Convex Optimization

(EE227A: UC Berkeley)

Lecture 18
(Proximal methods; Incremental methods — 1)

21 March, 2013

o

Suvrit Sra

Douglas-Rachford method

0€df(x)+ dg(x)

/19

Douglas-Rachford method

0€df(x)+ dg(x)

DR method: given 2V, iterate for k > 0
ak = proxg(zk)
vk = proxf(233k — 2P

Zk—l—l — Zk + 'Yk;(vk o C[Jk)

Douglas-Rachford method

0€df(x)+ dg(x)

DR method: given 2V, iterate for k > 0

ak = proxg(zk)

vk = proxf(233k — 2P

Zk—l—l — Zk + 'Yk;(vk o C[Jk)
For v, =1, we have

2L = R ok — gk

k+1

2Rl =2k 4 prox (2 proxg(zk) — M) — proxg(zk)

19

Douglas-Rachford method

z

k+1

=2k + prox (2 proxg(zk) —2F) - proxg(zk)

/19

Douglas-Rachford method

Zk:+1 — Zk + proxf(2 pI‘OXg(Zk) — Zk) — prOXg(Zk)

Dropping superscripts, we have the fixed-point iteration

z+ Tz
T:I+Pf(2Pg—I)—Pg

19

Douglas-Rachford method

Zk:+1 — Zk + proxf(2 pI‘OXg(Zk) — Zk) — prOXg(Zk)

Dropping superscripts, we have the fixed-point iteration

z+ Tz
T:[+Pf(2Pg—I)—Pg

Lemma DR can be written as: z < £(RyRy+1)z, where Ry denotes
the reflection operator 2Py — I (similarly Ry).

Exercise: Prove this claim.

19

Proximity for several functions

Optimizing sums of functions
@) = Hle—yl3+ Y fila)
flz) = Y filx)

19

Proximity for several functions

Optimizing sums of functions
@) = Hle—yl3+ Y fila)
flz) = Y filx)

DR does not work immediately

19

Product space trick

» Original problem over H = R"

/19

Product space trick

» Original problem over H = R"
» Suppose we have ", fi(z)

19

Product space trick

» Original problem over H = R"
» Suppose we have ", fi(z)

» Introduce new variables (z1, ..., %)

19

Product space trick

» Original problem over H = R"
» Suppose we have ", fi(z)
» Introduce new variables (z1, ..., %)

» Now problem is over domain H™ :=H X H x --- x H (m-times)

Product space trick

Original problem over H = R"
Suppose we have ", fi(z)
Introduce new variables (z1,...,Zn)
Now problem is over domain H™ :=H X H X - --
New constraint: 1 =29 = ... =z,
i,y 2t

st. 1 =X ="+ =T,

X H (m-times)

5/19

Product space trick

min f(2) + Is(a)

wherez e H" and B={z € H™ | z = (z,z, ...

19

Product space trick

min f(2) + Is(a)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)

6/19

Product space trick

mmin f(x) + Iz(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,- -, Ym)
> proxf(y) = (proxf1 (1), - - ,PTOXfm(Z/m))

6/19

Product space trick

mmin f(x) + Iz(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)

» prox;(y) = (proxy, (y1), ..., proxy, (Ym))
» Pp(y) can be solved as follows:

6/19

Product space trick

mmin f(x) + Iz(x)

wherez e H" and B={z € H™ | z = (z,z,...,2)}

> Lety = (y1,---,Ym)
> prox;(y) = (prox, (41), - ., prox;, (ym))
» Pp(y) can be solved as follows:
minzes 3lz —yl3
mingey D, %Hm —vill3
= =52

Exercise: Work out the details of DR with the above ideas.

Note: this trick works for all other situations!

6/19

Proximity operator for sums

min, ;]| —ylf + g(x) + h()

7/19

Proximity operator for sums

min, ;]| —ylf + g(x) + h()

Usually prox;,, # prox; o prox,

7/19

Proximity operator for sums

min, 3z —yl|3 + g(z) + h(z)

Usually prox;, , # prox; o prox,

Proximal-Dykstra method

Letxozy; w=029=0
k-th iteration (k > 0)

19

Proximity operator for sums

min, 3z —yl|3 + g(z) + h(z)

Usually prox;, , # prox; o prox,

Proximal-Dykstra method

Letxozy; w=029=0
k-th iteration (k > 0)
mwk = pI‘OXg(ZL'k + 2%)

m Pt =gk 4k -k

19

Proximity operator for sums

min, 3z —yl|3 + g(z) + h(z)

Usually prox;, , # prox; o prox,

Proximal-Dykstra method

Letxozy; w=029=0
k-th iteration (k > 0)
mwh = pI‘OXg(:L'k + 2%)
ubtt = gk 4k — wk
2P+ = prox,, (wk + 2%)
JO S S R .

19

Proximity operator for sums

min, 3z —yl|3 + g(z) + h(z)

Usually prox;, , # prox; o prox,

Proximal-Dykstra method

Letxozy; w=029=0
k-th iteration (k > 0)
mwh = pI‘OXg(:L'k + 2%)
ubtt = gk 4k — wk
2P+ = prox,, (wk + 2%)
JO S S R .

Why does it work?

19

Proximity operator for sums

min, 3z —yl|3 + g(z) + h(z)

Usually prox;, , # prox; o prox,

Proximal-Dykstra method

Letxozy; w=029=0
k-th iteration (k > 0)
mwk = pI‘OXg(ZL'k + 2%)
ubtt = gk 4k — wk
2P+ = prox,, (wk + 2%)
JO S S R .

Why does it work? After the break...!

19

Proximity operator for sums

min, 3z —yl|3 + g(z) + h(z)

Usually prox;, , # prox; o prox,

Proximal-Dykstra method

Letxozy; w=029=0
k-th iteration (k > 0)
mwk = pI‘OXg(ZL'k + 2%)
ubtt = gk 4k — wk
2P+ = prox,, (wk + 2%)
JO S S R .

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m > 3 functions.

Incremental methods

/19

Separable objectives

min

flx) =320 filw) + Ar(z)

/19

Separable objectives

min

flx) =320 filw) + Ar(z)

$k+1
karl

$k+l

Gradient / subgradient methods
a* — o, V(2" A=0,

Tp — ngg(.'lfk)7

prox

T

g(z%) € af («*) + ror(z)
(2% — ap V f(2))

19

Separable objectives

min f(z) =>"7" fi(z) + Ar(z)

$k+1
$k+1

$k+l

Gradient / subgradient methods
= xk—aka(xk) A=0,
z —akg(z®), g(a") € 0f (") + Nor(a")
(2" — oV f ("))

= ProXgy,,

How much computation does one iteration take?

19

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

10/19

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

And instead just perform the update?

k+1

ah = 2% — oV fig) ()

10/19

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

And instead just perform the update?

k+1

ah = 2% — oV fig) ()

» The update requires only gradient for f;q,

» One iteration now m times faster than with V f(z)

10/19

Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) € {1,2,...,m}?

And instead just perform the update?

karl

=2 — apV [y ()

» The update requires only gradient for f;q,

» One iteration now m times faster than with V f(z)

2
2%
% ¢

@ But does this make sense?

10/19

Incremental gradient methods

Q Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

11/19

Incremental gradient methods

Q Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

O Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

11/19

Incremental gradient methods

Q Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

O Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

Q If m is very large, many of the f;(x) may have similar
minimizers;

11/19

Incremental gradient methods

Q Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

O Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

Q If m is very large, many of the f;(x) may have similar
minimizers; by using the f; only individually we hope to take
advantage of this fact, and greatly speed up.

11/19

Incremental gradient methods

Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly
If m is very large, many of the f;(z) may have similar
minimizers; by using the f; only individually we hope to take
advantage of this fact, and greatly speed up.

Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

11/19

Incremental gradient methods

Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly
If m is very large, many of the f;(z) may have similar
minimizers; by using the f; only individually we hope to take
advantage of this fact, and greatly speed up.

Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11/19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

12 /19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Solving f’'(z) = 0 we obtain

12 /19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 25 alm—b2

» Solving f’'(z) = 0 we obtain

» Minimum of a single f;(x) (aiz — b))% is 2} = bi/a;

12 /19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Solving f’'(z) = 0 we obtain

. 2@
T = 2
. a4
A (A

» Minimum of a single fi(z) = 1(a;x — b;)% is 2} = b;/a;
» Notice now that

z* € [min;], max; zj] =: R

12 /19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min =3 g alm —b;)

» Notice: z* € [min; z}, max; z}] =: R

13 /19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

min 22 alm—b

» Notice: z* € [min; z}, max; z}] =: R
» If we have a scalar x that lies outside R?
» We see that

Vfi(z) = ai(a;x — b;)

Viz)

“ai(a;x — by)

13 /19

Exam pIe (Bertsekas)

» Assume all variables involved are scalars.

22 alm—b

» Notice: z* € [min; z}, max; z}] =: R
» If we have a scalar x that lies outside R?
» We see that

Vfi(z) = ai(a;x — b;)

Viz)

“ai(a;x — by)

» Vfi(z) has same sign as V f(x) So using V f;(x) instead of
V f(x) also ensures progress.

13 /19

Exam pIe (Bertsekas)

v

Assume all variables involved are scalars.

min 22 alm—b

Notice: z* € [min; z}, max; z}] =: R
If we have a scalar = that lies outside R?
We see that

Vfi(z) = ai(a;x — b;)

Viz)

“ai(a;x — by)

V fi(x) has same sign as V f(z) So using V f;(z) instead of
V f(x) also ensures progress.

But once inside region R, no guarantee that incremental
method will make progress towards optimum.

13 /19

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

14/19

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

k41 k
J

= prox, (")
pProxg,)

14/19

Incremental proximal method

min () = 3, /(@)

What if the f; are nonsmooth?

k+1 k
ag f

= ProX,, 1, (z%)

xk+1

k+1

2" = argmin (1| — 213 + fig (2))

i(k) € {1,2,...,m} picked uniformly at random.

14 /19

Incremental proximal-gradients

min ZZ fi(z) +r(z).

15/19

Incremental proximal-gradients

min ZZ fi(z) +r(z).

kL — prox,, , (xk — g Z:l Vfi(zi)), k=0,1,...,

15/19

Incremental proximal-gradients

min ZZ fi(z) +r(z).

kL — prox,, , (xk — g Z:l Vfi(zi)), k=0,1,...,

L gk

= V2D, i=1,...,m—1.

15/19

Incremental proximal-gradients

min Zl fi(z) +r(z).

P = prox,, (xk — N Z:l Vfi(zi)), k=0,1,...,

L gk

=2 -y VD, i=1,...,m—1

We can choose 1, = 1/L, where L is Lipschitz constant of V f(x)

15/19

Incremental proximal-gradients

min Zl fi(z) +r(z).

oFtl = prox,, (xk — Nk Z:l Vi), k=0,1,...,

L gk

= V2D, i=1,...,m—1.

We can choose 1, = 1/L, where L is Lipschitz constant of V f(x)

Does this work? \

15/19

Incremental methods: key realization

min (f(x) =Y, fi(x)) +r(z)

Gradient with error

V() = V@) 1 o)
oF = prox,, [7F — ap(V f(2F) + e(2"))]

16/19

Incremental methods: key realization

min (f(x) =Y, fi(x)) +r(z)

Gradient with error

V() = V@) 1 o)
oF = prox,, [7F — ap(V f(2F) + e(2"))]

So if in the limit error aie(z*) disappears, we should be ok!

16 /19

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

17 /19

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence

19

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence

» Error makes even smooth case more like nonsmooth case

19

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence
» Error makes even smooth case more like nonsmooth case

» So, convergence crucially depends on stepsize oy

17 /19

Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

» If we can control this error, we can control convergence
» Error makes even smooth case more like nonsmooth case
» So, convergence crucially depends on stepsize oy
Some stepsize choices
& o = ¢, a small enough constant
& o, — 0, >, o = oo (diminishing scalar)
& Constant for some iterations, diminish, again constant, repeat
& o = min(c,a/(b+ k)), where a,b,c > 0 (user chosen).

17 /19

Incremental gradient — summary

& Usually much faster (large m) when far from convergence

18/19

Incremental gradient — summary

& Usually much faster (large m) when far from convergence

& Slow progress near optimum (because «y, often too small)

18/19

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)

& Constant step a; = «, doesn’t always yield convergence

18 /19

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence

& Diminishing step a, = O(1/k) leads to convergence

18 /19

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence
& Diminishing step a, = O(1/k) leads to convergence

& Slow, sublinear rate of convergence

18 /19

Incremental gradient — summary

& Usually much faster (large m) when far from convergence
& Slow progress near optimum (because «y, often too small)
& Constant step a; = «, doesn’t always yield convergence
& Diminishing step a, = O(1/k) leads to convergence

& Slow, sublinear rate of convergence

& Optimal, incremental method seems not to be known

18 /19

Incremental gradient — summary

LK JE JE JE 2 2B 4

Usually much faster (large m) when far from convergence
Slow progress near optimum (because «y, often too small)
Constant step o = «, doesn't always yield convergence
Diminishing step o, = O(1/k) leads to convergence
Slow, sublinear rate of convergence

Optimal, incremental method seems not to be known

Idea extends to subgradient, and proximal setups

18 /19

Incremental gradient — summary

LK 2R 2K 2 2B 2 2 2

Usually much faster (large m) when far from convergence
Slow progress near optimum (because «y, often too small)
Constant step o = «, doesn't always yield convergence
Diminishing step o, = O(1/k) leads to convergence
Slow, sublinear rate of convergence

Optimal, incremental method seems not to be known
Idea extends to subgradient, and proximal setups

Some extensions also apply to nonconvex problems

18 /19

Incremental gradient — summary

Usually much faster (large m) when far from convergence
Slow progress near optimum (because «y, often too small)
Constant step o = «, doesn't always yield convergence
Diminishing step o, = O(1/k) leads to convergence
Slow, sublinear rate of convergence

Optimal, incremental method seems not to be known
Idea extends to subgradient, and proximal setups

Some extensions also apply to nonconvex problems

LK JE 2 JE 2B 2B 2 2 2

Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) — see bSpace.

18 /19

References

Combettes and Pesquet. Proximal splitting methods in signal
processing. (2010)

Bertsekas. Nonlinear Programming. (1999).

19/19

