Convex Optimization

 (EE227A: UC Berkeley)Lecture 18
(Proximal methods; Incremental methods - I)

21 March, 2013

Suvrit Sra

$0 \in \partial f(x)+\partial g(x)$

$$
0 \in \partial f(x)+\partial g(x)
$$

DR method: given z^{0}, iterate for $k \geq 0$

$$
\begin{aligned}
x^{k} & =\operatorname{prox}_{g}\left(z^{k}\right) \\
v^{k} & =\operatorname{prox}_{f}\left(2 x^{k}-z^{k}\right) \\
z^{k+1} & =z^{k}+\gamma_{k}\left(v^{k}-x^{k}\right)
\end{aligned}
$$

$$
0 \in \partial f(x)+\partial g(x)
$$

DR method: given z^{0}, iterate for $k \geq 0$

$$
\begin{aligned}
x^{k} & =\operatorname{prox}_{g}\left(z^{k}\right) \\
v^{k} & =\operatorname{prox}_{f}\left(2 x^{k}-z^{k}\right) \\
z^{k+1} & =z^{k}+\gamma_{k}\left(v^{k}-x^{k}\right)
\end{aligned}
$$

For $\gamma_{k}=1$, we have

$$
\begin{aligned}
& z^{k+1}=z^{k}+v^{k}-x^{k} \\
& z^{k+1}=z^{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{g}\left(z^{k}\right)-z^{k}\right)-\operatorname{prox}_{g}\left(z^{k}\right)
\end{aligned}
$$

Douglas-Rachford method

$$
z^{k+1}=z^{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{g}\left(z^{k}\right)-z^{k}\right)-\operatorname{prox}_{g}\left(z^{k}\right)
$$

Douglas-Rachford method

$$
z^{k+1}=z^{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{g}\left(z^{k}\right)-z^{k}\right)-\operatorname{prox}_{g}\left(z^{k}\right)
$$

Dropping superscripts, we have the fixed-point iteration

$$
\begin{gathered}
z \leftarrow T z \\
T=I+P_{f}\left(2 P_{g}-I\right)-P_{g}
\end{gathered}
$$

Douglas-Rachford method

$$
z^{k+1}=z^{k}+\operatorname{prox}_{f}\left(2 \operatorname{prox}_{g}\left(z^{k}\right)-z^{k}\right)-\operatorname{prox}_{g}\left(z^{k}\right)
$$

Dropping superscripts, we have the fixed-point iteration

$$
\begin{gathered}
z \leftarrow T z \\
T=I+P_{f}\left(2 P_{g}-I\right)-P_{g}
\end{gathered}
$$

Lemma DR can be written as: $z \leftarrow \frac{1}{2}\left(R_{f} R_{g}+I\right) z$, where R_{f} denotes the reflection operator $2 P_{f}-I$ (similarly R_{g}).

Exercise: Prove this claim.

Proximity for several functions

Optimizing sums of functions

$$
\begin{aligned}
f(x) & :=\frac{1}{2}\|x-y\|_{2}^{2}+\sum_{i} f_{i}(x) \\
f(x) & :=\sum_{i} f_{i}(x)
\end{aligned}
$$

Optimizing sums of functions

$$
\begin{aligned}
f(x) & :=\frac{1}{2}\|x-y\|_{2}^{2}+\sum_{i} f_{i}(x) \\
f(x) & :=\sum_{i} f_{i}(x)
\end{aligned}
$$

DR does not work immediately

Product space trick

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Introduce new variables $\left(x_{1}, \ldots, x_{m}\right)$
- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Introduce new variables $\left(x_{1}, \ldots, x_{m}\right)$
- Now problem is over domain $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)
- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{m} f_{i}(x)$
- Introduce new variables $\left(x_{1}, \ldots, x_{m}\right)$
- Now problem is over domain $\mathcal{H}^{m}:=\mathcal{H} \times \mathcal{H} \times \cdots \times \mathcal{H}$ (m-times)
- New constraint: $x_{1}=x_{2}=\ldots=x_{m}$

$$
\begin{array}{ll}
& \min _{\left(x_{1}, \ldots, x_{m}\right)} \quad \sum_{i} f_{i}\left(x_{i}\right) \\
\text { s.t. } & x_{1}=x_{2}=\cdots=x_{m} .
\end{array}
$$

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
- $\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
- $\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$
- $P_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{I}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{m}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{m} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{m}\right)$
- $\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{m}}\left(y_{m}\right)\right)$
- $P_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$
\begin{array}{cc}
\min _{\boldsymbol{z} \in \mathcal{B}} & \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{y}\|_{2}^{2} \\
\min _{x \in \mathcal{H}} & \sum_{i} \frac{1}{2}\left\|x-y_{i}\right\|_{2}^{2} \\
\Longrightarrow & x=\frac{1}{m} \sum_{i} y_{i}
\end{array}
$$

Exercise: Work out the details of DR with the above ideas.
Note: this trick works for all other situations!

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximal-Dykstra method

1 Let $x^{0}=y ; u^{0}=0, z^{0}=0$
$2 k$-th iteration $(k \geq 0)$

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximal-Dykstra method

1 Let $x^{0}=y ; u^{0}=0, z^{0}=0$
$2 k$-th iteration $(k \geq 0)$

- $w^{k}=\operatorname{prox}_{g}\left(x^{k}+z^{k}\right)$
- $u^{k+1}=x^{k}+u^{k}-w^{k}$

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximal-Dykstra method

1 Let $x^{0}=y ; u^{0}=0, z^{0}=0$
$2 k$-th iteration $(k \geq 0)$
■ $w^{k}=\operatorname{prox}_{g}\left(x^{k}+z^{k}\right)$
■ $u^{k+1}=x^{k}+u^{k}-w^{k}$
■ $x^{k+1}=\operatorname{prox}_{h}\left(w^{k}+z^{k}\right)$
■ $z^{k+1}=w^{k}+z^{k}-x^{k+1}$

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximal-Dykstra method

1 Let $x^{0}=y ; u^{0}=0, z^{0}=0$
$2 k$-th iteration $(k \geq 0)$

- $w^{k}=\operatorname{prox}_{g}\left(x^{k}+z^{k}\right)$

■ $u^{k+1}=x^{k}+u^{k}-w^{k}$
■ $x^{k+1}=\operatorname{prox}_{h}\left(w^{k}+z^{k}\right)$
■ $z^{k+1}=w^{k}+z^{k}-x^{k+1}$
Why does it work?

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximal-Dykstra method

1 Let $x^{0}=y ; u^{0}=0, z^{0}=0$
$2 k$-th iteration $(k \geq 0)$
■ $w^{k}=\operatorname{prox}_{g}\left(x^{k}+z^{k}\right)$
■ $u^{k+1}=x^{k}+u^{k}-w^{k}$
■ $x^{k+1}=\operatorname{prox}_{h}\left(w^{k}+z^{k}\right)$
■ $z^{k+1}=w^{k}+z^{k}-x^{k+1}$
Why does it work? After the break...!

Proximity operator for sums

$$
\min _{x} \frac{1}{2}\|x-y\|_{2}^{2}+g(x)+h(x)
$$

Usually $\operatorname{prox}_{f+g} \neq \operatorname{prox}_{f} \circ \operatorname{prox}_{g}$

Proximal-Dykstra method

1 Let $x^{0}=y ; u^{0}=0, z^{0}=0$
$2 k$-th iteration $(k \geq 0)$

- $w^{k}=\operatorname{prox}_{g}\left(x^{k}+z^{k}\right)$
- $u^{k+1}=x^{k}+u^{k}-w^{k}$
- $x^{k+1}=\operatorname{prox}_{h}\left(w^{k}+z^{k}\right)$
- $z^{k+1}=w^{k}+z^{k}-x^{k+1}$

Why does it work? After the break...!

Exercise: Use the product-space trick to extend this to a parallel Dykstra-like method for $m \geq 3$ functions.

Incremental methods

Separable objectives

$$
\min \quad f(x)=\sum_{i}^{m} f_{i}(x)+\lambda r(x)
$$

Separable objectives

$$
\min \quad f(x)=\sum_{i}^{m} f_{i}(x)+\lambda r(x)
$$

Gradient / subgradient methods

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha_{k} \nabla f\left(x^{k}\right) \quad \lambda=0, \\
x^{k+1} & =x_{k}-\alpha_{k} g\left(x^{k}\right), \quad g\left(x^{k}\right) \in \partial f\left(x^{k}\right)+\lambda \partial r\left(x^{k}\right) \\
x^{k+1} & =\operatorname{prox}_{\alpha_{k} r}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
\end{aligned}
$$

Separable objectives

$$
\min \quad f(x)=\sum_{i}^{m} f_{i}(x)+\lambda r(x)
$$

Gradient / subgradient methods

$$
\begin{aligned}
x^{k+1} & =x^{k}-\alpha_{k} \nabla f\left(x^{k}\right) \quad \lambda=0, \\
x^{k+1} & =x_{k}-\alpha_{k} g\left(x^{k}\right), \quad g\left(x^{k}\right) \in \partial f\left(x^{k}\right)+\lambda \partial r\left(x^{k}\right) \\
x^{k+1} & =\operatorname{prox}_{\alpha_{k} r}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
\end{aligned}
$$

How much computation does one iteration take?

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

And instead just perform the update?

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
$$

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

And instead just perform the update?

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
$$

- The update requires only gradient for $f_{i(k)}$
- One iteration now m times faster than with $\nabla f(x)$

Incremental gradient methods

What if at iteration k, we randomly pick an integer

$$
i(k) \in\{1,2, \ldots, m\} ?
$$

And instead just perform the update?

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i(k)}\left(x_{k}\right)
$$

- The update requires only gradient for $f_{i(k)}$
- One iteration now m times faster than with $\nabla f(x)$

But does this make sense?

Incremental gradient methods

\odot Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.

Incremental gradient methods

\bigcirc Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
\bigcirc Can effectively use to "stream" through data - go through components one by one, say cyclically instead of randomly

Incremental gradient methods

\bigcirc Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
\bigcirc Can effectively use to "stream" through data - go through components one by one, say cyclically instead of randomly
\bigcirc If m is very large, many of the $f_{i}(x)$ may have similar minimizers;

Incremental gradient methods

\bigcirc Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
\bigcirc Can effectively use to "stream" through data - go through components one by one, say cyclically instead of randomly
\bigcirc If m is very large, many of the $f_{i}(x)$ may have similar minimizers; by using the f_{i} only individually we hope to take advantage of this fact, and greatly speed up.

Incremental gradient methods

\bigcirc Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
\bigcirc Can effectively use to "stream" through data - go through components one by one, say cyclically instead of randomly
\bigcirc If m is very large, many of the $f_{i}(x)$ may have similar minimizers; by using the f_{i} only individually we hope to take advantage of this fact, and greatly speed up.
\bigcirc Incremental methods usually effective far from the eventual limit (solution) - become very slow close to the solution.

Incremental gradient methods

\bigcirc Old idea; has been used extensively as backpropagation in neural networks, Widrow-Hoff least mean squares, gradient methods with errors, stochastic gradient, etc.
\bigcirc Can effectively use to "stream" through data - go through components one by one, say cyclically instead of randomly
\bigcirc If m is very large, many of the $f_{i}(x)$ may have similar minimizers; by using the f_{i} only individually we hope to take advantage of this fact, and greatly speed up.
\bigcirc Incremental methods usually effective far from the eventual limit (solution) - become very slow close to the solution.

Example!

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Solving $f^{\prime}(x)=0$ we obtain

$$
x^{*}=\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}^{2}}
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Solving $f^{\prime}(x)=0$ we obtain

$$
x^{*}=\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}^{2}}
$$

- Minimum of a single $f_{i}(x)=\frac{1}{2}\left(a_{i} x-b_{i}\right)^{2}$ is $x_{i}^{*}=b_{i} / a_{i}$
- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Solving $f^{\prime}(x)=0$ we obtain

$$
x^{*}=\frac{\sum_{i} a_{i} b_{i}}{\sum_{i} a_{i}^{2}}
$$

- Minimum of a single $f_{i}(x)=\frac{1}{2}\left(a_{i} x-b_{i}\right)^{2}$ is $x_{i}^{*}=b_{i} / a_{i}$
- Notice now that

$$
x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- If we have a scalar x that lies outside R ?
- We see that

$$
\begin{aligned}
\nabla f_{i}(x) & =a_{i}\left(a_{i} x-b_{i}\right) \\
\nabla f(x) & =\sum_{i} a_{i}\left(a_{i} x-b_{i}\right)
\end{aligned}
$$

- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- If we have a scalar x that lies outside R ?
- We see that

$$
\begin{aligned}
& \nabla f_{i}(x)=a_{i}\left(a_{i} x-b_{i}\right) \\
& \nabla f(x)=\sum_{i} a_{i}\left(a_{i} x-b_{i}\right)
\end{aligned}
$$

- $\nabla f_{i}(x)$ has same sign as $\nabla f(x)$ So using $\nabla f_{i}(x)$ instead of $\nabla f(x)$ also ensures progress.
- Assume all variables involved are scalars.

$$
\min \quad f(x)=\frac{1}{2} \sum_{i=1}^{m}\left(a_{i} x-b_{i}\right)^{2}
$$

- Notice: $x^{*} \in\left[\min _{i} x_{i}^{*}, \max _{i} x_{i}^{*}\right]=: R$
- If we have a scalar x that lies outside R ?
- We see that

$$
\begin{aligned}
& \nabla f_{i}(x)=a_{i}\left(a_{i} x-b_{i}\right) \\
& \nabla f(x)=\sum_{i} a_{i}\left(a_{i} x-b_{i}\right)
\end{aligned}
$$

- $\nabla f_{i}(x)$ has same sign as $\nabla f(x)$ So using $\nabla f_{i}(x)$ instead of $\nabla f(x)$ also ensures progress.
- But once inside region R, no guarantee that incremental method will make progress towards optimum.

$$
\min \quad f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
\min \quad f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
-x^{k+1}=\operatorname{prox}_{\alpha_{k} f}\left(x^{k}\right)
$$

$$
\min \quad f(x)=\sum_{i} f_{i}(x)
$$

What if the f_{i} are nonsmooth?

$$
\begin{gathered}
-x^{k+1}=\operatorname{prox}_{\alpha_{k} f}\left(x^{k}\right) \\
x^{k+1}=\operatorname{prox}_{\alpha_{k} f_{i(k)}}\left(x^{k}\right) \\
x^{k+1}=\operatorname{argmin}\left(\frac{1}{2}\left\|x-x_{k}\right\|_{2}^{2}+f_{i(k)}(x)\right)
\end{gathered}
$$

$i(k) \in\{1,2, \ldots, m\}$ picked uniformly at random.

Incremental proximal-gradients

$$
\min \quad \sum_{i} f_{i}(x)+r(x)
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \quad \sum_{i} f_{i}(x)+r(x) \\
x^{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x^{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z^{i}\right)\right), \quad k=0,1, \ldots
\end{gathered}
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) . \\
x^{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x^{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z^{i}\right)\right), \quad k=0,1, \ldots, \\
z^{1}=x^{k} \\
z^{i+1}=z^{i}-\eta_{k} \nabla f_{i}\left(z^{i}\right), \quad i=1, \ldots, m-1 .
\end{gathered}
$$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) . \\
x^{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x^{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z^{i}\right)\right), \quad k=0,1, \ldots, \\
z^{1}=x^{k} \\
z^{i+1}=z^{i}-\eta_{k} \nabla f_{i}\left(z^{i}\right), \quad i=1, \ldots, m-1 .
\end{gathered}
$$

We can choose $\eta_{k}=1 / L$, where L is Lipschitz constant of $\nabla f(x)$

Incremental proximal-gradients

$$
\begin{gathered}
\min \sum_{i} f_{i}(x)+r(x) . \\
x^{k+1}=\operatorname{prox}_{\eta_{k} r}\left(x^{k}-\eta_{k} \sum_{i=1}^{m} \nabla f_{i}\left(z^{i}\right)\right), \quad k=0,1, \ldots, \\
z^{1}=x^{k} \\
z^{i+1}=z^{i}-\eta_{k} \nabla f_{i}\left(z^{i}\right), \quad i=1, \ldots, m-1 .
\end{gathered}
$$

We can choose $\eta_{k}=1 / L$, where L is Lipschitz constant of $\nabla f(x)$
Does this work?

Incremental methods: key realization

$$
\min \quad\left(f(x)=\sum_{i} f_{i}(x)\right)+r(x)
$$

Gradient with error

$$
\begin{gathered}
\nabla f_{i(k)}(x)=\nabla f(x)+e(x) \\
x^{k+1}=\operatorname{prox}_{\alpha r}\left[x^{k}-\alpha_{k}\left(\nabla f\left(x^{k}\right)+e\left(x^{k}\right)\right)\right]
\end{gathered}
$$

Incremental methods: key realization

$$
\min \quad\left(f(x)=\sum_{i} f_{i}(x)\right)+r(x)
$$

Gradient with error

$$
\begin{gathered}
\nabla f_{i(k)}(x)=\nabla f(x)+e(x) \\
x^{k+1}=\operatorname{prox}_{\alpha r}\left[x^{k}-\alpha_{k}\left(\nabla f\left(x^{k}\right)+e\left(x^{k}\right)\right)\right]
\end{gathered}
$$

So if in the limit error $\alpha_{k} e\left(x^{k}\right)$ disappears, we should be ok!

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence
- Error makes even smooth case more like nonsmooth case

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence
- Error makes even smooth case more like nonsmooth case
- So, convergence crucially depends on stepsize α_{k}

Incremental gradient methods

Incremental gradient methods may be viewed as
Gradient methods with error in gradient computation

- If we can control this error, we can control convergence
- Error makes even smooth case more like nonsmooth case
- So, convergence crucially depends on stepsize α_{k}

Some stepsize choices
A $\alpha_{k}=c$, a small enough constant
© $\alpha_{k} \rightarrow 0, \sum_{k} \alpha_{k}=\infty$ (diminishing scalar)
© Constant for some iterations, diminish, again constant, repeat
© $\alpha_{k}=\min (c, a /(b+k))$, where $a, b, c>0$ (user chosen).

Incremental gradient - summary

A Usually much faster (large m) when far from convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
\uparrow Slow progress near optimum (because α_{k} often too small)

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
\uparrow Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
A Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
© Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
A Slow, sublinear rate of convergence

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
A Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence

- Slow, sublinear rate of convergence

A Optimal, incremental method seems not to be known

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
A Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
A Slow, sublinear rate of convergence
© Optimal, incremental method seems not to be known
© Idea extends to subgradient, and proximal setups

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
© Slow progress near optimum (because α_{k} often too small)
A Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
A Slow, sublinear rate of convergence
A Optimal, incremental method seems not to be known
A Idea extends to subgradient, and proximal setups
© Some extensions also apply to nonconvex problems

Incremental gradient - summary

A Usually much faster (large m) when far from convergence
\uparrow Slow progress near optimum (because α_{k} often too small)
© Constant step $\alpha_{k}=\alpha$, doesn't always yield convergence
© Diminishing step $\alpha_{k}=O(1 / k)$ leads to convergence
A Slow, sublinear rate of convergence
A Optimal, incremental method seems not to be known
A Idea extends to subgradient, and proximal setups
© Some extensions also apply to nonconvex problems
A Some extend to parallel and distributed computation
Read (omit proofs): "Incremental methods survey" by D. P. Bertsekas (2010) - see bSpace.

1 Combettes and Pesquet. Proximal splitting methods in signal processing. (2010)
2 Bertsekas. Nonlinear Programming. (1999).

