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Organizational

♠ HW3 will be released later today on bSpace

♠ Midterm to be out sometime on 18th

♠ HW2 solutions to be out before midterm released

♠ 19th March — review session to recap important material

♠ 21st March, 2013 — midterm due beginning of class.
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Revisiting Gradient Projection

min f(x) x ∈ X

Gradient projection

xk+1 = P (xk − αk∇f(xk))

where P denotes orthogonal projection onto X .

I Mimic unconstrained case proof

I Hinges on firm nonexpansivity of P

I Also key: stationarity property x∗ = P (x∗ − α∇f(x∗))

3 / 21



Revisiting Gradient Projection

min f(x) x ∈ X

Gradient projection

xk+1 = P (xk − αk∇f(xk))

where P denotes orthogonal projection onto X .

I Mimic unconstrained case proof

I Hinges on firm nonexpansivity of P

I Also key: stationarity property x∗ = P (x∗ − α∇f(x∗))

3 / 21



Gradient projection – convergence

Lemma If x∗ is optimal for problem, then x∗ = P (x∗ − α∇f(x∗))

I Denote g∗ ≡ ∇f(x∗) as before.

I Optimality condition: 〈g∗, x− x∗〉 ≥ 0 for all x ∈ X .

I Optimality for proj: z = Py =⇒ 〈z − y, x− z〉 ≥ 0 ∀x ∈ X .

I Plug z ← x∗, and y ← x∗ − αg∗,
〈x∗ − y, x− x∗〉 ≥ 0 =⇒ 〈x∗ − x∗ + αg∗, x− x∗〉 ≥ 0

=⇒ 〈αg∗, x− x∗〉 ≥ 0

=⇒ 〈g∗, x− x∗〉 ≥ 0

=⇒ x∗ is optimal.
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Gradient projection – convergence

Now we show that ‖xk+1 − x∗‖2 ≤ ‖xk − x∗‖2

Shorthand: u ≡ xk+1, x ≡ xk, g ≡ ∇f(xk)

‖u− x∗‖22 = ‖P (x− αg)− P (x∗ − αg∗)‖22
≤ ‖x− x∗ − α(g − g∗)‖2
≤ ‖x− x∗‖22 + α2‖g − g∗‖22 − 2α〈g − g∗, x− x∗〉

≤ ‖x− x∗‖22 + α2‖g − g∗‖22 −
2α

L
‖g − g∗‖22

= ‖x− x∗‖22 + α(α− 2
L)‖g − g

∗‖22
= r2k − 1

L‖g − g
∗‖22 (if α = 1/L).

Thus, we have in particular, rk+1 ≤ rk ≤ r0
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Gradient projection – convergence

Now we show that f(xk+1) ≤ f(xk)− L
2 ‖�‖

2
2

f(u) ≤ f(x) + 〈g, u− x〉+ L
2 ‖u− x‖

2
2

= f(x) + 〈g, P (x− αg)− Px〉+ L
2 ‖u− x‖

2
2

Recall that ‖Pa− Pb‖22 ≤ 〈Pa− Pb, a− b〉. Thus,

‖P (x− αg)− Px‖22 ≤ 〈P (x− αg)− Px, x− αg − x〉
= −α〈g, P (x− αg)− Px〉
=⇒ −α−1‖u− x‖22 ≤ 〈g, P (x− αg)− Px〉

Which implies that

f(u) ≤ f(x) +
(
L
2 −

1
α

)
‖u− x‖22

= f(x)− L
2 ‖P (x− αg)− x‖

2
2.
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Gradient projection – convergence

fk ≥ fk+1 + L
2 ‖P (x

k − αgk)− xk‖22

=⇒ f0 − f∗ ≥ fk+1 − f∗ + L
2

∑k

i=0
‖P (xi − αgi)− xi‖22.

I Since lhs is finite, and fk+1 ≥ f∗ letting k →∞ implies that

lim
k→∞

‖P (xk − αgk)− xk‖2 = 0.

I This is nothing but optimality condition!

I So far, we did not use convexity!

I Rate of convergence O(1/k) using convexity
(some more ideas needed though; see notes)
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Proximal gradients – convergence

Proximal residual

lim
k→∞

‖proxαr(xk − αgk)− xk‖2 = 0.

Proof: Essentially mimics gradient projection case (care needed).

I Rate of convergence using convexity

I Analysis slightly more complicated (see notes)
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Optimal methods

I Gradient method converges as O(1/k)

I Optimal gradient method attains O(1/k2)

I Gradient-projection method converges as O(1/k)

I Optimal version of gradient-projection O(1/k2)

I Similar situation for strongly convex smooth problems

I Proximal-gradients: converges as O(1/k) for C1
L cvx

I Proximal-gradients: nonoptimal linear rate for S1
L,µ

Can we obtain optimal proximal-gradient method?
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Optimal Prox-grad – FISTA

min `(x) + r(x)

1 Set x0 ∈ Rn; Let z0 = x0, t0 = 1

2 k-th step (k ≥ 0)

xk+1 = proxαkr
(yk − αk∇`(yk))

tk+1 = (1 +
√

4t2k + 1)/2
λk = (tk+1 + tk − 1)/tk+1

yk+1 = xk + λk(x
k+1 − xk)

Remark: Achieves O(1/k2) optimal rate (assuming Lipschitzness).
Observe: Compare with optimal gradient method (very similar)

More details in notes
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Monotone operators
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Set-valued mappings

Think of ∂f as a set-valued map

∂f = x⇒ ∂f(x).

Relation R is a subset of Rn × Rn

I Empty relation: ∅
I Identity: I := {(x, x) | x ∈ Rn}
I Zero: 0 := {(x, 0) | x ∈ Rn}
I Subdifferential: ∂f := {(x, g) | x ∈ Rn, g ∈ ∂f(x)}
I We write R(x) to mean {y | (x, y) ∈ R}.
I Example: ∂f(x) = {g | (x, g) ∈ ∂f}
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Generalized equations

I Goal: solve generalized equation 0 ∈ R(x)
I That is, find x ∈ Rn such that (x, 0) ∈ R

I Example: Say R ≡ ∂f , then goal

0 ∈ R(x) = ∂f(x),

means we want to find an x that minimizes f .
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Operations with relations

I Inverse: R−1 := {(y, x) | (x, y) ∈ R}

I Addition: R+ S := {(x, y + z) | (x, y) ∈ R, (x, z) ∈ S}
I Example: I +R := {(x, x+ y) | (x, y) ∈ R}
I Scaling: λR = {(x, λy) | (x, y) ∈ R}
I Resolvent: For relation R with parameter λ ∈ R

S := (I + λR)−1

I I + λR = {(x, x+ λy) | (x, y) ∈ R}
I S = {(x+ λy, x) | (x, y) ∈ R}
I If λ 6= 0, shorthand (x← v, y ← (u− v)/λ)

S := {(u, v) | (u− v)/λ ∈ R(v)}
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Monotone operators

Def. The set valued operator R ⊂ Rn × Rn is called monotone if

〈R(x)−R(y), x− y〉 ≥ 0, x, y ∈ Rn.

Examples:

I Any positive semidefinite matrix 〈Ax−Ay, x− y〉 ≥ 0

I The subdifferential ∂f of a convex function (verify!)

I Any monotonically nondecreasing function T : R→ R
I Projection and proximity operators (recall firm nonexpansivity)

Generalize notion of monotonicity to vector world
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Monotone operators

Exercise: Prove αR monotone if R monotone and α ≥ 0
Exercise: Prove R−1 monotone, if R is monotone
Exercise: If R, S monotone, and α ≥ 0, then R+ αS is
monotone.

Corollary: Resolvent operator of monotone operator is monotone.
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Importance of resolvents

Solve generalized equation

0 ∈ R(x)

Theorem The solutions to the generalized equation coincide with
points that satisfy the resolvent equation x = (I + αR)−1(x)

Proof:

0 ∈ R(x)↔ 0 ∈ αR(x)↔ x ∈ (I +αR)(x)↔ x = (I +αR)−1(x)
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Proximity operator as resolvent

Theorem Let f be a closed convex function, and λ > 0, then

(I + λ∂f)−1(y) = proxλf (y).

I Suppose (I + λ∂f)−1 is single valued (∂f is monotone)

I Then, x = (I + λ∂f)−1(y) =⇒ y ∈ (I + λ∂f)(x)

I That is, y ∈ x+ λ∂f(x)

I Equivalently, x− y + λ∂f(x) 3 0

I Nothing other than optimality condition for prox-operator!

proxλf (y) ≡ y 7→ argmin
x

1
2‖x− y‖

2
2 + λf(x)
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Deriving proximal-grad method

min `(x) + λr(x)

Outline

0 ∈ ∇`(x) + λ∂r(x)

x ∈ ∇`(x) + (I + λ∂r)(x)

x−∇`(x) ∈ (I + λ∂r)(x)

x = (I + λ∂r)−1(x−∇`(x))
x = proxλr(x−∇`(x))
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Douglas-Rachford

f(x) + g(x)

If both f , g nonsmooth, ordinary splitting does not work!

How to solve it?

20 / 21



References

♠ S. Boyd. EE364B Lecture slides

♠ Yu. Nesterov. Introductory Lectures on Convex Optimization

♠ F. Dinuzzo. Lecture slides on large scale optimization

21 / 21


