
Convex Optimization
(EE227A: UC Berkeley)

Lecture 18
(Proximal methods; Incremental methods – I)

21 March, 2013

◦

Suvrit Sra



Douglas-Rachford method

0 ∈ ∂f(x) + ∂g(x)

DR method: given z0, iterate for k ≥ 0

xk = proxg(z
k)

vk = proxf (2x
k − zk)

zk+1 = zk + γk(v
k − xk)

For γk = 1, we have

zk+1 = zk + vk − xk

zk+1 = zk + proxf (2 proxg(z
k)− zk)− proxg(z

k)

2 / 19



Douglas-Rachford method

0 ∈ ∂f(x) + ∂g(x)

DR method: given z0, iterate for k ≥ 0

xk = proxg(z
k)

vk = proxf (2x
k − zk)

zk+1 = zk + γk(v
k − xk)

For γk = 1, we have

zk+1 = zk + vk − xk

zk+1 = zk + proxf (2 proxg(z
k)− zk)− proxg(z

k)

2 / 19



Douglas-Rachford method

0 ∈ ∂f(x) + ∂g(x)

DR method: given z0, iterate for k ≥ 0

xk = proxg(z
k)

vk = proxf (2x
k − zk)

zk+1 = zk + γk(v
k − xk)

For γk = 1, we have

zk+1 = zk + vk − xk

zk+1 = zk + proxf (2 proxg(z
k)− zk)− proxg(z

k)

2 / 19



Douglas-Rachford method

zk+1 = zk + proxf (2 proxg(z
k)− zk)− proxg(z

k)

Dropping superscripts, we have the fixed-point iteration

z ← Tz

T = I + Pf (2Pg − I)− Pg

Lemma DR can be written as: z ← 1
2(RfRg+I)z, where Rf denotes

the reflection operator 2Pf − I (similarly Rg).

Exercise: Prove this claim.

3 / 19



Douglas-Rachford method

zk+1 = zk + proxf (2 proxg(z
k)− zk)− proxg(z

k)

Dropping superscripts, we have the fixed-point iteration

z ← Tz

T = I + Pf (2Pg − I)− Pg

Lemma DR can be written as: z ← 1
2(RfRg+I)z, where Rf denotes

the reflection operator 2Pf − I (similarly Rg).

Exercise: Prove this claim.

3 / 19



Douglas-Rachford method

zk+1 = zk + proxf (2 proxg(z
k)− zk)− proxg(z

k)

Dropping superscripts, we have the fixed-point iteration

z ← Tz

T = I + Pf (2Pg − I)− Pg

Lemma DR can be written as: z ← 1
2(RfRg+I)z, where Rf denotes

the reflection operator 2Pf − I (similarly Rg).

Exercise: Prove this claim.

3 / 19



Proximity for several functions

Optimizing sums of functions

f(x) := 1
2‖x− y‖

2
2 +

∑
i
fi(x)

f(x) :=
∑

i
fi(x)

DR does not work immediately

4 / 19



Proximity for several functions

Optimizing sums of functions

f(x) := 1
2‖x− y‖

2
2 +

∑
i
fi(x)

f(x) :=
∑

i
fi(x)

DR does not work immediately

4 / 19



Product space trick

I Original problem over H = Rn

I Suppose we have
∑m

i=1 fi(x)

I Introduce new variables (x1, . . . , xm)

I Now problem is over domain Hm := H×H× · · · ×H (m-times)

I New constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

5 / 19



Product space trick

I Original problem over H = Rn

I Suppose we have
∑m

i=1 fi(x)

I Introduce new variables (x1, . . . , xm)

I Now problem is over domain Hm := H×H× · · · ×H (m-times)

I New constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

5 / 19



Product space trick

I Original problem over H = Rn

I Suppose we have
∑m

i=1 fi(x)

I Introduce new variables (x1, . . . , xm)

I Now problem is over domain Hm := H×H× · · · ×H (m-times)

I New constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

5 / 19



Product space trick

I Original problem over H = Rn

I Suppose we have
∑m

i=1 fi(x)

I Introduce new variables (x1, . . . , xm)

I Now problem is over domain Hm := H×H× · · · ×H (m-times)

I New constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

5 / 19



Product space trick

I Original problem over H = Rn

I Suppose we have
∑m

i=1 fi(x)

I Introduce new variables (x1, . . . , xm)

I Now problem is over domain Hm := H×H× · · · ×H (m-times)

I New constraint: x1 = x2 = . . . = xm

min
(x1,...,xm)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xm.

5 / 19



Product space trick

min
x
f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Let y = (y1, . . . , ym)

I proxf (y) = (proxf1(y1), . . . ,proxfm(ym))

I PB(y) can be solved as follows:

minz∈B
1
2‖z − y‖22

minx∈H
∑

i
1
2‖x− yi‖

2
2

=⇒ x = 1
m

∑
i yi

Exercise: Work out the details of DR with the above ideas.

Note: this trick works for all other situations!

6 / 19



Product space trick

min
x
f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Let y = (y1, . . . , ym)

I proxf (y) = (proxf1(y1), . . . ,proxfm(ym))

I PB(y) can be solved as follows:

minz∈B
1
2‖z − y‖22

minx∈H
∑

i
1
2‖x− yi‖

2
2

=⇒ x = 1
m

∑
i yi

Exercise: Work out the details of DR with the above ideas.

Note: this trick works for all other situations!

6 / 19



Product space trick

min
x
f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Let y = (y1, . . . , ym)

I proxf (y) = (proxf1(y1), . . . ,proxfm(ym))

I PB(y) can be solved as follows:

minz∈B
1
2‖z − y‖22

minx∈H
∑

i
1
2‖x− yi‖

2
2

=⇒ x = 1
m

∑
i yi

Exercise: Work out the details of DR with the above ideas.

Note: this trick works for all other situations!

6 / 19



Product space trick

min
x
f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Let y = (y1, . . . , ym)

I proxf (y) = (proxf1(y1), . . . ,proxfm(ym))

I PB(y) can be solved as follows:

minz∈B
1
2‖z − y‖22

minx∈H
∑

i
1
2‖x− yi‖

2
2

=⇒ x = 1
m

∑
i yi

Exercise: Work out the details of DR with the above ideas.

Note: this trick works for all other situations!

6 / 19



Product space trick

min
x
f(x) + IB(x)

where x ∈ Hm and B = {z ∈ Hm | z = (x, x, . . . , x)}

I Let y = (y1, . . . , ym)

I proxf (y) = (proxf1(y1), . . . ,proxfm(ym))

I PB(y) can be solved as follows:

minz∈B
1
2‖z − y‖22

minx∈H
∑

i
1
2‖x− yi‖

2
2

=⇒ x = 1
m

∑
i yi

Exercise: Work out the details of DR with the above ideas.

Note: this trick works for all other situations!

6 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work?

After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Proximity operator for sums

minx
1
2
‖x− y‖22 + g(x) + h(x)

Usually proxf+g 6= proxf ◦ proxg

Proximal-Dykstra method

1 Let x0 = y; u0 = 0, z0 = 0
2 k-th iteration (k ≥ 0)

wk = proxg(x
k + zk)

uk+1 = xk + uk − wk

xk+1 = proxh(w
k + zk)

zk+1 = wk + zk − xk+1

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel
Dykstra-like method for m ≥ 3 functions.

7 / 19



Incremental methods

8 / 19



Separable objectives

min f(x) =
∑m

i fi(x) + λr(x)

Gradient / subgradient methods

xk+1 = xk − αk∇f(xk) λ = 0,

xk+1 = xk − αkg(xk), g(xk) ∈ ∂f(xk) + λ∂r(xk)

xk+1 = proxαkr
(xk − αk∇f(xk))

How much computation does one iteration take?

9 / 19



Separable objectives

min f(x) =
∑m

i fi(x) + λr(x)

Gradient / subgradient methods

xk+1 = xk − αk∇f(xk) λ = 0,

xk+1 = xk − αkg(xk), g(xk) ∈ ∂f(xk) + λ∂r(xk)

xk+1 = proxαkr
(xk − αk∇f(xk))

How much computation does one iteration take?

9 / 19



Separable objectives

min f(x) =
∑m

i fi(x) + λr(x)

Gradient / subgradient methods

xk+1 = xk − αk∇f(xk) λ = 0,

xk+1 = xk − αkg(xk), g(xk) ∈ ∂f(xk) + λ∂r(xk)

xk+1 = proxαkr
(xk − αk∇f(xk))

How much computation does one iteration take?

9 / 19



Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) ∈ {1, 2, . . . ,m}?

And instead just perform the update?

xk+1 = xk − αk∇fi(k)(xk)

I The update requires only gradient for fi(k)

I One iteration now m times faster than with ∇f(x)

But does this make sense?

10 / 19



Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) ∈ {1, 2, . . . ,m}?

And instead just perform the update?

xk+1 = xk − αk∇fi(k)(xk)

I The update requires only gradient for fi(k)

I One iteration now m times faster than with ∇f(x)

But does this make sense?

10 / 19



Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) ∈ {1, 2, . . . ,m}?

And instead just perform the update?

xk+1 = xk − αk∇fi(k)(xk)

I The update requires only gradient for fi(k)

I One iteration now m times faster than with ∇f(x)

But does this make sense?

10 / 19



Incremental gradient methods

What if at iteration k, we randomly pick an integer
i(k) ∈ {1, 2, . . . ,m}?

And instead just perform the update?

xk+1 = xk − αk∇fi(k)(xk)

I The update requires only gradient for fi(k)

I One iteration now m times faster than with ∇f(x)

But does this make sense?

10 / 19



Incremental gradient methods

♥ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♥ Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

♥ If m is very large, many of the fi(x) may have similar
minimizers; by using the fi only individually we hope to take
advantage of this fact, and greatly speed up.

♥ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11 / 19



Incremental gradient methods

♥ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♥ Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

♥ If m is very large, many of the fi(x) may have similar
minimizers; by using the fi only individually we hope to take
advantage of this fact, and greatly speed up.

♥ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11 / 19



Incremental gradient methods

♥ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♥ Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

♥ If m is very large, many of the fi(x) may have similar
minimizers;

by using the fi only individually we hope to take
advantage of this fact, and greatly speed up.

♥ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11 / 19



Incremental gradient methods

♥ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♥ Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

♥ If m is very large, many of the fi(x) may have similar
minimizers; by using the fi only individually we hope to take
advantage of this fact, and greatly speed up.

♥ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11 / 19



Incremental gradient methods

♥ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♥ Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

♥ If m is very large, many of the fi(x) may have similar
minimizers; by using the fi only individually we hope to take
advantage of this fact, and greatly speed up.

♥ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11 / 19



Incremental gradient methods

♥ Old idea; has been used extensively as backpropagation in
neural networks, Widrow-Hoff least mean squares, gradient
methods with errors, stochastic gradient, etc.

♥ Can effectively use to “stream” through data — go through
components one by one, say cyclically instead of randomly

♥ If m is very large, many of the fi(x) may have similar
minimizers; by using the fi only individually we hope to take
advantage of this fact, and greatly speed up.

♥ Incremental methods usually effective far from the eventual
limit (solution) — become very slow close to the solution.

Example!

11 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Solving f ′(x) = 0 we obtain

x∗ =

∑
i aibi∑
i a

2
i

I Minimum of a single fi(x) =
1
2(aix− bi)

2 is x∗i = bi/ai

I Notice now that

x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

12 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Solving f ′(x) = 0 we obtain

x∗ =

∑
i aibi∑
i a

2
i

I Minimum of a single fi(x) =
1
2(aix− bi)

2 is x∗i = bi/ai

I Notice now that

x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

12 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Solving f ′(x) = 0 we obtain

x∗ =

∑
i aibi∑
i a

2
i

I Minimum of a single fi(x) =
1
2(aix− bi)

2 is x∗i = bi/ai

I Notice now that

x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

12 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Solving f ′(x) = 0 we obtain

x∗ =

∑
i aibi∑
i a

2
i

I Minimum of a single fi(x) =
1
2(aix− bi)

2 is x∗i = bi/ai

I Notice now that

x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

12 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Notice: x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

I If we have a scalar x that lies outside R?

I We see that

∇fi(x) = ai(aix− bi)

∇f(x) =
∑

i
ai(aix− bi)

I ∇fi(x) has same sign as ∇f(x) So using ∇fi(x) instead of
∇f(x) also ensures progress.

I But once inside region R, no guarantee that incremental
method will make progress towards optimum.

13 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Notice: x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

I If we have a scalar x that lies outside R?

I We see that

∇fi(x) = ai(aix− bi)

∇f(x) =
∑

i
ai(aix− bi)

I ∇fi(x) has same sign as ∇f(x) So using ∇fi(x) instead of
∇f(x) also ensures progress.

I But once inside region R, no guarantee that incremental
method will make progress towards optimum.

13 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Notice: x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

I If we have a scalar x that lies outside R?

I We see that

∇fi(x) = ai(aix− bi)

∇f(x) =
∑

i
ai(aix− bi)

I ∇fi(x) has same sign as ∇f(x) So using ∇fi(x) instead of
∇f(x) also ensures progress.

I But once inside region R, no guarantee that incremental
method will make progress towards optimum.

13 / 19



Example (Bertsekas)

I Assume all variables involved are scalars.

min f(x) = 1
2

∑m

i=1
(aix− bi)2

I Notice: x∗ ∈ [mini x
∗
i ,maxi x

∗
i ] =: R

I If we have a scalar x that lies outside R?

I We see that

∇fi(x) = ai(aix− bi)

∇f(x) =
∑

i
ai(aix− bi)

I ∇fi(x) has same sign as ∇f(x) So using ∇fi(x) instead of
∇f(x) also ensures progress.

I But once inside region R, no guarantee that incremental
method will make progress towards optimum.

13 / 19



Incremental proximal method

min f(x) =
∑

i fi(x)

What if the fi are nonsmooth?

xk+1 = proxαkf
(xk)

xk+1 = proxαkfi(k)
(xk)

xk+1 = argmin
(
1
2
‖x− xk‖22 + fi(k)(x)

)
i(k) ∈ {1, 2, . . . ,m} picked uniformly at random.

14 / 19



Incremental proximal method

min f(x) =
∑

i fi(x)

What if the fi are nonsmooth?

xk+1 = proxαkf
(xk)

xk+1 = proxαkfi(k)
(xk)

xk+1 = argmin
(
1
2
‖x− xk‖22 + fi(k)(x)

)
i(k) ∈ {1, 2, . . . ,m} picked uniformly at random.

14 / 19



Incremental proximal method

min f(x) =
∑

i fi(x)

What if the fi are nonsmooth?

xk+1 = proxαkf
(xk)

xk+1 = proxαkfi(k)
(xk)

xk+1 = argmin
(
1
2
‖x− xk‖22 + fi(k)(x)

)
i(k) ∈ {1, 2, . . . ,m} picked uniformly at random.

14 / 19



Incremental proximal-gradients

min
∑

i
fi(x) + r(x).

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − ηk∇fi(zi), i = 1, . . . ,m− 1.

We can choose ηk = 1/L, where L is Lipschitz constant of ∇f(x)

Does this work?

15 / 19



Incremental proximal-gradients

min
∑

i
fi(x) + r(x).

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − ηk∇fi(zi), i = 1, . . . ,m− 1.

We can choose ηk = 1/L, where L is Lipschitz constant of ∇f(x)

Does this work?

15 / 19



Incremental proximal-gradients

min
∑

i
fi(x) + r(x).

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − ηk∇fi(zi), i = 1, . . . ,m− 1.

We can choose ηk = 1/L, where L is Lipschitz constant of ∇f(x)

Does this work?

15 / 19



Incremental proximal-gradients

min
∑

i
fi(x) + r(x).

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − ηk∇fi(zi), i = 1, . . . ,m− 1.

We can choose ηk = 1/L, where L is Lipschitz constant of ∇f(x)

Does this work?

15 / 19



Incremental proximal-gradients

min
∑

i
fi(x) + r(x).

xk+1 = proxηkr
(
xk − ηk

∑m

i=1
∇fi(zi)

)
, k = 0, 1, . . . ,

z1 = xk

zi+1 = zi − ηk∇fi(zi), i = 1, . . . ,m− 1.

We can choose ηk = 1/L, where L is Lipschitz constant of ∇f(x)

Does this work?

15 / 19



Incremental methods: key realization

min (f(x) =
∑

i fi(x)) + r(x)

Gradient with error

∇fi(k)(x) = ∇f(x) + e(x)

xk+1 = proxαr[x
k − αk(∇f(xk) + e(xk))]

So if in the limit error αke(x
k) disappears, we should be ok!

16 / 19



Incremental methods: key realization

min (f(x) =
∑

i fi(x)) + r(x)

Gradient with error

∇fi(k)(x) = ∇f(x) + e(x)

xk+1 = proxαr[x
k − αk(∇f(xk) + e(xk))]

So if in the limit error αke(x
k) disappears, we should be ok!

16 / 19



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

17 / 19



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

17 / 19



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

17 / 19



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

17 / 19



Incremental gradient methods

Incremental gradient methods may be viewed as

Gradient methods with error in gradient computation

I If we can control this error, we can control convergence

I Error makes even smooth case more like nonsmooth case

I So, convergence crucially depends on stepsize αk

Some stepsize choices

♠ αk = c, a small enough constant

♠ αk → 0,
∑

k αk =∞ (diminishing scalar)

♠ Constant for some iterations, diminish, again constant, repeat

♠ αk = min(c, a/(b+ k)), where a, b, c > 0 (user chosen).

17 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



Incremental gradient – summary

♠ Usually much faster (large m) when far from convergence

♠ Slow progress near optimum (because αk often too small)

♠ Constant step αk = α, doesn’t always yield convergence

♠ Diminishing step αk = O(1/k) leads to convergence

♠ Slow, sublinear rate of convergence

♠ Optimal, incremental method seems not to be known

♠ Idea extends to subgradient, and proximal setups

♠ Some extensions also apply to nonconvex problems

♠ Some extend to parallel and distributed computation

Read (omit proofs): “Incremental methods survey” by D. P.
Bertsekas (2010) – see bSpace.

18 / 19



References

1 Combettes and Pesquet. Proximal splitting methods in signal
processing. (2010)

2 Bertsekas. Nonlinear Programming. (1999).

19 / 19


