mathbb{E}[F(x, \omega)]$ Subgradient in $\partial f(x) = \mathbb{E}[G(x, \omega)]$

- Collect samples $\omega^1, \ldots, \omega^N$
- Empirical objective: $\hat{f}_N(x) := \frac{1}{N} \sum_{i=1}^N F(x, \omega^i)$

Assumption: regularization $||x||_2 \leq B$; $\omega \in \Omega$ closed, bounded.

Function estimate: $f(x) = \mathbb{E}[F(x, \omega)]$ Subgradient in $\partial f(x) = \mathbb{E}[G(x, \omega)]$

- Collect samples $\omega^1, \ldots, \omega^N$
- Empirical objective: $\hat{f}_N(x) := \frac{1}{N} \sum_{i=1}^N F(x, \omega^i)$
- aka Empirical Risk Minimization

Assumption: regularization $||x||_2 \leq B$; $\omega \in \Omega$ closed, bounded.

Function estimate: $f(x) = \mathbb{E}[F(x, \omega)]$ Subgradient in $\partial f(x) = \mathbb{E}[G(x, \omega)]$

- Collect samples $\omega^1, \ldots, \omega^N$
- Empirical objective: $\hat{f}_N(x) := \frac{1}{N} \sum_{i=1}^N F(x, \omega^i)$
- aka Empirical Risk Minimization
- Confusing: Machine learners often optimize \hat{f}_N using stochastic subgradient; but theoretical guarantees are then only on the *empirical* suboptimality $E[\hat{f}_N(\bar{x}^k)] \leq \ldots$

Assumption: regularization $||x||_2 \leq B$; $\omega \in \Omega$ closed, bounded.

Function estimate: $f(x) = \mathbb{E}[F(x, \omega)]$ Subgradient in $\partial f(x) = \mathbb{E}[G(x, \omega)]$

- Collect samples $\omega^1, \ldots, \omega^N$
- Empirical objective: $\hat{f}_N(x) := \frac{1}{N} \sum_{i=1}^N F(x, \omega^i)$
- aka Empirical Risk Minimization
- Confusing: Machine learners often optimize \hat{f}_N using stochastic subgradient; but theoretical guarantees are then only on the *empirical* suboptimality $E[\hat{f}_N(\bar{x}^k)] \leq \ldots$
- For guarantees on $f(\bar{x}^k)$, extra work is needed *regularization* + unif. concentration used $f(\bar{x}^k) f(x^*) \le O(1/\sqrt{k}) + O(1/\sqrt{N})$

Stochastic LP

 $\begin{array}{rcl} \min & x_1 + x_2 \\ \omega_1 x_1 + x_2 & \geq & 10 \\ \omega_2 x_1 + x_2 & \geq & 5 \\ x_1, x_2 & \geq & 0, \end{array}$

Stochastic LP

 $\begin{array}{rcl} \min & x_1 + x_2 \\ \omega_1 x_1 + x_2 & \geq & 10 \\ \omega_2 x_1 + x_2 & \geq & 5 \\ x_1, x_2 & \geq & 0, \end{array}$

- ► The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there

Stochastic LP

 $\begin{array}{rcl} \min & x_1 + x_2 \\ \omega_1 x_1 + x_2 & \geq & 10 \\ \omega_2 x_1 + x_2 & \geq & 5 \\ x_1, x_2 & \geq & 0, \end{array}$

- ▶ The constraints are not deterministic!
- But we have an idea about what randomness is there
- ► How do we *solve* this LP?

Stochastic LP

 $\begin{array}{rcl} \min & x_1 + x_2 \\ \omega_1 x_1 + x_2 & \geq & 10 \\ \omega_2 x_1 + x_2 & \geq & 5 \\ x_1, x_2 & \geq & 0, \end{array}$

- ► The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there
- ► How do we *solve* this LP?
- ▶ What does it even mean to solve it?

Stochastic LP

 $\begin{array}{rcl} \min & x_1 + x_2 \\ \omega_1 x_1 + x_2 & \geq & 10 \\ \omega_2 x_1 + x_2 & \geq & 5 \\ x_1, x_2 & \geq & 0, \end{array}$

- ► The constraints are not deterministic!
- ▶ But we have an idea about what randomness is there
- ► How do we *solve* this LP?
- ▶ What does it even mean to solve it?
- If ω has been observed, problem becomes deterministic, and can be solved as a usual LP (aka wait-and-watch)

▶ But we cannot "wait-and-watch" —

But we cannot "wait-and-watch" — we need to decide on x before knowing the value of ω

- But we cannot "wait-and-watch" we need to decide on x before knowing the value of ω
- ▶ What to do without knowing exact values for ω_1, ω_2 ?

- But we cannot "wait-and-watch" we need to decide on x before knowing the value of ω
- What to do without knowing exact values for ω_1, ω_2 ?
- ► Some ideas
 - Guess the uncertainty
 - Probabilistic / Chance constraints
 - ο...

Some guesses

- ♦ Unbiased / Average case: Choose mean values for each r.v.
- Robust / Worst case: Choose worst case values
- ♠ Explorative / Best case: Choose best case values

Stochastic Programming – Example

mın	$x_1 + x_2$	
$\omega_1 x_1 + x_2$	\geq	10
$\omega_2 x_1 + x_2$	\geq	5
x_1, x_2	\geq	0,

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

Unbiased / Average case: $\mathbb{E}[\omega_1] = 3, \quad \mathbb{E}[\omega_2] = 2/3$ min $x_1 + x_2$ $x_1^* + x_2^* = 5.7143...$ $3x_1 + x_2 \ge 10$ $(x_1^*, x_2^*) \approx (15/7, 25/7).$ $(2/3)x_1 + x_2 \ge 5$ $x_1, x_2 \ge 0,$

Stochastic Programming – Example

\min	$x_1 + x_2$	
$\omega_1 x_1 + x_2$	\geq	10
$\omega_2 x_1 + x_2$	\geq	5
x_1, x_2	\geq	0,
$\omega_2 x_1 + x_2 \\ x_1, x_2$	≥ ≥	50,

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

Worst case:

$$\mathbb{E}[\omega_1] = 3, \quad \mathbb{E}[\omega_2] = 2/3$$

min $x_1 + x_2$ $x_1^* + x_2^* = \mathbf{10}$
 $1x_1 + x_2 \ge 10$ $(x_1^*, x_2^*) \approx (41/12, 79/12).$
 $(1/3)x_1 + x_2 \ge 5$
 $x_1, x_2 \ge 0,$

Stochastic Programming – Example

n	nin a	$x_1 + x_2$	
$\omega_1 x_1 +$	x_2	\geq	10
$\omega_2 x_1 +$	x_2	\geq	5
x_1 ,	x_2	\geq	0,

where $\omega_1 \sim \mathcal{U}[1,5]$ and $\omega_2 \sim \mathcal{U}[1/3,1]$

Best case:

 $\mathbb{E}[\omega_1] = 3, \quad \mathbb{E}[\omega_2] = 2/3$ min $x_1 + x_2$ $x_1^* + x_2^* = 5$ $5x_1 + x_2 \ge 10$ $(x_1^*, x_2^*) \approx (17/8, 23/8).$ $1x_1 + x_2 \ge 5$ $x_1, x_2 \ge 0,$

• We have *fixed* and *known* $F(x, \omega)$

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

• Guess x^k ;

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

• Guess x^k ; Observe ω^k ;

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

• Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$;
- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

• Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$; Update to x^{k+1}

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

 $\frac{1}{T}\sum_{k=1}^{T}F(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T}\sum_{k=1}^{T}F(x, z_k)$

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$\frac{1}{T}\sum_{k=1}^{T}F(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T}\sum_{k=1}^{T}F(x, z_k)$$

• That is, difference from the best possible solution we could have attained, had we been shown all the examples (z_k) .

- We have *fixed* and *known* $F(x, \omega)$
- $\omega^1, \omega^2, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^k ; Observe ω^k ; incur cost $F(x^k, \omega^k)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

 $\frac{1}{T}\sum_{k=1}^{T}F(x_k, z_k) - \min_{x \in \mathcal{X}} \frac{1}{T}\sum_{k=1}^{T}F(x, z_k)$

- That is, difference from the best possible solution we could have attained, had we been shown all the examples (z_k) .
- Online optimization is an important idea in machine learning, game theory, decision making, etc.

Based on Zinkevich (2003)

Slight generalization: $F(x,\omega)$ convex (in x); possibly nonsmooth $x \in \mathcal{X}$, a closed, bounded set

Based on Zinkevich (2003)

Slight generalization: $F(x,\omega)$ convex (in x); possibly nonsmooth $x \in \mathcal{X}$, a closed, bounded set

Simplify notation: $f_k(x) \equiv F(x, \omega^k)$

Regret
$$R_T := \sum_{k=1}^T f_k(x^k) - \min_{x \in \mathcal{X}} \sum_{k=1}^T f_k(x)$$

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - $\ \ \, {\rm Output} \ x^k$

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - $\ \ \, {\rm Output} \ x^k$
 - Receive k-th function f_k

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - $\ \ \, {\rm Output} \ x^k$
 - Receive k-th function f_k
 - $\blacksquare \ {\rm Incur} \ {\rm loss} \ f_k(x^k)$

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - $\ \ \, {\rm Output} \ x^k$
 - Receive k-th function f_k
 - Incur loss $f_k(x^k)$
 - $\blacksquare \operatorname{Pick} g^k \in \partial f_k(x_k)$

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - $\blacksquare \text{ Output } x^k$
 - Receive k-th function f_k
 - Incur loss $f_k(x^k)$
 - Pick $g^k \in \partial f_k(x_k)$ Update: $x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k g^k)$

Algorithm:

- **1** Select some $x^0 \in \mathcal{X}$, and $\alpha_0 > 0$
- **2** Round k of algo $(k \ge 0)$:
 - Output x^k
 - **Receive** k-th function f_k
 - Incur loss $f_k(x^k)$
 - Pick $g^k \in \partial f_k(x_k)$ Update: $x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k g^k)$

Using $\alpha_k = c/\sqrt{k+1}$ and **assuming** $\|g_k\|_2 \leq G$, can be shown that average regret $\frac{1}{T}R_T \leq O(1/\sqrt{T})$

OGD - regret bound

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

OGD – regret bound

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^T f_k(x)$$

OGD – regret bound

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^T f_k(x)$$

Since $g_k \in \partial f_k(x_k)$, we have

$$egin{aligned} &f_k(x^*) \geq f_k(x_k) + \langle g_k, \, x^* - x_k
angle, \, ext{or} \ &f_k(x_k) - f_k(x^*) \leq \langle g_k, \, x_k - x^*
angle \end{aligned}$$

OGD - regret bound

Assumption: Lipschitz condition $\|\partial f\|_2 \leq G$

$$x^* = \operatorname*{argmin}_{x \in \mathcal{X}} \sum_{k=1}^T f_k(x)$$

Since $g_k \in \partial f_k(x_k)$, we have

$$egin{aligned} &f_k(x^*) \geq f_k(x_k) + \langle g_k, \, x^* - x_k
angle, ext{ or } \ &f_k(x_k) - f_k(x^*) \leq \langle g_k, \, x_k - x^*
angle \end{aligned}$$

Further analysis depends on bounding

$$\|x_{k+1} - x^*\|_2^2$$

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ (P_{\mathcal{X}} \text{ is nonexpan.}) &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ (P_{\mathcal{X}} \text{ is nonexpan.}) &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \end{aligned}$$

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ \langle P_{\mathcal{X}} \text{ is nonexpan.} \rangle &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \end{aligned}$$

$$\langle g_k, x_k - x^* \rangle \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Recall: $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$. Thus,

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ (P_{\mathcal{X}} \text{ is nonexpan.}) &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \end{aligned}$$

$$\langle g_k, x_k - x^* \rangle \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Now invoke $f_k(x_k) - f_k(x^*) \leq \langle g_k, \, x_k - x^* \rangle$

$$f_k(x_k) - f_k(x^*) \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Recall: $x_{k+1} = P_{\mathcal{X}}(x_k - \alpha_k g_k)$. Thus,

$$\begin{aligned} \|x_{k+1} - x^*\|_2^2 &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - x^*\|_2^2 \\ &= \|P_{\mathcal{X}}(x_k - \alpha_k g_k) - P_{\mathcal{X}}(x^*)\|_2^2 \\ \langle P_{\mathcal{X}} \text{ is nonexpan.} \rangle &\leq \|x_k - x^* - \alpha_k g_k\|_2^2 \\ &= \|x_k - x^*\|_2^2 + \alpha_k^2 \|g_k\|_2^2 - 2\alpha_k \langle g_k, x_k - x^* \rangle \end{aligned}$$

$$\langle g_k, x_k - x^* \rangle \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Now invoke $f_k(x_k) - f_k(x^*) \leq \langle g_k, x_k - x^* \rangle$

$$f_k(x_k) - f_k(x^*) \le \frac{\|x_k - x^*\|_2^2 - \|x_{k+1} - x^*\|_2^2}{2\alpha_k} + \frac{\alpha_k}{2} \|g_k\|_2^2$$

Sum over $k=1,\ldots,T$, let $lpha_k=c/\sqrt{k+1}$, use $\|g_k\|_2\leq G$

Obtain $R_T \leq O(\sqrt{T})$

References

- A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. *Robust stochastic approximation approach to stochastic programming*. (2009)
- ▲ J. Linderoth. Lecture slides on *Stochastic Programming* (2003).