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Lecture 14
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Organizational

♠ Take home midterm: will be released on 18th March 2013
on bSpace by 5pm; Solutions (typeset) due in class, 21st
March, 2013 — no exceptions!

♠ Office hours: 2–4pm, Tuesday, 421 SDH (or by appointment)

♠ 1 page project outline due on 3/14

♠ Project page link (clickable)

♠ HW3 out on 3/14; due on 4/02

♠ HW4 out on 4/02; due on 4/16

♠ HW5 out on 4/16; due on 4/30
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http://people.kyb.tuebingen.mpg.de/suvrit/teach/ee227a/projects.html


Convergence theory
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Gradient descent – convergence

xk+1 = xk − αk∇f(xk), k = 0, 1, . . .

Convergence

Theorem ‖∇f(xk)‖2 → 0 as k →∞

Convergence rate with constant stepsize

Theorem Let f ∈ C1
L and

{
xk
}

be sequence generated as above,
with αk = 1/L. Then, f(xT+1)− f(x∗) = O(1/T ).
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Gradient descent – convergence

Assumption: Lipschitz continuous gradient; denoted f ∈ C1
L

‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2

♣ Gradient vectors of closeby points are close to each other

♣ Objective function has “bounded curvature”

♣ Speed at which gradient varies is bounded

Lemma (Descent). Let f ∈ C1
L. Then,

f(x) ≤ f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖22
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Descent lemma – corollary

Coroll. 1 If f ∈ C1
L, and 0 < αk < 2/L, then f(xk+1) < f(xk)

f(xk+1) ≤ f(xk) + 〈∇f(xk), xk+1 − xk〉+ L
2 ‖xk+1 − xk‖2

= f(xk)− αk‖∇f(xk)‖22 +
α2
kL
2 ‖∇f(xk)‖22

= f(xk)− αk(1− αk
2 L)‖∇f(xk)‖22

Thus, if αk < 2/L we have descent. Minimize over αk to get best
bound: this yields αk = 1/L—we’ll use this stepsize

f(xk)− f(xk+1) ≥ αk(1− αk

2 L)‖∇f(xk)‖2
2
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Convergence

I Let’s write the descent corollary as

f(xk)− f(xk+1) ≥ c
L‖∇f(xk)‖22,

(c = 1/2 for αk = 1/L; c has diff. value for other stepsize rules)

I Sum up above inequalities for k = 0, 1, . . . , T to obtain

c

L

T∑
k=0

‖∇f(xk)‖22 ≤ f(x0)− f(xT+1) ≤ f(x0)− f∗

I We assume f∗ > −∞, so rhs is some fixed positive constant

I Thus, as k →∞, lhs must converge; thus

‖∇f(xk)‖2 → 0 as k →∞.

I Notice, we did not require f to be convex . . .
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Descent lemma – another corollary

Corollary 2 If f is a convex function ∈ C1
L, then

1
L‖∇f(x)−∇f(y)‖22 ≤ 〈∇f(x)−∇f(y), x− y〉,

Exercise: Prove this corollary.
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Convergence rate – convex f

? Let αk = 1/L

? Shorthand notation gk = ∇f(xk), g∗ = ∇f(x∗)

? Let rk := ‖xk − x∗‖2 (distance to optimum)

Lemma Distance to min shrinks monotonically; rk+1 ≤ rk
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Proof. Descent lemma implies that: f(xk+1) ≤ f(xk)− 1
2L‖gk‖22

Consider, r2
k+1 = ‖xk+1 − x∗‖22 = ‖xk − x∗ − αkgk‖22.

r2
k+1 = r2

k + α2
k‖gk‖22 − 2αk〈gk, xk − x∗〉

= r2
k + α2

k‖gk‖22 − 2αk〈gk − g∗, xk − x∗〉 as g∗ = 0

≤ r2
k + α2

k‖gk‖22 − 2αk
L ‖gk − g∗‖22 (Coroll. 2)

= r2
k − αk( 2

L − αk)‖gk‖22.

Since αk < 2/L, it follows that rk+1 ≤ rk
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Convergence rate

Lemma Let ∆k := f(xk)− f(x∗). Then, ∆k+1 ≤ ∆k(1− β)

f(xk)− f(x∗) = ∆k

cvx f
≤ 〈gk, xk − x∗〉

CS
≤ ‖gk‖2 ‖xk − x∗‖2︸ ︷︷ ︸

rk

.

That is, ‖gk‖2 ≥ ∆k/rk. In particular, since rk ≤ r0, we have

‖gk‖2 ≥
∆k

r0
.

Now we have a bound on the gradient norm...
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Convergence rate

Recall f(xk+1) ≤ f(xk)− 1
2L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −
∆2
k

2Lr2
0

= ∆k

(
1− ∆k

2Lr20

)

= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1
≥ 1

∆k
(1 + β) =

1

∆k
+

1

2Lr2
0

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0
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1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0

11 / 33



Convergence rate

Recall f(xk+1) ≤ f(xk)− 1
2L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −
∆2
k

2Lr2
0

= ∆k

(
1− ∆k

2Lr20

)
= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1
≥ 1

∆k
(1 + β) =

1

∆k
+

1

2Lr2
0

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0

11 / 33



Convergence rate

Recall f(xk+1) ≤ f(xk)− 1
2L‖gk‖22; subtracting f∗ from both sides

∆k+1 ≤ ∆k −
∆2
k

2Lr2
0

= ∆k

(
1− ∆k

2Lr20

)
= ∆k(1− β).

But we want to bound: f(xT+1)− f(x∗)

=⇒ 1

∆k+1
≥ 1

∆k
(1 + β) =

1

∆k
+

1

2Lr2
0

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0

11 / 33



Convergence rate

I Sum both sides over k = 0, . . . , T to obtain

1

∆T+1
≥ 1

∆0
+
T + 1

2Lr2
0

I Rearrange to conclude

f(xT )− f∗ ≤ 2L∆0r
2
0

2Lr2
0 + T∆0

I Use descent lemma to bound ∆0 ≤ (L/2)‖x0 − x∗‖22; simplify

f(xT )− f(x∗) ≤ 2L∆0‖x0 − x∗‖22
T + 4

= O(1/T ).

Exercise: Prove above simplification.
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Rates of convergence

Suppose a sequence
{
sk
}
→ s.

I Linear If there is a constant r ∈ (0, 1) such that

lim
k→∞

‖sk+1 − s‖2
‖sk − s‖2

= r.

i.e., distance decreases by constant factor at each iteration.

I Sublinear If r = 1 (constant factor decrease not there!)

I Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. {1/kc}: sublinear as lim kc/(k + 1)c = 1;
2.
{
srk
}

, where |r| < 1: linear with rate r
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Gradient descent – faster rate

Assumption: Strong convexity; denote f ∈ S1
L,µ

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ
2‖x− y‖22

♣ Rarely do we have so much convexity!

♣ The extra convexity makes function “well-conditioned”

♣ Exercise: Prove strong convexity =⇒ strict convexity

♣ C1
L was sublinear; strong convexity leads linear rate
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Strongly convex case – growth

Thm A. f ∈ S1
L,µ is equivalent to

〈∇f(x)−∇f(y), x− y〉 ≥ µ‖x− y‖22 ∀ x, y.
Exercise: Prove this claim.

Thm B. Suppose f ∈ S1
L,µ. Then, for any x, y ∈ Rn

〈∇f(x)−∇f(y), x− y〉 ≥ µL

µ+ L
‖x− y‖22 +

1

µ+ L
‖∇f(x)−∇f(y)‖22

I Consider the convex function φ(x) = f(x)− µ
2‖x‖22

I ∇φ(x) = ∇f(x)− µx
I If µ = L, then easily true (due to Thm. A and Coroll. 2)

I If µ < L, then φ ∈ C1
L−µ; now invoke Coroll. 2

〈∇φ(x)−∇φ(y), x− y〉 ≥ 1
L−µ‖∇φ(x)−∇φ(y)‖2
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Strongly convex – rate

Theorem. If f ∈ S1
L,µ, 0 < α < 2/(L + µ), then the gradient

method generates a sequence
{
xk
}

that satisfies

‖xk − x∗‖22 ≤
(

1− 2αµL

µ+ L

)k
‖x0 − x∗‖2.

Moreover, if α = 2/(L+ µ) then

f(xk)− f∗ ≤ L

2

(
κ− 1

κ+ 1

)2k

‖x0 − x∗‖22,

where κ = L/µ is the condition number.
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Strongly convex – rate

I As before, let rk = ‖xk − x∗‖2, and consider

r2
k+1 = ‖xk − x∗ − α∇f(xk)‖22

= r2
k − 2α〈∇f(xk), xk − x∗〉+ α2‖∇f(xk)‖22

≤
(

1− 2αµL

µ+ L

)
r2
k + α

(
α− 2

µ+ L

)
‖∇f(xk)‖22

where we used Thm. B with ∇f(x∗) = 0 for last inequality.

Exercise: Complete the proof using above argument.
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Gradient methods – lower bounds

Theorem Lower bound I (Nesterov) For any x0 ∈ Rn, and 1 ≤ k ≤
1
2(n− 1), there is a smooth f , s.t.

f(xk)− f(x∗) ≥ 3L‖x0 − x∗‖22
32(k + 1)2

Theorem Lower bound II (Nesterov). For class of smooth, strongly
convex, i.e., S∞L,µ (µ > 0, κ > 1)

f(xk)− f(x∗) ≥ µ

2

(√
κ− 1√
κ+ 1

)2k

‖x0 − x∗‖22.

I Notice gap between lower and upper bounds!
I We’ll come back to these toward end of course
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Exercise

♠ Let D be the (n− 1)× n differencing matrix

D =


−1 1

−1 1
. . .

−1 1

 ∈ R(n−1)×n,

♠ f(x) = 1
2‖DTx− b‖22 = 1

2(‖DTx‖22 + ‖b‖22 − 2〈DTx, b〉)
♠ Try different choices of b, and different initial vectors x0

♠ Determine L and µ for above f(x) (nice linalg exercise!)

♠ Exercise: Try α = 2/(L+ µ) and other stepsize choices;
report on empirical performance

♠ Exercise: Experiment to see how large n must be before
gradient method starts outperforming CVX

♠ Exercise: Minimize f(x) for large n; e.g., n = 106, n = 107
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Constrained problems
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Constrained optimization

min f(x) s.t. x ∈ X
〈∇f(x∗), x− x∗〉 ≥ 0, ∀x ∈ X .

x∗

∇f(x∗)x
f(x

)

X
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Constrained optimization

xk+1 = xk + αkd
k

I dk – feasible direction, i.e., xk + αkd
k ∈ X

I dk must also be descent direction, i.e., 〈∇f(xk), dk〉 < 0

I Stepsize αk chosen to ensure feasibility and descent.

Since X is convex, all feasible directions are of the form

dk = γ(z − xk), γ > 0,

where z ∈ X is any feasible vector.

xk+1 = xk + αk(z
k − xk), αk ∈ (0, 1]
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Cone of feasible directions

x

X
d

Fea
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Conditional gradient method

Optimality: 〈∇f(xk), zk − xk〉 ≥ 0 for all zk ∈ X

Aim: If not optimal, then generate feasible direction dk = zk − xk
that obeys descent condition 〈∇f(xk), dk〉 < 0.

Frank-Wolfe (Conditional gradient) method

N Let zk ∈ argminx∈X 〈∇f(xk), x− xk〉
N Use different methods to select αk

N xk+1 = xk + αk(z
k − xk)

♠ Practical when easy to solve linear problem over X .

♠ Currently enjoying huge renewed interest in machine learning.

♠ Several refinements, variants exist. (good for project)
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♠ Currently enjoying huge renewed interest in machine learning.

♠ Several refinements, variants exist. (good for project)
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Gradient projection

I FW method can be slow

I If X not compact, doesn’t make sense

I A possible alternative (with other weaknesses though!)

If constraint set X is simple, i.e., we can easily solve projections

min 1
2
‖x− y‖2 s.t. x ∈ X .

xk+1 = PX
(
xk − αk∇f(xk)

)
, k = 0, 1, . . .

where PX denotes above orthogonal projection.
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Gradient projection – convergence

Depends on the following crucial properties of P

Nonexpansivity: ‖Px− Py‖2 ≤ ‖x− y‖2
Firm nonxpansivity: ‖Px− Py‖22 ≤ 〈Px− Py, x− y〉

♥ Using the above, essentially convergence analysis with
αk = 1/L that we saw for the unconstrained case works.

♥ Skipping for now; (see next slides though)

Exercise: Recall f(x) = 1
2‖DTx− b‖22. Write a matlab script to

minimize this function over the convex set X := {−1 ≤ xi ≤ 1}.
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Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

〈Px− Py, x− y〉 ≤ ‖x− y‖22

Recall: 〈∇f(x∗), x− x∗〉 ≥ 0 for all x ∈ X (necc and suff)

〈Px− Py, y − Py〉 ≤ 0

〈Px− Py, Px− x〉 ≤ 0

〈Px− Py, Px− Py〉 ≤ 〈Px− Py, x− y〉

Both nonexpansivity and firm nonexpansivity follow after invoking
Cauchy-Schwarz
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Gradient projection – convergence hints

f(xk+1) ≤ f(xk) + 〈gk, xk+1 − xk〉+ L
2 ‖xk+1 − xk‖22

Let us look at the latter two terms above:

〈gk, P (xk − αkgk)− P (xk)〉 + L
2 ‖P (xk − αkgk)− P (xk)‖22

〈P (x− αg)− Px, −αg〉 ≤ ‖αg‖22
〈P (x− αg)− Px, g〉 ≥ −α‖g‖22
L
2 ‖P (x− αg)− Px‖22 ≤ L

2α
2‖g‖22
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Optimal gradient methods
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Optimal gradient methods

We saw upper bounds: O(1/T ), and linear rate involving κ

We saw lower bounds: O(1/T 2), and linear rate involving
√
κ

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don’t insist on f(xk+1) ≤ f(xk)
Note 2: Use “multi-steps”
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Nesterov Accelerated gradient method

1 Choose x0 ∈ Rn, α0 ∈ (0, 1)

2 Let y0 ← x0, q = µ/L

3 k-th iteration (k ≥ 0):

Compute f(yk) and ∇f(yk)
Let xk+1 = yk − 1

L∇f(yk)
Obtain αk+1 by solving
α2
k+1 = (1− αk+1)α2

k + qαk+1

Let βk = αk(1− αk)/(α2
k + αk+1), and set

yk+1 = xk+1 + βk(xk+1 − xk)

If α0 ≥
√
µ/L, then

f(xT )− f(x∗) ≤ c1 min

{(
1−

√
µ

L

)T
,

4L

(2
√
L+ c2T )2

}
,

where constants c1, c2 depend on α0, L, µ.
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Strong-convexity – simplification

If µ > 0, select α0 =
√
µ/L. Algo becomes

1 Choose y0 = x0 ∈ Rn

2 k-th iteration (k ≥ 0):

xk+1 = yk − 1
L∇f(yk)

β = (
√
L−√µ)/(

√
L+
√
µ)

yk+1 = xk+1 + β(xk+1 − xk)

A simple multi-step method!

32 / 33



Strong-convexity – simplification

If µ > 0, select α0 =
√
µ/L. Algo becomes

1 Choose y0 = x0 ∈ Rn

2 k-th iteration (k ≥ 0):

xk+1 = yk − 1
L∇f(yk)

β = (
√
L−√µ)/(

√
L+
√
µ)

yk+1 = xk+1 + β(xk+1 − xk)

A simple multi-step method!

32 / 33



Strong-convexity – simplification

If µ > 0, select α0 =
√
µ/L. Algo becomes

1 Choose y0 = x0 ∈ Rn

2 k-th iteration (k ≥ 0):

xk+1 = yk − 1
L∇f(yk)

β = (
√
L−√µ)/(

√
L+
√
µ)

yk+1 = xk+1 + β(xk+1 − xk)

A simple multi-step method!

32 / 33



References

1 Y. Nesterov. Introductory lectures on convex optimization

2 D. Bertsekas. Nonlinear programming

33 / 33


