Convex Optimization

(EE227A: UC Berkeley)

Lecture 14
(Gradient methods - II)
07 March, 2013

Suvrit Sra

Organizational

© Take home midterm: will be released on 18th March 2013 on bSpace by 5pm; Solutions (typeset) due in class, 21st March, 2013 - no exceptions!
© Office hours: 2-4pm, Tuesday, 421 SDH (or by appointment)

A 1 page project outline due on 3/14

- Project page link (clickable)
- HW3 out on $3 / 14$; due on $4 / 02$
- HW4 out on $4 / 02$; due on $4 / 16$

ค HW5 out on 4/16; due on 4/30

Convergence theory

Gradient descent - convergence

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
$$

Gradient descent - convergence

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
$$

Convergence
Theorem $\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0$ as $k \rightarrow \infty$

Gradient descent - convergence

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
$$

Convergence
Theorem $\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0$ as $k \rightarrow \infty$
Convergence rate with constant stepsize
Theorem Let $f \in C_{L}^{1}$ and $\left\{x^{k}\right\}$ be sequence generated as above, with $\alpha_{k}=1 / L$. Then, $f\left(x^{T+1}\right)-f\left(x^{*}\right)=O(1 / T)$.

Gradient descent - convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

Gradient descent - convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

4. Gradient vectors of closeby points are close to each other
$\%$ Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded

Gradient descent - convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
$\%$ Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|_{2}^{2}
$$

Descent lemma - corollary

Coroll. 1 If $f \in C_{L}^{1}$, and $0<\alpha_{k}<2 / L$, then $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}
$$

Descent lemma - corollary

Coroll. 1 If $f \in C_{L}^{1}$, and $0<\alpha_{k}<2 / L$, then $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

Descent lemma - corollary

Coroll. 1 If $f \in C_{L}^{1}$, and $0<\alpha_{k}<2 / L$, then $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

Descent lemma - corollary

Coroll. 1 If $f \in C_{L}^{1}$, and $0<\alpha_{k}<2 / L$, then $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

Thus, if $\alpha_{k}<2 / L$ we have descent.

Descent lemma - corollary

Coroll. 1 If $f \in C_{L}^{1}$, and $0<\alpha_{k}<2 / L$, then $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

$$
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

Thus, if $\alpha_{k}<2 / L$ we have descent. Minimize over α_{k} to get best bound: this yields $\alpha_{k}=1 / L$-we'll use this stepsize

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
$$

Convergence

- Let's write the descent corollary as

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
$$

($c=1 / 2$ for $\alpha_{k}=1 / L ; c$ has diff. value for other stepsize rules)

Convergence

- Let's write the descent corollary as

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
$$

($c=1 / 2$ for $\alpha_{k}=1 / L$; c has diff. value for other stepsize rules)

- Sum up above inequalities for $k=0,1, \ldots, T$ to obtain

$$
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right)
$$

Convergence

- Let's write the descent corollary as

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
$$

($c=1 / 2$ for $\alpha_{k}=1 / L$; c has diff. value for other stepsize rules)

- Sum up above inequalities for $k=0,1, \ldots, T$ to obtain

$$
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
$$

Convergence

- Let's write the descent corollary as

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
$$

($c=1 / 2$ for $\alpha_{k}=1 / L$; c has diff. value for other stepsize rules)

- Sum up above inequalities for $k=0,1, \ldots, T$ to obtain

$$
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
$$

- We assume $f^{*}>-\infty$, so rhs is some fixed positive constant

Convergence

- Let's write the descent corollary as

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
$$

($c=1 / 2$ for $\alpha_{k}=1 / L$; c has diff. value for other stepsize rules)

- Sum up above inequalities for $k=0,1, \ldots, T$ to obtain

$$
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
$$

- We assume $f^{*}>-\infty$, so rhs is some fixed positive constant
- Thus, as $k \rightarrow \infty$, Ihs must converge; thus

$$
\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

Convergence

- Let's write the descent corollary as

$$
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
$$

($c=1 / 2$ for $\alpha_{k}=1 / L$; c has diff. value for other stepsize rules)

- Sum up above inequalities for $k=0,1, \ldots, T$ to obtain

$$
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \quad \leq \quad f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
$$

- We assume $f^{*}>-\infty$, so rhs is some fixed positive constant
- Thus, as $k \rightarrow \infty$, Ihs must converge; thus

$$
\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
$$

- Notice, we did not require f to be convex...

Descent lemma - another corollary

Corollary 2 If f is a convex function $\in C_{L}^{1}$, then

$$
\frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle
$$

Exercise: Prove this corollary.

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$
Consider, $r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}$.

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$
Consider, $r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}$.

$$
r_{k+1}^{2}=r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle
$$

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$
Consider, $r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}$.

$$
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0
\end{aligned}
$$

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$
Consider, $r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}$.

$$
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0 \\
& \leq r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-\frac{2 \alpha_{k}}{L}\left\|g^{k}-g^{*}\right\|_{2}^{2} \quad \text { (Coroll. 2) }
\end{aligned}
$$

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$
Consider, $r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}$.

$$
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0 \\
& \leq r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-\frac{2 \alpha_{k}}{L}\left\|g^{k}-g^{*}\right\|_{2}^{2} \quad \text { (Coroll. 2) } \\
& =r_{k}^{2}-\alpha_{k}\left(\frac{2}{L}-\alpha_{k}\right)\left\|g^{k}\right\|_{2}^{2} .
\end{aligned}
$$

Convergence rate - convex f

\star Let $\alpha_{k}=1 / L$
\star Shorthand notation $g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)$
\star Let $r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}$ (distance to optimum)
Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_{k}$
Proof. Descent lemma implies that: $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$
Consider, $r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}$.

$$
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0 \\
& \leq r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-\frac{2 \alpha_{k}}{L}\left\|g^{k}-g^{*}\right\|_{2}^{2} \quad \text { (Coroll. 2) } \\
& =r_{k}^{2}-\alpha_{k}\left(\frac{2}{L}-\alpha_{k}\right)\left\|g^{k}\right\|_{2}^{2} .
\end{aligned}
$$

Since $\alpha_{k}<2 / L$, it follows that $r_{k+1} \leq r_{k}$

Convergence rate

Lemma Let $\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)$. Then, $\Delta_{k+1} \leq \Delta_{k}(1-\beta)$

Convergence rate

Lemma Let $\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)$. Then, $\Delta_{k+1} \leq \Delta_{k}(1-\beta)$
$f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle$

Convergence rate

Lemma Let $\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)$. Then, $\Delta_{k+1} \leq \Delta_{k}(1-\beta)$

$$
f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cx} f}{\leq x}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { cs }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}} .
$$

Convergence rate

Lemma Let $\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)$. Then, $\Delta_{k+1} \leq \Delta_{k}(1-\beta)$
$f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { CS }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}}$.
That is, $\left\|g^{k}\right\|_{2} \geq \Delta_{k} / r_{k}$.

Convergence rate

Lemma Let $\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)$. Then, $\Delta_{k+1} \leq \Delta_{k}(1-\beta)$
$f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { CS }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}}$.
That is, $\left\|g^{k}\right\|_{2} \geq \Delta_{k} / r_{k}$. In particular, since $r_{k} \leq r_{0}$, we have

$$
\left\|g^{k}\right\|_{2} \geq \frac{\Delta_{k}}{r_{0}}
$$

Convergence rate

Lemma Let $\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)$. Then, $\Delta_{k+1} \leq \Delta_{k}(1-\beta)$
$f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { CS }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}}$.
That is, $\left\|g^{k}\right\|_{2} \geq \Delta_{k} / r_{k}$. In particular, since $r_{k} \leq r_{0}$, we have

$$
\left\|g^{k}\right\|_{2} \geq \frac{\Delta_{k}}{r_{0}}
$$

Now we have a bound on the gradient norm...

Convergence rate

Recall $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$; subtracting f^{*} from both sides

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)
$$

Convergence rate

Recall $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$; subtracting f^{*} from both sides

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
$$

Convergence rate

Recall $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$; subtracting f^{*} from both sides

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
$$

But we want to bound: $f\left(x^{T+1}\right)-f\left(x^{*}\right)$

Convergence rate

Recall $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$; subtracting f^{*} from both sides

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
$$

But we want to bound: $f\left(x^{T+1}\right)-f\left(x^{*}\right)$

$$
\Longrightarrow \quad \frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}(1+\beta)=\frac{1}{\Delta_{k}}+\frac{1}{2 L r_{0}^{2}}
$$

Convergence rate

Recall $f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}$; subtracting f^{*} from both sides

$$
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
$$

But we want to bound: $f\left(x^{T+1}\right)-f\left(x^{*}\right)$

$$
\Longrightarrow \quad \frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}(1+\beta)=\frac{1}{\Delta_{k}}+\frac{1}{2 L r_{0}^{2}}
$$

- Sum both sides over $k=0, \ldots, T$ to obtain

$$
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
$$

Convergence rate

- Sum both sides over $k=0, \ldots, T$ to obtain

$$
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
$$

Convergence rate

- Sum both sides over $k=0, \ldots, T$ to obtain

$$
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
$$

- Rearrange to conclude

$$
f\left(x^{T}\right)-f^{*} \leq \frac{2 L \Delta_{0} r_{0}^{2}}{2 L r_{0}^{2}+T \Delta_{0}}
$$

Convergence rate

- Sum both sides over $k=0, \ldots, T$ to obtain

$$
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
$$

- Rearrange to conclude

$$
f\left(x^{T}\right)-f^{*} \leq \frac{2 L \Delta_{0} r_{0}^{2}}{2 L r_{0}^{2}+T \Delta_{0}}
$$

- Use descent lemma to bound $\Delta_{0} \leq(L / 2)\left\|x^{0}-x^{*}\right\|_{2}^{2}$; simplify

$$
f\left(x^{T}\right)-f\left(x^{*}\right) \leq \frac{2 L \Delta_{0}\left\|x^{0}-x^{*}\right\|_{2}^{2}}{T+4}=O(1 / T) .
$$

Exercise: Prove above simplification.

Suppose a sequence $\left\{s^{k}\right\} \rightarrow s$.

Suppose a sequence $\left\{s^{k}\right\} \rightarrow s$.

- Linear If there is a constant $r \in(0,1)$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s\right\|_{2}}{\left\|s^{k}-s\right\|_{2}}=r
$$

i.e., distance decreases by constant factor at each iteration.

Suppose a sequence $\left\{s^{k}\right\} \rightarrow s$.

- Linear If there is a constant $r \in(0,1)$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s\right\|_{2}}{\left\|s^{k}-s\right\|_{2}}=r
$$

i.e., distance decreases by constant factor at each iteration.

- Sublinear If $r=1$ (constant factor decrease not there!)

Suppose a sequence $\left\{s^{k}\right\} \rightarrow s$.

- Linear If there is a constant $r \in(0,1)$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s\right\|_{2}}{\left\|s^{k}-s\right\|_{2}}=r
$$

i.e., distance decreases by constant factor at each iteration.

- Sublinear If $r=1$ (constant factor decrease not there!)
- Superlinear If $r=0$ (we rarely see this in large-scale opt)

Rates of convergence

Suppose a sequence $\left\{s^{k}\right\} \rightarrow s$.

- Linear If there is a constant $r \in(0,1)$ such that

$$
\lim _{k \rightarrow \infty} \frac{\left\|s^{k+1}-s\right\|_{2}}{\left\|s^{k}-s\right\|_{2}}=r
$$

i.e., distance decreases by constant factor at each iteration.

- Sublinear If $r=1$ (constant factor decrease not there!)
- Superlinear If $r=0$ (we rarely see this in large-scale opt)

Example 1. $\left\{1 / k^{c}\right\}$: sublinear as $\lim k^{c} /(k+1)^{c}=1$; 2. $\left\{s r^{k}\right\}$, where $|r|<1$: linear with rate r

Gradient descent - faster rate

Assumption: Strong convexity; denote $f \in S_{L, \mu}^{1}$

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
$$

\& Rarely do we have so much convexity!
\& The extra convexity makes function "well-conditioned"

Gradient descent - faster rate

Assumption: Strong convexity; denote $f \in S_{L, \mu}^{1}$

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
$$

\& Rarely do we have so much convexity!
\& The extra convexity makes function "well-conditioned"
\& Exercise: Prove strong convexity \Longrightarrow strict convexity

Gradient descent - faster rate

Assumption: Strong convexity; denote $f \in S_{L, \mu}^{1}$

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
$$

\& Rarely do we have so much convexity!
\& The extra convexity makes function "well-conditioned"
\& Exercise: Prove strong convexity \Longrightarrow strict convexity
\& C_{L}^{1} was sublinear; strong convexity leads linear rate

Strongly convex case - growth

Thm A. $f \in S_{L, \mu}^{1}$ is equivalent to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2} \quad \forall x, y .
$$

Exercise: Prove this claim.

Strongly convex case - growth

Thm A. $f \in S_{L, \mu}^{1}$ is equivalent to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2} \quad \forall x, y .
$$

Exercise: Prove this claim.
Thm B. Suppose $f \in S_{L, \mu}^{1}$. Then, for any $x, y \in \mathbb{R}^{n}$

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

Strongly convex case - growth

Thm A. $f \in S_{L, \mu}^{1}$ is equivalent to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2} \quad \forall x, y .
$$

Exercise: Prove this claim.
Thm B. Suppose $f \in S_{L, \mu}^{1}$. Then, for any $x, y \in \mathbb{R}^{n}$

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

- Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}$

Strongly convex case - growth

Thm A. $f \in S_{L, \mu}^{1}$ is equivalent to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2} \quad \forall x, y .
$$

Exercise: Prove this claim.
Thm B. Suppose $f \in S_{L, \mu}^{1}$. Then, for any $x, y \in \mathbb{R}^{n}$

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

- Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}$
- $\nabla \phi(x)=\nabla f(x)-\mu x$

Strongly convex case - growth

Thm A. $f \in S_{L, \mu}^{1}$ is equivalent to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2} \quad \forall x, y .
$$

Exercise: Prove this claim.
Thm B. Suppose $f \in S_{L, \mu}^{1}$. Then, for any $x, y \in \mathbb{R}^{n}$

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

- Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}$
- $\nabla \phi(x)=\nabla f(x)-\mu x$
- If $\mu=L$, then easily true (due to Thm. A and Coroll. 2)

Strongly convex case - growth

Thm A. $f \in S_{L, \mu}^{1}$ is equivalent to

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \mu\|x-y\|_{2}^{2} \quad \forall x, y .
$$

Exercise: Prove this claim.
Thm B. Suppose $f \in S_{L, \mu}^{1}$. Then, for any $x, y \in \mathbb{R}^{n}$

$$
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
$$

- Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}$
- $\nabla \phi(x)=\nabla f(x)-\mu x$
- If $\mu=L$, then easily true (due to Thm. A and Coroll. 2)
- If $\mu<L$, then $\phi \in C_{L-\mu}^{1}$; now invoke Coroll. 2

$$
\langle\nabla \phi(x)-\nabla \phi(y), x-y\rangle \geq \frac{1}{L-\mu}\|\nabla \phi(x)-\nabla \phi(y)\|_{2}
$$

Strongly convex - rate

Theorem. If $f \in S_{L, \mu}^{1}, 0<\alpha<2 /(L+\mu)$, then the gradient method generates a sequence $\left\{x^{k}\right\}$ that satisfies

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right)^{k}\left\|x^{0}-x^{*}\right\|_{2}
$$

Moreover, if $\alpha=2 /(L+\mu)$ then

$$
f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

where $\kappa=L / \mu$ is the condition number.

Strongly convex - rate

- As before, let $r_{k}=\left\|x^{k}-x^{*}\right\|_{2}$, and consider
- As before, let $r_{k}=\left\|x^{k}-x^{*}\right\|_{2}$, and consider

$$
r_{k+1}^{2}=\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2}
$$

- As before, let $r_{k}=\left\|x^{k}-x^{*}\right\|_{2}$, and consider

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 \alpha\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\alpha^{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

- As before, let $r_{k}=\left\|x^{k}-x^{*}\right\|_{2}$, and consider

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 \alpha\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\alpha^{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right) r_{k}^{2}+\alpha\left(\alpha-\frac{2}{\mu+L}\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

- As before, let $r_{k}=\left\|x^{k}-x^{*}\right\|_{2}$, and consider

$$
\begin{aligned}
r_{k+1}^{2} & =\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 \alpha\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\alpha^{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right) r_{k}^{2}+\alpha\left(\alpha-\frac{2}{\mu+L}\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
$$

where we used Thm. B with $\nabla f\left(x^{*}\right)=0$ for last inequality.
Exercise: Complete the proof using above argument.

Gradient methods - lower bounds

Theorem Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq k \leq$ $\frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Gradient methods - lower bounds

Theorem Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq k \leq$ $\frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L, \mu}^{\infty}(\mu>0, \kappa>1)$

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

Gradient methods - lower bounds

Theorem Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq k \leq$ $\frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L, \mu}^{\infty}(\mu>0, \kappa>1)$

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

- Notice gap between lower and upper bounds!

Gradient methods - lower bounds

Theorem Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq k \leq$ $\frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L, \mu}^{\infty}(\mu>0, \kappa>1)$

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

- Notice gap between lower and upper bounds!
- We'll come back to these toward end of course
- Let D be the $(n-1) \times n$ differencing matrix

$$
D=\left(\begin{array}{cccccc}
-1 & 1 & & & & \\
& -1 & 1 & & & \\
& & & \ddots & & \\
& & & & -1 & 1
\end{array}\right) \in \mathbb{R}^{(n-1) \times n}
$$

ヘ $f(x)=\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}=\frac{1}{2}\left(\left\|D^{T} x\right\|_{2}^{2}+\|b\|_{2}^{2}-2\left\langle D^{T} x, b\right\rangle\right)$
© Try different choices of b, and different initial vectors x_{0}
4 Determine L and μ for above $f(x)$ (nice linalg exercise!)
© Exercise: Try $\alpha=2 /(L+\mu)$ and other stepsize choices; report on empirical performance
© Exercise: Experiment to see how large n must be before gradient method starts outperforming CVX
A Exercise: Minimize $f(x)$ for large n; e.g., $n=10^{6}, n=10^{7}$

Constrained problems

Constrained optimization

$$
\begin{gathered}
\min \quad f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in \mathcal{X} .
\end{gathered}
$$

Constrained optimization
$x^{k+1}=x^{k}+\alpha_{k} d^{k}$

Constrained optimization
$x^{k+1}=x^{k}+\alpha_{k} d^{k}$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$

Constrained optimization

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- d^{k} must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize α_{k} chosen to ensure feasibility and descent.

Constrained optimization

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- d^{k} must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize α_{k} chosen to ensure feasibility and descent.

Since \mathcal{X} is convex, all feasible directions are of the form

$$
d^{k}=\gamma\left(z-x^{k}\right), \quad \gamma>0
$$

where $z \in \mathcal{X}$ is any feasible vector.

Constrained optimization

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- d^{k} must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize α_{k} chosen to ensure feasibility and descent.

Since \mathcal{X} is convex, all feasible directions are of the form

$$
d^{k}=\gamma\left(z-x^{k}\right), \quad \gamma>0
$$

where $z \in \mathcal{X}$ is any feasible vector.

$$
x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right), \quad \alpha_{k} \in(0,1]
$$

Cone of feasible directions

Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$

Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Frank-Wolfe (Conditional gradient) method
$\boldsymbol{\Delta}$ Let $z^{k} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle$
© Use different methods to select α_{k}
வ $x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right)$

Conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$
Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Frank-Wolfe (Conditional gradient) method

$\boldsymbol{\Delta}$ Let $z^{k} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle$
© Use different methods to select α_{k}
வ $x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right)$
A Practical when easy to solve linear problem over \mathcal{X}.
A Currently enjoying huge renewed interest in machine learning.
© Several refinements, variants exist. (good for project)

Gradient projection

- FW method can be slow
- If \mathcal{X} not compact, doesn't make sense
- A possible alternative (with other weaknesses though!)

Gradient projection

- FW method can be slow
- If \mathcal{X} not compact, doesn't make sense
- A possible alternative (with other weaknesses though!)

If constraint set \mathcal{X} is simple, i.e., we can easily solve projections

$$
\min \quad \frac{1}{2}\|x-y\|_{2} \quad \text { s.t. } \quad x \in \mathcal{X}
$$

Gradient projection

- FW method can be slow
- If \mathcal{X} not compact, doesn't make sense
- A possible alternative (with other weaknesses though!)

If constraint set \mathcal{X} is simple, i.e., we can easily solve projections

$$
\min \quad \frac{1}{2}\|x-y\|_{2} \quad \text { s.t. } \quad x \in \mathcal{X}
$$

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right), \quad k=0,1, \ldots
$$

$$
\text { where } P_{\mathcal{X}} \text { denotes above orthogonal projection. }
$$

Gradient projection - convergence

Depends on the following crucial properties of P
Nonexpansivity: $\|P x-P y\|_{2} \leq\|x-y\|_{2}$
Firm nonxpansivity: $\|P x-P y\|_{2}^{2} \leq\langle P x-P y, x-y\rangle$

Gradient projection - convergence

Depends on the following crucial properties of P
Nonexpansivity: $\|P x-P y\|_{2} \leq\|x-y\|_{2}$
Firm nonxpansivity: $\|P x-P y\|_{2}^{2} \leq\langle P x-P y, x-y\rangle$
\bigcirc Using the above, essentially convergence analysis with $\alpha_{k}=1 / L$ that we saw for the unconstrained case works.

Gradient projection - convergence

Depends on the following crucial properties of P
Nonexpansivity: $\|P x-P y\|_{2} \leq\|x-y\|_{2}$
Firm nonxpansivity: $\|P x-P y\|_{2}^{2} \leq\langle P x-P y, x-y\rangle$
\bigcirc Using the above, essentially convergence analysis with $\alpha_{k}=1 / L$ that we saw for the unconstrained case works.
\bigcirc Skipping for now; (see next slides though)

Gradient projection - convergence

Depends on the following crucial properties of P
Nonexpansivity: $\|P x-P y\|_{2} \leq\|x-y\|_{2}$
Firm nonxpansivity: $\|P x-P y\|_{2}^{2} \leq\langle P x-P y, x-y\rangle$
\bigcirc Using the above, essentially convergence analysis with $\alpha_{k}=1 / L$ that we saw for the unconstrained case works.
\bigcirc Skipping for now; (see next slides though)
Exercise: Recall $f(x)=\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}$. Write a matlab script to minimize this function over the convex set $\mathcal{X}:=\left\{-1 \leq x_{i} \leq 1\right\}$.

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

$$
\langle P x-P y, x-y\rangle \leq\|x-y\|_{2}^{2}
$$

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

$$
\langle P x-P y, x-y\rangle \leq\|x-y\|_{2}^{2}
$$

Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$ (necc and suff)

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

$$
\langle P x-P y, x-y\rangle \leq\|x-y\|_{2}^{2}
$$

Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$ (necc and suff)

$$
\langle P x-P y, y-P y\rangle \leq 0
$$

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

$$
\langle P x-P y, x-y\rangle \leq\|x-y\|_{2}^{2}
$$

Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$ (necc and suff)

$$
\begin{aligned}
& \langle P x-P y, y-P y\rangle \leq 0 \\
& \langle P x-P y, P x-x\rangle \leq 0
\end{aligned}
$$

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

$$
\langle P x-P y, x-y\rangle \leq\|x-y\|_{2}^{2}
$$

Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$ (necc and suff)

$$
\begin{aligned}
\langle P x-P y, y-P y\rangle & \leq 0 \\
\langle P x-P y, P x-x\rangle & \leq 0 \\
\langle P x-P y, P x-P y\rangle & \leq\langle P x-P y, x-y\rangle
\end{aligned}
$$

Projection lemma

Theorem Orthogonal projection is firmly nonexpansive

$$
\langle P x-P y, x-y\rangle \leq\|x-y\|_{2}^{2}
$$

Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$ (necc and suff)

$$
\begin{aligned}
\langle P x-P y, y-P y\rangle & \leq 0 \\
\langle P x-P y, P x-x\rangle & \leq 0 \\
\langle P x-P y, P x-P y\rangle & \leq\langle P x-P y, x-y\rangle
\end{aligned}
$$

Both nonexpansivity and firm nonexpansivity follow after invoking Cauchy-Schwarz

Gradient projection - convergence hints

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle g^{k}, x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}^{2}
$$

Gradient projection - convergence hints

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle g^{k}, x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}^{2}
$$

Let us look at the latter two terms above:

$$
\left\langle g^{k}, P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\rangle+\frac{L}{2}\left\|P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\|_{2}^{2}
$$

Gradient projection - convergence hints

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle g^{k}, x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}^{2}
$$

Let us look at the latter two terms above:

$$
\begin{aligned}
\left\langle g^{k}, P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\rangle & +\frac{L}{2}\left\|P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\|_{2}^{2} \\
\langle P(x-\alpha g)-P x,-\alpha g\rangle & \leq\|\alpha g\|_{2}^{2}
\end{aligned}
$$

Gradient projection - convergence hints

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle g^{k}, x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}^{2}
$$

Let us look at the latter two terms above:

$$
\begin{aligned}
\left\langle g^{k}, P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\rangle & +\frac{L}{2}\left\|P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\|_{2}^{2} \\
\langle P(x-\alpha g)-P x,-\alpha g\rangle & \leq\|\alpha g\|_{2}^{2} \\
\langle P(x-\alpha g)-P x, g\rangle & \geq-\alpha\|g\|_{2}^{2}
\end{aligned}
$$

Gradient projection - convergence hints

$$
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle g^{k}, x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}^{2}
$$

Let us look at the latter two terms above:

$$
\begin{aligned}
\left\langle g^{k}, P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\rangle & +\frac{L}{2}\left\|P\left(x^{k}-\alpha_{k} g^{k}\right)-P\left(x^{k}\right)\right\|_{2}^{2} \\
\langle P(x-\alpha g)-P x,-\alpha g\rangle & \leq\|\alpha g\|_{2}^{2} \\
\langle P(x-\alpha g)-P x, g\rangle & \geq-\alpha\|g\|_{2}^{2} \\
\frac{L}{2}\|P(x-\alpha g)-P x\|_{2}^{2} & \leq \frac{L}{2} \alpha^{2}\|g\|_{2}^{2}
\end{aligned}
$$

Optimal gradient methods

Optimal gradient methods

We saw upper bounds: $O(1 / T)$, and linear rate involving κ
We saw lower bounds: $O\left(1 / T^{2}\right)$, and linear rate involving $\sqrt{\kappa}$

Optimal gradient methods

We saw upper bounds: $O(1 / T)$, and linear rate involving κ
We saw lower bounds: $O\left(1 / T^{2}\right)$, and linear rate involving $\sqrt{\kappa}$

Can we close the gap?

Optimal gradient methods

We saw upper bounds: $O(1 / T)$, and linear rate involving κ
We saw lower bounds: $O\left(1 / T^{2}\right)$, and linear rate involving $\sqrt{\kappa}$

Can we close the gap?

Nesterov (1983) closed the gap!

Optimal gradient methods

We saw upper bounds: $O(1 / T)$, and linear rate involving κ
We saw lower bounds: $O\left(1 / T^{2}\right)$, and linear rate involving $\sqrt{\kappa}$

Can we close the gap?

Nesterov (1983) closed the gap!

Note 1: Don't insist on $f\left(x_{k+1}\right) \leq f\left(x_{k}\right)$ Note 2: Use "multi-steps"

Nesterov Accelerated gradient method
1 Choose $x_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2 Let $y_{0} \leftarrow x_{0}, q=\mu / L$

Nesterov Accelerated gradient method

1 Choose $x_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2 Let $y_{0} \leftarrow x_{0}, q=\mu / L$
$3 k$-th iteration $(k \geq 0)$:
■ Compute $f\left(y_{k}\right)$ and $\nabla f\left(y_{k}\right)$
Let $x_{k+1}=y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)$

1 Choose $x_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2 Let $y_{0} \leftarrow x_{0}, q=\mu / L$
$3 k$-th iteration $(k \geq 0)$:
■ Compute $f\left(y_{k}\right)$ and $\nabla f\left(y_{k}\right)$

$$
\text { Let } x_{k+1}=y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)
$$

- Obtain α_{k+1} by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

1 Choose $x_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2 Let $y_{0} \leftarrow x_{0}, q=\mu / L$
$3 k$-th iteration $(k \geq 0)$:
■ Compute $f\left(y_{k}\right)$ and $\nabla f\left(y_{k}\right)$
Let $x_{k+1}=y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)$

- Obtain α_{k+1} by solving
$\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}$
- Let $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$, and set $y_{k+1}=x_{k+1}+\beta_{k}\left(x_{k+1}-x_{k}\right)$

Nesterov Accelerated gradient method

1 Choose $x_{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2 Let $y_{0} \leftarrow x_{0}, q=\mu / L$
$3 k$-th iteration $(k \geq 0)$:

- Compute $f\left(y_{k}\right)$ and $\nabla f\left(y_{k}\right)$

$$
\text { Let } x_{k+1}=y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)
$$

- Obtain α_{k+1} by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

■ Let $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$, and set

$$
y_{k+1}=x_{k+1}+\beta_{k}\left(x_{k+1}-x_{k}\right)
$$

If $\alpha_{0} \geq \sqrt{\mu / L}$, then

$$
f\left(x_{T}\right)-f\left(x^{*}\right) \leq c_{1} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{T}, \frac{4 L}{\left(2 \sqrt{L}+c_{2} T\right)^{2}}\right\}
$$

where constants c_{1}, c_{2} depend on α_{0}, L, μ.

Strong-convexity - simplification
If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. Algo becomes

Strong-convexity - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. Algo becomes
1 Choose $y_{0}=x_{0} \in \mathbb{R}^{n}$
$2 k$-th iteration $(k \geq 0)$:

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. Algo becomes
1 Choose $y_{0}=x_{0} \in \mathbb{R}^{n}$
$2 k$-th iteration $(k \geq 0)$:

- $x_{k+1}=y_{k}-\frac{1}{L} \nabla f\left(y_{k}\right)$
- $\beta=(\sqrt{L}-\sqrt{\mu}) /(\sqrt{L}+\sqrt{\mu})$

$$
y_{k+1}=x_{k+1}+\beta\left(x_{k+1}-x_{k}\right)
$$

A simple multi-step method!

References

1 Y. Nesterov. Introductory lectures on convex optimization
2 D. Bertsekas. Nonlinear programming

