Convex Optimization

(EE227A: UC Berkeley)

Lecture 15

(Gradient methods - III)
12 March, 2013

Suvrit Sra

Optimal gradient methods

Optimal gradient methods

(1) We saw following efficiency estimates for the gradient method

$$
\begin{array}{ll}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{array}
$$

Optimal gradient methods

© We saw following efficiency estimates for the gradient method

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

© We also saw lower complexity bounds

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}} \\
f S_{L, \mu}^{\infty}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Optimal gradient methods

© We saw following efficiency estimates for the gradient method

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

© We also saw lower complexity bounds

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}} \\
f S_{L, \mu}^{\infty}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{aligned}
$$

Can we close the gap?

Polyak's method (aka heavy-ball) for $f \in S_{L, \mu}^{1}$

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)+\beta_{k}\left(x^{k}-x^{k-1}\right)
$$

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S_{L, \mu}^{1}$

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)+\beta_{k}\left(x^{k}-x^{k-1}\right)
$$

- Converges (locally, i.e., for $\left\|x^{0}-x^{*}\right\|_{2} \leq \epsilon$) as

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

for $\alpha_{k}=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}$ and $\beta_{k}=\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2}$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. k-th iteration $(k \geq 0)$:
a). Compute $f\left(y^{k}\right)$ and $\nabla f\left(y^{k}\right)$; update primary solution

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. k-th iteration $(k \geq 0)$:
a). Compute $f\left(y^{k}\right)$ and $\nabla f\left(y^{k}\right)$; update primary solution

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

b). Compute stepsize α_{k+1} by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. k-th iteration $(k \geq 0)$:
a). Compute $f\left(y^{k}\right)$ and $\nabla f\left(y^{k}\right)$; update primary solution

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

b). Compute stepsize α_{k+1} by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

c). Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
d). Update secondary solution

$$
y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)
$$

Optimal gradient method - rate

Theorem Let $\left\{x^{k}\right\}$ be sequence generated by above algorithm. If $\alpha_{0} \geq \sqrt{\mu / L}$, then

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq c_{1} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4 L}{\left(2 \sqrt{L}+c_{2} k\right)^{2}}\right\}
$$

where constants c_{1}, c_{2} depend on α_{0}, L, μ.
Proof: Somewhat involved; see notes.

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. k-th iteration $(k \geq 0)$:

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. k-th iteration $(k \geq 0)$:
a). $x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)$
b). $y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right)$

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0 .
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. k-th iteration $(k \geq 0)$:
a). $x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)$
b). $y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right)$

- Convex $f(x)$ with $\|\partial f\| \leq G$ - subgradient method
- Differentiable $f \in C_{L}^{1}$ using gradient methods
- Rate of convergence for smooth convex problems
- Faster rate of convergence for smooth, strongly convex
- Constrained gradient methods - Frank-Wolfe method
- Constrained gradient methods - gradient projection
- Nesterov's optimal gradient methods (smooth)
- Convex $f(x)$ with $\|\partial f\| \leq G$ - subgradient method
- Differentiable $f \in C_{L}^{1}$ using gradient methods
- Rate of convergence for smooth convex problems
- Faster rate of convergence for smooth, strongly convex
- Constrained gradient methods - Frank-Wolfe method
- Constrained gradient methods - gradient projection
- Nesterov's optimal gradient methods (smooth)
- Gap between lower and upper bounds
- $O(1 / \sqrt{t})$ convex (subgradient method);
- $O\left(1 / t^{2}\right)$ for C_{L}^{1}; linear for smoooth, strongly convex
- Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^{n}$

■ f convex on \mathbb{R}^{n}, and Lipschitz cont. on bounded set

$$
|f(x)-f(y)| \leq L\|x-y\|_{2}, \quad x, y \in \mathcal{X}
$$

Nonsmooth optimization

■ Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^{n}$
■ f convex on \mathbb{R}^{n}, and Lipschitz cont. on bounded set

$$
|f(x)-f(y)| \leq L\|x-y\|_{2}, \quad x, y \in \mathcal{X}
$$

■ At each step, we access to $f(x)$ and $g \in \partial f(x)$

Nonsmooth optimization

■ Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^{n}$
■ f convex on \mathbb{R}^{n}, and Lipschitz cont. on bounded set

$$
|f(x)-f(y)| \leq L\|x-y\|_{2}, \quad x, y \in \mathcal{X}
$$

- At each step, we access to $f(x)$ and $g \in \partial f(x)$
- Find $x^{k} \in \mathbb{R}^{n}$ such that $f\left(x^{k}\right)-f^{*} \leq \epsilon$

Nonsmooth optimization

■ Unconstrained problem: $\min f(x)$, where $x \in \mathbb{R}^{n}$
■ f convex on \mathbb{R}^{n}, and Lipschitz cont. on bounded set

$$
|f(x)-f(y)| \leq L\|x-y\|_{2}, \quad x, y \in \mathcal{X}
$$

- At each step, we access to $f(x)$ and $g \in \partial f(x)$
- Find $x^{k} \in \mathbb{R}^{n}$ such that $f\left(x^{k}\right)-f^{*} \leq \epsilon$

■ First-order methods: $x^{k} \in x^{0}+\operatorname{span}\left\{g^{0}, \ldots, g^{k-1}\right\}$

Nonsmooth optimization

EXAMPLE

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$

EXAMPLE

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.

EXAMPLE

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$

EXAMPLE

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain ϵ-accuracy.

EXAMPLE

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain ϵ-accuracy.
- This behavior typical for the subgradient method which exhibits $O(1 / \sqrt{k})$ convergence in general

Nonsmooth optimization

EXAMPLE

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain ϵ-accuracy.
- This behavior typical for the subgradient method which exhibits $O(1 / \sqrt{k})$ convergence in general

> Can we do better in general?

Nonsmooth optimization

Nope!

Nope!

Theorem (Nesterov.) Let $\mathcal{B}=\left\{x \mid\left\|x-x^{0}\right\|_{2} \leq D\right\}$. Assume, $x^{*} \in$ \mathcal{B}. There exists a convex function f in $C_{L}^{0}(\mathcal{B})$ (with $L>0$), such that for $0 \leq k \leq n-1$, the lower-bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})}
$$

holds for any algorithm that generates x^{k} by linearly combining the previous iterates and subgradients.

Nope!

Theorem (Nesterov.) Let $\mathcal{B}=\left\{x \mid\left\|x-x^{0}\right\|_{2} \leq D\right\}$. Assume, $x^{*} \in$ \mathcal{B}. There exists a convex function f in $C_{L}^{0}(\mathcal{B})$ (with $L>0$), such that for $0 \leq k \leq n-1$, the lower-bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})}
$$

holds for any algorithm that generates x^{k} by linearly combining the previous iterates and subgradients.

Should we give up?

Nope!

Theorem (Nesterov.) Let $\mathcal{B}=\left\{x \mid\left\|x-x^{0}\right\|_{2} \leq D\right\}$. Assume, $x^{*} \in$ \mathcal{B}. There exists a convex function f in $C_{L}^{0}(\mathcal{B})$ (with $L>0$), such that for $0 \leq k \leq n-1$, the lower-bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})}
$$

holds for any algorithm that generates x^{k} by linearly combining the previous iterates and subgradients.

Should we give up? No!

Nope!

Theorem (Nesterov.) Let $\mathcal{B}=\left\{x \mid\left\|x-x^{0}\right\|_{2} \leq D\right\}$. Assume, $x^{*} \in$ \mathcal{B}. There exists a convex function f in $C_{L}^{0}(\mathcal{B})$ (with $L>0$), such that for $0 \leq k \leq n-1$, the lower-bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})}
$$

holds for any algorithm that generates x^{k} by linearly combining the previous iterates and subgradients.

Should we give up? No! Several possibilities remain!

Nonsmooth optimization

- Blackbox too pessimistic
- Blackbox too pessimistic
- Nesterov's breakthroughs
- Excessive gap technique
- Composite objective minimization

Nonsmooth optimization

- Blackbox too pessimistic
- Nesterov's breakthroughs

■ Excessive gap technique

- Composite objective minimization
- Nemirovski's workshorse of general convex optimization

■ Mirror-descent, NERML

- Mirror-prox

Nonsmooth optimization

- Blackbox too pessimistic
- Nesterov's breakthroughs

■ Excessive gap technique

- Composite objective minimization
- Nemirovski's workshorse of general convex optimization

■ Mirror-descent, NERML

- Mirror-prox
- Other techniques, problem classes, etc.

Proximal splitting

Composite objectives

Frequently nonsmooth problems take the form

minimize $f(x):=\ell(x)+r(x)$

Composite objectives

Frequently nonsmooth problems take the form

minimize $f(x):=\ell(x)+r(x)$
$\ell \in \quad /+r \in \quad$

Composite objectives

Frequently nonsmooth problems take the form
minimize $f(x):=\ell(x)+r(x)$

$$
\ell \in \quad /+r \in>
$$

Example: $\ell(x)=\frac{1}{2}\|A x-b\|^{2}$ and $r(x)=\lambda\|x\|_{1}$
Lasso, L1-LS, compressed sensing

Composite objectives

Frequently nonsmooth problems take the form
minimize $f(x):=\ell(x)+r(x)$

$$
\ell \in \quad /+r \in
$$

Example: $\ell(x)=\frac{1}{2}\|A x-b\|^{2}$ and $r(x)=\lambda\|x\|_{1}$
Lasso, L1-LS, compressed sensing

Example: $\ell(x)$: Logistic loss, and $r(x)=\lambda\|x\|_{1}$
L1-Logistic regression, sparse LR

Composite objective minimization

$$
\operatorname{minimize} f(x):=\ell(x)+r(x)
$$

subgradient: $x^{k+1}=x^{k}-\alpha^{k} g^{k}, g^{k} \in \partial f\left(x^{k}\right)$

Composite objective minimization

$$
\operatorname{minimize} f(x):=\ell(x)+r(x)
$$

subgradient: $x^{k+1}=x^{k}-\alpha^{k} g^{k}, g^{k} \in \partial f\left(x^{k}\right)$
subgradient: converges slowly at rate $O(1 / \sqrt{k})$

Composite objective minimization

$$
\text { minimize } f(x):=\ell(x)+r(x)
$$

subgradient: $x^{k+1}=x^{k}-\alpha^{k} g^{k}, g^{k} \in \partial f\left(x^{k}\right)$
subgradient: converges slowly at rate $O(1 / \sqrt{k})$
but: f is smooth plus nonsmooth
we should exploit: smoothness of ℓ for better method!

Projections: another view

Let $\mathbb{I}_{\mathcal{X}}$ be the indicator function for closed, $\operatorname{cvx} \mathcal{X}$, defined as:

$$
\mathbb{I}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise }\end{cases}
$$

Let $\mathbb{I}_{\mathcal{X}}$ be the indicator function for closed, $\mathrm{cvx} \mathcal{X}$, defined as:

$$
\mathbb{I}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise }\end{cases}
$$

Recall orthogonal projection $P_{\mathcal{X}}(y)$

$$
P_{\mathcal{X}}(y):=\operatorname{argmin} \quad \frac{1}{2}\|x-y\|_{2}^{2} \quad \text { s.t. } \quad x \in \mathcal{X} .
$$

Projections: another view

Let $\mathbb{I}_{\mathcal{X}}$ be the indicator function for closed, $\mathrm{cvx} \mathcal{X}$, defined as:

$$
\mathbb{I}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise }\end{cases}
$$

Recall orthogonal projection $P_{\mathcal{X}}(y)$

$$
P_{\mathcal{X}}(y):=\operatorname{argmin} \quad \frac{1}{2}\|x-y\|_{2}^{2} \quad \text { s.t. } \quad x \in \mathcal{X} .
$$

Rewrite orthogonal projection $P_{\mathcal{X}}(y)$ as

$$
P_{\mathcal{X}}(y):=\operatorname{argmin}_{x \in \mathbb{R}^{n}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+\mathbb{I}_{\mathcal{X}}(x) .
$$

Generalizing projections - proximity

Projection

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+\mathbb{I}_{\mathcal{X}}(x)
$$

Generalizing projections - proximity

Projection

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+\mathbb{I}_{\mathcal{X}}(x)
$$

Proximity: Replace $\mathbb{I}_{\mathcal{X}}$ by some convex function!

$$
\operatorname{prox}_{r}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+r(x)
$$

Generalizing projections - proximity

Projection

$$
P_{\mathcal{X}}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+\mathbb{I}_{\mathcal{X}}(x)
$$

Proximity: Replace $\mathbb{I}_{\mathcal{X}}$ by some convex function!

$$
\operatorname{prox}_{r}(y):=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \quad \frac{1}{2}\|x-y\|_{2}^{2}+r(x)
$$

Def. $\operatorname{prox}_{R}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is called a proximity operator

Proximity operator

Proximity operators

Exercise: Let $r(x)=\|x\|_{1}$. Solve $\operatorname{prox}_{\lambda r}(y)$.

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

Hint 1: The above problem decomposes into n independent subproblems of the form

$$
\min _{x \in \mathbb{R}} \quad \frac{1}{2}(x-y)^{2}+\lambda|x|
$$

Hint 2: Consider the two cases separately: either $x=0$ or $x \neq 0$

Proximity operators

Exercise: Let $r(x)=\|x\|_{1}$. Solve $\operatorname{prox}_{\lambda r}(y)$.

$$
\min _{x \in \mathbb{R}^{n}} \frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|x\|_{1}
$$

Hint 1: The above problem decomposes into n independent subproblems of the form

$$
\min _{x \in \mathbb{R}} \quad \frac{1}{2}(x-y)^{2}+\lambda|x|
$$

Hint 2: Consider the two cases separately: either $x=0$ or $x \neq 0$
Aka: Soft-thresholding operator

Basics of proximal splitting

Recall Gradient projection for solving $\min \mathcal{X} f(x)$ for $f \in C_{L}^{1}$:

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

Basics of proximal splitting

Recall Gradient projection for solving $\min \mathcal{X} f(x)$ for $f \in C_{L}^{1}$:

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

Proximal gradient method solves min $\ell(x)+r(x)$

$$
x^{k+1}=\operatorname{prox}_{\alpha_{k} r}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

Basics of proximal splitting

Recall Gradient projection for solving $\min \mathcal{X} f(x)$ for $f \in C_{L}^{1}$:

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

Proximal gradient method solves min $\ell(x)+r(x)$

$$
x^{k+1}=\operatorname{prox}_{\alpha_{k} r}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right) .
$$

- This method aka: Forward-backward splitting (FBS)
- "Forward step:" The gradient-descent step
- "Backward step:" The prox-operator

FBS - example

$$
\begin{array}{ll}
& \text { Lasso / L1-LS } \\
\min & \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} .
\end{array}
$$

FBS - example

$$
\begin{gathered}
\text { Lasso / L1-LS } \\
\min \quad \begin{array}{l}
\frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
\end{array} \\
\operatorname{prox}_{\lambda\|x\|_{1}} y=\operatorname{sgn}(y) \circ \max (|y|-\lambda, 0) \\
x^{k+1}=\operatorname{prox}_{\alpha_{k} \lambda\|\cdot\|_{1}}\left(x^{k}-\alpha_{k} A^{T}\left(A x^{k}-b\right)\right) .
\end{gathered}
$$

so-called iterative soft-thresholding algorithm!

FBS - example

$$
\begin{aligned}
& \text { Lasso / L1-LS } \\
& \min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} . \\
& \operatorname{prox}_{\lambda\|x\|_{1}} y=\operatorname{sgn}(y) \circ \max (|y|-\lambda, 0) \\
& x^{k+1}=\operatorname{prox}_{\alpha_{k} \lambda\|\cdot\|_{1}}\left(x^{k}-\alpha_{k} A^{T}\left(A x^{k}-b\right)\right) .
\end{aligned}
$$

so-called iterative soft-thresholding algorithm!
Exercise: Try solving the problem:

$$
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{2} .
$$

Recall our older example: $\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. We solved its unconstrained and constrained versions so far. Now implement a Matlab script to solve

$$
\min \quad \frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}+\lambda\|x\|_{1}
$$

Recall our older example: $\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. We solved its unconstrained and constrained versions so far. Now implement a Matlab script to solve

$$
\min \quad \frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}+\lambda\|x\|_{1}
$$

A Use FBS as shown above
A Try different values of $\lambda>0$ in your code

Recall our older example: $\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. We solved its unconstrained and constrained versions so far. Now implement a Matlab script to solve

$$
\min \quad \frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}+\lambda\|x\|_{1}
$$

A Use FBS as shown above
A Try different values of $\lambda>0$ in your code
© Use different choices of b

Recall our older example: $\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. We solved its unconstrained and constrained versions so far. Now implement a Matlab script to solve

$$
\min \quad \frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}+\lambda\|x\|_{1}
$$

A Use FBS as shown above

- Try different values of $\lambda>0$ in your code
- Use different choices of b
© Show a choice of b for which $x=\mathbf{0}$ (zero vector) is optimal

Recall our older example: $\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. We solved its unconstrained and constrained versions so far. Now implement a Matlab script to solve

$$
\min \quad \frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}+\lambda\|x\|_{1}
$$

A Use FBS as shown above
A Try different values of $\lambda>0$ in your code
© Use different choices of b
© Show a choice of b for which $x=\mathbf{0}$ (zero vector) is optimal
© Experiment with different stepsizes (try $\alpha_{k}=1 / 4$ and if that does not "work" try smaller values that might work).
© Do not expect monotonic descent

Recall our older example: $\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. We solved its unconstrained and constrained versions so far. Now implement a Matlab script to solve

$$
\min \quad \frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}+\lambda\|x\|_{1}
$$

A Use FBS as shown above
A Try different values of $\lambda>0$ in your code
A Use different choices of b
© Show a choice of b for which $x=\mathbf{0}$ (zero vector) is optimal
© Experiment with different stepsizes (try $\alpha_{k}=1 / 4$ and if that does not "work" try smaller values that might work).
A Do not expect monotonic descent
© Compare with versions of the subgradient method

Proximity operators

Proximity operators

- prox_{r} has several nice properties
- Read / Skim the paper: "Proximal Splitting Methods in Signal Processing", by Combettes and Pesquet (2010).

Theorem The operator prox $_{r}$ is firmly nonexpansive (FNE)

$$
\left\|\operatorname{prox}_{r} x-\operatorname{prox}_{r} y\right\|_{2}^{2} \leq\left\langle\operatorname{prox}_{r} x-\operatorname{prox}_{r} y, x-y\right\rangle
$$

Proof: (blackboard)

Corollary. The operator prox $_{r}$ is nonexpansive
Proof: apply Cauchy-Schwarz to FNE.

Consequence of FNE

Gradient projection

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

Proximal gradients / FBS

$$
x^{k+1}=\operatorname{prox}_{\alpha_{k} r}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right)
$$

Same convergence theory goes through!

Exercise: Try extending proof of gradient-projection convergence to convergence for FBS.
Hint: First show that at x^{*}, the fixed-point equation

$$
x^{*}=\operatorname{prox}_{\alpha r}\left(x^{*}-\alpha \nabla f\left(x^{*}\right)\right), \quad \alpha>0
$$

Moreau Decomposition

- Aim: Compute $\operatorname{prox}_{r} y$
- Sometimes it is easier to compute $\operatorname{prox}_{r^{*}} y$

$$
r^{*}(u):=\sup _{x} u^{T} x-r(x)
$$

- Moreau decomposition: $y=\operatorname{prox}_{R} y+\operatorname{prox}_{R^{*}} y$

Proof sketch:

- Consider min $\frac{1}{2}\|x-y\|_{2}^{2}+r(x)$

Proof sketch:

- Consider min $\frac{1}{2}\|x-y\|_{2}^{2}+r(x)$

■ Introduce new variable $z=x$, to get

$$
\operatorname{prox}_{r} y:=\frac{1}{2}\|x-y\|_{2}^{2}+r(z), \text { s.t. } x=z
$$

Moreau decomposition

Proof sketch:

- Consider min $\frac{1}{2}\|x-y\|_{2}^{2}+r(x)$
- Introduce new variable $z=x$, to get

$$
\operatorname{prox}_{r} y:=\frac{1}{2}\|x-y\|_{2}^{2}+r(z), \text { s.t. } x=z
$$

- Derive Lagrangian dual for this

Moreau decomposition

Proof sketch:
■ Consider min $\frac{1}{2}\|x-y\|_{2}^{2}+r(x)$

- Introduce new variable $z=x$, to get

$$
\operatorname{prox}_{r} y:=\frac{1}{2}\|x-y\|_{2}^{2}+r(z), \text { s.t. } x=z
$$

- Derive Lagrangian dual for this

■ Simplify, and conclude!

