Convex Optimization

(EE227A: UC Berkeley)

Lecture 14 (Gradient methods – II) 07 March, 2013

Suvrit Sra

Organizational

- Take home midterm: will be released on 18th March 2013 on bSpace by 5pm; Solutions (typeset) due in class, 21st March, 2013 — no exceptions!
- ♠ Office hours: 2–4pm, Tuesday, 421 SDH (or by appointment)
- 1 page project outline due on 3/14
 Project page link (clickable)
- A HW3 out on 3/14; due on 4/02
- ♠ HW4 out on 4/02; due on 4/16
- ♠ HW5 out on 4/16; due on 4/30

Convergence theory

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

Convergence

Theorem
$$\|\nabla f(x^k)\|_2 \to 0$$
 as $k \to \infty$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

Convergence

Theorem
$$\|\nabla f(x^k)\|_2 \to 0$$
 as $k \to \infty$

Convergence rate with constant stepsize

Theorem Let $f \in C_L^1$ and $\{x^k\}$ be sequence generated as above, with $\alpha_k = 1/L$. Then, $f(x^{T+1}) - f(x^*) = O(1/T)$.

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

- Sradient vectors of closeby points are close to each other
- Objective function has "bounded curvature"
- Speed at which gradient varies is bounded

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

- Sradient vectors of closeby points are close to each other
- Objective function has "bounded curvature"
- Speed at which gradient varies is bounded

Lemma (Descent). Let
$$f \in C_L^1$$
. Then,
 $f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||_2^2$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2$$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2$$

= $f(x^k) - \alpha_k \|\nabla f(x^k)\|_2^2 + \frac{\alpha_k^2 L}{2} \|\nabla f(x^k)\|_2^2$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$\begin{aligned} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), \, x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\ &= f(x^k) - \alpha_k \| \nabla f(x^k) \|_2^2 + \frac{\alpha_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\ &= f(x^k) - \frac{\alpha_k (1 - \frac{\alpha_k}{2} L)}{2} \| \nabla f(x^k) \|_2^2 \end{aligned}$$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$\begin{aligned} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), \, x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\ &= f(x^k) - \alpha_k \| \nabla f(x^k) \|_2^2 + \frac{\alpha_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\ &= f(x^k) - \alpha_k (1 - \frac{\alpha_k}{2} L) \| \nabla f(x^k) \|_2^2 \end{aligned}$$

Thus, if $\alpha_k < 2/L$ we have descent.

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$f(x^{k+1}) \leq f(x^{k}) + \langle \nabla f(x^{k}), x^{k+1} - x^{k} \rangle + \frac{L}{2} \|x^{k+1} - x^{k}\|_{2}$$

$$= f(x^{k}) - \alpha_{k} \|\nabla f(x^{k})\|_{2}^{2} + \frac{\alpha_{k}^{2}L}{2} \|\nabla f(x^{k})\|_{2}^{2}$$

$$= f(x^{k}) - \alpha_{k} (1 - \frac{\alpha_{k}}{2}L) \|\nabla f(x^{k})\|_{2}^{2}$$

Thus, if $\alpha_k < 2/L$ we have descent. Minimize over α_k to get best bound: this yields $\alpha_k = 1/L$ —we'll use this stepsize

$$f(x^k) - f(x^{k+1}) \ge \alpha_k (1 - \frac{\alpha_k}{2}L) \|\nabla f(x^k)\|_2^2$$

► Let's write the descent corollary as

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$

► Let's write the descent corollary as

 \mathbf{T}

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

(c=1/2 for $\alpha_k=1/L;\,c$ has diff. value for other stepsize rules)

 \blacktriangleright Sum up above inequalities for $k=0,1,\ldots,T$ to obtain

$$\frac{c}{L} \sum_{k=0}^{L} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1})$$

► Let's write the descent corollary as

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

(c=1/2 for $lpha_k=1/L$; c has diff. value for other stepsize rules)

 \blacktriangleright Sum up above inequalities for $k=0,1,\ldots,T$ to obtain

$$\frac{c}{L} \sum_{k=0}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$$

Let's write the descent corollary as

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

(c = 1/2 for $\alpha_k = 1/L$; c has diff. value for other stepsize rules) Sum up above inequalities for k = 0, 1, ..., T to obtain

$$\frac{c}{L}\sum_{k=0}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$$

 \blacktriangleright We assume $f^*>-\infty,$ so rhs is some fixed positive constant

Let's write the descent corollary as

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$ \blacktriangleright Sum up above inequalities for $k = 0, 1, \dots, T$ to obtain $\frac{c}{L} \sum^T \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$

- ▶ We assume $f^* > -\infty$, so rhs is some fixed positive constant
- ▶ Thus, as $k \to \infty$, lhs must converge; thus $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$.

Let's write the descent corollary as

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$ \blacktriangleright Sum up above inequalities for $k = 0, 1, \dots, T$ to obtain $\frac{c}{L} \sum^T \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$

- \blacktriangleright We assume $f^*>-\infty,$ so rhs is some fixed positive constant
- ▶ Thus, as $k \to \infty$, lhs must converge; thus $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$.
- ▶ Notice, we **did not require** *f* to be convex ...

Descent lemma – another corollary

Corollary 2 If f is a **convex** function $\in C_L^1$, then

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le \langle \nabla f(x) - \nabla f(y), \, x - y \rangle,$$

Exercise: Prove this corollary.

- $\star \ \operatorname{Let} \, \alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k:=\|x^k-x^*\|_2$ (distance to optimum)

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- * Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k) \text{, } g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$ Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2$.

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- * Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{ll} \textit{Proof. Descent lemma implies that:} \ f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, \, x^k - x^* \rangle \end{array}$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{ll} \textit{Proof. Descent lemma implies that: } f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, \, x^k - x^* \rangle \\ &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k - g^*, \, x^k - x^* \rangle \\ \end{array}$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k) \text{, } g^\star = \nabla f(x^\star)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{l} \textit{Proof. Descent lemma implies that: } f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, x^k - x^* \rangle \\ &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k - g^*, x^k - x^* \rangle \\ &\leq r_k^2 + \alpha_k^2 \|g^k\|_2^2 - \frac{2\alpha_k}{L} \|g^k - g^*\|_2^2 \quad (\textit{Coroll. 2}) \\ &= r_k^2 - \alpha_k (\frac{2}{L} - \alpha_k) \|g^k\|_2^2. \end{array}$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{l} \textit{Proof. Descent lemma implies that: } f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, x^k - x^* \rangle \\ &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k - g^*, x^k - x^* \rangle \\ &\leq r_k^2 + \alpha_k^2 \|g^k\|_2^2 - \frac{2\alpha_k}{L} \|g^k - g^*\|_2^2 \quad (\textit{Coroll. 2}) \\ &= r_k^2 - \alpha_k (\frac{2}{L} - \alpha_k) \|g^k\|_2^2. \end{array}$

Since $\alpha_k < 2/L$, it follows that $r_{k+1} \leq r_k$

Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^k) - f(x^*) = \Delta_k \stackrel{\text{cvx } f}{\leq} \langle g^k, \, x^k - x^* \rangle$$

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \stackrel{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \stackrel{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

That is, $\|g^k\|_2 \ge \Delta_k/r_k$.

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \stackrel{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

That is, $\|g^k\|_2 \geq \Delta_k/r_k$. In particular, since $r_k \leq r_0$, we have

$$\|g^k\|_2 \ge \frac{\Delta_k}{r_0}.$$

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \quad \stackrel{\text{CS}}{\leq} \quad \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

That is, $\|g^k\|_2 \ge \Delta_k/r_k$. In particular, since $r_k \le r_0$, we have $\|g^k\|_2 \ge \frac{\Delta_k}{r_0}.$

Now we have a bound on the gradient norm...
Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2;$ subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right)$$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2;$ subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

$$\implies \quad \frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_k} (1+\beta) = \frac{1}{\Delta_k} + \frac{1}{2Lr_0^2}$$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2;$ subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

$$\implies \quad \frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_k} (1+\beta) = \frac{1}{\Delta_k} + \frac{1}{2Lr_0^2}$$

 \blacktriangleright Sum both sides over $k=0,\ldots,T$ to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

 \blacktriangleright Sum both sides over $k=0,\ldots,T$ to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

 \blacktriangleright Sum both sides over $k=0,\ldots,T$ to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

► Rearrange to conclude

$$f(x^T) - f^* \le \frac{2L\Delta_0 r_0^2}{2Lr_0^2 + T\Delta_0}$$

▶ Sum both sides over k = 0, ..., T to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

► Rearrange to conclude

$$f(x^T) - f^* \le \frac{2L\Delta_0 r_0^2}{2Lr_0^2 + T\Delta_0}$$

▶ Use descent lemma to bound $\Delta_0 \leq (L/2) \|x^0 - x^*\|_2^2$; simplify

$$f(x^{T}) - f(x^{*}) \le \frac{2L\Delta_{0} ||x^{0} - x^{*}||_{2}^{2}}{T+4} = O(1/T).$$

Exercise: Prove above simplification.

Suppose a sequence $\{s^k\} \to s$.

Suppose a sequence $\{s^k\} \to s$.

 \blacktriangleright Linear If there is a constant $r\in(0,1)$ such that

$$\lim_{k \to \infty} \frac{\|s^{k+1} - s\|_2}{\|s^k - s\|_2} = r.$$

i.e., distance decreases by constant factor at each iteration.

Suppose a sequence $\{s^k\} \to s$.

 \blacktriangleright Linear If there is a constant $r\in(0,1)$ such that

$$\lim_{k \to \infty} \frac{\|s^{k+1} - s\|_2}{\|s^k - s\|_2} = r.$$

i.e., distance decreases by constant factor at each iteration.

Sublinear If r = 1 (constant factor decrease not there!)

Suppose a sequence $\{s^k\} \to s$.

 \blacktriangleright Linear If there is a constant $r\in(0,1)$ such that

$$\lim_{k \to \infty} \frac{\|s^{k+1} - s\|_2}{\|s^k - s\|_2} = r.$$

i.e., distance decreases by constant factor at each iteration.

- **Sublinear** If r = 1 (constant factor decrease not there!)
- Superlinear If r = 0 (we rarely see this in large-scale opt)

Suppose a sequence $\{s^k\} \to s$.

 \blacktriangleright Linear If there is a constant $r\in(0,1)$ such that

$$\lim_{k \to \infty} \frac{\|s^{k+1} - s\|_2}{\|s^k - s\|_2} = r.$$

i.e., distance decreases by constant factor at each iteration.

- Sublinear If r = 1 (constant factor decrease not there!)
- Superlinear If r = 0 (we rarely see this in large-scale opt)

Example 1. $\{1/k^c\}$: sublinear as $\lim k^c/(k+1)^c = 1$; 2. $\{sr^k\}$, where |r| < 1: linear with rate r

Gradient descent – faster rate

Assumption: Strong convexity; denote $f \in S_{L,\mu}^1$ $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$

- Rarely do we have so much convexity!
- The extra convexity makes function "well-conditioned"

Gradient descent – faster rate

Assumption: Strong convexity; denote $f \in S_{L,\mu}^1$ $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$

- Rarely do we have so much convexity!
- The extra convexity makes function "well-conditioned"
- **& Exercise:** Prove strong convexity \implies strict convexity

Gradient descent – faster rate

Assumption: Strong convexity; denote $f \in S_{L,\mu}^1$ $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$

- Rarely do we have so much convexity!
- The extra convexity makes function "well-conditioned"
- **& Exercise:** Prove strong convexity \implies strict convexity
- $\clubsuit \ C^1_L$ was sublinear; strong convexity leads linear rate

Thm A. $f \in S^1_{L,\mu}$ is equivalent to $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2 \quad \forall x, y.$

Exercise: Prove this claim.

Thm A.
$$f \in S^1_{L,\mu}$$
 is equivalent to
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2 \quad \forall x, y.$

Exercise: Prove this claim.

Thm B. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

Thm A.
$$f \in S^1_{L,\mu}$$
 is equivalent to
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2 \quad \forall x, y.$

Exercise: Prove this claim.

Thm B. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

▶ Consider the convex function $\phi(x) = f(x) - \frac{\mu}{2} ||x||_2^2$

Thm A.
$$f \in S^1_{L,\mu}$$
 is equivalent to
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2 \quad \forall x, y.$

Exercise: Prove this claim.

Thm B. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

▶ Consider the **convex** function $\phi(x) = f(x) - \frac{\mu}{2} ||x||_2^2$

$$\blacktriangleright \nabla \phi(x) = \nabla f(x) - \mu x$$

Thm A.
$$f \in S^1_{L,\mu}$$
 is equivalent to
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2 \quad \forall x, y.$

Exercise: Prove this claim.

Thm B. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

▶ Consider the convex function $\phi(x) = f(x) - \frac{\mu}{2} ||x||_2^2$

$$\blacktriangleright \nabla \phi(x) = \nabla f(x) - \mu x$$

▶ If $\mu = L$, then easily true (due to Thm. A and Coroll. 2)

Thm A.
$$f \in S^1_{L,\mu}$$
 is equivalent to
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \mu ||x - y||_2^2 \quad \forall x, y.$

Exercise: Prove this claim.

Thm B. Suppose $f \in S^1_{L,\mu}$. Then, for any $x, y \in \mathbb{R}^n$

$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$$

 \blacktriangleright Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_2^2$

$$\blacktriangleright \nabla \phi(x) = \nabla f(x) - \mu x$$

▶ If $\mu = L$, then easily true (due to Thm. A and Coroll. 2)

▶ If $\mu < L$, then $\phi \in C^1_{L-\mu}$; now invoke Coroll. 2

$$\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle \ge \frac{1}{L-\mu} \| \nabla \phi(x) - \nabla \phi(y) \|_2$$

Theorem. If $f \in S^1_{L,\mu}$, $0 < \alpha < 2/(L + \mu)$, then the gradient method generates a sequence $\{x^k\}$ that satisfies

$$||x^{k} - x^{*}||_{2}^{2} \le \left(1 - \frac{2\alpha\mu L}{\mu + L}\right)^{k} ||x^{0} - x^{*}||_{2}.$$

Moreover, if $\alpha=2/(L+\mu)$ then

$$f(x^k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x^0 - x^*\|_2^2$$

where $\kappa = L/\mu$ is the condition number.

▶ As before, let $r_k = ||x^k - x^*||_2$, and consider

▶ As before, let $r_k = \|x^k - x^*\|_2$, and consider

$$r_{k+1}^2 \ = \ \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2$$

▶ As before, let $r_k = ||x^k - x^*||_2$, and consider

$$\begin{aligned} r_{k+1}^2 &= \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \\ &= r_k^2 - 2\alpha \langle \nabla f(x^k), \, x^k - x^* \rangle + \alpha^2 \|\nabla f(x^k)\|_2^2 \end{aligned}$$

▶ As before, let $r_k = \|x^k - x^*\|_2$, and consider

$$\begin{aligned} r_{k+1}^2 &= \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \\ &= r_k^2 - 2\alpha \langle \nabla f(x^k), \, x^k - x^* \rangle + \alpha^2 \|\nabla f(x^k)\|_2^2 \\ &\leq \left(1 - \frac{2\alpha\mu L}{\mu + L}\right) r_k^2 + \alpha \left(\alpha - \frac{2}{\mu + L}\right) \|\nabla f(x^k)\|_2^2 \end{aligned}$$

• As before, let $r_k = ||x^k - x^*||_2$, and consider

$$\begin{aligned} r_{k+1}^2 &= \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \\ &= r_k^2 - 2\alpha \langle \nabla f(x^k), \, x^k - x^* \rangle + \alpha^2 \|\nabla f(x^k)\|_2^2 \\ &\leq \left(1 - \frac{2\alpha\mu L}{\mu + L}\right) r_k^2 + \alpha \left(\alpha - \frac{2}{\mu + L}\right) \|\nabla f(x^k)\|_2^2 \end{aligned}$$

where we used Thm. B with $\nabla f(x^*) = 0$ for last inequality.

Exercise: Complete the proof using above argument.

Theorem Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \le k \le \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$f(x^k) - f(x^*) \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

Theorem Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \le k \le \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$f(x^k) - f(x^*) \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L,\mu}^{\infty}$ ($\mu > 0$, $\kappa > 1$)

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x^0 - x^*\|_2^2$$

Theorem Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \le k \le \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$f(x^k) - f(x^*) \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L,\mu}^{\infty}$ ($\mu > 0$, $\kappa > 1$)

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x^0 - x^*\|_2^2$$

► Notice gap between lower and upper bounds!

Theorem Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \le k \le \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$f(x^k) - f(x^*) \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L,\mu}^{\infty}$ ($\mu > 0$, $\kappa > 1$)

$$f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x^0 - x^*\|_2^2.$$

► Notice gap between lower and upper bounds!

► We'll come back to these toward end of course

Exercise

• Let D be the $(n-1) \times n$ differencing matrix

$$D = \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & & \\ & & & & -1 & 1 \end{pmatrix} \in \mathbb{R}^{(n-1) \times n}$$

- \blacklozenge Try different choices of b, and different initial vectors x_0
- Determine L and μ for above f(x) (nice linalg exercise!)
- **Exercise:** Try $\alpha = 2/(L + \mu)$ and other stepsize choices; report on empirical performance
- ♠ Exercise: Experiment to see how large n must be before gradient method starts outperforming CVX

A Exercise: Minimize f(x) for large n; e.g., $n = 10^6$, $n = 10^7$

Constrained problems

Constrained optimization

$$egin{array}{lll} \min & f(x) & extsf{s.t.} \; x \in \mathcal{X} \ \langle
abla f(x^*), \; x - x^*
angle \geq 0, & orall x \in \mathcal{X}. \end{array}$$

Constrained optimization

$$x^{k+1} = x^k + \alpha_k d^k$$
$$x^{k+1} = x^k + \alpha_k d^k$$

▶ d^k - feasible direction, i.e., $x^k + \alpha_k d^k \in \mathcal{X}$

$$x^{k+1} = x^k + \alpha_k d^k$$

- ▶ d^k feasible direction, i.e., $x^k + \alpha_k d^k \in \mathcal{X}$
- ▶ d^k must also be **descent direction**, i.e., $\langle \nabla f(x^k), d^k \rangle < 0$
- Stepsize α_k chosen to ensure feasibility and descent.

$$x^{k+1} = x^k + \alpha_k d^k$$

- ▶ d^k feasible direction, i.e., $x^k + \alpha_k d^k \in \mathcal{X}$
- ▶ d^k must also be **descent direction**, i.e., $\langle \nabla f(x^k), d^k \rangle < 0$
- Stepsize α_k chosen to ensure feasibility and descent.

Since ${\mathcal X}$ is convex, all feasible directions are of the form

$$d^k = \gamma(z - x^k), \quad \gamma > 0,$$

where $z \in \mathcal{X}$ is any feasible vector.

$$x^{k+1} = x^k + \alpha_k d^k$$

- ▶ d^k feasible direction, i.e., $x^k + \alpha_k d^k \in \mathcal{X}$
- ▶ d^k must also be **descent direction**, i.e., $\langle \nabla f(x^k), d^k \rangle < 0$
- Stepsize α_k chosen to ensure feasibility and descent.

Since ${\mathcal X}$ is convex, all feasible directions are of the form

$$d^k = \gamma(z - x^k), \quad \gamma > 0,$$

where $z \in \mathcal{X}$ is any feasible vector.

$$x^{k+1} = x^k + \alpha_k (z^k - x^k), \quad \alpha_k \in (0, 1]$$

Cone of feasible directions

Optimality: $\langle \nabla f(x^k), z^k - x^k \rangle \ge 0$ for all $z^k \in \mathcal{X}$

Optimality: $\langle \nabla f(x^k), z^k - x^k \rangle \ge 0$ for all $z^k \in \mathcal{X}$ **Aim:** If not optimal, then generate feasible direction $d^k = z^k - x^k$ that obeys **descent condition** $\langle \nabla f(x^k), d^k \rangle < 0$.

Optimality: $\langle \nabla f(x^k), z^k - x^k \rangle \ge 0$ for all $z^k \in \mathcal{X}$ **Aim:** If not optimal, then generate feasible direction $d^k = z^k - x^k$ that obeys **descent condition** $\langle \nabla f(x^k), d^k \rangle < 0$.

Frank-Wolfe (Conditional gradient) method

▲ Let
$$z^k \in \operatorname{argmin}_{x \in \mathcal{X}} \langle \nabla f(x^k), x - x^k \rangle$$

▲ Use different methods to select α_k
▲ $x^{k+1} = x^k + \alpha_k (z^k - x^k)$

Optimality: $\langle \nabla f(x^k), z^k - x^k \rangle \ge 0$ for all $z^k \in \mathcal{X}$ **Aim:** If not optimal, then generate feasible direction $d^k = z^k - x^k$ that obeys **descent condition** $\langle \nabla f(x^k), d^k \rangle < 0$.

Frank-Wolfe (Conditional gradient) method

- A Practical when easy to solve *linear* problem over \mathcal{X} .
- Currently enjoying huge renewed interest in machine learning.
- Several refinements, variants exist. (good for project)

Gradient projection

- ► FW method can be slow
- ▶ If \mathcal{X} not compact, doesn't make sense
- ► A possible alternative (with other weaknesses though!)

Gradient projection

- ► FW method can be slow
- If \mathcal{X} not compact, doesn't make sense
- A possible alternative (with other weaknesses though!)

If constraint set ${\mathcal X}$ is simple, i.e., we can easily solve projections

min $\frac{1}{2} \|x - y\|_2$ s.t. $x \in \mathcal{X}$.

Gradient projection

- ► FW method can be slow
- ▶ If \mathcal{X} not compact, doesn't make sense
- ► A possible alternative (with other weaknesses though!)

If constraint set ${\mathcal X}$ is simple, i.e., we can easily solve projections

min $\frac{1}{2} \|x - y\|_2$ s.t. $x \in \mathcal{X}$.

$$x^{k+1} = P_{\mathcal{X}} \left(x^k - \alpha_k \nabla f(x^k) \right), \quad k = 0, 1, \dots$$

where $P_{\mathcal{X}}$ denotes above orthogonal projection.

Depends on the following crucial properties of P

Nonexpansivity: $||Px - Py||_2 \le ||x - y||_2$ Firm nonxpansivity: $||Px - Py||_2^2 \le \langle Px - Py, x - y \rangle$

Depends on the following crucial properties of P

Nonexpansivity: $||Px - Py||_2 \le ||x - y||_2$ Firm nonxpansivity: $||Px - Py||_2^2 \le \langle Px - Py, x - y \rangle$

 \heartsuit Using the above, essentially convergence analysis with $\alpha_k=1/L$ that we saw for the unconstrained case works.

Depends on the following crucial properties of P

Nonexpansivity: $||Px - Py||_2 \le ||x - y||_2$ Firm nonxpansivity: $||Px - Py||_2^2 \le \langle Px - Py, x - y \rangle$

- \heartsuit Using the above, essentially convergence analysis with $\alpha_k=1/L$ that we saw for the unconstrained case works.
- \heartsuit Skipping for now; (see next slides though)

Depends on the following crucial properties of P

Nonexpansivity: $||Px - Py||_2 \le ||x - y||_2$ Firm nonxpansivity: $||Px - Py||_2^2 \le \langle Px - Py, x - y \rangle$

- \heartsuit Using the above, essentially convergence analysis with $\alpha_k=1/L$ that we saw for the unconstrained case works.
- \heartsuit Skipping for now; (see next slides though)

Exercise: Recall $f(x) = \frac{1}{2} ||D^T x - b||_2^2$. Write a matlab script to minimize this function over the convex set $\mathcal{X} := \{-1 \le x_i \le 1\}$.

Theorem Orthogonal projection is firmly nonexpansive

$$\langle Px - Py, x - y \rangle \le ||x - y||_2^2$$

Theorem Orthogonal projection is firmly nonexpansive

$$\langle Px - Py, x - y \rangle \le ||x - y||_2^2$$

Theorem Orthogonal projection is firmly nonexpansive

$$\langle Px - Py, x - y \rangle \le ||x - y||_2^2$$

$$\langle Px - Py, y - Py \rangle \leq 0$$

Theorem Orthogonal projection is firmly nonexpansive

$$\langle Px - Py, x - y \rangle \le ||x - y||_2^2$$

$$\langle Px - Py, y - Py \rangle \leq 0$$

 $\langle Px - Py, Px - x \rangle \leq 0$

Theorem Orthogonal projection is firmly nonexpansive

$$\langle Px - Py, x - y \rangle \le ||x - y||_2^2$$

Theorem Orthogonal projection is firmly nonexpansive

$$\langle Px - Py, x - y \rangle \le ||x - y||_2^2$$

Recall: $\langle \nabla f(x^*), x - x^* \rangle \ge 0$ for all $x \in \mathcal{X}$ (necc and suff)

Both nonexpansivity and firm nonexpansivity follow after invoking Cauchy-Schwarz

$$f(x^{k+1}) \leq f(x^k) + \langle g^k, x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2^2$$

$$f(x^{k+1}) \leq f(x^k) + \langle g^k, \, x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2^2$$

$$\langle g^k, P(x^k - \alpha_k g^k) - P(x^k) \rangle + \frac{L}{2} \| P(x^k - \alpha_k g^k) - P(x^k) \|_2^2$$

$$f(x^{k+1}) \leq f(x^k) + \langle g^k, \, x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2^2$$

$$\langle g^k, P(x^k - \alpha_k g^k) - P(x^k) \rangle + \frac{L}{2} \|P(x^k - \alpha_k g^k) - P(x^k)\|_2^2 \langle P(x - \alpha g) - Px, -\alpha g \rangle \leq \|\alpha g\|_2^2$$

$$f(x^{k+1}) \leq f(x^k) + \langle g^k, \, x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2^2$$

$$\begin{array}{rcl} \langle g^k, P(x^k - \alpha_k g^k) - P(x^k) \rangle &+ & \frac{L}{2} \| P(x^k - \alpha_k g^k) - P(x^k) \|_2^2 \\ \langle P(x - \alpha g) - Px, -\alpha g \rangle &\leq & \| \alpha g \|_2^2 \\ \langle P(x - \alpha g) - Px, g \rangle &\geq & -\alpha \| g \|_2^2 \end{array}$$

$$f(x^{k+1}) \leq f(x^k) + \langle g^k, \, x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2^2$$

$$\langle g^k, P(x^k - \alpha_k g^k) - P(x^k) \rangle + \frac{L}{2} \|P(x^k - \alpha_k g^k) - P(x^k)\|_2^2 \langle P(x - \alpha g) - Px, -\alpha g \rangle \leq \|\alpha g\|_2^2 \langle P(x - \alpha g) - Px, g \rangle \geq -\alpha \|g\|_2^2 \frac{L}{2} \|P(x - \alpha g) - Px\|_2^2 \leq \frac{L}{2} \alpha^2 \|g\|_2^2$$

We saw *upper bounds:* O(1/T), and linear rate involving κ We saw *lower bounds:* $O(1/T^2)$, and linear rate involving $\sqrt{\kappa}$

We saw *upper bounds:* O(1/T), and linear rate involving κ We saw *lower bounds:* $O(1/T^2)$, and linear rate involving $\sqrt{\kappa}$

Can we close the gap?

We saw *upper bounds*: O(1/T), and linear rate involving κ

We saw *lower bounds*: $O(1/T^2)$, and linear rate involving $\sqrt{\kappa}$

Can we close the gap?

Nesterov (1983) closed the gap!

We saw *upper bounds:* O(1/T), and linear rate involving κ

We saw *lower bounds*: $O(1/T^2)$, and linear rate involving $\sqrt{\kappa}$

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don't insist on $f(x_{k+1}) \leq f(x_k)$ Note 2: Use "multi-steps"

1 Choose
$$x_0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0,1)$

2 Let $y_0 \leftarrow x_0$, $q = \mu/L$

1 Choose
$$x_0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0,1)$

- 2 Let $y_0 \leftarrow x_0$, $q = \mu/L$
- 3 k-th iteration $(k \ge 0)$:

Compute
$$f(y_k)$$
 and $\nabla f(y_k)$
Let $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$

1 Choose
$$x_0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0, 1)$

- 2 Let $y_0 \leftarrow x_0$, $q = \mu/L$
- 3 k-th iteration $(k \ge 0)$:
 - Compute $f(y_k)$ and $\nabla f(y_k)$ Let $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$
 - Obtain α_{k+1} by solving $\alpha_{k+1}^2 = (1 \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$

1 Choose
$$x_0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0, 1)$

- 2 Let $y_0 \leftarrow x_0$, $q = \mu/L$
- 3 k-th iteration $(k \ge 0)$:
 - Compute $f(y_k)$ and $\nabla f(y_k)$ Let $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$
 - Obtain α_{k+1} by solving $\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$ • Let $\beta_k = \alpha_k(1 - \alpha_k)/(\alpha_k^2 + \alpha_{k+1})$, and set $y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k)$
Nesterov Accelerated gradient method

1 Choose
$$x_0 \in \mathbb{R}^n$$
, $\alpha_0 \in (0, 1)$

2 Let
$$y_0 \leftarrow x_0$$
, $q = \mu/L$

3 k-th iteration $(k \ge 0)$:

Compute
$$f(y_k)$$
 and $\nabla f(y_k)$
Let $x_{k+1} = y_k - \frac{1}{L} \nabla f(y_k)$
Obtain α_{k+1} by solving

• Obtain
$$\alpha_{k+1}$$
 by solving
 $\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$
• Let $\beta_k = \alpha_k(1 - \alpha_k)/(\alpha_k^2 + \alpha_{k+1})$, and set
 $y_{k+1} = x_{k+1} + \beta_k(x_{k+1} - x_k)$

If $\alpha_0 \geq \sqrt{\mu/L}$, then

$$f(x_T) - f(x^*) \le c_1 \min\left\{\left(1 - \sqrt{\frac{\mu}{L}}\right)^T, \frac{4L}{(2\sqrt{L} + c_2 T)^2}\right\},\$$

where constants c_1 , c_2 depend on α_0 , L, μ .

Strong-convexity – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. Algo becomes

Strong-convexity – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. Algo becomes

- 1 Choose $y_0 = x_0 \in \mathbb{R}^n$
- 2 k-th iteration $(k \ge 0)$:

Strong-convexity – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. Algo becomes

1 Choose $y_0 = x_0 \in \mathbb{R}^n$

2 k-th iteration $(k \ge 0)$:

•
$$x_{k+1} = y_k - \overline{L} \lor f(y_k)$$

• $\beta = (\sqrt{L} - \sqrt{\mu})/(\sqrt{L} + \sqrt{\mu})$
 $y_{k+1} = x_{k+1} + \beta(x_{k+1} - x_k)$

A simple multi-step method!

References

- 1 Y. Nesterov. Introductory lectures on convex optimization
- 2 D. Bertsekas. Nonlinear programming