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Organizational

& HW3 will be released later today on bSpace

#® Midterm to be out sometime on 18th

& HW?2 solutions to be out before midterm released

& 19th March — review session to recap important material
& 21st March, 2013 — midterm due beginning of class.
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Reuvisiting Gradient Projection

min  f(z) z€X

Gradient projection

M = P(aF — 0, V f(2F))

where P denotes orthogonal projection onto X.

21



Reuvisiting Gradient Projection

‘ min  f(z) z€X

Gradient projection

M = P(aF — 0, V f(2F))
where P denotes orthogonal projection onto X.

» Mimic unconstrained case proof
» Hinges on firm nonexpansivity of P

» Also key: stationarity property z* = P(z* — aV f(x*))
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Gradient projection — convergence

’Lemma If z* is optimal for problem, then z* = P(z* — aV f(z*)) ‘

» Denote g* = Vf(x*) as before.
» Optimality condition: (¢*, x — z2*) > 0 for all z € X.
» Optimality for proj: z =Py — (z—y,x—2) >0Vr e X.
» Plug z < z*, and y + x* — ag®,

(" —y,x—2*) >0 = (" —2"+ag",z—2%) >0

= (ag*,z—2") >0

= (¢, x—2") >0
_—

z* is optimal.



Gradient projection

— convergence

k+1

Now we show that ||z

—@*l2 < |2 — a2

Shorthand: v = 2**1, 2 = 2%, g = Vf(aF)
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Gradient projection — convergence

k+1

Now we show that [|z*+! — z*||o < [|2¥ — 2|2

Shorthand: v = 2**1, 2 = 2%, g = Vf(aF)

lu—2*3 = |P(x—ag) - P@* - ag")|3
< lz—2" —alg— gl
< |z —2*3+a?|lg — g*[|3 — 2a(g — g%, = — =¥)
2o
< ||£v—f6*||§+a2||g—g*||§—fllg—g*\lg

|z — 2*(|3 + (o — 2)|lg — g*[I3
ri—tllg—g*3 (ifa=1/L).

Thus, we have in particular, rg11 <7 < 1o
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Gradient projection — convergence

Now we show that f(zF+1) < f(a*) — L| /|3
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Gradient projection — convergence

Now we show that f(zF+1) < f(z*) — Z|/m||3

flu) < f(z)
= flx)

Recall that || Pa — Pb||2 < (Pa— Pb, a — b). Thus,

{

g, u—a)+ glu -zl
(9, P(z — ag) — Pz) + §lu— =3

+
+

IP(z — ag) — Pal3 < (P(z — ag) - Pz, z — ag — )
= —alg, P(x —ag) - Pr)
= —a 'u—al} <{g, P(z - ag) - Px)

Which implies that
flu) < f(z)+
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Gradient projection — convergence

fk

> T4 §P" — agh) - 2F13

— Oz f+LZ |P(z" — ag’) —
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Gradient projection — convergence

fooz 0 IR - agh) - o

— O f+LZ |P(2 — ag’) — 2'|3.

» Since lhs is finite, and f*+1 > f* letting k — oo implies that
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Gradient projection — convergence

fooz 0 IR - agh) - o

— O f+LZ |P(2 — ag’) — 2'|3.

» Since lhs is finite, and f*+1 > f* letting k — oo implies that

lim ||P(z* — ag®) — 2F|s = 0.
k—ro0
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Gradient projection — convergence

fooz 0 IR - agh) - o

— O f+LZ |P(2 — ag’) — 2'|3.

» Since lhs is finite, and f*+1 > f* letting k — oo implies that
lim ||P(z* — ag®) — 2F|s = 0.
k—o0

» This is nothing but optimality condition!

21



Gradient projection — convergence

fooz M RIPGE - agh) - 2F|3

— O f+LZ |P(2 — ag’) — 2'|3.

» Since lhs is finite, and f*+1 > f* letting k — oo implies that
lim ||P(z* — ag®) — 2F|s = 0.
k—o0

» This is nothing but optimality condition!
» So far, we did not use convexity!

» Rate of convergence O(1/k) using convexity
(some more ideas needed though; see notes)
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Proximal gradients — convergence

Proximal residual
lim ||prox,,(z*F — agh) — z¥||]y = 0.
k—o0

Proof: Essentially mimics gradient projection case (care needed).
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Proximal gradients — convergence

Proximal residual
lim ||prox,,(z*F — agh) — z¥||]y = 0.
k—o0

Proof: Essentially mimics gradient projection case (care needed).

» Rate of convergence using convexity

» Analysis slightly more complicated (see notes)



Optimal methods

» Gradient method converges as O(1/k)
» Optimal gradient method attains O(1/k?)
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Optimal methods

» Gradient method converges as O(1/k)

» Optimal gradient method attains O(1/k?)

» Gradient-projection method converges as O(1/k)
» Optimal version of gradient-projection O(1/k?)
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Optimal methods

vVvyYyyvyy

Gradient method converges as O(1/k)

Optimal gradient method attains O(1/k?)
Gradient-projection method converges as O(1/k)
Optimal version of gradient-projection O(1/k?)

Similar situation for strongly convex smooth problems
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Optimal methods

vVvyvyvVvYvyyypwy

Gradient method converges as O(1/k)

Optimal gradient method attains O(1/k?)
Gradient-projection method converges as O(1/k)
Optimal version of gradient-projection O(1/k?)
Similar situation for strongly convex smooth problems
Proximal-gradients: converges as O(1/k) for C} cvx

Proximal-gradients: nonoptimal linear rate for Siu



Optimal methods

vVvyvyvVvYvyyypwy

Gradient method converges as O(1/k)

Optimal gradient method attains O(1/k?)
Gradient-projection method converges as O(1/k)
Optimal version of gradient-projection O(1/k?)
Similar situation for strongly convex smooth problems
Proximal-gradients: converges as O(1/k) for C} cvx

Proximal-gradients: nonoptimal linear rate for Siu

Can we obtain optimal proximal-gradient method?
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Optimal Prox-grad — FISTA

min  {(x) +r(x)

Set 20 e R™; Let 20 =29, tg =1
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Optimal Prox-grad — FISTA

min

l(x) +r(x)

Set 20 e R™; Let 20 =29, tg =1

k-th step (k > 0)
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Optimal Prox-grad — FISTA

min  {(x) +r(x)

Set 20 e R™; Let 20 =29, tg =1
k-th step (k > 0)

L karl = proxa”(yk - akvg(yk))
the1 = (L+ /483 +1)/2
B A, = (tpp1 +Hte — 1) /teta
Pt = ok 4 (2R — k)

Remark: Achieves O(1/k?) optimal rate (assuming Lipschitzness).

Observe: Compare with optimal gradient method (very similar)
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Optimal Prox-grad — FISTA

min  {(x) +r(x)

Set 20 e R™; Let 20 =29, tg =1
k-th step (k > 0)

L karl = proxakr(yk - akvg(yk))
the1 = (L+ /483 +1)/2
B A, = (tpp1 +Hte — 1) /teta
Pt = ok 4 (2R — k)

Remark: Achieves O(1/k?) optimal rate (assuming Lipschitzness).

Observe: Compare with optimal gradient method (very similar)

\ More details in notes \
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Monotone operators
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Set-valued mappings

Think of Jf as a set-valued map

of =z = 0f(z).
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Set-valued mappings

Think of Jf as a set-valued map
of =z = 0f(x).

Relation R is a subset of R" x R"

» Empty relation: ()

» Identity: I := {(z,z) | x € R"}

» Zero: 0:= {(z,0) | x € R"}

» Subdifferential: 0f := {(x,g9) | z € R",g € 0f(x)}
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Set-valued mappings

Think of Jf as a set-valued map

of =z = 0f(x).

Relation R is a subset of R" x R"

>
>
>
| 4
| 4
>

Empty relation: ()

Identity: I := {(z,z) | z € R"}

Zero: 0:={(z,0) | x € R"}

Subdifferential: 9f := {(x,g) | x e R",g € 0f(z)}
We write R(x) to mean {y | (z,y) € R}.

Example: 9f(z) = {g | (z,9) € 9f}

12 /21



Generalized equations

» Goal: solve generalized equation 0 € R(x)
» Thatis, find z € R” such that (z,0) € R
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Generalized equations

» Goal: solve generalized equation 0 € R(x)
» Thatis, find x € R” such that (z,0) € R
» Example: Say R = 0f, then goal

0 € R(z) = 0f(x),

means we want to find an x that minimizes f.
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Operations with relations

» Inverse: R~! = {(y,7) | (z,y) € R}
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Operations with relations

» Inverse: R~!:={(y,2) | (z,y) € R}
» Addition: R+ S :={(z,y+2) | (z,y) € R, (z,2) € S}
» Example: I + R:={(z,z+y) | (z,y) € R}
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Operations with relations

» Inverse: R~!:={(y,2) | (z,y) € R}

> Addition: R+ S :={(z,y+2) | (z,y) € R, (z,2) € S}
» Example: I+ R:={(z,z+vy) | (z,y) € R}

» Scaling: AR = {(z,\y) | (x,y) € R}
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Operations with relations

Inverse: R~!:={(y,2) | (z,y) € R}

Addition: R+ S = {(z,y +2) | (z,y) € R, (z,2) € S}
Example: T+ R :={(z,x 4+ y) | (z,y) € R}

Scaling: AR = {(z, \y) | (z,y) € R}

Resolvent: For relation R with parameter A € R

S:=(I+AR)!
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Operations with relations

Inverse: R~!:={(y,2) | (z,y) € R}

Addition: R+ S = {(z,y +2) | (z,y) € R, (z,2) € S}
Example: T+ R :={(z,x 4+ y) | (z,y) € R}

Scaling: AR = {(z, \y) | (z,y) € R}

Resolvent: For relation R with parameter A € R

S:=(I+AR)!

I+ AR ={(z,x+ \y) | (z,y) € R}
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Operations with relations

vVvyyvyyvyy

v

Inverse: R~!:={(y,2) | (z,y) € R}

Addition: R+ S = {(z,y +2) | (z,y) € R, (z,2) € S}
Example: T+ R :={(z,x 4+ y) | (z,y) € R}

Scaling: AR = {(z, \y) | (z,y) € R}

Resolvent: For relation R with parameter A € R

S:=(I+AR)!

I+ AR ={(z,x+ \y) | (z,y) € R}
S={(z+Ay,2) | (z,y) € R}
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Operations with relations

vVvyyvyyvyy

vy

Inverse: R~!:={(y,2) | (z,y) € R}

Addition: R+ S = {(z,y +2) | (z,y) € R, (z,2) € S}
Example: T+ R :={(z,x 4+ y) | (z,y) € R}

Scaling: AR = {(z, \y) | (z,y) € R}

Resolvent: For relation R with parameter A € R

S:=(I+AR)!

I+ AR ={(z,z+ \y) | (z,y) € R}
S={(@+Ay,z)|(z,y) € R}
If A # 0, shorthand (z < v, y + (u —v)/A)

§ = {(w,v) | (u—1v)/A € R(v)}

14 /21



Monotone operators

Def. The set valued operator R C R™ x R" is called monotone if

(R(z) = R(y), z —y) >0, =z,ycR"
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Monotone operators

Def. The set valued operator R C R™ x R" is called monotone if

(R(z) = R(y), z —y) >0, =z,ycR"

Examples:

» Any positive semidefinite matrix (Az — Ay, x —y) > 0

15/21



Monotone operators

Def. The set valued operator R C R™ x R" is called monotone if

(R(z) = R(y), z —y) >0, =z,ycR"

Examples:
» Any positive semidefinite matrix (Az — Ay, x —y) > 0
» The subdifferential Jf of a convex function (verify!)
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Monotone operators

Def. The set valued operator R C R™ x R" is called monotone if

(R(z) = R(y), z —y) >0, =z,ycR"

Examples:
» Any positive semidefinite matrix (Az — Ay, x —y) > 0
» The subdifferential Jf of a convex function (verify!)

» Any monotonically nondecreasing function 7' : R — R
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Monotone operators

Def. The set valued operator R C R™ x R" is called monotone if

(R(z) = R(y), z —y) >0, =z,ycR"

Examples:
» Any positive semidefinite matrix (Az — Ay, x —y) > 0
» The subdifferential Jf of a convex function (verify!)
» Any monotonically nondecreasing function 7' : R — R

» Projection and proximity operators (recall firm nonexpansivity)

Generalize notion of monotonicity to vector world ‘
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Monotone operators

Exercise: Prove R monotone if R monotone and o > 0
Exercise: Prove R~! monotone, if R is monotone
Exercise: If R, S monotone, and o« > 0, then R + .S is
monotone.
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Monotone operators

Exercise: Prove R monotone if R monotone and o > 0
Exercise: Prove R~! monotone, if R is monotone
Exercise: If R, S monotone, and o« > 0, then R + .S is
monotone.

Corollary: Resolvent operator of monotone operator is monotone.
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Importance of resolvents

Solve generalized equation

0 € R(x)
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Importance of resolvents

Solve generalized equation

0 € R(x)

Theorem The solutions to the generalized equation coincide with
points that satisfy the resolvent equation = = (I + aR)™!(x)
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Importance of resolvents

Solve generalized equation

0 € R(x)

Theorem The solutions to the generalized equation coincide with
points that satisfy the resolvent equation = = (I + aR)™!(x)

Proof:

0 € R(z)
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Importance of resolvents

Solve generalized equation

0 € R(x)

Theorem The solutions to the generalized equation coincide with
points that satisfy the resolvent equation = = (I + aR)™!(x)

Proof:

0 € R(z) < 0 € aR(x)
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Importance of resolvents

Solve generalized equation

0 € R(x)

Theorem The solutions to the generalized equation coincide with
points that satisfy the resolvent equation = = (I + aR)™!(x)

Proof:

0€ R(z) <+ 0€ aR(z) <>z € (I +aR)(x)
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Importance of resolvents

Solve generalized equation

0 € R(x)

Theorem The solutions to the generalized equation coincide with
points that satisfy the resolvent equation = = (I + aR)™!(x)

Proof:

0€R(z) < 0caR(z) <z € (I+aR)(z) < x=(T+aR) (x)

17/21



Proximity operator as resolvent

Theorem Let f be a closed convex function, and A > 0, then

(I+X0f)" (y) = prox,;(y).
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Proximity operator as resolvent

Theorem Let f be a closed convex function, and A > 0, then

(I+X0f)" (y) = prox,;(y).

» Suppose (I + \0f)~! is single valued (Of is monotone)
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Proximity operator as resolvent

Theorem Let f be a closed convex function, and A > 0, then

(I+X0f)" (y) = prox,;(y).

» Suppose (I + \0f)~! is single valued (Of is monotone)
> Then, z = (I +20f) " (y) = ye (I +20f)(2)
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Proximity operator as resolvent

Theorem Let f be a closed convex function, and A > 0, then

(I+X0f)" (y) = prox,;(y).

» Suppose (I + \0f)~! is single valued (Of is monotone)
> Then, z = (I +20f) " (y) = ye (I +20f)(2)
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Proximity operator as resolvent

Theorem Let f be a closed convex function, and A > 0, then

(I+X0f)" (y) = prox,;(y).

» Suppose (I + \0f)~! is single valued (Of is monotone)
> Then, z = (I +20f) " (y) = ye (I +20f)(2)

» Thatis, y € .+ \Jf(x)

» Equivalently, z — y + Adf(x) 20
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Proximity operator as resolvent

Theorem Let f be a closed convex function, and A > 0, then

(I+20f)"(y) = prox,;(y).

Suppose (I + \Jf)~! is single valued (Of is monotone)
Then, z = (I + X0f)"Hy) = y € (I +\of)(x)
Thatis, y € x + AJf(x)

Equivalently, x — y + A0 f(z) 2 0

Nothing other than optimality condition for prox-operator!

prox,(y) = y v argmin 3z — y[l3 + Af(2)
x
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Deriving proximal-grad method

min  {(z) + Ar(x)

QOutline
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Deriving proximal-grad method

min  {(z) + Ar(x)

Outline
0 € VU (z)+ \or(x)
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Deriving proximal-grad method

min  {(z) + Ar(x)

Outline
0 € VU (z)+ \or(x)
x € Vl(z)+ (I + Nr)(z)
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Deriving proximal-grad method

min  {(z) + Ar(x)

Outline
0 € Vi(z)+ \or(x)
x € Vl(z)+ (I + Nr)(z)
x—Vl(x) € (I+N0r)(z)

)

(I +X0r) Yz — Vi(z))
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Deriving proximal-grad method

min  {(z) + Ar(x)

Outline
0 € Vi(z)+ \or(x)
x € Vl(z)+ (I + Nr)(z)
x—Vl(x) € (I+N0r)(z)
x = (I+M29r) Yz — V()
x = proxy,(z— Vi(x))
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Douglas-Rachford

f(@) +g(x)

If both f, g nonsmooth, ordinary splitting does not work!

‘ How to solve it? \
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