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Admin

♠ HW3 due 4/04/2013

♠ HW4 on bSpace later today–due 4/18/2013

♠ Project report (4 pages) due on: 11th April

♠ LATEX template for projects on bSpace
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Recap

♠ Convex sets, functions

♠ Convex models, LP, QP, SOCP, SDP

♠ Subdifferentials, basic optimality conditions

♠ Weak duality

♠ Lagrangians, strong duality, KKT conditions

♠ Subgradient method

♠ Gradient descent, feasible descent

♠ Optimal gradients methods

♠ Constrained problems, conditional gradient

♠ Nonsmooth problems, proximal methods

♠ Proximal splitting, Douglas-Rachford

♠ Monotone operators, product-space trick

♠ Incremental gradient methods
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Incremental methods

min [f(x) =
∑

i fi(x)] + r(x)

xk+1 = xk − αkgi(k), gi(k) ∈ ∂fi(k)(x
k)

xk+1 = proxαkfi(k)
(xk), k = 0, 1, . . .

xk+1 = proxαkr

(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − αk∇fi(zi), i = 1, . . . ,m− 1.
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Incremental methods

xk+1 = PX (x
k − αk∇fi(k)(x

k))

Choices of i(k)

I Cyclic: i(k) = 1 + (k mod m)

I Randomized: Pick i(k) uniformly from {1, . . . ,m}

♣ Many other variations of incremental methods

♣ Read (omitting proofs) this nice survey by D. P. Bertsekas
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Stochastic Optimization
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Stochastic gradients

min f(x) = 1
m

∑m
i=1 fi(x)

Recall the incremental gradient method

I Let x0 ∈ Rn

I For k ≥ 0
1 Pick i(k) ∈ {1, 2, . . . ,m} uniformly at random
2 xk+1 = xk − αk∇fi(k)(x

k)

g ≡ ∇fi(k) may be viewed as a stochastic gradient

g := gtrue + e, where e is mean-zero noise: E[e] = 0
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Stochastic gradients

I Index i(k) chosen uniformly from {1, . . . ,m}
I Thus, in expectation:

E[g] =

Ei[∇fi(x)] =
∑

i

1

m
∇fi(x) = ∇f(x)

I Alternatively, E[g − gtrue] = E[e] = 0.

I We call g an unbiased estimate of the gradient

I Here, we obtained g in a two step process:

◦ Sample: pick an index i(k) unif. at random
◦ Oracle: Compute a stochastic gradient based on i(k)
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Stochastic programming

min f(x) := Eω[F (x, ω)]

I ω follows some known distribution

I Previous example, omega takes values in a discrete set of size
m (might as well say ω ∈ {1, . . . ,m})

I so that F (x, ω) = fω(x); so assuming uniform distribution, we
see that f(x) = EωF (x, ω) = 1

m

∑m
i=1 fi(x)

I Usually ω will be non-discrete, and we won’t be able to
compute the expectation in closed form, since

f(x) =
∫
F (x, ω)dP (ω),

is going to be a difficult high-dimensional integral.
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Stochastic programming – digression

Certainty-equivalent / mean approximation

I Say F (x, ω) is a linear function of x

I Then, we may write F (x, ω) = 〈c(ω), x〉
I In this case, f(x) =

∫
〈c(ω), x〉dP (ω) = 〈E[c(ω)], x〉

I What if F (x, ω) is convex in x for every ω

I Jensen’s inequality gives us a trivial lower-bound

f(x) =

∫
F (x, ω)dP (ω) ≥ F (x,E[ω])

I Bound may be too weak—even useless

I Thus, let us try to directly minimize f(x)
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Stochastic programming – setup

minx∈X f(x) := Eω[F (x, ω)]

Setup and Assumptions

1. X ⊂ Rn nonempty, closed, bounded, convex

2. ω is a random vector whose probability distribution P is supported
on Ω ⊂ Rd; so F : X × Ω→ R
3. The expectation

E[F (x, ω)] =
∫

Ω F (x, ω)dP (ω)

is well-defined and finite valued for every x ∈ X .
4. For every ω ∈ Ω, F (·, ω) is convex.

Convex stochastic optimization problem
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Stochastic programming – setup

I Cannot compute expectation with high-accuracy in general

I So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples ω1, ω2, . . .
Assumption 2: For a given input (x, ω) ∈ X ×Ω, we can compute
(oracle) a stochastic gradient G(x, ω)

g(x) := E[G(x, ω)] s.t. g(x) ∈ ∂f(x).

I How to get these stochastic subgradients?

Theorem Let ω ∈ Ω; If F (·, ω) is convex, and f(·) is finite valued in
a neighborhood of a point x, then

∂f(x) = E[∂xF (x, ω)].

I So we may pick G(x, ω) ∈ ∂xF (x, ω) as stochastic subgradient.
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Stochastic programming

♣ Stochastic Approximation (SA)

I Sample ωk iid

I Generate stochastic subgradient G(x, ω)
I Use that in a subgradient method!

♣ Sample average approximation (SAA)

I Generate N iid samples, ω1, . . . , ωN

I Consider empirical objective f̂N := N−1
∑

i F (x, ωi)
I SAA refers to creation of this sample average problem
I Minimizing f̂N still needs to be done!
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Stochastic approximation – SA

SA or stochastic (sub)-gradient

I Let x0 ∈ X
I For k ≥ 0

◦ Sample ωk iid; generate G(xk, ωk)
◦ Update xk+1 = PX (xk − αkG(xk, ωk)), where αk > 0

Henceforth, we’ll simply write:

xk+1 = PX
(
xk − αkGk

)
Does this work?
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Stochastic approximation – analysis

Setup

I xk depends on rvs ω1, . . . , ωk−1, so itself random

I Of course, xk does not depend on ωk

I Subgradient method analysis hinged upon: ‖xk − x∗‖22
I Stochastic subgradient hinges upon: E[‖xk − x∗‖22]

Denote: Rk := ‖xk − x∗‖22 and rk := E[Rk] = E[‖xk − x∗‖22]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkGk)− PXx∗‖22
≤ ‖xk − x∗ − αkGk‖22
= Rk + α2

k‖Gk‖22 − 2αk〈Gk, xk − x∗〉.
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Stochastic approximation – analysis

Rk+1 ≤ Rk + α2
k‖Gk‖22 − 2αk〈Gk, xk − x∗〉

I Assume: ‖Gk‖2 ≤M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM

2 − 2αkE[〈Gk, xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ωk, we have

E[〈xk − x∗, G(xk, ωk)〉] = E
{
E[〈xk − x∗, G(xk, ωk)〉 | ω1..(k−1)]

}
= E

{
〈xk − x∗, E[G(xk, ωk) | ω1..k−1]〉

}
= E[〈xk − x∗, gk〉], gk ∈ ∂f(xk).
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Stochastic approximation – analysis

Thus, we need to bound: E[〈xk − x∗, gk〉]

I Since f is cvx, f(x) ≥ f(xk) + 〈gk, x− xk〉 for any x ∈ X .

I Thus, in particular we have

2αkE[f(x∗)− f(xk)] ≥ 2αkE[〈gk, x∗ − xk〉]

Now plug this bound back into the rk+1 inequality

rk+1 ≤ rk + α2
kM

2 − 2αkE[〈gk, xk − x∗〉]
2αkE[〈gk, xk − x∗〉] ≤ rk − rk+1 + αkM

2

2αkE[f(xk)− f(x∗)] ≤ rk − rk+1 + αkM
2.

What now?
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Stochastic approximation – analysis

2αkE[f(xk)− f(x∗)] ≤ rk − rk+1 + αkM
2.

Sum up over k = 1, . . . , T , to obtain∑T

k=1
(2αkE[f(xk)− f(x∗)]) ≤ r1 − rT+1 +M2

∑
k
α2
k

≤ r1 +M2
∑

k
α2
k.

To further analyze this sum, divide both sides by
∑

k αk, so
I Set γk = αk∑T

k αk
.

I Thus, γk ≥ 0 and
∑

k γk = 1; this allows us to write

E
[∑

k
γkf(xk)− f(x∗)

]
≤
r1 +M2

∑
k α

2
k

2
∑

k αk
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Stochastic approximation – analysis

I Bound looks similar to bound in subgradient method!

I But we wish to say something about xT

I Since γk ≥ 0 and
∑

k γk = 1, and we have γkf(xk)

I Easier to talk about average iterate

xTav :=
∑T

k
γkx

k.

I f(xTav) ≤
∑

m γkf(xk) due to convexity

I So we finally obtain the inequality

E
[
f(xav)− f(x∗)

]
≤
r1 +M2

∑
k α

2
k

2
∑

k αk
.
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I Easier to talk about average iterate

xTav :=
∑T

k
γkx

k.

I f(xTav) ≤
∑

m γkf(xk) due to convexity

I So we finally obtain the inequality

E
[
f(xav)− f(x∗)

]
≤
r1 +M2

∑
k α

2
k

2
∑

k αk
.
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Stochastic approximation – analysis

Exercise

♠ Let DX := maxx∈X ‖x− x∗‖2
♠ Assume αk = α is a constant. Then, observe that

E[f(xTav)− f(x∗)] ≤
D2
X +M2Tα2

2Tα

♠ Minimize the rhs over α > 0 to obtain the best stepsize

♠ Show that this choice then yields: E[f(xTav)− f(x∗)] ≤ DXM√
T

♠ If T is not fixed in advance, then choose

αk =
θDX

M
√
k
, k = 1, 2, . . .

♠ Analyze E[f(xTav)− f(x∗)] with this choice of stepsize
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Sample average approximation

Assumption: regularization ‖x‖2 ≤ B; ω ∈ Ω closed, bounded.

Function estimate: f(x) = E[F (x, ω)]
Subgradient in ∂f(x) = E[G(x, ω)]

Sample Average Approximation (SAA):

Collect samples ω1, . . . , ωN

Empirical objective: f̂N (x) := 1
N

∑N
i=1 F (x, ωi)

aka Empirical Risk Minimization

Confusing: Machine learners often optimize f̂N using
stochastic subgradient; but theoretical guarantees are then
only on the empirical suboptimality E[f̂N (x̄k)] ≤ . . .
For guarantees on f(x̄k), extra work is needed regularization
+ unif. concentration used
f(x̄k)− f(x∗) ≤ O(1/

√
k) +O(1/

√
N)
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Stochastic Programming – modeling

Stochastic LP

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

I The constraints are not deterministic!

I But we have an idea about what randomness is there

I How do we solve this LP?

I What does it even mean to solve it?

I If ω has been observed, problem becomes deterministic, and
can be solved as a usual LP (aka wait-and-watch)
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Stochastic Programming – modeling

I But we cannot “wait-and-watch” —

we need to decide on x
before knowing the value of ω

I What to do without knowing exact values for ω1, ω2?

I Some ideas

◦ Guess the uncertainty
◦ Probabilistic / Chance constraints
◦ . . .
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Stochastic Programming – modeling

Some guesses

♠ Unbiased / Average case: Choose mean values for each r.v.

♠ Robust / Worst case: Choose worst case values

♠ Explorative / Best case: Choose best case values

24 / 34



Stochastic Programming – Example

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

Unbiased / Average case:

E[ω1] = 3, E[ω2] = 2/3

min x1 + x2

3x1 + x2 ≥ 10

(2/3)x1 + x2 ≥ 5

x1, x2 ≥ 0,

x∗1 + x∗2 = 5.7143...

(x∗1, x
∗
2) ≈ (15/7, 25/7).
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Stochastic Programming – Example

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

Worst case:

E[ω1] = 3, E[ω2] = 2/3

min x1 + x2

1x1 + x2 ≥ 10

(1/3)x1 + x2 ≥ 5

x1, x2 ≥ 0,

x∗1 + x∗2 = 10

(x∗1, x
∗
2) ≈ (41/12, 79/12).
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Stochastic Programming – Example

min x1 + x2

ω1x1 + x2 ≥ 10

ω2x1 + x2 ≥ 5

x1, x2 ≥ 0,

where ω1 ∼ U [1, 5] and ω2 ∼ U [1/3, 1]

Best case:

E[ω1] = 3, E[ω2] = 2/3

min x1 + x2

5x1 + x2 ≥ 10

1x1 + x2 ≥ 5

x1, x2 ≥ 0,

x∗1 + x∗2 = 5

(x∗1, x
∗
2) ≈ (17/8, 23/8).
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Online optimization
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Online optimization

• We have fixed and known F (x, ω)

• ω1, ω2, . . . presented to us sequentially

Can be chosen adversarially!

• Guess xk; Observe ωk; incur cost F (xk, ωk); Update to xk+1

• We get to see things only sequentially, and the sequence of
samples shown to us by nature may depend on our guesses

• So a typical goal is to minimize Regret

1
T

∑T
k=1 F (xk, zk)−minx∈X

1
T

∑T
k=1 F (x, zk)

• That is, difference from the best possible solution we could have
attained, had we been shown all the examples (zk).

• Online optimization is an important idea in machine learning,
game theory, decision making, etc.
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Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
F (x, ω) convex (in x); possibly nonsmooth

x ∈ X , a closed, bounded set

Simplify notation: fk(x) ≡ F (x, ωk)

Regret RT :=
∑T

k=1 fk(x
k)−minx∈X

∑T
k=1 fk(x)
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Online gradient descent

Algorithm:

1 Select some x0 ∈ X , and α0 > 0

2 Round k of algo (k ≥ 0):

Output xk

Receive k-th function fk
Incur loss fk(xk)
Pick gk ∈ ∂fk(xk)
Update: xk+1 = PX (xk − αkg

k)

Using αk = c/
√
k + 1 and assuming ‖gk‖2 ≤ G, can be

shown that average regret 1
TRT ≤ O(1/

√
T )
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OGD – regret bound

Assumption: Lipschitz condition ‖∂f‖2 ≤ G

x∗ = argmin
x∈X

T∑
k=1

fk(x)

Since gk ∈ ∂fk(xk), we have

fk(x
∗) ≥ fk(xk) + 〈gk, x∗ − xk〉, or

fk(xk)− fk(x∗) ≤ 〈gk, xk − x∗〉

Further analysis depends on bounding

‖xk+1 − x∗‖22
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OGD regret – bounding distance

Recall: xk+1 = PX (xk − αkgk). Thus,

‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− x∗‖22
= ‖PX (xk − αkgk)− PX (x∗)‖22

(PX is nonexpan.) ≤ ‖xk − x∗ − αkgk‖22
= ‖xk − x∗‖22 + α2

k‖gk‖22 − 2αk〈gk, xk − x∗〉

〈gk, xk − x∗〉 ≤
‖xk − x∗‖22 − ‖xk+1 − x∗‖22

2αk
+
αk

2
‖gk‖22

Now invoke fk(xk)− fk(x∗) ≤ 〈gk, xk − x∗〉

fk(xk)− fk(x∗) ≤ ‖xk − x
∗‖22 − ‖xk+1 − x∗‖22

2αk
+
αk

2
‖gk‖22

Sum over k = 1, . . . , T , let αk = c/
√
k + 1, use ‖gk‖2 ≤ G

Obtain RT ≤ O(
√
T )
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∗‖22 − ‖xk+1 − x∗‖22

2αk
+
αk

2
‖gk‖22

Sum over k = 1, . . . , T , let αk = c/
√
k + 1, use ‖gk‖2 ≤ G

Obtain RT ≤ O(
√
T )
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