Convex Optimization

(EE227A: UC Berkeley)

Lecture 14
(Gradient methods — II)

07 March, 2013

o
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Organizational

& Take home midterm: will be released on 18th March 2013
on bSpace by 5pm; Solutions (typeset) due in class, 21st
March, 2013 — no exceptions!

& Office hours: 2—-4pm, Tuesday, 421 SDH (or by appointment)

& 1 page project outline due on 3/14
& Project page link (clickable)

& HW3 out on 3/14; due on 4/02
& HW4 out on 4/02; due on 4/16
& HWS5 out on 4/16; due on 4/30


http://people.kyb.tuebingen.mpg.de/suvrit/teach/ee227a/projects.html

Convergence theory
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Gradient descent — convergence

oFH = oF — , Vf(2b),

k=0,1,...
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Gradient descent — convergence

oFH = oF — o VF(2¥), k=0,1,...

Convergence

Theorem ||V f(zF)||s — 0 as k — oo
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Gradient descent — convergence

oFH = oF — o VF(2¥), k=0,1,...

Convergence

Theorem ||V f(zF)|ls — 0 as k — oo

Convergence rate with constant stepsize

Theorem Let f € C’i and {xk} be sequence generated as above,
with a = 1/L. Then, f(zT+1) — f(z*) = O(1/T).
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Gradient descent — convergence

Assumption: Lipschitz continuous gradient; denoted f € C’}J

IV (@) = V)lla < Lz = ylla
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Gradient descent — convergence

Assumption: Lipschitz continuous gradient; denoted f € C’i

IVF(z) =V f(y)lla < Lllz -yl

& Gradient vectors of closeby points are close to each other
& Objective function has “bounded curvature”

& Speed at which gradient varies is bounded
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Gradient descent — convergence

Assumption: Lipschitz continuous gradient; denoted f € C’i

IVF(z) =V f(y)lla < Lllz -yl

& Gradient vectors of closeby points are close to each other
& Objective function has “bounded curvature”

& Speed at which gradient varies is bounded

Lemma (Descent). Let f € C}. Then,
f(@) < fy) + (V@) 2 —y) + 5l —yll3




Descent lemma — corollary

Coroll. 11If f € C}, and 0 < oy, < 2/L, then f(z*1) < f(aF)

FE) < f@h) H(VF), 2 = ah) 4l - o)

33



Descent lemma — corollary

Coroll. 1If f € C}, and 0 < oy, < 2/L, then f(2F 1) < f(2F)

Y < )+ (TR, A= 2R B -

= @*) — ol VS B+ BV S )
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Descent lemma — corollary

Coroll. 1If f € C}, and 0 < oy, < 2/L, then f(2F 1) < f(2F)

FE) < f@h) H(VF), 2 = ah) 4l - o)

= @*) — ol VS B+ BV S )
= fa") —ap(l - FL)|VI(E")3
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Descent lemma — corollary

Coroll. 11If f € C}, and 0 < oy, < 2/L, then f(z*1) < f(aF)

= @*) — ol VS B+ BV S )
= fa") —ap(l - FL)|VI(E")3

Y < )+ (TR, A= 2R B -

Thus, if ax < 2/L we have descent.
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Descent lemma — corollary

Coroll. 11If f € C}, and 0 < oy, < 2/L, then f(z*1) < f(aF)

Y < )+ (TR, A= 2R B -
= ") - el VI + BV )3
= () - on(1 - LIV

Thus, if a < 2/L we have descent. Minimize over aj to get best
bound: this yields a, = 1/L—we’ll use this stepsize

f@@®) = f@™) > ap(1 = FL)[Vf(2")]3

6
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Convergence

» Let's write the descent corollary as

Fa®) = f@™h) = £V F )3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
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Convergence

» Let's write the descent corollary as

F@®) = f™) > £V M3,
(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain

C

T
D IVEERIE < f@0) - f@™
k=0

™~
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Convergence

» Let's write the descent corollary as

Fa®) = f@™h) = £V F )3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain

T
EIVIENIE < fa”) - f@T) < FE0) -
k=0
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Convergence

» Let's write the descent corollary as

Fa®) = f@™h) = £V F )3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain

T
EIVIENIE < fa”) - f@T) < FE0) -
k=0

» We assume f* > —o0, so rhs is some fixed positive constant
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Convergence

» Let's write the descent corollary as
F@®) = f™) > £V M3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain

T
T IVIENIE < F60) - fE) < fa) - £
L k=0

» We assume f* > —o0, so rhs is some fixed positive constant
» Thus, as kK — oo, lhs must converge; thus
IVf(zF)a =0 as k— oc.



Convergence

» Let's write the descent corollary as

Fa®) = f@™h) = £V F )3,

(¢ =1/2 for a, = 1/L; c has diff. value for other stepsize rules)
» Sum up above inequalities for £k = 0,1,...,T to obtain

T
ESIVIERIE < ) - T < ) - 5
Lk:

» We assume f* > —o0, so rhs is some fixed positive constant
» Thus, as kK — oo, lhs must converge; thus
IVf(zF)a =0 as k— oc.

» Notice, we did not require f to be convex ...



Descent lemma — another corollary

Corollary 2 If f is a convex function € C}, then

LIV f(@) - VW3 < (Vf() - VI(y), = —y),

Exercise: Prove this corollary.
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Convergence rate — convex f

* Let a, =1/L
% Shorthand notation ¢* = V f(2*), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

Consider, T]%,_H = ||kt — z*|3 = |k — 2% — Oékng%-
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

Consider, T]%,_H = ||kt — z*|3 = |k — 2% — Oékng%-

i = 7t oillgtl - 20k(g®, o — a7
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Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)

* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

Consider, T]%,_H = [Ja*+t — 2|3 = [|2F — 2% — awgF|3.
resr = T+ agllet (- 2au(g”, oF - 2)

= 12+ al|d"|3 - 2ax (g — g, 2 —2*) asg* =0

33



Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)
* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

=¥ = fla* - 2* — ang®13.

Consider, 77, | = ||=
i = 1k +aillgtllE - 20m(g", 2F — 2¥)
= i+ ailg"3 — 20(g" — g%, 2" —a*) as gt =0

< rit+oilgtl3 = *gHlg" —g"l;  (Coroll 2



Convergence rate — convex f

* Let a, =1/L
x Shorthand notation ¢* = Vf(zF), ¢* = Vf(z*)
* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

k+1

Consider, T]%,_H = ||zF ! — 2*||3 = |k — 2% — Oékng%-

i = 7t oillgtl - 20k(g®, o — a7

i+ apllg® |3 — 20 (g* — g, 2F —2*) asg*=0
e+ aillg®3 = 225 gF — g5 (Coroll. 2)

= 1 — (% —ap)g"3.

IN
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Convergence rate — convex f

* Let a, =1/L
* Shorthand notation g¥ = Vf(2F), g* = Vf(z*)
* Let 7 := ||z* — 2*||2 (distance to optimum)

Lemma Distance to min shrinks monotonically; 7,1 < 7

Proof. Descent lemma implies that: f(z**1) < f(z%) — 3-(|¢"|3

2
k+1

Consider, T]%,_H = ||zF ! — 2*||3 = |k — 2% — Oékng%-

i = 7t oillgtl - 20k(g®, o — a7

i+ apllg® |3 — 20 (g* — g, 2F —2*) asg*=0
e+ aillg®3 = 225 gF — g5 (Coroll. 2)

= 1 — (% —ap)g"3.

IN

Since ay, < 2/L, it follows that 7511 < ry
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Convergence rate

Lemma Let Ay := f(2*) — f(z*). Then, Apy1 < Ap(1 —B)
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

f@®) = fa*) = Ay < (g, ab —a")
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

Cs
fa®) = fl@) = DAp < (gF b —at) < gtz )|2" — als
—_———

Tk
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

Cs
fa®) = fl@) = DAp < (gF b —at) < gtz )|2" — als
—_———

Tk

That is, ||gk||2 > Ak/T‘k
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

Cs
fa®) = fl@) = DAp < (gF b —at) < gtz )|2" — als
—_———

Tk

That is, ||g¥||2 > Ak /rk. In particular, since r, < ro, we have

Ay,
lg¥[l2 > =
To
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Convergence rate

Lemma Let Ay := f(z%) — f(z*). Then, Apyq < Ap(1—f)

cvx f

Cs
fa®) = fl@) = DAp < (gF b —at) < gtz )|2" — als
—_———

Tk

That is, ||g¥||2 > Ak /rk. In particular, since r, < ro, we have

Ay,
lg¥[l2 > =
To

Now we have a bound on the gradient norm...
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A

A < Ap —
kL = Sk 2L7“(2)

= A (1- 2%%)
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A2
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

11/33



Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A2
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

But we want to bound: f(xT*!) — f(x*)
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

A2
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

But we want to bound: f(xT*!) — f(x*)

>i(1+5) ! + 73 !

—
Ak+1 Ak Ak 2L7“0
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Convergence rate

Recall f(z"1) < f(2*) — 5-[|g"||3; subtracting f* from both sides

AZ
2Lr3

App1 < Ag — = Ap(1 — 57 2) Ap(1 = B).

But we want to bound: f(xT*!) — f(x*)

> i(1+6) ! + 73 !
Ak+1 Ak Ak 2L7“0

» Sum both sides over £k = 0,...,T to obtain

—

1 S 1 +T+1
AT+1_A() 2LT’%
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Convergence rate

» Sum both sides over £k = 0,...,T to obtain

1 S L+T+1
AT+1 — Ay 2[/{’%
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Convergence rate

» Sum both sides over kK =0,...,T to obtain

1 S L+T+1
AT+1 — Ay 2[/{’3

» Rearrange to conclude

. 2LAgr3
R )

LT% + TA()
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Convergence rate

» Sum both sides over kK =0,...,T to obtain

1 S L+T+1
AT+1 — Ay 2[/{’3

» Rearrange to conclude

2LAgr2
Ty _ px o 2282000
fa)—f = 2Lr2 + TAg

» Use descent lemma to bound Ag < (L/2)||z° — x*||3; simplify

< 2LA0||330 — x*”%

fa”) = fla) < 2R — o),

Exercise: Prove above simplification.
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Rates of convergence

Suppose a sequence {sk} — .
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Rates of convergence

Suppose a sequence {s"} — s.
» Linear If there is a constant r € (0, 1) such that

Hskz—i—l

) ~sll
m ——— =
k—o0 ”Sk — 8”2

i.e., distance decreases by constant factor at each iteration.
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Rates of convergence

Suppose a sequence {s"} — s.
» Linear If there is a constant r € (0, 1) such that

Hskz—i—l

) ~sll
m ——— =
k—o0 ”Sk — 8”2

i.e., distance decreases by constant factor at each iteration.

» Sublinear If r = 1 (constant factor decrease not there!)
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Rates of convergence

Suppose a sequence {s"} — s.
» Linear If there is a constant r € (0, 1) such that

Hskz—i—l

. — |2
lim —————= =
k—o0 ”8 — 8”2
i.e., distance decreases by constant factor at each iteration.
» Sublinear If r = 1 (constant factor decrease not there!)

» Superlinear If » = 0 (we rarely see this in large-scale opt)
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Rates of convergence

Suppose a sequence {s"} — s.
» Linear If there is a constant r € (0, 1) such that

Hskz—i—l

. — |2
lim —————= =
k—o0 ”S — 8”2
i.e., distance decreases by constant factor at each iteration.
» Sublinear If r = 1 (constant factor decrease not there!)

» Superlinear If » = 0 (we rarely see this in large-scale opt)

Example 1. {1/k°}: sublinear as lim k¢/(k + 1)¢ = 1;
2. {srk}, where |r| < 1: linear with rate r

13/33



Gradient descent — faster rate

Assumption: Strong convexity; denote f € Siqﬂ

f@) > f)+(Vf), z—y) + 5z —yl3

& Rarely do we have so much convexity!

& The extra convexity makes function “well-conditioned”
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Gradient descent — faster rate

Assumption: Strong convexity; denote f € Siqﬂ

f@) > f)+(Vf), z—y) + 5z —yl3

& Rarely do we have so much convexity!
& The extra convexity makes function “well-conditioned”

& Exercise: Prove strong convexity = strict convexity
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Gradient descent — faster rate

Assumption: Strong convexity; denote f € Siqﬂ

f@) > f)+(Vf), z—y) + 5z —yl3

& Rarely do we have so much convexity!
& The extra convexity makes function “well-conditioned”
& Exercise: Prove strong convexity = strict convexity

& C’i was sublinear; strong convexity leads linear rate

14 /33



Strongly convex case — growth

Thm A. f € S}, is equivalent to
(Vf(x)=Vfy), z—y) > ple—yl3 Vay

Exercise: Prove this claim.
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Strongly convex case — growth

Thm A. f € S}, is equivalent to
(Vf(x)=Vfy), z—y) > ple—yl3 Vay

Exercise: Prove this claim.

Thm B. Suppose [ € Si,u' Then, for any z,y € R”

uL
w+ L

(V1(@) = I =) = Ll =yl + =7 V@) = T3
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Strongly convex case — growth

Thm A. f € S}, is equivalent to
(Vf(x)=Vfy), z—y) > ple—yl3 Vay

Exercise: Prove this claim.

Thm B. Suppose [ € Si,u' Then, for any z,y € R”

uL
w+ L

(Vf(x)=Vfy), z—y) >

o=yl + 7 IV/@) = V)13

» Consider the convex function ¢(z) = f(z) — &||z||3
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Strongly convex case — growth

Thm A. f € S}, is equivalent to
(Vf(x)=Vfy), z—y) > ple—yl3 Vay

Exercise: Prove this claim.

Thm B. Suppose [ € Si,u' Then, for any z,y € R”

uL

(Vf(x)=Vfy), z—y) > T L

o=yl + 7 IV/@) = V)13

» Consider the convex function ¢(z) = f(z) — &||z||3
> Vo(r) =Vf(r) - px
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Strongly convex case — growth

Thm A. f € S}, is equivalent to
(Vf(x)=Vfy), z—y) > ple—yl3 Vay

Exercise: Prove this claim.

Thm B. Suppose [ € Si,u' Then, for any z,y € R”

uL

(Vf(x)=Vfy), z—y) > T L

o=yl + 7 IV/@) = V)13

» Consider the convex function ¢(z) = f(z) — &||z||3
> Vo(z) = VF(x) - pa
» If 4 = L, then easily true (due to Thm. A and Coroll. 2)
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Strongly convex case — growth

Thm A. f € S}, is equivalent to
(Vf(x)=Vfy), z—y) > ple—yl3 Vay

Exercise: Prove this claim.

Thm B. Suppose [ € Si,u' Then, for any z,y € R”

uL

(V1(@) = I =) = Ll =yl + =7 V@) = T3

» Consider the convex function ¢(z) = f(z) — &||z||3

> Vo(z) = V() —

» If 4 = L, then easily true (due to Thm. A and Coroll. 2)
» If u < L, then ¢ € CLM; now invoke Coroll. 2

(Vo(x) = Vo(y), = —y) = L5 IVo(z) — Vo(y)ll2

15/33



Strongly convex — rate

Theorem. If f € Si’#, 0 < a < 2/(L + u), then the gradient
method generates a sequence {xk} that satisfies

20uL\* i
ot~ a1 < (1 2242) et = o'l

Moreover, if « = 2/(L + p) then

k * L (k-1 2 0 %12
et -2y (Sg) e - a3,

where k = L/ is the condition number.
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider

i = e =2t —aVih)3
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider

i = e =2t —aVih)3

= i —20(Vf(a"), 2" —a") + 2|V f ()3
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider

i = e =2t —aVih)3
= rp—2a(Vf(a"), 2* —a2*) + |V f(a")[3

<1 . Z“fﬁ) 2o (a _ M) IV @)

IN
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Strongly convex — rate

» As before, let 7, = ||z¥ — 2*||2, and consider

i = ll2t =2 —aV )3
rii = 20(V f(a¥), 2" — %) + ?|V f(2") 3

2apL 2
(1- 20 kv (a2 ) IVAEHIE

where we used Thm. B with V f(z*) = 0 for last inequality.

IN

Exercise: Complete the proof using above argument.
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Gradient methods — lower bounds

Theorem Lower bound | (Nesterov) For any 2° € R”, and 1 < k <
1

5(n —1), there is a smooth f, s.t.

3L|2° — 2|3

S~ 1) = i
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Gradient methods — lower bounds

Theorem Lower bound | (Nesterov) For any 2° € R”, and 1 < k <
%(n — 1), there is a smooth f, s.t.

3L|2° — 2|3

S~ 1) = i

Theorem Lower bound Il (Nesterov). For class of smooth, strongly
convex, i.e., Sz?u (0w>0k>1)

2k
Fh - 16 2 i (YD) 10 -l
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Gradient methods — lower bounds

Theorem Lower bound | (Nesterov) For any 2° € R”, and 1 < k <
1

5(n —1), there is a smooth f, s.t.

3L|2° — 2|3

S~ 1) = i

Theorem Lower bound Il (Nesterov). For class of smooth, strongly
convex, i.e., Sz?u (0w>0k>1)

k
VE—1\2
[ — 2*3.

oo B
Fah) = gt 2 5 (VA

-2

» Notice gap between lower and upper bounds!
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Gradient methods — lower bounds

Theorem Lower bound | (Nesterov) For any 2° € R”, and 1 < k <

$(n —1), there is a smooth f, s.t.

3L|2° — 2|3

S~ 1) = i

Theorem Lower bound Il (Nesterov). For class of smooth, strongly
convex, i.e., Sz?u (0w>0k>1)

2k
Fh - 16 2 i (YD) 10 -l

» Notice gap between lower and upper bounds!
» We'll come back to these toward end of course

18/33



Exercise

& Let D be the (n — 1) x n differencing matrix

& f(x) =3|DTx — b3 = 3(IDz|3 + [|b]3 — 2(D", 1))
& Try different choices of b, and different initial vectors xg
& Determine L and p for above f(z) (nice linalg exercise!)

& Exercise: Try o = 2/(L + p) and other stepsize choices;
report on empirical performance

& Exercise: Experiment to see how large n must be before
gradient method starts outperforming CVX

& Exercise: Minimize f(z) for large n; e.g., n = 106, n = 107
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Constrained problems
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Constrained optimization

min  f(z) st.zeX
(Vf(@),z—2*) >0, VredX.
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Constrained optimization

oFt = 2% + apdk
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Constrained optimization

oFt = 2% + apdk

» d* — feasible direction, i.e., zF + agd* € X

22/33



Constrained optimization

oF = ok 4, d¥

» d* — feasible direction, i.e., zF + agd* € X
» d* must also be descent direction, i.e., (Vf(z*), d¥) <0

» Stepsize oy, chosen to ensure feasibility and descent.
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Constrained optimization

oF = ok 4, d¥

» d* — feasible direction, i.e., zF + agd* € X
» d* must also be descent direction, i.e., (Vf(z*), d*) <0

» Stepsize oy, chosen to ensure feasibility and descent.
Since X is convex, all feasible directions are of the form
d* =7(z—a"), v>0,

where z € X is any feasible vector.



Constrained optimization

oF = ok 4, d¥

» d* — feasible direction, i.e., zF + agd* € X
» d* must also be descent direction, i.e., (Vf(z*), d*) <0

» Stepsize oy, chosen to ensure feasibility and descent.
Since X is convex, all feasible directions are of the form
d* =7(z—a"), v>0,

where z € X is any feasible vector.

xk+1 _ SUk + ak(zk . SL’k), o € (07 1]




Cone of feasible directions

e

Py
&;X()ﬁ\e’ T
o
N

)

v
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Conditional gradient method

Optimality: (Vf(2¥), 28 —2%) > 0 for all 2¥ € &

24/33



Conditional gradient method

Optimality: (Vf(2¥), 28 —2%) > 0 for all 2¥ € &
Aim: If not optimal, then generate feasible direction d* = z¥ — z*
that obeys descent condition (V f(z¥), d*) < 0.
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Conditional gradient method

Optimality: (Vf(2¥), 28 —2%) > 0 for all 2¥ € &
Aim: If not optimal, then generate feasible direction d* = z¥ — z*
that obeys descent condition (V f(z¥), d*) < 0.
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Optimality: (Vf(2¥), 28 —2%) > 0 for all 2¥ € &
Aim: If not optimal, then generate feasible direction d* = z¥ — z*
that obeys descent condition (V f(z¥), d*) < 0.

Frank-Wolfe (Conditional gradient) method

A Let 2F € argmin,_(Vf(2"), 2 — o)
A Use different methods to select ay,
A P =aF 4oy (2R — ab)

# Practical when easy to solve /inear problem over X.
& Currently enjoying huge renewed interest in machine learning.

& Several refinements, variants exist. (good for project)
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Gradient projection

» FW method can be slow
» If X not compact, doesn't make sense

» A possible alternative (with other weaknesses though!)

25/33



Gradient projection

» FW method can be slow
» If X not compact, doesn't make sense

» A possible alternative (with other weaknesses though!)

If constraint set X’ is simple, i.e., we can easily solve projections

min  3llz —ylls st zeX.

25/33



Gradient projection

» FW method can be slow
» If X not compact, doesn't make sense

» A possible alternative (with other weaknesses though!)

If constraint set X is simple, i.e., we can easily solve projections

min  3llz —ylls st zeX.

a*tt = Py (2% — oV f(2?)), k=0,1,...

where Py denotes above orthogonal projection.
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Gradient projection — convergence

Depends on the following crucial properties of P

Nonexpansivity: ||[Px — Py|l2 < ||z — yl|2

Firm nonxpansivity: ||Pz — Pyl||3 < (Px — Py, z —y)

26 /33



Gradient projection — convergence

Depends on the following crucial properties of P

Nonexpansivity: ||[Px — Py|l2 < ||z — yl|2
Firm nonxpansivity: ||Pz — Pyl||3 < (Px — Py, z —y)

Q Using the above, essentially convergence analysis with
aj = 1/L that we saw for the unconstrained case works.

26 /33



Gradient projection — convergence

Depends on the following crucial properties of P

Nonexpansivity: ||[Px — Py|l2 < ||z — yl|2
Firm nonxpansivity: ||Pz — Pyl||3 < (Px — Py, z —y)

Q Using the above, essentially convergence analysis with

aj = 1/L that we saw for the unconstrained case works.

O Skipping for now; (see next slides though)

26

33



Gradient projection — convergence

Depends on the following crucial properties of P

Nonexpansivity: ||[Px — Py|l2 < ||z — yl|2
Firm nonxpansivity: ||Pz — Pyl||3 < (Px — Py, z —y)

Q Using the above, essentially convergence analysis with
aj = 1/L that we saw for the unconstrained case works.

O Skipping for now; (see next slides though)

Exercise: Recall f(z) = 1| DTz — b||3. Write a matlab script to
minimize this function over the convex set X' := {—1 <uz; <1}.
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Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

(Pz — Py, z —y) < ||z — ylf3
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Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

(Pz — Py, z —y) < ||z — ylf3

Recall: (Vf(z*), x —2*) >0 for all x € X (necc and suff)

(Pr—Py,y—Py) < 0
(Px — Py, Pr —x) < 0
(Pz — Py, Px—Py) < (Px—Py, -y

Both nonexpansivity and firm nonexpansivity follow after invoking
Cauchy-Schwarz

27 /33



Gradient projection — convergence hints

FEM) < fah) 4 (oF M = k) 4 Bl =2t
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Gradient projection — convergence hints

F)y < @)+ (oF, T —ah) 4+ T 2

Let us look at the latter two terms above:

(9", P(a® —arg®) = P(a")) + FIIP(" —apg®) — P(2")|3
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Let us look at the latter two terms above:

(g%, P(2" — ayg®) — P(2¥)) + ZL||P(F - arg®) — P(a")|3
(P(z — ag) — Pz, —ag) < |ag|3
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Gradient projection — convergence hints

f(m‘k—H) < f(a:k)—i—(gk, l,k—f—l

Let us look at the latter two terms above:

(g*, P(a* — apg"™) — P(z))
(P(z — ag) — Pz, —ag)
(P(r —ag) — Pz, g)

L P(z — ag) — Pz|3

IN IV IN +

k k+1 k|2
—a¥) + gl =2t

k k k
5P (2" —arg®) — P(a")|3
g3
—algll3

50%|gl3
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We saw upper bounds: O(1/T), and linear rate involving &
We saw lower bounds: O(1/T?), and linear rate involving v/
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Optimal gradient methods

We saw upper bounds: O(1/T), and linear rate involving &
We saw lower bounds: O(1/T?), and linear rate involving v/

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don't insist on f(xgy1) < f(xg)
Note 2: Use “multi-steps”
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Nesterov Accelerated gradient method

Choose 29 € R", ap € (0,1)
Let yo < @0, ¢ = i1/ L
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Nesterov Accelerated gradient method

Choose zp € R", ag € (0,1)

Let yo < @0, ¢ = i1/ L
k-th iteration (k > 0):

= Compute f(yx) and V f(yx)

Let 2541 = yx — +V.f (yr)

m Obtain ay41 by solving
ajg = (1= appr)af + gag
m Let By = ap(1 — ap)/(af + agy1), and set

Yk+1 = Thy1 + Bre(Tp1 — Tr)

If a9 > +/p/L, then

flon) = 167 < comin{ (1) 5

where constants cj, ¢ depend on ag, L, u.
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Strong-convexity — simplification

If > 0, select ag = /p/L. Algo becomes
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Strong-convexity — simplification

If >0, select ag = \/ﬁ Algo becomes
Choose yp = x¢p € R™
k-th iteration (k > 0):
R R AL

w 3=WL-u/(VL+/n)

Y1 = Tht1 + B(Trp1 — xk)

‘ A simple multi-step method!
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