Convex Optimization

(EE227A: UC Berkeley)

Lecture 15 (Gradient methods – III) 12 March, 2013

Suvrit Sra

♠ We saw following efficiency estimates for the gradient method

$$f \in C_L^1: \qquad f(x^k) - f^* \le \frac{2L \|x^0 - x^*\|_2^2}{k+4}$$
$$f \in S_{L,\mu}^1: \qquad f(x^k) - f^* \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} \|x^0 - x^*\|_2^2.$$

 \blacklozenge We saw following efficiency estimates for the gradient method

$$f \in C_L^1: \qquad f(x^k) - f^* \le \frac{2L \|x^0 - x^*\|_2^2}{k+4}$$
$$f \in S_{L,\mu}^1: \qquad f(x^k) - f^* \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} \|x^0 - x^*\|_2^2.$$

We also saw lower complexity bounds

$$f \in C_L^1: \qquad f(x^k) - f(x^*) \ge \frac{3L \|x^0 - x^*\|_2^2}{32(k+1)^2}$$
$$fS_{L,\mu}^{\infty}: \qquad f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^{2k} \|x^0 - x^*\|_2^2.$$

♠ We saw following efficiency estimates for the gradient method

$$f \in C_L^1: \qquad f(x^k) - f^* \le \frac{2L \|x^0 - x^*\|_2^2}{k+4}$$
$$f \in S_{L,\mu}^1: \qquad f(x^k) - f^* \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} \|x^0 - x^*\|_2^2.$$

We also saw lower complexity bounds

$$f \in C_L^1: \qquad f(x^k) - f(x^*) \ge \frac{3L \|x^0 - x^*\|_2^2}{32(k+1)^2}$$
$$fS_{L,\mu}^{\infty}: \qquad f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^{2k} \|x^0 - x^*\|_2^2.$$

Can we close the gap?

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S^1_{L,\mu}$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k) + \beta_k (x^k - x^{k-1})$$

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S^1_{L,\mu}$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k) + \beta_k (x^k - x^{k-1})$$

 \blacktriangleright Converges (locally, i.e., for $\|x^0-x^*\|_2 \leq \epsilon)$ as

$$\|x^{k} - x^{*}\|_{2}^{2} \le \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^{2k} \|x^{0} - x^{*}\|_{2}^{2},$$

for
$$\alpha_k = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta_k = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$

 $\min_x f(x)$, where $S^1_{L,\mu}$ with $\mu \geq 0$

 $\min_x f(x)$, where $S^1_{L,\mu}$ with $\mu \ge 0$

1. Choose $x^0 \in \mathbb{R}^n$, $\alpha_0 \in (0, 1)$ 2. Let $y^0 \leftarrow x^0$; set $q = \mu/L$

 $\min_x f(x)$, where $S^1_{L,\mu}$ with $\mu \ge 0$

- 1. Choose $x^0 \in \mathbb{R}^n$, $\alpha_0 \in (0, 1)$
- 2. Let $y^0 \leftarrow x^0$; set $q = \mu/L$
- 3. k-th iteration $(k \ge 0)$:
 - a). Compute $f(y^k)$ and $\nabla f(y^k)$; update primary solution

$$x^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$$

 $\min_x f(x)$, where $S_{L,\mu}^1$ with $\mu \ge 0$

1. Choose
$$x^0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0, 1)$

2. Let
$$y^0 \leftarrow x^0$$
; set $q = \mu/L$

3. k-th iteration
$$(k \ge 0)$$
:

a). Compute $f(y^k)$ and $\nabla f(y^k)$; update primary solution

$$x^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$$

b). Compute stepsize α_{k+1} by solving

$$\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$$

 $\min_x f(x)$, where $S_{L,\mu}^1$ with $\mu \ge 0$

1. Choose
$$x^0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0, 1)$

2. Let
$$y^0 \leftarrow x^0$$
; set $q = \mu/L$

3. k-th iteration
$$(k \ge 0)$$
:

a). Compute $f(y^k)$ and $\nabla f(y^k)$; update primary solution

$$x^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$$

b). Compute stepsize α_{k+1} by solving

$$\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$$

c). Set
$$\beta_k = \alpha_k (1 - \alpha_k) / (\alpha_k^2 + \alpha_{k+1})$$

d). Update secondary solution

$$y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$$

Optimal gradient method – rate

Theorem Let $\{x^k\}$ be sequence generated by above algorithm. If $\alpha_0 \ge \sqrt{\mu/L}$, then

$$f(x^k) - f(x^*) \le c_1 \min\left\{ \left(1 - \sqrt{\frac{\mu}{L}}\right)^k, \frac{4L}{(2\sqrt{L} + c_2k)^2} \right\},\$$

where constants c_1 , c_2 depend on α_0 , L, μ .

Proof: Somewhat involved; see notes.

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k)/(\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k)/(\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Optimal method simplifies to

- 1. Choose $y^0 = x^0 \in \mathbb{R}^n$
- 2. k-th iteration $(k \ge 0)$:

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k)/(\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Optimal method simplifies to

1. Choose
$$y^0 = x^0 \in \mathbb{R}^n$$

2. *k*-th iteration $(k \ge 0)$:
a). $x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$
b). $y^{k+1} = x^{k+1} + \beta(x^{k+1} - x^k)$

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k)/(\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Optimal method simplifies to

1. Choose
$$y^0 = x^0 \in \mathbb{R}^n$$

2. *k*-th iteration $(k \ge 0)$:
a). $x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$
b). $y^{k+1} = x^{k+1} + \beta(x^{k+1} - x^k)$

Notice similarity to Polyak's method!

Summary so far

- ▶ Convex f(x) with $\|\partial f\| \le G$ subgradient method
- Differentiable $f \in C_L^1$ using gradient methods
- Rate of convergence for smooth convex problems
- ► Faster rate of convergence for smooth, strongly convex
- Constrained gradient methods Frank-Wolfe method
- Constrained gradient methods gradient projection
- Nesterov's optimal gradient methods (smooth)

Summary so far

- ▶ Convex f(x) with $\|\partial f\| \le G$ subgradient method
- Differentiable $f \in C_L^1$ using gradient methods
- Rate of convergence for smooth convex problems
- ► Faster rate of convergence for smooth, strongly convex
- Constrained gradient methods Frank-Wolfe method
- Constrained gradient methods gradient projection
- Nesterov's optimal gradient methods (smooth)
- ► Gap between lower and upper bounds
- $O(1/\sqrt{t})$ convex (subgradient method);
- ▶ $O(1/t^2)$ for C_L^1 ; linear for smoooth, strongly convex

- Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^n$
- f convex on \mathbb{R}^n , and Lipschitz cont. on bounded set

$$|f(x) - f(y)| \le L ||x - y||_2, \qquad x, y \in \mathcal{X}.$$

- Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^n$
- f convex on \mathbb{R}^n , and Lipschitz cont. on bounded set

$$|f(x) - f(y)| \le L ||x - y||_2, \qquad x, y \in \mathcal{X}.$$

• At each step, we access to f(x) and $g \in \partial f(x)$

- Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^n$
- f convex on \mathbb{R}^n , and Lipschitz cont. on bounded set

$$|f(x) - f(y)| \le L ||x - y||_2, \qquad x, y \in \mathcal{X}.$$

- \blacksquare At each step, we access to f(x) and $g\in\partial f(x)$
- \blacksquare Find $x^k \in \mathbb{R}^n$ such that $f(x^k) f^* \leq \epsilon$

- \blacksquare Unconstrained problem: $\min f(x),$ where $x\in \mathbb{R}^n$
- f convex on \mathbb{R}^n , and Lipschitz cont. on bounded set

$$|f(x) - f(y)| \le L ||x - y||_2, \qquad x, y \in \mathcal{X}.$$

- \blacksquare At each step, we access to f(x) and $g\in\partial f(x)$
- \blacksquare Find $x^k \in \mathbb{R}^n$ such that $f(x^k) f^* \leq \epsilon$
- **First-order methods**: $x^k \in x^0 + \text{span} \{g^0, \dots, g^{k-1}\}$

EXAMPLE

▶ Let $\phi(x) = |x|$ for $x \in \mathbb{R}$

- $\blacktriangleright \ \ {\rm Let} \ \phi(x) = |x| \ {\rm for} \ x \in \mathbb{R}$
- Subgradient method $x^{k+1} = x^k \alpha_k g^k$, where $g^k \in \partial |x^k|$.

- $\blacktriangleright \ {\rm Let} \ \phi(x) = |x| \ {\rm for} \ x \in \mathbb{R}$
- Subgradient method $x^{k+1} = x^k \alpha_k g^k$, where $g^k \in \partial |x^k|$.
- If $x^0 = 1$ and $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $|x^k| = \frac{1}{\sqrt{k+1}}$

- ▶ Let $\phi(x) = |x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1} = x^k \alpha_k g^k$, where $g^k \in \partial |x^k|$.
- If $x^0 = 1$ and $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $|x^k| = \frac{1}{\sqrt{k+1}}$
- ▶ Thus, $O(\frac{1}{\epsilon^2})$ iterations are needed to obtain ϵ -accuracy.

- ▶ Let $\phi(x) = |x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1} = x^k \alpha_k g^k$, where $g^k \in \partial |x^k|$.
- If $x^0 = 1$ and $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $|x^k| = \frac{1}{\sqrt{k+1}}$
- ▶ Thus, $O(\frac{1}{\epsilon^2})$ iterations are needed to obtain ϵ -accuracy.
- \blacktriangleright This behavior typical for the subgradient method which exhibits $O(1/\sqrt{k})$ convergence in general

EXAMPLE

- ▶ Let $\phi(x) = |x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1} = x^k \alpha_k g^k$, where $g^k \in \partial |x^k|$.
- If $x^0 = 1$ and $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $|x^k| = \frac{1}{\sqrt{k+1}}$
- ▶ Thus, $O(\frac{1}{\epsilon^2})$ iterations are needed to obtain ϵ -accuracy.
- \blacktriangleright This behavior typical for the subgradient method which exhibits $O(1/\sqrt{k})$ convergence in general

Can we do better in general?

Nope!

Theorem (Nesterov.) Let $\mathcal{B} = \{x \mid ||x - x^0||_2 \leq D\}$. Assume, $x^* \in \mathcal{B}$. There exists a convex function f in $C_L^0(\mathcal{B})$ (with L > 0), such that for $0 \leq k \leq n - 1$, the lower-bound

$$f(x^k) - f(x^*) \ge \frac{LD}{2(1+\sqrt{k+1})},$$

holds for any algorithm that generates x^k by linearly combining the previous iterates and subgradients.

Nope!

Theorem (Nesterov.) Let $\mathcal{B} = \{x \mid ||x - x^0||_2 \leq D\}$. Assume, $x^* \in \mathcal{B}$. There exists a convex function f in $C_L^0(\mathcal{B})$ (with L > 0), such that for $0 \leq k \leq n - 1$, the lower-bound

$$f(x^k) - f(x^*) \ge \frac{LD}{2(1+\sqrt{k+1})},$$

holds for any algorithm that generates x^k by linearly combining the previous iterates and subgradients.

Should we give up?

Nope!

Theorem (Nesterov.) Let $\mathcal{B} = \{x \mid ||x - x^0||_2 \leq D\}$. Assume, $x^* \in \mathcal{B}$. There exists a convex function f in $C_L^0(\mathcal{B})$ (with L > 0), such that for $0 \leq k \leq n - 1$, the lower-bound

$$f(x^k) - f(x^*) \ge \frac{LD}{2(1+\sqrt{k+1})},$$

holds for any algorithm that generates x^k by linearly combining the previous iterates and subgradients.

Should we give up? No!

Nope!

Theorem (Nesterov.) Let $\mathcal{B} = \{x \mid ||x - x^0||_2 \leq D\}$. Assume, $x^* \in \mathcal{B}$. There exists a convex function f in $C_L^0(\mathcal{B})$ (with L > 0), such that for $0 \leq k \leq n - 1$, the lower-bound

$$f(x^k) - f(x^*) \ge \frac{LD}{2(1+\sqrt{k+1})},$$

holds for any algorithm that generates x^k by linearly combining the previous iterates and subgradients.

Should we give up? No! Several possibilities remain!

► Blackbox too pessimistic

- ► Blackbox too pessimistic
- Nesterov's breakthroughs
 - Excessive gap technique
 - Composite objective minimization
Nonsmooth optimization

- Blackbox too pessimistic
- Nesterov's breakthroughs
 - Excessive gap technique
 - Composite objective minimization
- ▶ Nemirovski's workshorse of general convex optimization
 - Mirror-descent, NERML
 - Mirror-prox

Nonsmooth optimization

- Blackbox too pessimistic
- Nesterov's breakthroughs
 - Excessive gap technique
 - Composite objective minimization
- ▶ Nemirovski's workshorse of general convex optimization
 - Mirror-descent, NERML
 - Mirror-prox
- ► Other techniques, problem classes, etc.

Proximal splitting

Frequently nonsmooth problems take the form

minimize $f(x) := \ell(x) + r(x)$

Frequently nonsmooth problems take the form

minimize
$$f(x) := \ell(x) + r(x)$$

$$\ell \in \quad \bigvee \quad + \ r \in \quad \bigvee$$

Frequently nonsmooth problems take the form

minimize
$$f(x) := \ell(x) + r(x)$$

$$\ell \in \quad \bigvee \quad + \ r \in \quad \bigvee$$

Example: $\ell(x) = \frac{1}{2} \|Ax - b\|^2$ and $r(x) = \lambda \|x\|_1$

Lasso, L1-LS, compressed sensing

Frequently nonsmooth problems take the form

minimize
$$f(x) := \ell(x) + r(x)$$

$$\ell \in \bigcup + r \in \bigcup$$

Example: $\ell(x) = \frac{1}{2} \|Ax - b\|^2$ and $r(x) = \lambda \|x\|_1$

Lasso, L1-LS, compressed sensing

Example: $\ell(x)$: Logistic loss, and $r(x) = \lambda ||x||_1$

L1-Logistic regression, sparse LR

Composite objective minimization

minimize
$$f(x) := \ell(x) + r(x)$$

subgradient: $x^{k+1} = x^k - \alpha^k g^k$, $g^k \in \partial f(x^k)$

Composite objective minimization

minimize
$$f(x) := \ell(x) + r(x)$$

subgradient: $x^{k+1} = x^k - \alpha^k g^k$, $g^k \in \partial f(x^k)$

subgradient: converges slowly at rate $O(1/\sqrt{k})$

Composite objective minimization

minimize
$$f(x) := \ell(x) + r(x)$$

subgradient: $x^{k+1} = x^k - \alpha^k g^k$, $g^k \in \partial f(x^k)$

subgradient: converges slowly at rate $O(1/\sqrt{k})$

but: *f* is *smooth* plus *nonsmooth*

we should **exploit:** smoothness of ℓ for better method!

Projections: another view

Let $\mathbb{I}_{\mathcal{X}}$ be the *indicator function* for closed, cvx \mathcal{X} , defined as:

$$\mathbb{I}_{\mathcal{X}}(x) := \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ \infty & \text{otherwise.} \end{cases}$$

Projections: another view

Let $\mathbb{I}_{\mathcal{X}}$ be the *indicator function* for closed, cvx \mathcal{X} , defined as:

$$\mathbb{I}_{\mathcal{X}}(x) := egin{cases} 0 & ext{if } x \in \mathcal{X}, \ \infty & ext{otherwise.} \end{cases}$$

Recall orthogonal projection $P_{\mathcal{X}}(y)$

$$P_{\mathcal{X}}(y) := \operatorname{argmin} \quad \frac{1}{2} \|x - y\|_2^2 \quad \text{s.t.} \quad x \in \mathcal{X}.$$

Projections: another view

Let $\mathbb{I}_{\mathcal{X}}$ be the *indicator function* for closed, cvx \mathcal{X} , defined as:

$$\mathbb{I}_{\mathcal{X}}(x) := egin{cases} 0 & ext{if } x \in \mathcal{X}, \ \infty & ext{otherwise.} \end{cases}$$

Recall orthogonal projection $P_{\mathcal{X}}(y)$

$$P_{\mathcal{X}}(y) := \operatorname{argmin} \quad \frac{1}{2} \|x - y\|_2^2 \quad \text{s.t.} \ x \in \mathcal{X}.$$

Rewrite orthogonal projection $P_{\mathcal{X}}(y)$ as

$$P_{\mathcal{X}}(y) := \operatorname{argmin}_{x \in \mathbb{R}^n} \quad \frac{1}{2} \|x - y\|_2^2 + \mathbb{I}_{\mathcal{X}}(x).$$

Generalizing projections – proximity

Projection

$$P_{\mathcal{X}}(y) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2} \|x - y\|_2^2 + \mathbb{I}_{\mathcal{X}}(x)$$

Generalizing projections – proximity

Projection

$$P_{\mathcal{X}}(y) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2} \|x - y\|_2^2 + \mathbb{I}_{\mathcal{X}}(x)$$

Proximity: Replace $\mathbb{I}_{\mathcal{X}}$ by some convex function!

$$\operatorname{prox}_{r}(y) := \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2} \|x - y\|_{2}^{2} + r(x)$$

Generalizing projections – proximity

Projection

$$P_{\mathcal{X}}(y) := \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \quad \frac{1}{2} \|x - y\|_2^2 + \mathbb{I}_{\mathcal{X}}(x)$$

Proximity: Replace $\mathbb{I}_{\mathcal{X}}$ by some convex function!

$$\operatorname{prox}_{r}(y) := \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2} \|x - y\|_{2}^{2} + r(x)$$

Def. $\operatorname{prox}_R : \mathbb{R}^n \to \mathbb{R}^n$ is called a **proximity operator**

Proximity operator

Proximity operators

Exercise: Let $r(x) = ||x||_1$. Solve $\operatorname{prox}_{\lambda r}(y)$.

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \|x - y\|_2^2 + \lambda \|x\|_1.$$

Hint 1: The above problem decomposes into n independent subproblems of the form

$$\min_{x \in \mathbb{R}} \quad \frac{1}{2}(x-y)^2 + \lambda |x|.$$

Hint 2: Consider the two cases separately: either x = 0 or $x \neq 0$

Proximity operators

Exercise: Let $r(x) = ||x||_1$. Solve $\operatorname{prox}_{\lambda r}(y)$.

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{2} \|x - y\|_2^2 + \lambda \|x\|_1.$$

Hint 1: The above problem decomposes into n independent subproblems of the form

$$\min_{x \in \mathbb{R}} \quad \frac{1}{2}(x-y)^2 + \lambda |x|.$$

Hint 2: Consider the two cases separately: either x = 0 or $x \neq 0$

Aka: Soft-thresholding operator

Basics of proximal splitting

Recall Gradient projection for solving $\min_{\mathcal{X}} f(x)$ for $f \in C_L^1$:

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k \nabla f(x^k))$$

Basics of proximal splitting

Recall **Gradient projection** for solving $\min_{\mathcal{X}} f(x)$ for $f \in C_L^1$:

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k \nabla f(x^k))$$

Proximal gradient method solves $\min \ell(x) + r(x)$

$$x^{k+1} = \operatorname{prox}_{\alpha_k r}(x^k - \alpha_k \nabla f(x^k)).$$

Basics of proximal splitting

Recall **Gradient projection** for solving $\min_{\mathcal{X}} f(x)$ for $f \in C_L^1$:

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k \nabla f(x^k))$$

Proximal gradient method solves $\min \ell(x) + r(x)$

$$x^{k+1} = \operatorname{prox}_{\alpha_k r}(x^k - \alpha_k \nabla f(x^k)).$$

- ► This method aka: Forward-backward splitting (FBS)
- ▶ "Forward step:" The gradient-descent step
- "Backward step:" The prox-operator

FBS – example

FBS – example

Lasso / L1-LS min $\frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1.$

$$\operatorname{prox}_{\lambda \|x\|_{1}} y = \operatorname{sgn}(y) \circ \max(|y| - \lambda, 0)$$
$$x^{k+1} = \operatorname{prox}_{\alpha_{k}\lambda \|\cdot\|_{1}} (x^{k} - \alpha_{k}A^{T}(Ax^{k} - b)).$$

so-called iterative soft-thresholding algorithm!

FBS – example

Lasso / L1-LS min $\frac{1}{2} ||Ax - b||_2^2 + \lambda ||x||_1.$

$$\operatorname{prox}_{\lambda \|x\|_1} y = \operatorname{sgn}(y) \circ \max(|y| - \lambda, 0) x^{k+1} = \operatorname{prox}_{\alpha_k \lambda \|\cdot\|_1} (x^k - \alpha_k A^T (Ax^k - b)).$$

so-called iterative soft-thresholding algorithm!

Exercise: Try solving the problem:

$$\min \quad \frac{1}{2} \|Ax - b\|_2^2 + \lambda \|x\|_2.$$

min
$$\frac{1}{2} \|D^T x - b\|_2^2 + \lambda \|x\|_1.$$

min
$$\frac{1}{2} \| D^T x - b \|_2^2 + \lambda \| x \|_1.$$

- Use FBS as shown above
- \clubsuit Try different values of $\lambda>0$ in your code

min
$$\frac{1}{2} \| D^T x - b \|_2^2 + \lambda \| x \|_1.$$

- Use FBS as shown above
- \clubsuit Try different values of $\lambda>0$ in your code
- Use different choices of b

min
$$\frac{1}{2} \| D^T x - b \|_2^2 + \lambda \| x \|_1.$$

- Use FBS as shown above
- ♠ Try different values of $\lambda > 0$ in your code
- Use different choices of b
- A Show a choice of b for which x = 0 (zero vector) is optimal

min
$$\frac{1}{2} \| D^T x - b \|_2^2 + \lambda \| x \|_1.$$

- Use FBS as shown above
- \blacklozenge Try different values of $\lambda>0$ in your code
- Use different choices of b
- A Show a choice of b for which $x = \mathbf{0}$ (zero vector) is optimal
- Experiment with different stepsizes (try $\alpha_k = 1/4$ and if that does not "work" try smaller values that might work).
- Do not expect monotonic descent

min
$$\frac{1}{2} \| D^T x - b \|_2^2 + \lambda \| x \|_1.$$

- Use FBS as shown above
- \blacklozenge Try different values of $\lambda>0$ in your code
- Use different choices of b
- A Show a choice of b for which $x = \mathbf{0}$ (zero vector) is optimal
- Experiment with different stepsizes (try $\alpha_k = 1/4$ and if that does not "work" try smaller values that might work).
- Do not expect monotonic descent
- Compare with versions of the subgradient method

Proximity operators

Proximity operators

- prox_r has several nice properties
- Read / Skim the paper: "Proximal Splitting Methods in Signal Processing", by Combettes and Pesquet (2010).

Theorem The operator $prox_r$ is firmly nonexpansive (FNE)

$$|\operatorname{prox}_r x - \operatorname{prox}_r y||_2^2 \le \langle \operatorname{prox}_r x - \operatorname{prox}_r y, x - y \rangle$$

Proof: (blackboard)

Corollary. The operator $prox_r$ is **nonexpansive**

Proof: apply Cauchy-Schwarz to FNE.

Consequence of FNE

Gradient projection

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k \nabla f(x^k))$$

Proximal gradients / FBS

$$x^{k+1} = \operatorname{prox}_{\alpha_k r}(x^k - \alpha_k \nabla f(x^k))$$

Same convergence theory goes through!

Exercise: Try extending proof of gradient-projection convergence to convergence for FBS.

Hint: First show that at x^* , the fixed-point equation

$$x^* = \operatorname{prox}_{\alpha r}(x^* - \alpha \nabla f(x^*)), \qquad \alpha > 0$$

Moreau Decomposition

- ▶ Aim: Compute $prox_r y$
- Sometimes it is easier to compute $prox_{r^*} y$

$$r^*(u) := \sup_x u^T x - r(x)$$

► Moreau decomposition: $y = prox_R y + prox_{R^*} y$

Moreau decomposition

Proof sketch:

• Consider $\min \frac{1}{2} ||x - y||_2^2 + r(x)$
Moreau decomposition

Proof sketch:

- Consider $\min \frac{1}{2} ||x y||_2^2 + r(x)$
- Introduce new variable z = x, to get

$$\operatorname{prox}_r y := \frac{1}{2} \|x - y\|_2^2 + r(z), \text{ s.t. } x = z$$

Moreau decomposition

Proof sketch:

- Consider $\min \frac{1}{2} ||x y||_2^2 + r(x)$
- Introduce new variable z = x, to get

$$\operatorname{prox}_r y := \frac{1}{2} \|x - y\|_2^2 + r(z), \text{ s.t. } x = z$$

Derive *Lagrangian dual* for this

Moreau decomposition

Proof sketch:

- Consider $\min \frac{1}{2} ||x y||_2^2 + r(x)$
- Introduce new variable z = x, to get

$$\operatorname{prox}_r y := \frac{1}{2} \|x - y\|_2^2 + r(z), \text{ s.t. } x = z$$

- Derive Lagrangian dual for this
- Simplify, and conclude!