Convex Optimization

(EE227A: UC Berkeley)

Lecture 15
(Gradient methods — I11)

12 March, 2013

o

Suvrit Sra



Optimal gradient methods



Optimal gradient methods

& We saw following efficiency estimates for the gradient method
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Optimal gradient methods

& We saw following efficiency estimates for the gradient method
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Optimal gradient methods

& We saw following efficiency estimates for the gradient method

2L)|z° — 2|3
Cl . My prc  — 12
fecy f(a®) = f* < k14

I y\2k
1, k * < L H 0 _ %2
Festus - < (Th) -l

& We also saw lower complexity bounds

3L[2° — 2|3

feCh: N -1 2 T

FS%, f@*) = fa*) >

N =

VL+ n

Can we close the gap?

(Vf‘”@>%w#—xw%
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Gradient with “momentum”

Polyak’s method (aka heavy-ball) for f € S ,

gFl = gk — oszf(xk) + ﬁk(xk — xk_l)
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Gradient with “momentum”

Polyak’s method (aka heavy-ball) for f € S ,

xk-l—l — .’Ek _ akvf(xk) +ﬁk(l’k o .’Ek_l)
» Converges (locally, i.e., for |20 — z*||2 <€) as

ok
koo [ VE- VR 0 _ 2
2" — 273 < N 27 — 2|3,

_ 4 _ (VI-yi)?
for o, = ENE and 8, = (\E—i—\/ﬁ)
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Nesterov’s optimal gradient method

ming f(x), where Si,u with ;0 >0
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Nesterov’s optimal gradient method

ming f(x), where Si,u with ;0 >0

1. Choose 2V € R", ap € (0,1)
2. Let % < 2% set ¢ = u/L
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Nesterov’s optimal gradient method

ming f(x), where Si,u with ;0 >0

. Choose z° € R™, a € (0,1)

. Let 4% < 2% set ¢ = /L

. k-th iteration (k > 0):

a). Compute f(y*) and V f(y*); update primary solution

gFH = gk %vf(yk)

27



Nesterov’s optimal gradient method

ming f(x), where Si,u with ;0 >0

. Choose z° € R™, a € (0,1)

. Let 4% < 2% set ¢ = /L

. k-th iteration (k > 0):

a). Compute f(y*) and V f(y*); update primary solution

2"t = yF — 1V f(yF)
b). Compute stepsize oy 1 by solving

2 2
ey = (1 = apyr)ag, + qoger
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Nesterov’s optimal gradient method

ming f(x), where Si,u with ;0 >0

1. Choose 2V € R", ap € (0,1)
2. Let ¢ « 2% set g = /L
3. k-th iteration (k > 0):
a). Compute f(y*) and V f(y*); update primary solution

2"t = yF — 1V f(yF)
b). Compute stepsize oy 1 by solving
g = (1 — apgr)ag + qoge

c). Set B, = ax(l — a)/(af + agi1)
d). Update secondary solution

Y = g B - )
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Optimal gradient method — rate

Theorem Let {xk} be sequence generated by above algorithm. If

ag >/ /L, then

k) = ) < min{ (1 OR (Mfw}

where constants cj, co depend on ag, L, .

Proof: Somewhat involved; see notes.
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Strongly convex case — simplification

If >0, select ag = \/p/L. The two main steps get simplified:
1. Set B = ak(l — ozk)/(a% + ak—f—l)
2. yktl = gkl 4 B (2FHD — k)

VL~ i
Oék:\/% 5k:m, k> 0.



Strongly convex case — simplification

If >0, select ag = \/p/L. The two main steps get simplified:
1. Set B = ak(l — ozk)/(a% + ak—f—l)
2. yktl = gkl 4 B (2FHD — k)
T —
a = \/% By = M’ k> 0.
VL+ /i

Optimal method simplifies to
1. Choose ¢° = 2° € R"
2. k-th iteration (k > 0):
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Strongly convex case — simplification

If >0, select ag = \/p/L. The two main steps get simplified:

1. Set B = ak(l — ozk)/(a% + ak—f—l)

2. Ykl = g1 o gy (g1 — k)
VL —

a = \/% B = J, k> 0.

VL+ /i

Optimal method simplifies to

1. Choose ¢° = 2° € R"

2. k-th iteration (k > 0):

a). oMt =y — IV ()
b). Y+l = zh+!  B(ak+! — ob)
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Strongly convex case — simplification

If >0, select ag = \/p/L. The two main steps get simplified:

1. Set B = ak(l — ozk)/(ai + ak—i—l)

2. yk—l-l — xk—i—l 4 lBk(wk—H _ LL’k)
VL —

a = \/% B = J, k> 0.

VL+ /i

Optimal method simplifies to

1. Choose ¢° = 2° € R"

2. k-th iteration (k > 0):

a). oMt =y — IV ()
b). Y+l = zh+!  B(ak+! — ob)

‘ Notice similarity to Polyak's method!
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Summary so far

vVvyvyVvyVvyyy

Convex f(z) with ||0f|| < G - subgradient method
Differentiable f € C} using gradient methods

Rate of convergence for smooth convex problems
Faster rate of convergence for smooth, strongly convex
Constrained gradient methods — Frank-Wolfe method
Constrained gradient methods — gradient projection

Nesterov's optimal gradient methods (smooth)
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Summary so far

VVYyVYVYVYVVVYVYY

Convex f(z) with ||0f|| < G - subgradient method
Differentiable f € C} using gradient methods

Rate of convergence for smooth convex problems
Faster rate of convergence for smooth, strongly convex
Constrained gradient methods — Frank-Wolfe method
Constrained gradient methods — gradient projection
Nesterov's optimal gradient methods (smooth)

Gap between lower and upper bounds

O(1/+/t) convex (subgradient method);

O(1/t%) for C1; linear for smoooth, strongly convex
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Nonsmooth optimization

m Unconstrained problem: min f(z), where z € R"

m f convex on R"”, and Lipschitz cont. on bounded set

[f@) = f@l <Lz —ylla, zyed.
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Nonsmooth optimization

m Unconstrained problem: min f(z), where z € R"

m f convex on R"”, and Lipschitz cont. on bounded set

[f@) = f@l <Lz —ylla, zyed.

m At each step, we access to f(z) and g € Of(z)

27



Nonsmooth optimization

Unconstrained problem: min f(z), where z € R”

f convex on R™, and Lipschitz cont. on bounded set

[f@) = f@l <Lz —ylla, zyed.

At each step, we access to f(z) and g € Of(z)
Find 2% € R” such that f(2%) — f* <«
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Nonsmooth optimization

Unconstrained problem: min f(z), where z € R”

f convex on R™, and Lipschitz cont. on bounded set

[f@) = f@l <Lz —ylla, zyed.

At each step, we access to f(z) and g € Of(z)
Find 2% € R” such that f(2%) — f* <«
First-order methods: z* € 20 + span {¢°,...,¢" '}
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Nonsmooth optimization

EXAMPLE
> Let ¢p(x) = |z| for z € R
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Nonsmooth optimization

EXAMPLE
> Let ¢p(x) = |z| for z € R

» Subgradient method z**! = zF — ayg*, where g* € 0|z*|.
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Nonsmooth optimization

EXAMPLE
> Let ¢p(x) = |z| for z € R
» Subgradient method 2! = zF — ay.g*, where g% € 0|z

0 _ _ 1 1 . . .

» Ifz” =1and o, = @ + s (this stepsize is known to be
k

| = VE+1

optimal), then |z
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Nonsmooth optimization

EXAMPLE
> Let ¢p(x) = |z| for z € R
» Subgradient method 2! = zF — ay.g*, where g% € 0|z

» If 2% =1 and ap = .= + —2 (this stepsize is known to be
VE+L T VER2

optimal), then |z¥| = \/kl?

» Thus, O(E%) iterations are needed to obtain e-accuracy.
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Nonsmooth optimization

EXAMPLE
> Let ¢p(x) = |z| for z € R
» Subgradient method z**! = zF — ayg*, where g* € 0|z*|.

0 _ S D . .
» If2” =1and oy, = 7t T i (this stepsize is known to be
k‘ 1

optimal), then |z /ST

» Thus, O(E%) iterations are needed to obtain e-accuracy.
» This behavior typical for the subgradient method which exhibits
O(1/V'k) convergence in general
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Nonsmooth optimization

EXAMPLE
> Let ¢p(x) = |z| for z € R
» Subgradient method z**! = zF — ayg*, where g* € 0|z*|.

0 _ S D . .
» If2” =1and oy, = 7t T i (this stepsize is known to be
k‘ 1

optimal), then |z /ST

» Thus, O(E%) iterations are needed to obtain e-accuracy.
» This behavior typical for the subgradient method which exhibits
O(1/V'k) convergence in general

‘ Can we do better in general?
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Nonsmooth optimization

Nope!
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Nonsmooth optimization

Nope!

Theorem (Nesterov.) Let B = {z | ||z — 2°||2 < D}. Assume, 2* €
B. There exists a convex function f in C?(B) (with L > 0), such
that for 0 < k < n — 1, the lower-bound

f@*) = f(z*) > mf—fma

holds for any algorithm that generates z* by linearly combining the
previous iterates and subgradients.
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Nonsmooth optimization

Nope!

Theorem (Nesterov.) Let B = {z | ||z — 2°||2 < D}. Assume, 2* €
B. There exists a convex function f in C?(B) (with L > 0), such
that for 0 < k < n — 1, the lower-bound

f@*) = f(z*) > mf—\?ﬁl)a

holds for any algorithm that generates z* by linearly combining the
previous iterates and subgradients.

Should we give up?
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Nonsmooth optimization

Nope!

Theorem (Nesterov.) Let B = {z | ||z — 2°||2 < D}. Assume, 2* €
B. There exists a convex function f in C?(B) (with L > 0), such
that for 0 < k < n — 1, the lower-bound

f@*) = f(z*) > mf—fma

holds for any algorithm that generates z* by linearly combining the
previous iterates and subgradients.

Should we give up? No!
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Nonsmooth optimization

Nope!

Theorem (Nesterov.) Let B = {z | ||z — 2°||2 < D}. Assume, 2* €
B. There exists a convex function f in C?(B) (with L > 0), such
that for 0 < k < n — 1, the lower-bound

f@*) = f(z*) > mf—\?ﬁl)a

holds for any algorithm that generates z* by linearly combining the
previous iterates and subgradients.

Should we give up? No! Several possibilities remain!
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Nonsmooth optimization

» Blackbox too pessimistic
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Nonsmooth optimization
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» Nesterov’'s breakthroughs
m Excessive gap technique

m Composite objective minimization
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» Nesterov’'s breakthroughs
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m Composite objective minimization
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m Mirror-prox
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Nonsmooth optimization

» Blackbox too pessimistic

» Nesterov’'s breakthroughs
m Excessive gap technique

m Composite objective minimization

» Nemirovski's workshorse of general convex optimization

m Mirror-descent, NERML
m Mirror-prox

» Other techniques, problem classes, etc.
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Proximal splitting



Composite objectives

Frequently nonsmooth problems take the form

minimize f(x) := {(x) + r(x)
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Composite objectives

Frequently nonsmooth problems take the form

‘ minimize f(x) := {(x) + r(x)

S U*TE \/

Example: {(z) = 3| Az — b||? and r(z) = ||z

‘ Lasso, L1-LS, compressed sensing
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Composite objectives

Frequently nonsmooth problems take the form

‘ minimize f(x) := {(x) + r(x)

S U*TE \/

Example: {(z) = 3| Az — b||? and r(z) = ||z

‘ Lasso, L1-LS, compressed sensing

Example: ¢(z) : Logistic loss, and r(z) = A||z|1

‘ L1-Logistic regression, sparse LR

14 /27



Composite objective minimization

minimize f(x) := {(x) + r(x)

subgradient: z*t! = 2% — oF gk, gF € of(2¥)
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Composite objective minimization

minimize f(x) := {(x) + r(x)

subgradient: z*t! = 2% — oF gk, gF € of(2¥)

subgradient: converges slowly at rate O(1/v/k)
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Composite objective minimization

minimize f(x) := {(x) + r(x)

subgradient: z*t! = 2% — oF gk, gF € of(2¥)

subgradient: converges slowly at rate O(1/v/k)

‘ but: f is smooth plus nonsmooth ‘

‘ we should exploit: smoothness of ¢ for better method! ‘

15 /27



Projections: another view

Let Iy be the indicator function for closed, cvx X, defined as:

0 ifzeX
Iy(x) := ’
x() {oo otherwise.
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Projections: another view

Let Iy be the indicator function for closed, cvx X, defined as:

Iy(x) :=
x() oo otherwise.

{0 ifz € X,

Recall orthogonal projection Py(y)

Py(y) :==argmin iz —yll} st z€X.
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Projections: another view

Let Iy be the indicator function for closed, cvx X, defined as:

Iy(x) :=
x() oo otherwise.

{0 ifz € X,
Recall orthogonal projection Py(y)
Py(y) :==argmin iz —yll} st z€X.

Rewrite orthogonal projection Py (y) as

Px(y) = argmingegn  3llz — yl3 + L (2).

16 /27



Generalizing projections — proximity

Projection

P(y) = argmin Ll — y|l3 + Lx(2)
TER™
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Generalizing projections — proximity

Projection

P(y) = argmin Ll — y|l3 + Lx(2)
TER™

Proximity: Replace Iy by some convex function!

prox,(y) := argmin gl —y| +r(z)
z€R™
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Generalizing projections — proximity

Projection

Paly) = argmin Lz — /3 + Lx(2)
r€ER™

Proximity: Replace Iy by some convex function!

prox,(y) := argmin gz — y||3 + r(x)
TER™

Def. proxy : R — R" is called a proximity operator

17 /27



Proximity operator

A
| y

| .
f— Prox,\H.Hly

A

\j

\J
¢1-norm ball of radius p())
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Proximity operators

Exercise: Let r(x) = ||z||1. Solve prox,, (y).
- 1 2
min gl —ylz + Allzll

Hint 1: The above problem decomposes into n independent
subproblems of the form

o 2
min s —y)* + Alz|.

Hint 2: Consider the two cases separately: either z =0 or x # 0
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Proximity operators

Exercise: Let r(x) = ||z||1. Solve prox,, (y).
- 1 2
min gl —ylz + Allzll

Hint 1: The above problem decomposes into n independent
subproblems of the form

1 2
min s —y)* + Alz|.

Hint 2: Consider the two cases separately: either z =0 or x # 0

Aka: Soft-thresholding operator

19/27



Basics of proximal splitting

Recall Gradient projection for solving miny f(x) for f € C}:

M = Py (ab — 0, Vf(2F))
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Basics of proximal splitting

Recall Gradient projection for solving miny f(x) for f € C}:

M = Py (ab — 0, Vf(2F))

Proximal gradient method solves min /(x) + r(z)

mk+1 = prOXakr(:L‘k - OZka(ZL‘k))
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Basics of proximal splitting

Recall Gradient projection for solving miny f(x) for f € C}:

M = Py (ab — 0, Vf(2F))

Proximal gradient method solves min /(x) + r(z)
mk+1 = prOXakr(:L‘k - OZka(ZL‘k))

» This method aka: Forward-backward splitting (FBS)
» “Forward step:" The gradient-descent step
» “Backward step:" The prox-operator
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FBS — example

min

Lasso / L1-LS

sl Az =013 + Al
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FBS — example

Lasso / L1-LS
min ]| Az — bl|3 + Allz]:.

proxy|z|, ¥ = sgn(y)omax(|y| —A,0)
oFtl = proxak/\”,”l(xk — ap AT (AzF —b)).

so-called iterative soft-thresholding algorithm! ‘
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FBS — example

Lasso / L1-LS
min ]| Az — bl|3 + Allz]:.

proxy|z|, ¥ = sgn(y)omax(|y| —A,0)

oFtl = proxak/\”,”l(xk — ap AT (AzF —b)).

so-called iterative soft-thresholding algorithm!

Exercise: Try solving the problem:

min 5| Az — b|j3 + Az |2

21/27



Exercise

Recall our older example: 3| DTz — b||3. We solved its
unconstrained and constrained versions so far. Now implement a
Matlab script to solve

min 5] D%a — bl + Allz].



Exercise

Recall our older example: 3| DTz — b||3. We solved its
unconstrained and constrained versions so far. Now implement a
Matlab script to solve

min 5] D%a — bl + Allz].

& Use FBS as shown above
& Try different values of A > 0 in your code



Exercise

Recall our older example: 3| DTz — b||3. We solved its
unconstrained and constrained versions so far. Now implement a
Matlab script to solve

min 5] D%a — bl + Allz].

& Use FBS as shown above
& Try different values of A > 0 in your code
& Use different choices of b



Exercise

Recall our older example: 3| DTz — b||3. We solved its
unconstrained and constrained versions so far. Now implement a
Matlab script to solve

min 5] D%a — bl + Allz].

& Use FBS as shown above
& Try different values of A > 0 in your code
& Use different choices of b

& Show a choice of b for which z = 0 (zero vector) is optimal



Exercise

Recall our older example: 3| DTz — b||3. We solved its
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& Use FBS as shown above

& Try different values of A > 0 in your code
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& Show a choice of b for which z = 0 (zero vector) is optimal

& Experiment with different stepsizes (try aj = 1/4 and if that
does not “work” try smaller values that might work).

& Do not expect monotonic descent



Exercise

Recall our older example: 3| DTz — b||3. We solved its
unconstrained and constrained versions so far. Now implement a
Matlab script to solve

min 5] D%a — bl + Allz].

& Use FBS as shown above

& Try different values of A > 0 in your code

& Use different choices of b

& Show a choice of b for which z = 0 (zero vector) is optimal

& Experiment with different stepsizes (try aj = 1/4 and if that
does not “work” try smaller values that might work).

& Do not expect monotonic descent

& Compare with versions of the subgradient method



Proximity operators
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Proximity operators

» prox, has several nice properties

» Read / Skim the paper: “Proximal Splitting Methods in
Signal Processing”, by Combettes and Pesquet (2010).

Theorem The operator prox, is firmly nonexpansive (FNE)

[prox, x — prox, y[|3 < (prox, x — prox, y, = — y)

Proof: (blackboard)

’Corollary. The operator prox, is nonexpansive

Proof: apply Cauchy-Schwarz to FNE.
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Consequence of FNE

Gradient projection
M = Py(a® — apV f(2))
Proximal gradients / FBS

xk—H = pl“OXakT(l‘k - Oéka(l‘k))

Same convergence theory goes through!

Exercise: Try extending proof of gradient-projection convergence
to convergence for FBS.
Hint: First show that at z*, the fixed-point equation

¥ = prox,,(z* — aVf(z")), a>0
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Moreau Decomposition

» Aim: Compute prox, y

» Sometimes it is easier to compute prox,« y

™ (u) = supu’ x — r(z)
x

» Moreau decomposition: y = proxp y + proxp« y
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Moreau decomposition

Proof sketch:

m Consider min |z — y||3 + r(z)
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Moreau decomposition

Proof sketch:
m Consider min |z — y||3 + r(z)

m Introduce new variable z = z, to get

prox, y := ||z — ylla +r(z), st. z ==z
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Moreau decomposition

Proof sketch:
m Consider min |z — y||3 + r(z)

m Introduce new variable z = z, to get
prox, y := ||z — ylla +r(z), st. z ==z

m Derive Lagrangian dual for this
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Moreau decomposition

Proof sketch:
. . 1 2
m Consider min 5|z — y||3 +r(z)
m Introduce new variable z = z, to get

prox, y := ||z — ylla +r(z), st. z ==z

m Derive Lagrangian dual for this

m Simplify, and conclude!
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