Convex Optimization

(EE227A: UC Berkeley)

Lecture 19

(Stochastic optimization)
02 Apr, 2013

Suvrit Sra

© HW3 due 4/04/2013
© HW4 on bSpace later today-due 4/18/2013

- Project report (4 pages) due on: 11th April
© $A T_{E X}$ template for projects on bSpace
© Convex sets, functions
© Convex models, LP, QP, SOCP, SDP
© Subdifferentials, basic optimality conditions
- Weak duality
© Lagrangians, strong duality, KKT conditions
A Subgradient method
A Gradient descent, feasible descent
- Optimal gradients methods
- Constrained problems, conditional gradient
© Nonsmooth problems, proximal methods
© Proximal splitting, Douglas-Rachford
© Monotone operators, product-space trick
© Incremental gradient methods

Incremental methods

$$
\begin{array}{r}
\min \left[f(x)=\sum_{i} f_{i}(x)\right]+r(x) \\
x^{k+1}=x^{k}-\alpha_{k} g^{i(k)}, \quad g^{i(k)} \in \partial f_{i(k)}\left(x^{k}\right)
\end{array}
$$

Incremental methods

$$
\min \left[f(x)=\sum_{i} f_{i}(x)\right]+r(x)
$$

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha_{k} g^{i(k)}, \quad g^{i(k)} \in \partial f_{i(k)}\left(x^{k}\right) \\
x^{k+1} & =\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x^{k}\right), \quad k=0,1, \ldots
\end{aligned}
$$

Incremental methods

$$
\min \left[f(x)=\sum_{i} f_{i}(x)\right]+r(x)
$$

$$
\begin{aligned}
x^{k+1}= & x^{k}-\alpha_{k} g^{i(k)}, \quad g^{i(k)} \in \partial f_{i(k)}\left(x^{k}\right) \\
x^{k+1}= & \operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x^{k}\right), \quad k=0,1, \ldots \\
x^{k+1}= & \operatorname{prox}_{\alpha_{k} r}\left(x^{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z^{i}\right)\right), \quad k=0,1, \ldots, \\
& z^{1}=x^{k} \\
& z^{i+1}=z^{i}-\alpha_{k} \nabla f_{i}\left(z^{i}\right), \quad i=1, \ldots, m-1 .
\end{aligned}
$$

Incremental methods

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x^{k}\right)\right)
$$

Choices of $i(k)$

- Cyclic: $i(k)=1+(k \bmod m)$
- Randomized: Pick $i(k)$ uniformly from $\{1, \ldots, m\}$

Incremental methods

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x^{k}\right)\right)
$$

Choices of $i(k)$

- Cyclic: $i(k)=1+(k \bmod m)$
- Randomized: Pick $i(k)$ uniformly from $\{1, \ldots, m\}$
\& Many other variations of incremental methods
\& Read (omitting proofs) this nice survey by D. P. Bertsekas

Stochastic Optimization

Stochastic gradients

$$
\min f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

Stochastic gradients

$$
\min f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

Recall the incremental gradient method

- Let $x^{0} \in \mathbb{R}^{n}$
- For $k \geq 0$

Stochastic gradients

$$
\min f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

Recall the incremental gradient method

- Let $x^{0} \in \mathbb{R}^{n}$
- For $k \geq 0$

1 Pick $i(k) \in\{1,2, \ldots, m\}$ uniformly at random
$2 x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x^{k}\right)$

Stochastic gradients

$$
\min f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

Recall the incremental gradient method

- Let $x^{0} \in \mathbb{R}^{n}$
- For $k \geq 0$

1 Pick $i(k) \in\{1,2, \ldots, m\}$ uniformly at random
$2 x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x^{k}\right)$
$g \equiv \nabla f_{i(k)}$ may be viewed as a stochastic gradient

Stochastic gradients

$$
\min f(x)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)
$$

Recall the incremental gradient method

- Let $x^{0} \in \mathbb{R}^{n}$
- For $k \geq 0$

1 Pick $i(k) \in\{1,2, \ldots, m\}$ uniformly at random
$2 x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x^{k}\right)$
$g \equiv \nabla f_{i(k)}$ may be viewed as a stochastic gradient

$$
g:=g^{\text {true }}+\mathbf{e}, \text { where } e \text { is mean-zero noise: } \mathbb{E}[e]=0
$$

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=
$$

Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=\mathbb{E}_{i}\left[\nabla f_{i}(x)\right]
$$

Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=\mathbb{E}_{i}\left[\nabla f_{i}(x)\right]=\sum_{i} \frac{1}{m} \nabla f_{i}(x)=
$$

Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=\mathbb{E}_{i}\left[\nabla f_{i}(x)\right]=\sum_{i} \frac{1}{m} \nabla f_{i}(x)=\nabla \mathbf{f}(\mathbf{x})
$$

Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=\mathbb{E}_{i}\left[\nabla f_{i}(x)\right]=\sum_{i} \frac{1}{m} \nabla f_{i}(x)=\nabla \mathbf{f}(\mathbf{x})
$$

- Alternatively, $\mathbb{E}\left[g-g^{\text {true }}\right]=\mathbb{E}[e]=0$.

Stochastic gradients

- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=\mathbb{E}_{i}\left[\nabla f_{i}(x)\right]=\sum_{i} \frac{1}{m} \nabla f_{i}(x)=\nabla \mathbf{f}(\mathbf{x})
$$

- Alternatively, $\mathbb{E}\left[g-g^{\text {true }}\right]=\mathbb{E}[e]=0$.
- We call g an unbiased estimate of the gradient
- Index $i(k)$ chosen uniformly from $\{1, \ldots, m\}$
- Thus, in expectation:

$$
\mathbb{E}[g]=\mathbb{E}_{i}\left[\nabla f_{i}(x)\right]=\sum_{i} \frac{1}{m} \nabla f_{i}(x)=\nabla \mathbf{f}(\mathbf{x})
$$

- Alternatively, $\mathbb{E}\left[g-g^{\text {true }}\right]=\mathbb{E}[e]=0$.
- We call g an unbiased estimate of the gradient
- Here, we obtained g in a two step process:
- Sample: pick an index $i(k)$ unif. at random
- Oracle: Compute a stochastic gradient based on $i(k)$

Stochastic programming

$$
\min f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

- ω follows some known distribution

Stochastic programming

$$
\min f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

- ω follows some known distribution
- Previous example, omega takes values in a discrete set of size m (might as well say $\omega \in\{1, \ldots, m\}$)

Stochastic programming

$$
\min f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

- ω follows some known distribution
- Previous example, omega takes values in a discrete set of size m (might as well say $\omega \in\{1, \ldots, m\}$)
- so that $F(x, \omega)=f_{\omega}(x)$; so assuming uniform distribution, we see that $f(x)=\mathbb{E}_{\omega} F(x, \omega)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)$

Stochastic programming

$$
\min f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

- ω follows some known distribution
- Previous example, omega takes values in a discrete set of size m (might as well say $\omega \in\{1, \ldots, m\}$)
- so that $F(x, \omega)=f_{\omega}(x)$; so assuming uniform distribution, we see that $f(x)=\mathbb{E}_{\omega} F(x, \omega)=\frac{1}{m} \sum_{i=1}^{m} f_{i}(x)$
- Usually ω will be non-discrete, and we won't be able to compute the expectation in closed form, since

$$
f(x)=\int F(x, \omega) d P(\omega)
$$

is going to be a difficult high-dimensional integral.

Stochastic programming - digression
Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x

Stochastic programming - digression
Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x
- Then, we may write $F(x, \omega)=\langle c(\omega), x\rangle$

Stochastic programming - digression

Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x
- Then, we may write $F(x, \omega)=\langle c(\omega), x\rangle$
- In this case, $f(x)=\int\langle c(\omega), x\rangle d P(\omega)=\langle\mathbb{E}[c(\omega)], x\rangle$

Stochastic programming - digression

Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x
- Then, we may write $F(x, \omega)=\langle c(\omega), x\rangle$
- In this case, $f(x)=\int\langle c(\omega), x\rangle d P(\omega)=\langle\mathbb{E}[c(\omega)], x\rangle$
- What if $F(x, \omega)$ is convex in x for every ω

Stochastic programming - digression

Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x
- Then, we may write $F(x, \omega)=\langle c(\omega), x\rangle$
- In this case, $f(x)=\int\langle c(\omega), x\rangle d P(\omega)=\langle\mathbb{E}[c(\omega)], x\rangle$
- What if $F(x, \omega)$ is convex in x for every ω
- Jensen's inequality gives us a trivial lower-bound

$$
f(x)=\int F(x, \omega) d P(\omega) \geq F(x, \mathbb{E}[\omega])
$$

Stochastic programming - digression

Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x
- Then, we may write $F(x, \omega)=\langle c(\omega), x\rangle$
- In this case, $f(x)=\int\langle c(\omega), x\rangle d P(\omega)=\langle\mathbb{E}[c(\omega)], x\rangle$
- What if $F(x, \omega)$ is convex in x for every ω
- Jensen's inequality gives us a trivial lower-bound

$$
f(x)=\int F(x, \omega) d P(\omega) \geq F(x, \mathbb{E}[\omega])
$$

- Bound may be too weak-even useless

Stochastic programming - digression

Certainty-equivalent / mean approximation

- Say $F(x, \omega)$ is a linear function of x
- Then, we may write $F(x, \omega)=\langle c(\omega), x\rangle$
- In this case, $f(x)=\int\langle c(\omega), x\rangle d P(\omega)=\langle\mathbb{E}[c(\omega)], x\rangle$
- What if $F(x, \omega)$ is convex in x for every ω
- Jensen's inequality gives us a trivial lower-bound

$$
f(x)=\int F(x, \omega) d P(\omega) \geq F(x, \mathbb{E}[\omega])
$$

- Bound may be too weak-even useless
- Thus, let us try to directly minimize $f(x)$

Stochastic programming - setup

$$
\min _{x \in \mathcal{X}} f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^{n}$ nonempty, closed, bounded, convex

$$
\min _{x \in \mathcal{X}} f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^{n}$ nonempty, closed, bounded, convex
2. ω is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^{d}$; so $F: \mathcal{X} \times \Omega \rightarrow \mathbb{R}$

$$
\min _{x \in \mathcal{X}} f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^{n}$ nonempty, closed, bounded, convex
2. ω is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^{d}$; so $F: \mathcal{X} \times \Omega \rightarrow \mathbb{R}$
3. The expectation

$$
\mathbb{E}[F(x, \omega)]=\int_{\Omega} F(x, \omega) d P(\omega)
$$

is well-defined and finite valued for every $x \in \mathcal{X}$.

$$
\min _{x \in \mathcal{X}} f(x):=\mathbb{E}_{\omega}[F(x, \omega)]
$$

Setup and Assumptions

1. $\mathcal{X} \subset \mathbb{R}^{n}$ nonempty, closed, bounded, convex
2. ω is a random vector whose probability distribution P is supported on $\Omega \subset \mathbb{R}^{d}$; so $F: \mathcal{X} \times \Omega \rightarrow \mathbb{R}$
3. The expectation

$$
\mathbb{E}[F(x, \omega)]=\int_{\Omega} F(x, \omega) d P(\omega)
$$

is well-defined and finite valued for every $x \in \mathcal{X}$.
4. For every $\omega \in \Omega, F(\cdot, \omega)$ is convex.

Convex stochastic optimization problem

Stochastic programming - setup

- Cannot compute expectation with high-accuracy in general
- Cannot compute expectation with high-accuracy in general
- So, computational techniques based on Monte Carlo sampling
- Cannot compute expectation with high-accuracy in general
- So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^{1}, \omega^{2}, \ldots$
Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$
g(x):=\mathbb{E}[G(x, \omega)] \quad \text { s.t. } \quad g(x) \in \partial f(x) .
$$

- Cannot compute expectation with high-accuracy in general
- So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^{1}, \omega^{2}, \ldots$
Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$
g(x):=\mathbb{E}[G(x, \omega)] \quad \text { s.t. } \quad g(x) \in \partial f(x) .
$$

- How to get these stochastic subgradients?

Stochastic programming - setup

- Cannot compute expectation with high-accuracy in general
- So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^{1}, \omega^{2}, \ldots$
Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$
g(x):=\mathbb{E}[G(x, \omega)] \quad \text { s.t. } \quad g(x) \in \partial f(x) .
$$

- How to get these stochastic subgradients?

Theorem Let $\omega \in \Omega$; If $F(\cdot, \omega)$ is convex, and $f(\cdot)$ is finite valued in a neighborhood of a point x, then

$$
\partial f(x)=\mathbb{E}\left[\partial_{x} F(x, \omega)\right] .
$$

Stochastic programming - setup

- Cannot compute expectation with high-accuracy in general
- So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically distributed (iid) samples $\omega^{1}, \omega^{2}, \ldots$
Assumption 2: For a given input $(x, \omega) \in \mathcal{X} \times \Omega$, we can compute (oracle) a stochastic gradient $G(x, \omega)$

$$
g(x):=\mathbb{E}[G(x, \omega)] \quad \text { s.t. } \quad g(x) \in \partial f(x) .
$$

- How to get these stochastic subgradients?

Theorem Let $\omega \in \Omega$; If $F(\cdot, \omega)$ is convex, and $f(\cdot)$ is finite valued in a neighborhood of a point x, then

$$
\partial f(x)=\mathbb{E}\left[\partial_{x} F(x, \omega)\right] .
$$

- So we may pick $G(x, \omega) \in \partial_{x} F(x, \omega)$ as stochastic subgradient.

Stochastic programming

\& Stochastic Approximation (SA)

- Sample ω^{k} iid

Stochastic programming

\% Stochastic Approximation (SA)

- Sample ω^{k} iid
- Generate stochastic subgradient $G(x, \omega)$

Stochastic programming

\% Stochastic Approximation (SA)

- Sample ω^{k} iid
- Generate stochastic subgradient $G(x, \omega)$
- Use that in a subgradient method!

Stochastic programming

\& Stochastic Approximation (SA)

- Sample ω^{k} iid
- Generate stochastic subgradient $G(x, \omega)$
- Use that in a subgradient method!
\& Sample average approximation (SAA)

Stochastic programming

\& Stochastic Approximation (SA)

- Sample ω^{k} iid
- Generate stochastic subgradient $G(x, \omega)$
- Use that in a subgradient method!
\& Sample average approximation (SAA)
- Generate N iid samples, $\omega^{1}, \ldots, \omega^{N}$

Stochastic programming

\& Stochastic Approximation (SA)

- Sample ω^{k} iid
- Generate stochastic subgradient $G(x, \omega)$
- Use that in a subgradient method!
\& Sample average approximation (SAA)
- Generate N iid samples, $\omega^{1}, \ldots, \omega^{N}$
- Consider empirical objective $\hat{f}_{N}:=N^{-1} \sum_{i} F\left(x, \omega^{i}\right)$

Stochastic programming

\& Stochastic Approximation (SA)

- Sample ω^{k} iid
- Generate stochastic subgradient $G(x, \omega)$
- Use that in a subgradient method!
\& Sample average approximation (SAA)
- Generate N iid samples, $\omega^{1}, \ldots, \omega^{N}$
- Consider empirical objective $\hat{f}_{N}:=N^{-1} \sum_{i} F\left(x, \omega^{i}\right)$
- SAA refers to creation of this sample average problem
- Minimizing \hat{f}_{N} still needs to be done!

Stochastic approximation - SA

SA or stochastic (sub)-gradient

- Let $x^{0} \in \mathcal{X}$
- For $k \geq 0$
- Sample ω^{k} iid; generate $G\left(x^{k}, \omega^{k}\right)$
- Update $x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} G\left(x^{k}, \omega^{k}\right)\right)$, where $\alpha_{k}>0$

SA or stochastic (sub)-gradient

- Let $x^{0} \in \mathcal{X}$
- For $k \geq 0$
- Sample ω^{k} iid; generate $G\left(x^{k}, \omega^{k}\right)$
- Update $x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} G\left(x^{k}, \omega^{k}\right)\right)$, where $\alpha_{k}>0$

Henceforth, we'll simply write:

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} G^{k}\right)
$$

Stochastic approximation - SA

SA or stochastic (sub)-gradient

- Let $x^{0} \in \mathcal{X}$
- For $k \geq 0$
- Sample ω^{k} iid; generate $G\left(x^{k}, \omega^{k}\right)$
- Update $x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} G\left(x^{k}, \omega^{k}\right)\right)$, where $\alpha_{k}>0$

Henceforth, we'll simply write:

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} G^{k}\right)
$$

Does this work?

Stochastic approximation - analysis
Setup

- x^{k} depends on rvs $\omega^{1}, \ldots, \omega^{k-1}$, so itself random

Stochastic approximation - analysis

Setup

- x^{k} depends on rvs $\omega^{1}, \ldots, \omega^{k-1}$, so itself random
- Of course, x^{k} does not depend on ω^{k}

Stochastic approximation - analysis

Setup

- x^{k} depends on rvs $\omega^{1}, \ldots, \omega^{k-1}$, so itself random
- Of course, x^{k} does not depend on ω^{k}
- Subgradient method analysis hinged upon: $\left\|x^{k}-x^{*}\right\|_{2}^{2}$

Stochastic approximation - analysis

Setup

- x^{k} depends on rvs $\omega^{1}, \ldots, \omega^{k-1}$, so itself random
- Of course, x^{k} does not depend on ω^{k}
- Subgradient method analysis hinged upon: $\left\|x^{k}-x^{*}\right\|_{2}^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|_{2}^{2}\right]$

Stochastic approximation - analysis

Setup

- x^{k} depends on rvs $\omega^{1}, \ldots, \omega^{k-1}$, so itself random
- Of course, x^{k} does not depend on ω^{k}
- Subgradient method analysis hinged upon: $\left\|x^{k}-x^{*}\right\|_{2}^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|_{2}^{2}\right]$

Denote: $R_{k}:=\left\|x^{k}-x^{*}\right\|_{2}^{2}$ and $r_{k}:=\mathbb{E}\left[R_{k}\right]=\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|_{2}^{2}\right]$

Stochastic approximation - analysis

Setup

- x^{k} depends on rvs $\omega^{1}, \ldots, \omega^{k-1}$, so itself random
- Of course, x^{k} does not depend on ω^{k}
- Subgradient method analysis hinged upon: $\left\|x^{k}-x^{*}\right\|_{2}^{2}$
- Stochastic subgradient hinges upon: $\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|_{2}^{2}\right]$

Denote: $R_{k}:=\left\|x^{k}-x^{*}\right\|_{2}^{2}$ and $r_{k}:=\mathbb{E}\left[R_{k}\right]=\mathbb{E}\left[\left\|x^{k}-x^{*}\right\|_{2}^{2}\right]$
Bounding R_{k+1}

$$
\begin{aligned}
R_{k+1} & =\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|P_{\mathcal{X}}\left(x^{k}-\alpha_{k} G^{k}\right)-P_{\mathcal{X}} x^{*}\right\|_{2}^{2} \\
& \leq\left\|x^{k}-x^{*}-\alpha_{k} G^{k}\right\|_{2}^{2} \\
& =R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
\end{aligned}
$$

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

- Assume: $\left\|G^{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G^{k}, x^{k}-x^{*}\right\rangle\right] .
$$

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

- Assume: $\left\|G^{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G^{k}, x^{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

- Assume: $\left\|G^{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G^{k}, x^{k}-x^{*}\right\rangle\right] .
$$

- We need to now get a handle on the last term
- Since x^{k} is independent of ω^{k}, we have
$\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle\right]=$

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

- Assume: $\left\|G^{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G^{k}, x^{k}-x^{*}\right\rangle\right]
$$

- We need to now get a handle on the last term
- Since x^{k} is independent of ω^{k}, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle\right] & =\mathbb{E}\left\{\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle \mid \omega^{1 . .(k-1)}\right]\right\} \\
& =
\end{aligned}
$$

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

- Assume: $\left\|G^{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G^{k}, x^{k}-x^{*}\right\rangle\right]
$$

- We need to now get a handle on the last term
- Since x^{k} is independent of ω^{k}, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle\right] & =\mathbb{E}\left\{\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle \mid \omega^{1 . .(k-1)}\right]\right\} \\
& =\mathbb{E}\left\{\left\langle x^{k}-x^{*}, \mathbb{E}\left[G\left(x^{k}, \omega^{k}\right) \mid \omega^{1 . . k-1}\right]\right\rangle\right\} \\
& =
\end{aligned}
$$

Stochastic approximation - analysis

$$
R_{k+1} \leq R_{k}+\alpha_{k}^{2}\left\|G^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle G^{k}, x^{k}-x^{*}\right\rangle
$$

- Assume: $\left\|G^{k}\right\|_{2} \leq M$ on \mathcal{X}
- Taking expectation:

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle G^{k}, x^{k}-x^{*}\right\rangle\right]
$$

- We need to now get a handle on the last term
- Since x^{k} is independent of ω^{k}, we have

$$
\begin{aligned}
\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle\right] & =\mathbb{E}\left\{\mathbb{E}\left[\left\langle x^{k}-x^{*}, G\left(x^{k}, \omega^{k}\right)\right\rangle \mid \omega^{1 . .(k-1)}\right]\right\} \\
& =\mathbb{E}\left\{\left\langle x^{k}-x^{*}, \mathbb{E}\left[G\left(x^{k}, \omega^{k}\right) \mid \omega^{1 . . k-1}\right]\right\rangle\right\} \\
& =\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right], \quad g^{k} \in \partial f\left(x^{k}\right)
\end{aligned}
$$

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

- Since f is cvx, $f(x) \geq f\left(x^{k}\right)+\left\langle g^{k}, x-x^{k}\right\rangle$ for any $x \in \mathcal{X}$.

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

- Since f is cvx, $f(x) \geq f\left(x^{k}\right)+\left\langle g^{k}, x-x^{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular we have

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{*}\right)-f\left(x^{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{*}-x^{k}\right\rangle\right]
$$

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

- Since f is cvx, $f(x) \geq f\left(x^{k}\right)+\left\langle g^{k}, x-x^{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular we have

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{*}\right)-f\left(x^{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{*}-x^{k}\right\rangle\right]
$$

Now plug this bound back into the r_{k+1} inequality

$$
r_{k+1} \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right]
$$

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

- Since f is cvx, $f(x) \geq f\left(x^{k}\right)+\left\langle g^{k}, x-x^{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular we have

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{*}\right)-f\left(x^{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{*}-x^{k}\right\rangle\right]
$$

Now plug this bound back into the r_{k+1} inequality

$$
\begin{aligned}
r_{k+1} & \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right] \\
2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2}
\end{aligned}
$$

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

- Since f is cvx, $f(x) \geq f\left(x^{k}\right)+\left\langle g^{k}, x-x^{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular we have

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{*}\right)-f\left(x^{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{*}-x^{k}\right\rangle\right]
$$

Now plug this bound back into the r_{k+1} inequality

$$
\begin{aligned}
r_{k+1} & \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right] \\
2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} \\
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
\end{aligned}
$$

Stochastic approximation - analysis

Thus, we need to bound: $\mathbb{E}\left[\left\langle x^{k}-x^{*}, g^{k}\right\rangle\right]$

- Since f is cvx, $f(x) \geq f\left(x^{k}\right)+\left\langle g^{k}, x-x^{k}\right\rangle$ for any $x \in \mathcal{X}$.
- Thus, in particular we have

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{*}\right)-f\left(x^{k}\right)\right] \geq 2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{*}-x^{k}\right\rangle\right]
$$

Now plug this bound back into the r_{k+1} inequality

$$
\begin{aligned}
r_{k+1} & \leq r_{k}+\alpha_{k}^{2} M^{2}-2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right] \\
2 \alpha_{k} \mathbb{E}\left[\left\langle g^{k}, x^{k}-x^{*}\right\rangle\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} \\
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] & \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
\end{aligned}
$$

Stochastic approximation - analysis

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2}
$$

Stochastic approximation - analysis

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2}
$$

Sum up over $k=1, \ldots, T$, to obtain

$$
\sum_{k=1}^{T}\left(2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right]\right) \leq r_{1}-r_{T+1}+M^{2} \sum_{k} \alpha_{k}^{2}
$$

Stochastic approximation - analysis

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $k=1, \ldots, T$, to obtain

$$
\begin{aligned}
\sum_{k=1}^{T}\left(2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{T+1}+M^{2} \sum_{k} \alpha_{k}^{2} \\
& \leq r_{1}+M^{2} \sum_{k} \alpha_{k}^{2}
\end{aligned}
$$

Stochastic approximation - analysis

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $k=1, \ldots, T$, to obtain

$$
\begin{aligned}
\sum_{k=1}^{T}\left(2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{T+1}+M^{2} \sum_{k} \alpha_{k}^{2} \\
& \leq r_{1}+M^{2} \sum_{k} \alpha_{k}^{2}
\end{aligned}
$$

To further analyze this sum, divide both sides by $\sum_{k} \alpha_{k}$, so

Stochastic approximation - analysis

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $k=1, \ldots, T$, to obtain

$$
\begin{aligned}
\sum_{k=1}^{T}\left(2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{T+1}+M^{2} \sum_{k} \alpha_{k}^{2} \\
& \leq r_{1}+M^{2} \sum_{k} \alpha_{k}^{2}
\end{aligned}
$$

To further analyze this sum, divide both sides by $\sum_{k} \alpha_{k}$, so

- Set $\gamma_{k}=\frac{\alpha_{k}}{\sum_{k}^{T} \alpha_{k}}$.
- Thus, $\gamma_{k} \geq 0$ and $\sum_{k} \gamma_{k}=1$; this allows us to write

Stochastic approximation - analysis

$$
2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq r_{k}-r_{k+1}+\alpha_{k} M^{2} .
$$

Sum up over $k=1, \ldots, T$, to obtain

$$
\begin{aligned}
\sum_{k=1}^{T}\left(2 \alpha_{k} \mathbb{E}\left[f\left(x^{k}\right)-f\left(x^{*}\right)\right]\right) & \leq r_{1}-r_{T+1}+M^{2} \sum_{k} \alpha_{k}^{2} \\
& \leq r_{1}+M^{2} \sum_{k} \alpha_{k}^{2}
\end{aligned}
$$

To further analyze this sum, divide both sides by $\sum_{k} \alpha_{k}$, so

- Set $\gamma_{k}=\frac{\alpha_{k}}{\sum_{k}^{T} \alpha_{k}}$.
- Thus, $\gamma_{k} \geq 0$ and $\sum_{k} \gamma_{k}=1$; this allows us to write

$$
\mathbb{E}\left[\sum_{k} \gamma_{k} f\left(x^{k}\right)-f\left(x^{*}\right)\right] \leq \frac{r_{1}+M^{2} \sum_{k} \alpha_{k}^{2}}{2 \sum_{k} \alpha_{k}}
$$

Stochastic approximation - analysis

- Bound looks similar to bound in subgradient method!

Stochastic approximation - analysis

- Bound looks similar to bound in subgradient method!
- But we wish to say something about x^{T}

Stochastic approximation - analysis

- Bound looks similar to bound in subgradient method!
- But we wish to say something about x^{T}
- Since $\gamma_{k} \geq 0$ and $\sum_{k} \gamma_{k}=1$, and we have $\gamma_{k} f\left(x^{k}\right)$

Stochastic approximation - analysis

- Bound looks similar to bound in subgradient method!
- But we wish to say something about x^{T}
- Since $\gamma_{k} \geq 0$ and $\sum_{k} \gamma_{k}=1$, and we have $\gamma_{k} f\left(x^{k}\right)$
- Easier to talk about average iterate

$$
x_{a v}^{T}:=\sum_{k}^{T} \gamma_{k} x^{k} .
$$

Stochastic approximation - analysis

- Bound looks similar to bound in subgradient method!
- But we wish to say something about x^{T}
- Since $\gamma_{k} \geq 0$ and $\sum_{k} \gamma_{k}=1$, and we have $\gamma_{k} f\left(x^{k}\right)$
- Easier to talk about average iterate

$$
x_{a v}^{T}:=\sum_{k}^{T} \gamma_{k} x^{k} .
$$

- $f\left(x_{a v}^{T}\right) \leq \sum_{m} \gamma_{k} f\left(x^{k}\right)$ due to convexity

Stochastic approximation - analysis

- Bound looks similar to bound in subgradient method!
- But we wish to say something about x^{T}
- Since $\gamma_{k} \geq 0$ and $\sum_{k} \gamma_{k}=1$, and we have $\gamma_{k} f\left(x^{k}\right)$
- Easier to talk about average iterate

$$
x_{a v}^{T}:=\sum_{k}^{T} \gamma_{k} x^{k} .
$$

- $f\left(x_{a v}^{T}\right) \leq \sum_{m} \gamma_{k} f\left(x^{k}\right)$ due to convexity
- So we finally obtain the inequality

$$
\mathbb{E}\left[f\left(x_{a v}\right)-f\left(x^{*}\right)\right] \leq \frac{r_{1}+M^{2} \sum_{k} \alpha_{k}^{2}}{2 \sum_{k} \alpha_{k}}
$$

Stochastic approximation - analysis

Exercise

© Let $D_{\mathcal{X}}:=\max _{x \in \mathcal{X}}\left\|x-x^{*}\right\|_{2}$
© Assume $\alpha_{k}=\alpha$ is a constant. Then, observe that

$$
\mathbb{E}\left[f\left(x_{a v}^{T}\right)-f\left(x^{*}\right)\right] \leq \frac{D_{\mathcal{X}}^{2}+M^{2} T \alpha^{2}}{2 T \alpha}
$$

© Minimize the rhs over $\alpha>0$ to obtain the best stepsize
© Show that this choice then yields: $\mathbb{E}\left[f\left(x_{a v}^{T}\right)-f\left(x^{*}\right)\right] \leq \frac{D_{\mathcal{X}} M}{\sqrt{T}}$
© If T is not fixed in advance, then choose

$$
\alpha_{k}=\frac{\theta D_{\mathcal{X}}}{M \sqrt{k}}, \quad k=1,2, \ldots
$$

© Analyze $\mathbb{E}\left[f\left(x_{a v}^{T}\right)-f\left(x^{*}\right)\right]$ with this choice of stepsize

Sample average approximation

Assumption: regularization $\|x\|_{2} \leq B ; \omega \in \Omega$ closed, bounded.

$$
\begin{aligned}
& \text { Function estimate: } f(x)=\mathbb{E}[F(x, \omega)] \\
& \text { Subgradient in } \partial f(x)=\mathbb{E}[G(x, \omega)]
\end{aligned}
$$

Sample Average Approximation (SAA):

- Collect samples $\omega^{1}, \ldots, \omega^{N}$

■ Empirical objective: $\hat{f}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} F\left(x, \omega^{i}\right)$

Sample average approximation

Assumption: regularization $\|x\|_{2} \leq B ; \omega \in \Omega$ closed, bounded.

$$
\begin{aligned}
& \text { Function estimate: } f(x)=\mathbb{E}[F(x, \omega)] \\
& \text { Subgradient in } \partial f(x)=\mathbb{E}[G(x, \omega)]
\end{aligned}
$$

Sample Average Approximation (SAA):

- Collect samples $\omega^{1}, \ldots, \omega^{N}$

■ Empirical objective: $\hat{f}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} F\left(x, \omega^{i}\right)$

- aka Empirical Risk Minimization

Sample average approximation

Assumption: regularization $\|x\|_{2} \leq B ; \omega \in \Omega$ closed, bounded.

$$
\begin{aligned}
& \text { Function estimate: } f(x)=\mathbb{E}[F(x, \omega)] \\
& \text { Subgradient in } \partial f(x)=\mathbb{E}[G(x, \omega)]
\end{aligned}
$$

Sample Average Approximation (SAA):
■ Collect samples $\omega^{1}, \ldots, \omega^{N}$
■ Empirical objective: $\hat{f}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} F\left(x, \omega^{i}\right)$

- aka Empirical Risk Minimization
- Confusing: Machine learners often optimize \hat{f}_{N} using stochastic subgradient; but theoretical guarantees are then only on the empirical suboptimality $E\left[\hat{f}_{N}\left(\bar{x}^{k}\right)\right] \leq \ldots$

Sample average approximation

Assumption: regularization $\|x\|_{2} \leq B ; \omega \in \Omega$ closed, bounded.

$$
\begin{aligned}
& \text { Function estimate: } f(x)=\mathbb{E}[F(x, \omega)] \\
& \text { Subgradient in } \partial f(x)=\mathbb{E}[G(x, \omega)]
\end{aligned}
$$

Sample Average Approximation (SAA):
■ Collect samples $\omega^{1}, \ldots, \omega^{N}$
■ Empirical objective: $\hat{f}_{N}(x):=\frac{1}{N} \sum_{i=1}^{N} F\left(x, \omega^{i}\right)$

- aka Empirical Risk Minimization
- Confusing: Machine learners often optimize \hat{f}_{N} using stochastic subgradient; but theoretical guarantees are then only on the empirical suboptimality $E\left[\hat{f}_{N}\left(\bar{x}^{k}\right)\right] \leq \ldots$
- For guarantees on $f\left(\bar{x}^{k}\right)$, extra work is needed regularization + unif. concentration used
$f\left(\bar{x}^{k}\right)-f\left(x^{*}\right) \leq O(1 / \sqrt{k})+O(1 / \sqrt{N})$

Stochastic Programming - modeling

Stochastic LP

$$
\begin{array}{cl}
\min & x_{1}+x_{2} \\
\omega_{1} x_{1}+x_{2} & \geq 10 \\
\omega_{2} x_{1}+x_{2} & \geq 5 \\
x_{1}, x_{2} & \geq 0 \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] & \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{array}
$$

Stochastic Programming - modeling

Stochastic LP

$$
\begin{array}{cl}
\min & x_{1}+x_{2} \\
\omega_{1} x_{1}+x_{2} & \geq 10 \\
\omega_{2} x_{1}+x_{2} & \geq 5 \\
x_{1}, x_{2} & \geq 0 \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] & \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{array}
$$

- The constraints are not deterministic!
- But we have an idea about what randomness is there

Stochastic Programming - modeling

Stochastic LP

$$
\begin{gathered}
\text { min } \\
\omega_{1} x_{1}+x_{2} \geq 10 \\
\omega_{2} x_{1}+x_{2} \geq 5 \\
x_{1}, x_{2} \geq 0 \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{gathered}
$$

- The constraints are not deterministic!
- But we have an idea about what randomness is there
- How do we solve this LP?

Stochastic Programming - modeling

Stochastic LP

$$
\begin{array}{cl}
\min & x_{1}+x_{2} \\
\omega_{1} x_{1}+x_{2} & \geq 10 \\
\omega_{2} x_{1}+x_{2} & \geq 5 \\
x_{1}, x_{2} & \geq 0 \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] & \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{array}
$$

- The constraints are not deterministic!
- But we have an idea about what randomness is there
- How do we solve this LP?
- What does it even mean to solve it?

Stochastic Programming - modeling

Stochastic LP

$$
\begin{array}{cl}
\min & x_{1}+x_{2} \\
\omega_{1} x_{1}+x_{2} & \geq 10 \\
\omega_{2} x_{1}+x_{2} & \geq 5 \\
x_{1}, x_{2} & \geq 0 \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] & \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{array}
$$

- The constraints are not deterministic!
- But we have an idea about what randomness is there
- How do we solve this LP?
- What does it even mean to solve it?
- If ω has been observed, problem becomes deterministic, and can be solved as a usual LP (aka wait-and-watch)

Stochastic Programming - modeling

- But we cannot "wait-and-watch"

Stochastic Programming - modeling

- But we cannot "wait-and-watch" - we need to decide on x before knowing the value of ω

Stochastic Programming - modeling

- But we cannot "wait-and-watch" - we need to decide on x before knowing the value of ω
- What to do without knowing exact values for ω_{1}, ω_{2} ?

Stochastic Programming - modeling

- But we cannot "wait-and-watch" - we need to decide on x before knowing the value of ω
- What to do without knowing exact values for ω_{1}, ω_{2} ?
- Some ideas
- Guess the uncertainty
- Probabilistic / Chance constraints
- ..

Stochastic Programming - modeling

Some guesses
© Unbiased / Average case: Choose mean values for each r.v.
© Robust / Worst case: Choose worst case values
© Explorative / Best case: Choose best case values

Stochastic Programming - Example

$$
\begin{array}{rcl}
\min & x_{1} & +x_{2} \\
\\
\omega_{1} x_{1}+x_{2} & \geq & 10 \\
\omega_{2} x_{1}+x_{2} & \geq & 5 \\
x_{1}, x_{2} & \geq & 0 \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] & \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{array}
$$

Unbiased / Average case:
$\mathbb{E}\left[\omega_{1}\right]=3, \quad \mathbb{E}\left[\omega_{2}\right]=2 / 3$
$\min \quad x_{1}+x_{2}$
$3 x_{1}+x_{2} \geq 10$
$(2 / 3) x_{1}+x_{2} \geq 5$

$$
5
$$

$$
0,
$$

$x_{1}, x_{2} \geq 0$,

$$
x_{1}^{*}+x_{2}^{*}=5.7143 \ldots
$$

$$
\left(x_{1}^{*}, x_{2}^{*}\right) \approx(15 / 7,25 / 7)
$$

Stochastic Programming - Example

\[

\]

Worst case:

$$
\begin{array}{rccc}
& \mathbb{E}\left[\omega_{1}\right]=3, & \mathbb{E}\left[\omega_{2}\right]=2 / 3 \\
\min & x_{1}+x_{2} & x_{1}^{*}+x_{2}^{*}=10 \\
1 x_{1}+x_{2} & \geq & 10 & \left(x_{1}^{*}, x_{2}^{*}\right) \approx(41 / 12,79 / 12) . \\
(1 / 3) x_{1}+x_{2} & \geq & 5 & \\
x_{1}, x_{2} & \geq & 0, &
\end{array}
$$

Stochastic Programming - Example

$$
\begin{array}{rc}
\min & x_{1}+x_{2} \\
\omega_{1} x_{1}+x_{2} & \geq \\
\omega_{2} x_{1}+x_{2} & \geq \\
x_{1}, x_{2} & \geq \\
\text { where } \omega_{1} \sim \mathcal{U}[1,5] \text { and } \omega_{2} \sim \mathcal{U}[1 / 3,1]
\end{array}
$$

Best case:

$$
\begin{array}{rcll}
& \mathbb{E}\left[\omega_{1}\right]=3, & \mathbb{E}\left[\omega_{2}\right]=2 / 3 \\
\min & x_{1}+x_{2} & & x_{1}^{*}+x_{2}^{*}=5 \\
5 x_{1}+x_{2} & \geq & 10 & \left(x_{1}^{*}, x_{2}^{*}\right) \approx(17 / 8,23 / 8) . \\
1 x_{1}+x_{2} & \geq & 5 & \\
x_{1}, x_{2} & \geq & 0, &
\end{array}
$$

Online optimization

Online optimization

- We have fixed and known $F(x, \omega)$

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

- Guess x^{k};

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k};

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$;

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$; Update to x^{k+1}

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$
\frac{1}{T} \sum_{k=1}^{T} F\left(x_{k}, z_{k}\right)-\min _{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} F\left(x, z_{k}\right)
$$

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$
\frac{1}{T} \sum_{k=1}^{T} F\left(x_{k}, z_{k}\right)-\min _{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} F\left(x, z_{k}\right)
$$

- That is, difference from the best possible solution we could have attained, had we been shown all the examples $\left(z_{k}\right)$.

Online optimization

- We have fixed and known $F(x, \omega)$
- $\omega^{1}, \omega^{2}, \ldots$ presented to us sequentially

Can be chosen adversarially!

- Guess x^{k}; Observe ω^{k}; incur cost $F\left(x^{k}, \omega^{k}\right)$; Update to x^{k+1}
- We get to see things only sequentially, and the sequence of samples shown to us by nature may depend on our guesses
- So a typical goal is to minimize Regret

$$
\frac{1}{T} \sum_{k=1}^{T} F\left(x_{k}, z_{k}\right)-\min _{x \in \mathcal{X}} \frac{1}{T} \sum_{k=1}^{T} F\left(x, z_{k}\right)
$$

- That is, difference from the best possible solution we could have attained, had we been shown all the examples $\left(z_{k}\right)$.
- Online optimization is an important idea in machine learning, game theory, decision making, etc.

Online gradient descent
Based on Zinkevich (2003)

> Slight generalization:
> $F(x, \omega)$ convex (in $x)$; possibly nonsmooth $x \in \mathcal{X}$, a closed, bounded set

Based on Zinkevich (2003)

> Slight generalization:
> $F(x, \omega)$ convex (in $x)$; possibly nonsmooth $x \in \mathcal{X}$, a closed, bounded set

Simplify notation: $f_{k}(x) \equiv F\left(x, \omega^{k}\right)$

Regret $R_{T}:=\sum_{k=1}^{T} f_{k}\left(x^{k}\right)-\min _{x \in \mathcal{X}} \sum_{k=1}^{T} f_{k}(x)$

Online gradient descent

Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

Online gradient descent
Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

- Output x^{k}

Online gradient descent

Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

- Output x^{k}
- Receive k-th function f_{k}

Online gradient descent

Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

- Output x^{k}
- Receive k-th function f_{k}
- Incur loss $f_{k}\left(x^{k}\right)$

Online gradient descent

Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

- Output x^{k}
- Receive k-th function f_{k}
- Incur loss $f_{k}\left(x^{k}\right)$
- Pick $g^{k} \in \partial f_{k}\left(x_{k}\right)$

Online gradient descent

Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

- Output x^{k}
- Receive k-th function f_{k}
- Incur loss $f_{k}\left(x^{k}\right)$
- Pick $g^{k} \in \partial f_{k}\left(x_{k}\right)$

Update: $x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} g^{k}\right)$

Online gradient descent

Algorithm:
1 Select some $x^{0} \in \mathcal{X}$, and $\alpha_{0}>0$
2 Round k of algo $(k \geq 0)$:

- Output x^{k}
- Receive k-th function f_{k}
- Incur loss $f_{k}\left(x^{k}\right)$
- Pick $g^{k} \in \partial f_{k}\left(x_{k}\right)$

Update: $x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} g^{k}\right)$

Using $\alpha_{k}=c / \sqrt{k+1}$ and assuming $\left\|g_{k}\right\|_{2} \leq G$, can be shown that average regret $\frac{1}{T} R_{T} \leq O(1 / \sqrt{T})$

Assumption: Lipschitz condition $\|\partial f\|_{2} \leq G$

Assumption: Lipschitz condition $\|\partial f\|_{2} \leq G$

$$
x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{k=1}^{T} f_{k}(x)
$$

OGD - regret bound

Assumption: Lipschitz condition $\|\partial f\|_{2} \leq G$

$$
x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{k=1}^{T} f_{k}(x)
$$

Since $g_{k} \in \partial f_{k}\left(x_{k}\right)$, we have

$$
\begin{gathered}
f_{k}\left(x^{*}\right) \geq f_{k}\left(x_{k}\right)+\left\langle g_{k}, x^{*}-x_{k}\right\rangle, \text { or } \\
f_{k}\left(x_{k}\right)-f_{k}\left(x^{*}\right) \leq\left\langle g_{k}, x_{k}-x^{*}\right\rangle
\end{gathered}
$$

OGD - regret bound

Assumption: Lipschitz condition $\|\partial f\|_{2} \leq G$

$$
x^{*}=\underset{x \in \mathcal{X}}{\operatorname{argmin}} \sum_{k=1}^{T} f_{k}(x)
$$

Since $g_{k} \in \partial f_{k}\left(x_{k}\right)$, we have

$$
\begin{gathered}
f_{k}\left(x^{*}\right) \geq f_{k}\left(x_{k}\right)+\left\langle g_{k}, x^{*}-x_{k}\right\rangle, \text { or } \\
f_{k}\left(x_{k}\right)-f_{k}\left(x^{*}\right) \leq\left\langle g_{k}, x_{k}-x^{*}\right\rangle
\end{gathered}
$$

Further analysis depends on bounding

$$
\left\|x_{k+1}-x^{*}\right\|_{2}^{2}
$$

OGD regret - bounding distance
Recall: $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)$. Thus,

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2}
\end{aligned}
$$

Recall: $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)$. Thus,

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
\left(P_{\mathcal{X}} \text { is nonexpan. }\right) & \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2}
\end{aligned}
$$

Recall: $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)$. Thus,

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
\left(P_{\mathcal{X}} \text { is nonexpan. }\right) & \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2} \\
& =\left\|x_{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle
\end{aligned}
$$

Recall: $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)$. Thus,

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
\left(P_{\mathcal{X}} \text { is nonexpan. }\right) & \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2} \\
& =\left\|x_{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle & \leq \frac{\left\|x_{k}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}}{2 \alpha_{k}}+\frac{\alpha_{k}}{2}\left\|g_{k}\right\|_{2}^{2}
\end{aligned}
$$

OGD regret - bounding distance

Recall: $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)$. Thus,

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
\left(P_{\mathcal{X}} \text { is nonexpan. }\right) & \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2} \\
& =\left\|x_{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle & \leq \frac{\left\|x_{k}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}}{2 \alpha_{k}}+\frac{\alpha_{k}}{2}\left\|g_{k}\right\|_{2}^{2}
\end{aligned}
$$

Now invoke $f_{k}\left(x_{k}\right)-f_{k}\left(x^{*}\right) \leq\left\langle g_{k}, x_{k}-x^{*}\right\rangle$

$$
f_{k}\left(x_{k}\right)-f_{k}\left(x^{*}\right) \leq \frac{\left\|x_{k}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}}{2 \alpha_{k}}+\frac{\alpha_{k}}{2}\left\|g_{k}\right\|_{2}^{2}
$$

OGD regret - bounding distance

Recall: $x_{k+1}=P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)$. Thus,

$$
\begin{aligned}
\left\|x_{k+1}-x^{*}\right\|_{2}^{2} & =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-x^{*}\right\|_{2}^{2} \\
& =\left\|P_{\mathcal{X}}\left(x_{k}-\alpha_{k} g_{k}\right)-P_{\mathcal{X}}\left(x^{*}\right)\right\|_{2}^{2} \\
\left(P_{\mathcal{X}} \text { is nonexpan. }\right) & \leq\left\|x_{k}-x^{*}-\alpha_{k} g_{k}\right\|_{2}^{2} \\
& =\left\|x_{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g_{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g_{k}, x_{k}-x^{*}\right\rangle \\
\left\langle g_{k}, x_{k}-x^{*}\right\rangle & \leq \frac{\left\|x_{k}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}}{2 \alpha_{k}}+\frac{\alpha_{k}}{2}\left\|g_{k}\right\|_{2}^{2}
\end{aligned}
$$

Now invoke $f_{k}\left(x_{k}\right)-f_{k}\left(x^{*}\right) \leq\left\langle g_{k}, x_{k}-x^{*}\right\rangle$

$$
f_{k}\left(x_{k}\right)-f_{k}\left(x^{*}\right) \leq \frac{\left\|x_{k}-x^{*}\right\|_{2}^{2}-\left\|x_{k+1}-x^{*}\right\|_{2}^{2}}{2 \alpha_{k}}+\frac{\alpha_{k}}{2}\left\|g_{k}\right\|_{2}^{2}
$$

Sum over $k=1, \ldots, T$, let $\alpha_{k}=c / \sqrt{k+1}$, use $\left\|g_{k}\right\|_{2} \leq G$

$$
\text { Obtain } R_{T} \leq O(\sqrt{T})
$$

References

© A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approximation approach to stochastic programming. (2009)

A J. Linderoth. Lecture slides on Stochastic Programming (2003).

