
Convex Optimization
(EE227A: UC Berkeley)

Lecture 15
(Gradient methods – III)

12 March, 2013

◦

Suvrit Sra



Optimal gradient methods

2 / 27



Optimal gradient methods

♠ We saw following efficiency estimates for the gradient method

f ∈ C1
L : f(xk)− f∗ ≤ 2L‖x0 − x∗‖22

k + 4

f ∈ S1
L,µ : f(xk)− f∗ ≤ L

2

(
L− µ
L+ µ

)2k

‖x0 − x∗‖22.

♠ We also saw lower complexity bounds

f ∈ C1
L : f(xk)− f(x∗) ≥ 3L‖x0 − x∗‖22

32(k + 1)2

fS∞L,µ : f(xk)− f(x∗) ≥ µ

2

(√
L−√µ
√
L+
√
µ

)2k

‖x0 − x∗‖22.

Can we close the gap?
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Gradient with “momentum”

Polyak’s method (aka heavy-ball) for f ∈ S1
L,µ

xk+1 = xk − αk∇f(xk) + βk(x
k − xk−1)

I Converges (locally, i.e., for ‖x0 − x∗‖2 ≤ ε) as

‖xk − x∗‖22 ≤

(√
L−√µ
√
L+
√
µ

)2k

‖x0 − x∗‖22,

for αk =
4

(
√
L+
√
µ)2

and βk =
(√

L−√µ√
L+
√
µ

)2
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Nesterov’s optimal gradient method

minx f(x), where S1
L,µ with µ ≥ 0

1. Choose x0 ∈ Rn, α0 ∈ (0, 1)

2. Let y0 ← x0; set q = µ/L
3. k-th iteration (k ≥ 0):

a). Compute f(yk) and ∇f(yk); update primary solution

xk+1 = yk − 1
L
∇f(yk)

b). Compute stepsize αk+1 by solving

α2
k+1 = (1− αk+1)α

2
k + qαk+1

c). Set βk = αk(1− αk)/(α2
k + αk+1)

d). Update secondary solution

yk+1 = xk+1 + βk(x
k+1 − xk)
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Optimal gradient method – rate

Theorem Let
{
xk
}

be sequence generated by above algorithm. If

α0 ≥
√
µ/L, then

f(xk)− f(x∗) ≤ c1min

{(
1−

√
µ

L

)k
,

4L

(2
√
L+ c2k)2

}
,

where constants c1, c2 depend on α0, L, µ.

Proof: Somewhat involved; see notes.
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Strongly convex case – simplification

If µ > 0, select α0 =
√
µ/L. The two main steps get simplified:

1. Set βk = αk(1− αk)/(α2
k + αk+1)

2. yk+1 = xk+1 + βk(x
k+1 − xk)

αk =
√

µ
L βk =

√
L−√µ
√
L+
√
µ
, k ≥ 0.

Optimal method simplifies to

1. Choose y0 = x0 ∈ Rn

2. k-th iteration (k ≥ 0):

a). xk+1 = yk − 1
L
∇f(yk)

b). yk+1 = xk+1 + β(xk+1 − xk)

Notice similarity to Polyak’s method!
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Summary so far

I Convex f(x) with ‖∂f‖ ≤ G – subgradient method

I Differentiable f ∈ C1
L using gradient methods

I Rate of convergence for smooth convex problems

I Faster rate of convergence for smooth, strongly convex

I Constrained gradient methods – Frank-Wolfe method

I Constrained gradient methods – gradient projection

I Nesterov’s optimal gradient methods (smooth)

I Gap between lower and upper bounds

I O(1/
√
t) convex (subgradient method);

I O(1/t2) for C1
L; linear for smoooth, strongly convex
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Nonsmooth optimization

Unconstrained problem: min f(x), where x ∈ Rn

f convex on Rn, and Lipschitz cont. on bounded set

|f(x)− f(y)| ≤ L‖x− y‖2, x, y ∈ X .

At each step, we access to f(x) and g ∈ ∂f(x)
Find xk ∈ Rn such that f(xk)− f∗ ≤ ε
First-order methods: xk ∈ x0 + span

{
g0, . . . , gk−1

}
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Nonsmooth optimization

EXAMPLE

I Let φ(x) = |x| for x ∈ R

I Subgradient method xk+1 = xk − αkgk, where gk ∈ ∂|xk|.
I If x0 = 1 and αk =

1√
k+1

+ 1√
k+2

(this stepsize is known to be

optimal), then |xk| = 1√
k+1

I Thus, O( 1
ε2
) iterations are needed to obtain ε-accuracy.

I This behavior typical for the subgradient method which exhibits
O(1/

√
k) convergence in general

Can we do better in general?
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Nonsmooth optimization

Nope!

Theorem (Nesterov.) Let B =
{
x | ‖x− x0‖2 ≤ D

}
. Assume, x∗ ∈

B. There exists a convex function f in C0
L(B) (with L > 0), such

that for 0 ≤ k ≤ n− 1, the lower-bound

f(xk)− f(x∗) ≥ LD
2(1+

√
k+1)

,

holds for any algorithm that generates xk by linearly combining the
previous iterates and subgradients.

Should we give up? No! Several possibilities remain!
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Nonsmooth optimization

I Blackbox too pessimistic

I Nesterov’s breakthroughs
Excessive gap technique
Composite objective minimization

I Nemirovski’s workshorse of general convex optimization

Mirror-descent, NERML
Mirror-prox

I Other techniques, problem classes, etc.

12 / 27



Nonsmooth optimization

I Blackbox too pessimistic

I Nesterov’s breakthroughs
Excessive gap technique
Composite objective minimization

I Nemirovski’s workshorse of general convex optimization

Mirror-descent, NERML
Mirror-prox

I Other techniques, problem classes, etc.

12 / 27



Nonsmooth optimization

I Blackbox too pessimistic

I Nesterov’s breakthroughs
Excessive gap technique
Composite objective minimization

I Nemirovski’s workshorse of general convex optimization

Mirror-descent, NERML
Mirror-prox

I Other techniques, problem classes, etc.

12 / 27



Nonsmooth optimization

I Blackbox too pessimistic

I Nesterov’s breakthroughs
Excessive gap technique
Composite objective minimization

I Nemirovski’s workshorse of general convex optimization

Mirror-descent, NERML
Mirror-prox

I Other techniques, problem classes, etc.

12 / 27



Proximal splitting
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Composite objectives

Frequently nonsmooth problems take the form

minimize f(x) := `(x) + r(x)
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2‖Ax− b‖

2 and r(x) = λ‖x‖1

Lasso, L1-LS, compressed sensing
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minimize f(x) := `(x) + r(x)

` ∈ + r ∈

Example: `(x) = 1
2‖Ax− b‖

2 and r(x) = λ‖x‖1

Lasso, L1-LS, compressed sensing

Example: `(x) : Logistic loss, and r(x) = λ‖x‖1

L1-Logistic regression, sparse LR
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Composite objective minimization

minimize f(x) := `(x) + r(x)

subgradient: xk+1 = xk − αkgk, gk ∈ ∂f(xk)

subgradient: converges slowly at rate O(1/
√
k)

but: f is smooth plus nonsmooth

we should exploit: smoothness of ` for better method!
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Projections: another view

Let IX be the indicator function for closed, cvx X , defined as:

IX (x) :=

{
0 if x ∈ X ,
∞ otherwise.
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IX (x) :=

{
0 if x ∈ X ,
∞ otherwise.

Recall orthogonal projection PX (y)

PX (y) := argmin 1
2‖x− y‖

2
2 s.t. x ∈ X .

Rewrite orthogonal projection PX (y) as

PX (y) := argminx∈Rn
1
2‖x− y‖

2
2 + IX (x).
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Generalizing projections – proximity

Projection

PX (y) := argmin
x∈Rn

1
2‖x− y‖

2
2 + IX (x)
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Proximity operator

`1-norm ball of radius ρ(λ)
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Proximity operators

Exercise: Let r(x) = ‖x‖1. Solve proxλr(y).

min
x∈Rn

1
2‖x− y‖

2
2 + λ‖x‖1.

Hint 1: The above problem decomposes into n independent
subproblems of the form

min
x∈R

1
2(x− y)

2 + λ|x|.

Hint 2: Consider the two cases separately: either x = 0 or x 6= 0

Aka: Soft-thresholding operator
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Basics of proximal splitting

Recall Gradient projection for solving minX f(x) for f ∈ C1
L:

xk+1 = PX (x
k − αk∇f(xk))

Proximal gradient method solves min `(x) + r(x)

xk+1 = proxαkr
(xk − αk∇f(xk)).

I This method aka: Forward-backward splitting (FBS)

I “Forward step:” The gradient-descent step

I “Backward step:” The prox-operator
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FBS – example

Lasso / L1-LS

min 1
2‖Ax− b‖

2
2 + λ‖x‖1.

proxλ‖x‖1 y = sgn(y) ◦max(|y| − λ, 0)

xk+1 = proxαkλ‖·‖1(x
k − αkAT (Axk − b)).

so-called iterative soft-thresholding algorithm!

Exercise: Try solving the problem:

min 1
2‖Ax− b‖

2
2 + λ‖x‖2.
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Exercise

Recall our older example: 1
2‖D

Tx− b‖22. We solved its
unconstrained and constrained versions so far. Now implement a
Matlab script to solve

min 1
2‖D

Tx− b‖22 + λ‖x‖1.

♠ Use FBS as shown above

♠ Try different values of λ > 0 in your code

♠ Use different choices of b

♠ Show a choice of b for which x = 0 (zero vector) is optimal

♠ Experiment with different stepsizes (try αk = 1/4 and if that
does not “work” try smaller values that might work).

♠ Do not expect monotonic descent

♠ Compare with versions of the subgradient method
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Proximity operators
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Proximity operators

I proxr has several nice properties

I Read / Skim the paper: “Proximal Splitting Methods in
Signal Processing”, by Combettes and Pesquet (2010).

Theorem The operator proxr is firmly nonexpansive (FNE)

‖proxr x− proxr y‖22 ≤ 〈proxr x− proxr y, x− y〉

Proof: (blackboard)

Corollary. The operator proxr is nonexpansive

Proof: apply Cauchy-Schwarz to FNE.
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Consequence of FNE

Gradient projection

xk+1 = PX (x
k − αk∇f(xk))

Proximal gradients / FBS

xk+1 = proxαkr
(xk − αk∇f(xk))

Same convergence theory goes through!

Exercise: Try extending proof of gradient-projection convergence
to convergence for FBS.
Hint: First show that at x∗, the fixed-point equation

x∗ = proxαr(x
∗ − α∇f(x∗)), α > 0
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Moreau Decomposition

I Aim: Compute proxr y

I Sometimes it is easier to compute proxr∗ y

r∗(u) := sup
x
uTx− r(x)

I Moreau decomposition: y = proxR y + proxR∗ y
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Moreau decomposition

Proof sketch:

Consider min 1
2‖x− y‖

2
2 + r(x)

Introduce new variable z = x, to get

proxr y := 1
2‖x− y‖

2
2 + r(z), s.t. x = z

Derive Lagrangian dual for this

Simplify, and conclude!
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