Convex Optimization

(EE227A: UC Berkeley)

Lecture 19
(Stochastic optimization)

02 Apr, 2013

o

Suvrit Sra

Admin

& HW3 due 4/04/2013

& HWA4 on bSpace later today—due 4/18/2013
& Project report (4 pages) due on: 11th April
& ATEX template for projects on bSpace

34

Recap

& Convex sets, functions

& Convex models, LP, QP, SOCP, SDP

& Subdifferentials, basic optimality conditions
& Weak duality

& Lagrangians, strong duality, KKT conditions

& Subgradient method

& Gradient descent, feasible descent

& Optimal gradients methods

& Constrained problems, conditional gradient
& Nonsmooth problems, proximal methods
& Proximal splitting, Douglas-Rachford

& Monotone operators, product-space trick

® Incremental gradient methods

34

Incremental methods

min [f(z) =), fi(z)] +r(z)

L LG = A fitk) (")

4/34

Incremental methods

min [f(z) =), fi(z)] +r(z)

k+1

k+1

af —apg' ™, g™ € af; i (a")
proxakfi(k)(:ck), k=0,1,...

/34

Incremental methods

min [f(z) =), fi(z)] +r(z)

k+1

k+1

k+1

af —apg' ™, g™ € af; i (a")

PrOXe, £, (:ck), k=0,1,...

m N .
ProX,, , (:1;]C — N Zi:l Vfi(zl)), k=0,1,...
Sk

2 = V2D, i=1,...,m—1

34

Incremental methods

M = Py(2% — i,V figy (2%))

Choices of i(k)
» Cyclic: i(k) =14 (k mod m)
» Randomized: Pick i(k) uniformly from {1,...,m}

34

http://web.mit.edu/dimitrib/www/Incremental_Survey_LIDS.pdf

Incremental methods

M = Py(2% — i,V figy (2%))

Choices of i(k)

» Cyclic: i(k) =14 (k mod m)

» Randomized: Pick i(k) uniformly from {1,...,m}
& Many other variations of incremental methods

& Read (omitting proofs) this nice survey by D. P. Bertsekas

34

http://web.mit.edu/dimitrib/www/Incremental_Survey_LIDS.pdf

Stochastic Optimization

Stochastic gradients

min f(z) = % > filz)

/34

Stochastic gradients

min f(z) = % Yo filx)

Recall the incremental gradient method
» Let 20 ¢ R”
» For k>0

34

Stochastic gradients

min f(z) = % Yo filx)

Recall the incremental gradient method
» Let 20 ¢ R”

» Fork>0
Pick i(k) € {1,2,...,m} uniformly at random

M =2k — .V fiy (@)

34

Stochastic gradients

min f(z) = % Yo filx)

Recall the incremental gradient method
» Let 20 ¢ R”

» Fork>0
Pick i(k) € {1,2,...,m} uniformly at random

M =2k — .V fiy (@)

‘ 9 = V fi) may be viewed as a stochastic gradient

34

Stochastic gradients

min f(z) = % Yo filx)

Recall the incremental gradient method
» Let 20 ¢ R”

» Fork>0
Pick i(k) € {1,2,...,m} uniformly at random

M =2k — .V fiy (@)

‘ 9 = V fi) may be viewed as a stochastic gradient

‘ g = g™ + e, where e is mean-zero noise: E[e] =0

Stochastic gradients

» Index i(k) chosen uniformly from {1,...,m}

» Thus, in expectation:

Elg] =

/34

Stochastic gradients

» Index i(k) chosen uniformly from {1,...,m}

» Thus, in expectation:

Elg] = Ei[V fi(z)]

34

Stochastic gradients

» Index i(k) chosen uniformly from {1,...

» Thus, in expectation:

Elg] = B[V i(x)] =) sz

7m}

34

Stochastic gradients

» Index i(k) chosen uniformly from {1,...

» Thus, in expectation:

Elg] = Ei[V fi(z

=> sz

7m}

VE(x)

34

Stochastic gradients

» Index i(k) chosen uniformly from {1,...

» Thus, in expectation:

Elg] = Ei[V fi(z

=> sz

» Alternatively, E[g — g*™¢] = E[e] = 0.

7m}

VE(x)

34

Stochastic gradients

» Index i(k) chosen uniformly from {1,...,m}

» Thus, in expectation:

Elg] = B[V i(x)] =) sz =

» Alternatively, E[g — ¢"™¢] = E[e] = 0.
» We call g an unbiased estimate of the gradient

VE(x)

34

Stochastic gradients

v

Index i(k) chosen uniformly from {1,...,m}

Thus, in expectation:

Elg] = B[V i(x)] =) sz = Vi(x)

Alternatively, E[g — g"™¢] = E[e] = 0.
We call g an unbiased estimate of the gradient
Here, we obtained g in a two step process:

o Sample: pick an index i(k) unif. at random
o Oracle: Compute a stochastic gradient based on i(k)

34

Stochastic programming

min f(x) := E [F(z,w)]

» w follows some known distribution

34

Stochastic programming

min f(x) := E [F(z,w)]

» w follows some known distribution

» Previous example, omega takes values in a discrete set of size
m (might as well say w € {1,...,m})

34

Stochastic programming

min f(x) := E [F(z,w)]

» w follows some known distribution

» Previous example, omega takes values in a discrete set of size
m (might as well say w € {1,...,m})

» so that F'(z,w) = f,(x); so assuming uniform distribution, we
see that f(z) = E,F(z,w) = L 37 f;(z)

34

Stochastic programming

>
4

| 2

min f(x) := E [F(z,w)]

w follows some known distribution

Previous example, omega takes values in a discrete set of size
m (might as well say w € {1,...,m})

so that F'(z,w) = f,(z); so assuming uniform distribution, we
see that f(z) = E,F(z,w) = L 37 f;(z)

Usually w will be non-discrete, and we won't be able to
compute the expectation in closed form, since

f() = [F(z,w)dP(w),

is going to be a difficult high-dimensional integral.

34

Stochastic programming — digression

Certainty-equivalent / mean approximation

» Say F(z,w) is a linear function of z

10/34

Stochastic programming — digression

Certainty-equivalent / mean approximation
» Say F(z,w) is a linear function of z

» Then, we may write F'(z,w) = (c(w), x)

10 /34

Stochastic programming — digression

Certainty-equivalent / mean approximation

» Say F(z,w) is a linear function of z

» Then, we may write F'(z,w) = (c(w), x)

» In this case, f(z) = [(c(w), z)dP(w) = (E[c(w)], z)

10 /34

Stochastic programming — digression

Certainty-equivalent / mean approximation

» Say F(z,w) is a linear function of z

» Then, we may write F'(z,w) = (c(w), x)

» In this case, f(z) = [(c(w), z)dP(w) = (E[c(w)], z)
» What if F'(z,w) is convex in z for every w

10/34

Stochastic programming — digression

Certainty-equivalent / mean approximation

» Say F(z,w) is a linear function of z

» Then, we may write F'(z,w) = (c(w), x)

» In this case, f(z) = [(c(w), z)dP(w) = (E[c(w)], z)
» What if F'(z,w) is convex in z for every w

» Jensen's inequality gives us a trivial lower-bound

@) = / Flz,w)dP(w) > F(z,Ew))

10/34

Stochastic programming — digression

Certainty-equivalent / mean approximation

| 2

4
4
| 4
>

>

Say F(z,w) is a linear function of x

Then, we may write F(z,w) = (c(w), x)

In this case, f(z) = [(c(w), z)dP(w) = (E[c(w)], z)
What if F/(z,w) is convex in z for every w

Jensen’s inequality gives us a trivial lower-bound

@) = / Flz,w)dP(w) > F(z,Ew))

Bound may be too weak—even useless

10/34

Stochastic programming — digression

Certainty-equivalent / mean approximation

| 2

vvyyvyy

v

Say F(z,w) is a linear function of x

Then, we may write F(z,w) = (c(w), x)

In this case, f(z) = [(c(w), z)dP(w) = (E[c(w)], z)
What if F/(z,w) is convex in z for every w

Jensen’s inequality gives us a trivial lower-bound

f(z) = / F(z,w)dP(w) > F(z,Elw))

Bound may be too weak—even useless

Thus, let us try to directly minimize f(x)

10/34

Stochastic programming — setup

mingey f(z) := Ey[F(z,w)]

Setup and Assumptions

1. X C R" nonempty, closed, bounded, convex

11/34

Stochastic programming — setup

mingey f(z) := Ey[F(z,w)]

Setup and Assumptions

1. X C R™ nonempty, closed, bounded, convex

2. wis arandom vector whose probability distribution P is supported
onQCREs0 F: X xQ—R

11/34

Stochastic programming — setup

mingey f(z) := E,[F(z,w)]

Setup and Assumptions

1. X C R™ nonempty, closed, bounded, convex

2. wis arandom vector whose probability distribution P is supported
onQCR:s0oF: XxQ—>R

3. The expectation

E[F = Jo F(z,w)dP(w)

is well-defined and finite valued for every z € X.

11 /34

Stochastic programming — setup

mingey f(z) := E,[F(z,w)]

Setup and Assumptions

1. X C R™ nonempty, closed, bounded, convex

2. wis arandom vector whose probability distribution P is supported
onQCR:s0oF: XxQ—>R

3. The expectation

E[F = Jo F(z,w)dP(w)

is well-defined and finite valued for every z € X.
4. For every w € Q, F(-,w) is convex.

Convex stochastic optimization problem

11 /34

Stochastic programming — setup

» Cannot compute expectation with high-accuracy in general

12 /34

Stochastic programming — setup

» Cannot compute expectation with high-accuracy in general

» So, computational techniques based on Monte Carlo sampling

12 /34

Stochastic programming — setup

» Cannot compute expectation with high-accuracy in general

» So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples w!,w?, ...
Assumption 2: For a given input (z,w) € X x 2, we can compute

(oracle) a stochastic gradient G(z,w)

g(x) := E[G(z,w)] st. g(z) € df(z).

12 /34

Stochastic programming — setup

» Cannot compute expectation with high-accuracy in general

» So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples w!,w?, ...
Assumption 2: For a given input (z,w) € X x 2, we can compute

(oracle) a stochastic gradient G(z,w)
g(x) := E[G(z,w)] st. g(z) € df(z).

» How to get these stochastic subgradients?

12 /34

Stochastic programming — setup

» Cannot compute expectation with high-accuracy in general

» So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples w!,w?, ...
Assumption 2: For a given input (z,w) € X x 2, we can compute

(oracle) a stochastic gradient G(z,w)

g(x) := E[G(z,w)] st. g(z) € df(z).

» How to get these stochastic subgradients?

a neighborhood of a point z, then

0f(z) = E[0.F (z,w)].

Theorem Let w € Q; If F(-,w) is convex, and f(-) is finite valued in

12 /34

Stochastic programming — setup

» Cannot compute expectation with high-accuracy in general

» So, computational techniques based on Monte Carlo sampling

Assumption 1: Possible to generate independent identically dis-
tributed (iid) samples w!,w?, ...
Assumption 2: For a given input (z,w) € X x 2, we can compute

(oracle) a stochastic gradient G(z,w)
g(x) := E[G(z,w)] st. g(z) € df(z).

» How to get these stochastic subgradients?

Theorem Let w € Q; If F(-,w) is convex, and f(-) is finite valued in
a neighborhood of a point z, then

0f(z) = E[0.F (z,w)].

» So we may pick G(z,w) € 0,F(x,w) as stochastic subgradient.

12 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid

13 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid
» Generate stochastic subgradient G(z,w)

13 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid
» Generate stochastic subgradient G(z,w)
» Use that in a subgradient method!

13 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid
» Generate stochastic subgradient G(z,w)
» Use that in a subgradient method!

& Sample average approximation (SAA)

13 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid
» Generate stochastic subgradient G(z,w)
» Use that in a subgradient method!

& Sample average approximation (SAA)

» Generate N iid samples, w?, ..., w?

13 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid
» Generate stochastic subgradient G(z,w)
» Use that in a subgradient method!

& Sample average approximation (SAA)

» Generate N iid samples, w?, ..., w?

» Consider empirical objective fy := N1 > Fx,wh)

13 /34

Stochastic programming

& Stochastic Approximation (SA)
» Sample wF iid
» Generate stochastic subgradient G(z,w)
» Use that in a subgradient method!

& Sample average approximation (SAA)

» Generate N iid samples, w?, ..., w?

» Consider empirical objective fy := N1 > Fx,wh)
» SAA refers to creation of this sample average problem
» Minimizing fy still needs to be done!

13 /34

Stochastic approximation — SA

SA or stochastic (sub)-gradient

» Let 20 e X
» For k>0
o Sample w* iid; generate G(z*,w")
o Update zF*! = Py (2F — apG(2F,w)), where oy, > 0

14 /34

Stochastic approximation — SA

SA or stochastic (sub)-gradient

> Letz’e X
» For k>0
o Sample w* iid; generate G(z*,w")
o Update zF*! = Py (2F — apG(2F,w)), where oy, > 0

Henceforth, we’ll simply write:

H L = Py (xk _ aka)

14 /34

Stochastic approximation — SA

SA or stochastic (sub)-gradient

» Let 20 e X
» For k>0
o Sample w* iid; generate G(z*,w")
o Update zF*! = Py (2F — apG(2F,w)), where oy, > 0

Henceforth, we’ll simply write:

L= py (a:k — oszk)

Q A,
O }
e ’/s’ Does this work?

14 /34

Stochastic approximation — analysis

Setup

» zF depends on rvs w!,...,w*"1, so itself random

15/34

Stochastic approximation — analysis

Setup

» zF depends on rvs w!,...,w*"1, so itself random

» Of course, ¥ does not depend on w*

15/34

Stochastic approximation — analysis

Setup

» zF depends on rvs w!,...,w*"1, so itself random

» Of course, z* does not depend on wh

» Subgradient method analysis hinged upon: ||z% — 2|3

15 /34

Stochastic approximation — analysis

Setup

» zF depends on rvs w!,...,w*"1, so itself random

» Of course, z* does not depend on wh
» Subgradient method analysis hinged upon: ||z% — 2|3

» Stochastic subgradient hinges upon: E[||z* — z*|3]

15/34

Stochastic approximation — analysis

Setup

» zF depends on rvs w!,...,w*"1, so itself random

» Of course, z* does not depend on wh
» Subgradient method analysis hinged upon: ||z% — 2|3

» Stochastic subgradient hinges upon: E[||z* — z*|3]

Denote: Ry, := ||z% — 2*||3 and 7 := E[Ry] = E[||z* — 2*||]

15/34

Stochastic approximation — analysis

Setup
» zF depends on rvs w!,...,w*"1, so itself random
» Of course, z* does not depend on wh

» Subgradient method analysis hinged upon: ||z% — 2|3

» Stochastic subgradient hinges upon: E[||z* — z*|3]
Denote: Ry, := ||z% — 2*||3 and 7 := E[Ry] = E[||z* — 2*||]
Bounding Ry

Rppn = [la" —2*|3 = || Px(a* — ayG*) — Paa*|3
< la* - 2" — anGF3
= Rp+al||GF|3 — 20.(GF, 2 — 2%).

15/34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

16 /34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

» Assume: ||G¥|lo < M on X
» Taking expectation:
Trp1 < 1 4 i M? — 204, E[(GF, 28 — 2*)].

16 /34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

» Assume: ||G¥|lo < M on X
» Taking expectation:
Trp1 < 1 4 i M? — 204, E[(GF, 28 — 2*)].

» We need to now get a handle on the last term

16 /34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

» Assume: ||G¥|lo < M on X
» Taking expectation:
Trp1 < 1 4 i M? — 204, E[(GF, 28 — 2*)].

» We need to now get a handle on the last term

k

» Since z* is independent of w*, we have

E[(xk —z*, G(xk,wk))] =

16 /34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

» Assume: ||G¥|lo < M on X

» Taking expectation:
Thi1 < T+ 0f M? — 203 E[(GF, 2F — 2%)].

» We need to now get a handle on the last term

k

» Since z* is independent of w*, we have

E[<xk — x*, G(xk,wk»] _ E{E[(I’k - .%'*, G(.%'k,wk)> ‘ wl..(k—l)]}

16 /34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

» Assume: ||G¥|lo < M on X
» Taking expectation:
Trp1 < 1 4 i M? — 204, E[(GF, 28 — 2*)].

» We need to now get a handle on the last term

» Since z* is independent of w*, we have
E[<xk _ x*, G(xk,wk»] - {E[(wk - .%'*, G(xk,wk)> ‘ wl..(k—l)]}
= E {<l‘k _ JI*, E[G(:L‘k,wk) ’ wl..k71]>}

16 /34

Stochastic approximation — analysis

Rii1 < Ry + o ||G*||3 — 20, (G, 2% — 2*)

» Assume: ||G¥|lo < M on X
» Taking expectation:
Trp1 < 1 4 i M? — 204, E[(GF, 28 — 2*)].

» We need to now get a handle on the last term

» Since z* is independent of w*, we have
E[<xk _ x*, G(xk,wk»] - {E[(wk - .%'*, G(xk,wk)> ‘ wl..(k—l)]}
= E {<l‘k _ JI*, E[G(:L‘k,wk) ’ wl..k71]>}

= E[a* —a*, ¢")], ¢~ eaf@h).

16 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

17 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

» Since f is cvx, f(x) > f(z¥) + (gF, © — 2F) for any z € X

17 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

» Since f is cvx, f(x) > f(z¥) + (gF, © — 2F) for any z € X

» Thus, in particular we have

204 E[f (¢*) — f(a)] > 2a,E[(g", 2* — 2*))

17 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

» Since f is cvx, f(x) > f(z¥) + (gF, © — 2F) for any z € X

» Thus, in particular we have
200, E[f (z*) — f(2")] = 204 E[(¢", &* — 2")]
Now plug this bound back into the r;; inequality

ree1 <k +apM? = 204 E[(gF, 2F — 7))

17 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

» Since f is cvx, f(x) > f(z¥) + (gF, © — 2F) for any z € X

» Thus, in particular we have
200, E[f (z*) — f(2")] = 204 E[(¢", &* — 2")]
Now plug this bound back into the r;; inequality

e+ M — 20,E[(g, 2* — o)
Tk — Thkt1 T OékM2

TEk+1

<
204E[(g", 2* —2%)] <

17 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

» Since f is cvx, f(x) > f(z¥) + (gF, © — 2F) for any z € X

» Thus, in particular we have
200, E[f (z*) — f(2")] = 204 E[(¢", &* — 2")]
Now plug this bound back into the r;; inequality

ree1 <k +apM? = 204 E[(gF, 2F — 7))
ZakEng, zF — 2 < rp—Tpe + apM?
<

204 E[f(*) - f(a")]

Tk — Tk+1 + OékM2.

17 /34

Stochastic approximation — analysis

Thus, we need to bound: E[(zF — z*, ¢*)]

» Since f is cvx, f(x) > f(z¥) + (gF, © — 2F) for any z € X

» Thus, in particular we have
200, E[f (z*) — f(2")] = 204 E[(¢", &* — 2")]
Now plug this bound back into the r;; inequality

ree1 <k +apM? = 204 E[(gF, 2F — 7))
ZakEng, zF — 2 < rp—Tpe + apM?
<

204 E[f(*) - f(a")]

Tk — Tk+1 + OékM2.

‘ What now?

17 /34

Stochastic approximation — analysis

204 E[f(z") — f(a")] < rp — rhps + ap M.

18/34

Stochastic approximation — analysis

20, EB[f (2*) = f(2*)] < rp — o1 + oM.
Sum up over k =1,...,T, to obtain

T

Zk::l(20[’“IE[JC(5LJ€) —f@)) < m—rra+ M? Zk Oéi

18 /34

Stochastic approximation — analysis

20, EB[f (2*) = f(2*)] < rp — o1 + oM.
Sum up over k =1,...,T, to obtain

Z::1(2akE[f(xk) —f@)) < m—rra+ M? Zk Oéi
< r+ M2 Zk az'

18 /34

Stochastic approximation — analysis

20, B[f (%) — f(z*)] < 7 — a1 + o M.

Sum up over k =1,...,T, to obtain

Z::1(2akE[f(xk) —f@)) < m—rra+ M? Zk Oéi
< r+ M2 Zk az.

To further analyze this sum, divide both sides by »", o, so

18 /34

Stochastic approximation — analysis

20, B[f (%) — f(z*)] < 7 — a1 + o M.

Sum up over k =1,...,T, to obtain
T *
Zk:l(QakE[f(xk) —f@@)]) < r—rpp+ M Zk o
< 7rm+ M2 Zk az.

To further analyze this sum, divide both sides by »", o, so

» Set v, = Z%kak'

» Thus, 7, > 0 and), 7% = 1; this allows us to write

18 /34

Stochastic approximation — analysis

20, B[f (%) — f(z*)] < 7 — a1 + o M.

Sum up over k =1,...,T, to obtain
T *
Zk:l(QakE[f(xk) —f@@)]) < r—rpp+ M Zk o
< 7rm+ M2 Zk az.

To further analyze this sum, divide both sides by »", o, so

» Set v, = Z%kak'

» Thus, 7, > 0 and), 7% = 1; this allows us to write

. r 4+ M2y, o2
B3,) - fan)] < P

18 /34

Stochastic approximation — analysis

» Bound looks similar to bound in subgradient method!

19/34

Stochastic approximation — analysis

» Bound looks similar to bound in subgradient method!

» But we wish to say something about 27

19/34

Stochastic approximation — analysis

» Bound looks similar to bound in subgradient method!
» But we wish to say something about 27

» Since v; > 0and >, 7 = 1, and we have 7, f (%)

19/34

Stochastic approximation — analysis

» Bound looks similar to bound in subgradient method!
» But we wish to say something about 27
» Since v; > 0and >, 7 = 1, and we have 7, f (%)

» Easier to talk about average iterate

T
T ._ k
Loy 1= E L T

19/34

Stochastic approximation — analysis

Bound looks similar to bound in subgradient method!
But we wish to say something about 27

Since 7 > 0 and >, 7% = 1, and we have 7 f (%)
Easier to talk about average iterate

T
T ._ k
Loy 1= E L T

f(ﬂﬁ:‘;,) <>m ka(xk) due to convexity

19/34

Stochastic approximation — analysis

Bound looks similar to bound in subgradient method!
But we wish to say something about 27

Since 7 > 0 and >, 7% = 1, and we have 7 f (%)
Easier to talk about average iterate

T
T ._ k
Loy 1= E L T

f(ﬂﬁzv) <>m ka(xk) due to convexity

So we finally obtain the inequality

r 4+ M? Dk ai
2Zk A '

E[f(xav) - f(:n*)] <

19/34

Stochastic approximation — analysis

Exercise
M Let Dy = max,ey ||z — x¥|2
& Assume oy = « is a constant. Then, observe that
D2, + M?To?
T *
E[f(zg,) — f(2)] < XQT
® Minimize the rhs over o > 0 to obtain the best stepsize

Show that this choice then yields: E[f(a7,) — f(a*)] < P22

& If T is not fixed in advance, then choose

0D
o = ——,
YT Ve

& Analyze E[f(z])) — f(z*)] with this choice of stepsize

k=1,2,...

20 /34

Sample average approximation

Assumption: regularization [|z||2 < B; w € Q closed, bounded.)

Function estimate: f(z) = E[F(z,w)]
Subgradient in 0f(z) = E[G(z,w)]

Sample Average Approximation (SAA):

m Collect samples w!, ... W™

m Empirical objective: fy(z) := + val F(z,w?)

21/34

Sample average approximation

Assumption: regularization [|z||2 < B; w € Q closed, bounded.

J

Function estimate: f(z) =
Subgradient in 0f(x) =

[G(

)]

Sample Average Approximation (SAA):

m Collect samples w!, ... W™

m Empirical objective: fN()= x ZZ L F(z,wh)

m aka Empirical Risk Minimization

21/34

Sample average approximation

Assumption: regularization [|z||2 < B; w € Q closed, bounded.

Function estimate: f(z) = E[F(z,w)]
Subgradient in 0f(z) = E[G(x,w)]

Sample Average Approximation (SAA):

m Collect samples w!, ... W™

m Empirical objective: fn(z) := + Zf\il F(z,w")
m aka Empirical Risk Minimization

m Confusing: Machine learners often optimize fN using
stochastic subgradient; but theoretical guarantees are then
only on the empirical suboptimality E[fnx(7%)] < ...

21/34

Sample average approximation

Assumption: regularization [|z||2 < B; w € Q closed, bounded.)

Function estimate: f(z) = E[F(z,w)]
Subgradient in 0f(z) = E[G(x,w)]

Sample Average Approximation (SAA):

Collect samples w!, ..., wv

Empirical objective: fn(z) := + Zf\il F(z,w")
aka Empirical Risk Minimization

Confusing: Machine learners often optimize fN using
stochastic subgradient; but theoretical guarantees are then
only on the empirical suboptimality E[fy(z%)] < ...

m For guarantees on f(Z*), extra work is needed regularization
+ unif. concentration used

f(@*) = f(a*) < O(1/Vk) + O(1/VN)

21/34

Stochastic Programming — modeling

Stochastic LP

min x1 + X9
wizy +x2 > 10
wory + T2 =

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

22 /34

Stochastic Programming — modeling

Stochastic LP

min x1 + X9
wir1 +x2 > 10
wory + T2 =

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
» The constraints are not deterministic!

» But we have an idea about what randomness is there

22 /34

Stochastic Programming — modeling

Stochastic LP

min x1 + X9
wiry +x2 > 10
wory + T2 =

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
» The constraints are not deterministic!

» But we have an idea about what randomness is there
» How do we solve this LP?

22 /34

Stochastic Programming — modeling

Stochastic LP

min x1 + X9
wiry+x2 > 10
wox1 +x2 >

x1,Ty > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
» The constraints are not deterministic!
» But we have an idea about what randomness is there
» How do we solve this LP?

» What does it even mean to solve it?

22 /34

Stochastic Programming — modeling

vVvyyvyyvyy

Stochastic LP

min x1 + X9
wizy +x2 > 10
woxy +x2 2>

x1,x2 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]
The constraints are not deterministic!
But we have an idea about what randomness is there
How do we solve this LP?
What does it even mean to solve it?

If w has been observed, problem becomes deterministic, and
can be solved as a usual LP (aka wait-and-watch)

22 /34

Stochastic Programming — modeling

» But we cannot “wait-and-watch” —

23/34

Stochastic Programming — modeling

» But we cannot “wait-and-watch” — we need to decide on z
before knowing the value of w

23 /34

Stochastic Programming — modeling

» But we cannot “wait-and-watch” — we need to decide on z
before knowing the value of w

» What to do without knowing exact values for wy, ws?

23 /34

Stochastic Programming — modeling

» But we cannot “wait-and-watch” — we need to decide on z
before knowing the value of w

» What to do without knowing exact values for wy, ws?

» Some ideas

o Guess the uncertainty
o Probabilistic / Chance constraints

o ...

23 /34

Stochastic Programming — modeling

Some guesses

& Unbiased / Average case: Choose mean values for each r.v.

& Robust / Worst case: Choose worst case values

& Explorative / Best case: Choose best case values

24 /34

Stochastic Programming — Example

min xj + o

w1T1 + X9 > 10
war1 + T2 > 5
T1,T9 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

Unbiased / Average case:
E[wl] = 3, E[WQ] = 2/3

min 1 + =9 xy + s =5.7143...

3T1 + 22
(2/3)1‘1 —+ X9

€1, T2

5

AVARAVARIV]

)

10 (z7,23) =~ (15/7,25/7).

25 /34

Stochastic Programming — Example

min xj + o

w1T1 + X9 > 10
war1 + T2 > 5
T1,T9 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

Worst case:
E[wl] = 3, E[WQ] = 2/3
min x1 + o xT"i_x;:lO
11 + 22
(1/3)x1 + 2

€1, T2

5

AVARAVARIV]

)

10 (21, 23) ~ (41/12,79/12).

26 /34

Stochastic Programming — Example

min xj + o

w1T1 + X9 > 10
war1 + T2 > 5
T1,T9 > 0,

where wy ~ U[1,5] and wy ~ U[1/3,1]

Best case:
E[wl] = 3, E[WQ] = 2/3

. * *_
min x4+ 2 ry+x3=95
oT1 + T2

1z + 22

AVAR VARV

Ty, T2

10 (w7, 23) =~ (17/8,23/8).

27 /34

Online optimization

28/34

Online optimization

e We have fixed and known F(z,w)

29/34

Online optimization

e We have fixed and known F(z,w)

o wh w? ... presented to us sequentially

Can be chosen adversarially!

29/34

Online optimization

e We have fixed and known F(z,w)

o wh w? ... presented to us sequentially

Can be chosen adversarially!

e Guess z*;

29/34

Online optimization

e We have fixed and known F(z,w)

o wh w? ... presented to us sequentially

Can be chosen adversarially!

e Guess z*; Observe w*;

29/34

Online optimization

e We have fixed and known F(z,w)

o wh w? ... presented to us sequentially

Can be chosen adversarially!

k

e Guess z*; Observe w*; incur cost F(z*,w*);

29/34

Online optimization

e We have fixed and known F(z,w)

o wh w? ... presented to us sequentially

Can be chosen adversarially!

e Guess z*; Observe w*; incur cost F(z*,w*); Update to z*+!

29/34

Online optimization

We have fixed and known F(x,w)

wl,w?, ... presented to us sequentially
Can be chosen adversarially!
Guess z¥; Observe w¥; incur cost F(z*,w"); Update to 2*+!

We get to see things only sequentially, and the sequence of
samples shown to us by nature may depend on our guesses

29 /34

Online optimization

We have fixed and known F(x,w)

wl,w?, ... presented to us sequentially

Can be chosen adversarially!

Guess z¥; Observe w¥; incur cost F(z*,w"); Update to 2*+!

We get to see things only sequentially, and the sequence of
samples shown to us by nature may depend on our guesses

So a typical goal is to minimize Regret

29 /34

Online optimization

We have fixed and known F(x,w)

wl,w?, ... presented to us sequentially

Can be chosen adversarially!

Guess z¥; Observe w¥; incur cost F(z*,w"); Update to 2*+!

We get to see things only sequentially, and the sequence of
samples shown to us by nature may depend on our guesses

So a typical goal is to minimize Regret

% E;;le F(ry, 2) — mingex % 2511 F(x,z)

29 /34

Online optimization

We have fixed and known F(x,w)

wl,w?, ... presented to us sequentially

Can be chosen adversarially!

Guess z¥; Observe w¥; incur cost F(z*,w"); Update to 2*+!

We get to see things only sequentially, and the sequence of
samples shown to us by nature may depend on our guesses

So a typical goal is to minimize Regret

% Z;;F:l F(zy, z;) — mingex % 25:1 F(z,z)

That is, difference from the best possible solution we could have
attained, had we been shown all the examples (z).

29 /34

Online optimization

We have fixed and known F(x,w)

wl,w?, ... presented to us sequentially

Can be chosen adversarially!

Guess z¥; Observe w¥; incur cost F(z*,w"); Update to 2*+!

We get to see things only sequentially, and the sequence of
samples shown to us by nature may depend on our guesses

So a typical goal is to minimize Regret

% Zg:l F(zy, z;) — mingex % 25:1 F(z,z)

That is, difference from the best possible solution we could have
attained, had we been shown all the examples (z).

Online optimization is an important idea in machine learning,
game theory, decision making, etc.

29 /34

Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
F(z,w) convex (in x); possibly nonsmooth
r € X, a closed, bounded set

30/34

Online gradient descent

Based on Zinkevich (2003)

Slight generalization:
F(z,w) convex (in x); possibly nonsmooth
r € X, a closed, bounded set

Simplify notation: fi.(z) = F(x,w")

Regret Ry := Zzzl fr(2%) — mingey Z;le Jr(z)

30/34

Online gradient descent

Algorithm:

Select some z° € X, and o > 0
Round k of algo (k > 0):

31/34

Online gradient descent

Algorithm:

Select some z° € X, and o > 0
Round k of algo (k > 0):
m Output z*

31/34

Online gradient descent

Algorithm:
Select some z° € X, and o > 0
Round k of algo (k > 0):

m Output z*
m Receive k-th function fj

31/34

Online gradient descent

Algorithm:

Select some z° € X, and o > 0
Round k of algo (k > 0):
m Output z*

m Receive k-th function fj
m Incur loss f(2")

31/34

Online gradient descent

Algorithm:

Select some z° € X, and o > 0
Round k of algo (k > 0):

m Output z*
Receive k-th function fj

Incur loss f(2*)
Pick gk S Ofk(u)

31/34

Online gradient descent

Algorithm:

Select some z° € X, and o > 0
Round k of algo (k > 0):
m Output z*
Receive k-th function fj
Incur loss f(2*)
Pick gk S Ofk(u)
Update: 2Ft1 = Py (2% — ayg")

31/34

Online gradient descent

Algorithm:

Select some z° € X, and o > 0
Round k of algo (k > 0):
m Output z*
Receive k-th function fj
Incur loss f(2*)
Pick g}C S Ofk(zk)
Update: 2Ft1 = Py (2% — ayg")

Using o, = ¢/ k + 1 and assuming ||gx||2 < G, can be
shown that average regret %RT < O(l/\/T)

31/34

OGD - regret bound

Assumption: Lipschitz condition ||0f]2 < G |

32/34

OGD - regret bound

Assumption: Lipschitz condition ||0f]2 < G)

T
xt = argminz fr(x)
reX =1

32/34

OGD - regret bound

Assumption: Lipschitz condition ||0f]2 < G)

T
xt = argminz fr(x)
reX =1

Since g € O fx(zk), we have

fe(@*) > fe(wk) + (gk, z* — x), or
Je(zr) = fu(x®) < (gr, 21 — 2%)

32/34

OGD - regret bound

Assumption: Lipschitz condition ||0f|l2 < G]

T
= argminz fr(x)
reX =1

Since gi € 0fi(xr), we have

fe(@*) > fe(wk) + (gk, z* — x), or
Je(wg) — fr(@®) < (gr, op — 2%)

Further analysis depends on bounding

k1 — 2713

32/34

OGD regret — bounding distance

Recall: 2441 = Px (2 — aggr). Thus,

|zre1 — %5 = ||Pr(or — argr) — 2|3
= || Px(xr — cawgr) — Px(2z")|3

33/34

OGD regret — bounding distance

Recall: 2441 = Px (2 — aggr). Thus,

|zre1 — %5 = ||Pr(or — argr) — 2|3
= ||Px(zr — angr) — Px(z")|3
(Px is nonexpan.) < |z —az* — Olkgkng

33/34

OGD regret — bounding distance

Recall: zy41 = Px(zr — argk). Thus,

|2kt1 — 23 = ||Px(zk — argr) — =[5
= ||Px(zx — argr) — Px(a*)|l3
(PX is nonexpan.) < ||£Uk -z - aka“%

= ok — 2*|3 + fllgrll3 — 20 (gk, z — 2¥)

33/34

OGD regret — bounding distance

Recall: zy41 = Px(zr — argk). Thus,

ka1 — 23

(PX is nonexpan.)

<gk‘7 T — CE'*>

<

| Py () — agr) — x*|3

| Px(z — argr) — Pr(2*)|)3

o) — 2% — crgill3

lzr, = 2™ [13 + aillgkll3 — 200 (gn, 21 —)

or — 213 — ller — 2*|3

Qak

ng%

33/34

OGD regret — bounding distance

Recall: zy41 = Px(zr — argk). Thus,

|2kt1 — 23 = ||Px(zk — argr) — =[5
| Px (2k — argr) — Pr(x*)]3
(PX is nonexpan.) < ||£Uk -z - aka“%

= ok — 2*|3 + fllgrll3 — 20 (gk, z — 2¥)

xp — 5|2 = lxper — z*|12 g
<gk7 Th —:L'*> < H k ”2 ” +1 H2 + 7”91@“%
Qak 2

Now invoke fi(zx) — fu(z*) < (gk, T — =*)

xE — 25|12 = leper — %12 s
felwn) — fulay < BN~ Wowen =27l o o
20zk 2

33/34

OGD regret — bounding distance

Recall: zy41 = Px(zr — argk). Thus,

|2kt1 — 23 = ||Px(zk — argr) — =[5
= || Px(xr — cawgr) — Px(z")|3
(PX is nonexpan.) < ||£Uk -z - akaHg

= Jzx —2")3 + allgrll3 — 20k (g, or —27)

xp — 5|2 = lxper — z*|12 g
<gk7 Th —:L'*> < H k ”2 ” +1 H2 + Hng%
20&]c 2

Now invoke fi(zx) — fu(z*) < (gk, T — =*)

< e =23 — llwnss — 27|13

Fe(wr) — fu(z®) < Do

Sumover k=1,...,T, let ap =c¢/Vk+ 1, use ||gi]l2 < G

(823 2
+ % gl

Obtain Ry < O(VT)

33/34

References

& A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust
stochastic approximation approach to stochastic programming.
(2009)

& J. Linderoth. Lecture slides on Stochastic Programming (2003).

34 /34

