Convex Optimization

 (EE227A: UC Berkeley)Lecture 16
(Proximal methods)
14 March, 2013

Suvrit Sra

Organizational

4 HW3 will be released later today on bSpace

- Midterm to be out sometime on 18th
(HW 2 solutions to be out before midterm released
© 19th March - review session to recap important material
($\boldsymbol{\sim}$ 21st March, 2013 - midterm due beginning of class.

Revisiting Gradient Projection

```
\(\min \quad f(x) \quad x \in \mathcal{X}\)
```


Gradient projection

$$
x^{k+1}=P\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

where P denotes orthogonal projection onto \mathcal{X}.

Revisiting Gradient Projection

```
min}\quadf(x)\quadx\in\mathcal{X
```


Gradient projection

$$
x^{k+1}=P\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

where P denotes orthogonal projection onto \mathcal{X}.

- Mimic unconstrained case proof
- Hinges on firm nonexpansivity of P
- Also key: stationarity property $x^{*}=P\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)$

Gradient projection - convergence

Lemma If x^{*} is optimal for problem, then $x^{*}=P\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right)$

- Denote $g^{*} \equiv \nabla f\left(x^{*}\right)$ as before.
- Optimality condition: $\left\langle g^{*}, x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$.
- Optimality for proj: $z=P y \Longrightarrow\langle z-y, x-z\rangle \geq 0 \forall x \in \mathcal{X}$.
- Plug $z \leftarrow x^{*}$, and $y \leftarrow x^{*}-\alpha g^{*}$,

$$
\begin{aligned}
\left\langle x^{*}-y, x-x^{*}\right\rangle \geq 0 & \Longrightarrow\left\langle x^{*}-x^{*}+\alpha g^{*}, x-x^{*}\right\rangle \geq 0 \\
& \Longrightarrow\left\langle\alpha g^{*}, x-x^{*}\right\rangle \geq 0 \\
& \Longrightarrow\left\langle g^{*}, x-x^{*}\right\rangle \geq 0 \\
& \Longrightarrow x^{*} \text { is optimal. }
\end{aligned}
$$

Gradient projection - convergence

Now we show that $\left\|x^{k+1}-x^{*}\right\|_{2} \leq\left\|x^{k}-x^{*}\right\|_{2}$
Shorthand: $u \equiv x^{k+1}, x \equiv x^{k}, g \equiv \nabla f\left(x^{k}\right)$

Gradient projection - convergence

Now we show that $\left\|x^{k+1}-x^{*}\right\|_{2} \leq\left\|x^{k}-x^{*}\right\|_{2}$
Shorthand: $u \equiv x^{k+1}, x \equiv x^{k}, g \equiv \nabla f\left(x^{k}\right)$

$$
\begin{aligned}
\left\|u-x^{*}\right\|_{2}^{2} & =\left\|P(x-\alpha g)-P\left(x^{*}-\alpha g^{*}\right)\right\|_{2}^{2} \\
& \leq\left\|x-x^{*}-\alpha\left(g-g^{*}\right)\right\|_{2} \\
& \leq\left\|x-x^{*}\right\|_{2}^{2}+\alpha^{2}\left\|g-g^{*}\right\|_{2}^{2}-2 \alpha\left\langle g-g^{*}, x-x^{*}\right\rangle \\
& \leq\left\|x-x^{*}\right\|_{2}^{2}+\alpha^{2}\left\|g-g^{*}\right\|_{2}^{2}-\frac{2 \alpha}{L}\left\|g-g^{*}\right\|_{2}^{2} \\
& =\left\|x-x^{*}\right\|_{2}^{2}+\alpha\left(\alpha-\frac{2}{L}\right)\left\|g-g^{*}\right\|_{2}^{2} \\
& =r_{k}^{2}-\frac{1}{L}\left\|g-g^{*}\right\|_{2}^{2} \quad(\text { if } \alpha=1 / L) .
\end{aligned}
$$

Thus, we have in particular, $r_{k+1} \leq r_{k} \leq r_{0}$

Gradient projection - convergence

Now we show that $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{L}{2}\|\boldsymbol{\square}\|_{2}^{2}$

Gradient projection - convergence

Now we show that $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{L}{2}\|\square\|_{2}^{2}$

$$
\begin{aligned}
f(u) & \leq f(x)+\langle g, u-x\rangle+\frac{L}{2}\|u-x\|_{2}^{2} \\
& =f(x)+\langle g, P(x-\alpha g)-P x\rangle+\frac{L}{2}\|u-x\|_{2}^{2}
\end{aligned}
$$

Recall that $\|P a-P b\|_{2}^{2} \leq\langle P a-P b, a-b\rangle$. Thus,

$$
\begin{aligned}
& \|P(x-\alpha g)-P x\|_{2}^{2} \leq\langle P(x-\alpha g)-P x, x-\alpha g-x\rangle \\
=\quad & -\alpha\langle g, P(x-\alpha g)-P x\rangle \\
\Longrightarrow \quad & -\alpha^{-1}\|u-x\|_{2}^{2} \leq\langle g, P(x-\alpha g)-P x\rangle
\end{aligned}
$$

Which implies that

$$
\begin{aligned}
f(u) & \leq f(x)+\left(\frac{L}{2}-\frac{1}{\alpha}\right)\|u-x\|_{2}^{2} \\
& =f(x)-\frac{L}{2}\|P(x-\alpha g)-x\|_{2}^{2} .
\end{aligned}
$$

Gradient projection - convergence

$$
\begin{aligned}
f^{k} & \geq f^{k+1}+\frac{L}{2}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}^{2} \\
& \Longrightarrow f^{0}-f^{*} \geq f^{k+1}-f^{*}+\frac{L}{2} \sum_{i=0}^{k}\left\|P\left(x^{i}-\alpha g^{i}\right)-x^{i}\right\|_{2}^{2} .
\end{aligned}
$$

Gradient projection - convergence

$$
\begin{aligned}
f^{k} & \geq f^{k+1}+\frac{L}{2}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}^{2} \\
& \Longrightarrow f^{0}-f^{*} \geq f^{k+1}-f^{*}+\frac{L}{2} \sum_{i=0}^{k}\left\|P\left(x^{i}-\alpha g^{i}\right)-x^{i}\right\|_{2}^{2} .
\end{aligned}
$$

- Since Ihs is finite, and $f^{k+1} \geq f^{*}$ letting $k \rightarrow \infty$ implies that

Gradient projection - convergence

$$
\begin{aligned}
f^{k} & \geq f^{k+1}+\frac{L}{2}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}^{2} \\
& \Longrightarrow f^{0}-f^{*} \geq f^{k+1}-f^{*}+\frac{L}{2} \sum_{i=0}^{k}\left\|P\left(x^{i}-\alpha g^{i}\right)-x^{i}\right\|_{2}^{2} .
\end{aligned}
$$

- Since Ihs is finite, and $f^{k+1} \geq f^{*}$ letting $k \rightarrow \infty$ implies that

$$
\lim _{k \rightarrow \infty}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}=0
$$

Gradient projection - convergence

$$
\begin{aligned}
f^{k} & \geq f^{k+1}+\frac{L}{2}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}^{2} \\
& \Longrightarrow f^{0}-f^{*} \geq f^{k+1}-f^{*}+\frac{L}{2} \sum_{i=0}^{k}\left\|P\left(x^{i}-\alpha g^{i}\right)-x^{i}\right\|_{2}^{2} .
\end{aligned}
$$

- Since Ihs is finite, and $f^{k+1} \geq f^{*}$ letting $k \rightarrow \infty$ implies that

$$
\lim _{k \rightarrow \infty}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}=0 .
$$

- This is nothing but optimality condition!

Gradient projection - convergence

$$
\begin{aligned}
f^{k} & \geq f^{k+1}+\frac{L}{2}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}^{2} \\
& \Longrightarrow f^{0}-f^{*} \geq f^{k+1}-f^{*}+\frac{L}{2} \sum_{i=0}^{k}\left\|P\left(x^{i}-\alpha g^{i}\right)-x^{i}\right\|_{2}^{2} .
\end{aligned}
$$

- Since Ihs is finite, and $f^{k+1} \geq f^{*}$ letting $k \rightarrow \infty$ implies that

$$
\lim _{k \rightarrow \infty}\left\|P\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}=0 .
$$

- This is nothing but optimality condition!
- So far, we did not use convexity!
- Rate of convergence $O(1 / k)$ using convexity (some more ideas needed though; see notes)

Proximal residual

$$
\lim _{k \rightarrow \infty}\left\|\operatorname{prox}_{\alpha r}\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}=0
$$

Proof: Essentially mimics gradient projection case (care needed).

Proximal residual

$$
\lim _{k \rightarrow \infty}\left\|\operatorname{prox}_{\alpha r}\left(x^{k}-\alpha g^{k}\right)-x^{k}\right\|_{2}=0
$$

Proof: Essentially mimics gradient projection case (care needed).

- Rate of convergence using convexity
- Analysis slightly more complicated (see notes)

Optimal methods

- Gradient method converges as $O(1 / k)$
- Optimal gradient method attains $O\left(1 / k^{2}\right)$

Optimal methods

- Gradient method converges as $O(1 / k)$
- Optimal gradient method attains $O\left(1 / k^{2}\right)$
- Gradient-projection method converges as $O(1 / k)$
- Optimal version of gradient-projection $O\left(1 / k^{2}\right)$

Optimal methods

- Gradient method converges as $O(1 / k)$
- Optimal gradient method attains $O\left(1 / k^{2}\right)$
- Gradient-projection method converges as $O(1 / k)$
- Optimal version of gradient-projection $O\left(1 / k^{2}\right)$
- Similar situation for strongly convex smooth problems

Optimal methods

- Gradient method converges as $O(1 / k)$
- Optimal gradient method attains $O\left(1 / k^{2}\right)$
- Gradient-projection method converges as $O(1 / k)$
- Optimal version of gradient-projection $O\left(1 / k^{2}\right)$
- Similar situation for strongly convex smooth problems
- Proximal-gradients: converges as $O(1 / k)$ for $C_{L}^{1} \mathrm{cvx}$
- Proximal-gradients: nonoptimal linear rate for $S_{L, \mu}^{1}$

Optimal methods

- Gradient method converges as $O(1 / k)$
- Optimal gradient method attains $O\left(1 / k^{2}\right)$
- Gradient-projection method converges as $O(1 / k)$
- Optimal version of gradient-projection $O\left(1 / k^{2}\right)$
- Similar situation for strongly convex smooth problems
- Proximal-gradients: converges as $O(1 / k)$ for $C_{L}^{1} \mathrm{cvx}$
- Proximal-gradients: nonoptimal linear rate for $S_{L, \mu}^{1}$

Can we obtain optimal proximal-gradient method?

Optimal Prox-grad - FISTA

$\min \quad \ell(x)+r(x)$

1 Set $x^{0} \in \mathbb{R}^{n}$; Let $z^{0}=x^{0}, t_{0}=1$

Optimal Prox-grad - FISTA

$$
\min \quad \ell(x)+r(x)
$$

1 Set $x^{0} \in \mathbb{R}^{n}$; Let $z^{0}=x^{0}, t_{0}=1$
$2 k$-th step $(k \geq 0)$

Optimal Prox-grad - FISTA

$$
\min \quad \ell(x)+r(x)
$$

1 Set $x^{0} \in \mathbb{R}^{n}$; Let $z^{0}=x^{0}$, $t_{0}=1$
$2 k$-th step $(k \geq 0)$
■ $x^{k+1}=\operatorname{prox}_{\alpha_{k} r}\left(y^{k}-\alpha_{k} \nabla \ell\left(y^{k}\right)\right)$
■ $t_{k+1}=\left(1+\sqrt{4 t_{k}^{2}+1}\right) / 2$
■ $\lambda_{k}=\left(t_{k+1}+t_{k}-1\right) / t_{k+1}$
■ $y^{k+1}=x^{k}+\lambda_{k}\left(x^{k+1}-x^{k}\right)$
Remark: Achieves $O\left(1 / k^{2}\right)$ optimal rate (assuming Lipschitzness). Observe: Compare with optimal gradient method (very similar)

Optimal Prox-grad - FISTA

$$
\min \quad \ell(x)+r(x)
$$

1 Set $x^{0} \in \mathbb{R}^{n}$; Let $z^{0}=x^{0}, t_{0}=1$
$2 k$-th step $(k \geq 0)$

- $x^{k+1}=\operatorname{prox}_{\alpha_{k} r}\left(y^{k}-\alpha_{k} \nabla \ell\left(y^{k}\right)\right)$
- $t_{k+1}=\left(1+\sqrt{4 t_{k}^{2}+1}\right) / 2$
- $\lambda_{k}=\left(t_{k+1}+t_{k}-1\right) / t_{k+1}$
- $y^{k+1}=x^{k}+\lambda_{k}\left(x^{k+1}-x^{k}\right)$

Remark: Achieves $O\left(1 / k^{2}\right)$ optimal rate (assuming Lipschitzness). Observe: Compare with optimal gradient method (very similar)

More details in notes

Monotone operators

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation R is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

- Empty relation: \emptyset
- Identity: $I:=\left\{(x, x) \mid x \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(x, 0) \mid x \in \mathbb{R}^{n}\right\}$
- Subdifferential: $\partial f:=\left\{(x, g) \mid x \in \mathbb{R}^{n}, g \in \partial f(x)\right\}$

Set-valued mappings

Think of ∂f as a set-valued map

$$
\partial f=x \rightrightarrows \partial f(x)
$$

Relation R is a subset of $\mathbb{R}^{n} \times \mathbb{R}^{n}$

- Empty relation: \emptyset
- Identity: $I:=\left\{(x, x) \mid x \in \mathbb{R}^{n}\right\}$
- Zero: $0:=\left\{(x, 0) \mid x \in \mathbb{R}^{n}\right\}$
- Subdifferential: $\partial f:=\left\{(x, g) \mid x \in \mathbb{R}^{n}, g \in \partial f(x)\right\}$
- We write $R(x)$ to mean $\{y \mid(x, y) \in R\}$.
- Example: $\partial f(x)=\{g \mid(x, g) \in \partial f\}$

Generalized equations

- Goal: solve generalized equation $0 \in R(x)$
- That is, find $x \in \mathbb{R}^{n}$ such that $(x, 0) \in R$

Generalized equations

- Goal: solve generalized equation $0 \in R(x)$
- That is, find $x \in \mathbb{R}^{n}$ such that $(x, 0) \in R$
- Example: Say $R \equiv \partial f$, then goal

$$
0 \in R(x)=\partial f(x)
$$

means we want to find an x that minimizes f.

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $S=\{(x+\lambda y, x) \mid(x, y) \in R\}$

Operations with relations

- Inverse: $R^{-1}:=\{(y, x) \mid(x, y) \in R\}$
- Addition: $R+S:=\{(x, y+z) \mid(x, y) \in R,(x, z) \in S\}$
- Example: $I+R:=\{(x, x+y) \mid(x, y) \in R\}$
- Scaling: $\lambda R=\{(x, \lambda y) \mid(x, y) \in R\}$
- Resolvent: For relation R with parameter $\lambda \in \mathbb{R}$

$$
S:=(I+\lambda R)^{-1}
$$

- $I+\lambda R=\{(x, x+\lambda y) \mid(x, y) \in R\}$
- $S=\{(x+\lambda y, x) \mid(x, y) \in R\}$
- If $\lambda \neq 0$, shorthand $(x \leftarrow v, y \leftarrow(u-v) / \lambda)$

$$
S:=\{(u, v) \mid(u-v) / \lambda \in R(v)\}
$$

Monotone operators

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n} .
$$

Monotone operators

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$

Monotone operators

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)

Monotone operators

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$

Monotone operators

Def. The set valued operator $R \subset \mathbb{R}^{n} \times \mathbb{R}^{n}$ is called monotone if

$$
\langle R(x)-R(y), x-y\rangle \geq 0, \quad x, y \in \mathbb{R}^{n}
$$

Examples:

- Any positive semidefinite matrix $\langle A x-A y, x-y\rangle \geq 0$
- The subdifferential ∂f of a convex function (verify!)
- Any monotonically nondecreasing function $T: \mathbb{R} \rightarrow \mathbb{R}$
- Projection and proximity operators (recall firm nonexpansivity)

Generalize notion of monotonicity to vector world

Exercise: Prove αR monotone if R monotone and $\alpha \geq 0$ Exercise: Prove R^{-1} monotone, if R is monotone Exercise: If R, S monotone, and $\alpha \geq 0$, then $R+\alpha S$ is monotone.

Monotone operators

Exercise: Prove αR monotone if R monotone and $\alpha \geq 0$ Exercise: Prove R^{-1} monotone, if R is monotone Exercise: If R, S monotone, and $\alpha \geq 0$, then $R+\alpha S$ is monotone.
Corollary: Resolvent operator of monotone operator is monotone.

Importance of resolvents

Solve generalized equation

$$
0 \in R(x)
$$

Importance of resolvents

Solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x)$

Solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x)$

Solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x) \leftrightarrow x \in(I+\alpha R)(x)$

Solve generalized equation

$$
0 \in R(x)
$$

Theorem The solutions to the generalized equation coincide with points that satisfy the resolvent equation $x=(I+\alpha R)^{-1}(x)$

Proof:

$0 \in R(x) \leftrightarrow 0 \in \alpha R(x) \leftrightarrow x \in(I+\alpha R)(x) \leftrightarrow x=(I+\alpha R)^{-1}(x)$

Proximity operator as resolvent

Theorem Let f be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial f)^{-1}(y)=\operatorname{prox}_{\lambda f}(y)
$$

Proximity operator as resolvent

Theorem Let f be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial f)^{-1}(y)=\operatorname{prox}_{\lambda f}(y)
$$

- Suppose $(I+\lambda \partial f)^{-1}$ is single valued (∂f is monotone)

Proximity operator as resolvent

Theorem Let f be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial f)^{-1}(y)=\operatorname{prox}_{\lambda f}(y)
$$

- Suppose $(I+\lambda \partial f)^{-1}$ is single valued (∂f is monotone)
- Then, $x=(I+\lambda \partial f)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial f)(x)$

Proximity operator as resolvent

Theorem Let f be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial f)^{-1}(y)=\operatorname{prox}_{\lambda f}(y)
$$

- Suppose $(I+\lambda \partial f)^{-1}$ is single valued (∂f is monotone)
- Then, $x=(I+\lambda \partial f)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial f)(x)$
- That is, $y \in x+\lambda \partial f(x)$

Proximity operator as resolvent

Theorem Let f be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial f)^{-1}(y)=\operatorname{prox}_{\lambda f}(y)
$$

- Suppose $(I+\lambda \partial f)^{-1}$ is single valued (∂f is monotone)
- Then, $x=(I+\lambda \partial f)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial f)(x)$
- That is, $y \in x+\lambda \partial f(x)$
- Equivalently, $x-y+\lambda \partial f(x) \ni 0$

Proximity operator as resolvent

Theorem Let f be a closed convex function, and $\lambda>0$, then

$$
(I+\lambda \partial f)^{-1}(y)=\operatorname{prox}_{\lambda f}(y)
$$

- Suppose $(I+\lambda \partial f)^{-1}$ is single valued (∂f is monotone)
- Then, $x=(I+\lambda \partial f)^{-1}(y) \Longrightarrow y \in(I+\lambda \partial f)(x)$
- That is, $y \in x+\lambda \partial f(x)$
- Equivalently, $x-y+\lambda \partial f(x) \ni 0$
- Nothing other than optimality condition for prox-operator!

$$
\operatorname{prox}_{\lambda f}(y) \equiv y \mapsto \underset{x}{\operatorname{argmin}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda f(x)
$$

Deriving proximal-grad method

$$
\min \quad \ell(x)+\lambda r(x)
$$

Outline

Deriving proximal-grad method

$$
\min \quad \ell(x)+\lambda r(x)
$$

Outline

$0 \in \nabla \ell(x)+\lambda \partial r(x)$

Deriving proximal-grad method

$$
\min \quad \ell(x)+\lambda r(x)
$$

Outline

$$
\begin{aligned}
& 0 \in \nabla \ell(x)+\lambda \partial r(x) \\
& x \in \nabla \ell(x)+(I+\lambda \partial r)(x)
\end{aligned}
$$

Deriving proximal-grad method

$$
\min \quad \ell(x)+\lambda r(x)
$$

Outline

$$
\begin{aligned}
0 & \in \nabla \ell(x)+\lambda \partial r(x) \\
x & \in \nabla \ell(x)+(I+\lambda \partial r)(x) \\
x-\nabla \ell(x) & \in(I+\lambda \partial r)(x) \\
x & =(I+\lambda \partial r)^{-1}(x-\nabla \ell(x))
\end{aligned}
$$

Deriving proximal-grad method

$$
\min \quad \ell(x)+\lambda r(x)
$$

Outline

$$
\begin{aligned}
0 & \in \nabla \ell(x)+\lambda \partial r(x) \\
x & \in \nabla \ell(x)+(I+\lambda \partial r)(x) \\
x-\nabla \ell(x) & \in(I+\lambda \partial r)(x) \\
x & =(I+\lambda \partial r)^{-1}(x-\nabla \ell(x)) \\
x & =\operatorname{prox}_{\lambda r}(x-\nabla \ell(x))
\end{aligned}
$$

Douglas-Rachford

$$
f(x)+g(x)
$$

If both f, g nonsmooth, ordinary splitting does not work!

How to solve it?

References

© S. Boyd. EE364B Lecture slides
A Yu. Nesterov. Introductory Lectures on Convex Optimization
© F. Dinuzzo. Lecture slides on large scale optimization

