Convex Optimization

(EE227A: UC Berkeley)

Lecture 13 (Gradient methods)

05 March, 2013

Suvrit Sra

Organizational

- ► HW2 deadline now 7th March, 2013
- Project guidelines now on course website
- Email me to schedule meeting if you need
- ▶ Midterm on: 19th March, 2013 (in class or take home?)

Recap

$$x^{k+1} = P_{\mathcal{X}}(x^k - \alpha_k g^k)$$

- A Different choices of α_k (const, diminishing, Polyak)
- \blacklozenge Can be slow; tuning α_k not so nice
- How to decide when to stop?
- Some other subgradient methods

min
$$f_0(x)$$
 s.t. $f_i(x) \le 0, i = 1, ..., m$

min $f_0(x)$ s.t. $f_i(x) \le 0, i = 1, ..., m$

KKT Necessary conditions

 $\begin{array}{rclcrcl} f_i(x^*) & \leq & 0, & i=1,\ldots,m & (\mbox{primal feasibility}) \\ \lambda_i^* & \geq & 0, & i=1,\ldots,m & (\mbox{dual feasibility}) \\ \lambda_i^*f_i(x^*) & = & 0, & i=1,\ldots,m & (\mbox{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} & = & 0 & (\mbox{Lagrangian stationarity}) \end{array}$

min $f_0(x)$ s.t. $f_i(x) \le 0, i = 1, ..., m$

KKT Necessary conditions

 $\begin{array}{rclcrcl} f_i(x^*) & \leq & 0, & i=1,\ldots,m & (\mbox{primal feasibility}) \\ \lambda_i^* & \geq & 0, & i=1,\ldots,m & (\mbox{dual feasibility}) \\ \lambda_i^*f_i(x^*) & = & 0, & i=1,\ldots,m & (\mbox{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} & = & 0 & (\mbox{Lagrangian stationarity}) \end{array}$

Could try to solve these directly! Nonlinear equations; sometimes solvable directly

min $f_0(x)$ s.t. $f_i(x) \le 0, i = 1, ..., m$

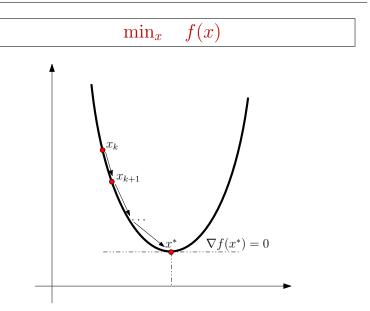
KKT Necessary conditions

 $\begin{array}{rclcrcl} f_i(x^*) & \leq & 0, & i=1,\ldots,m & (\mbox{primal feasibility}) \\ \lambda^*_i & \geq & 0, & i=1,\ldots,m & (\mbox{dual feasibility}) \\ \lambda^*_i f_i(x^*) & = & 0, & i=1,\ldots,m & (\mbox{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} & = & 0 & (\mbox{Lagrangian stationarity}) \end{array}$

Could try to solve these directly! Nonlinear equations; sometimes solvable directly

Usually quite hard; so we'll discuss iterative methods

$$\min_x \quad f(x)$$



Unconstrained optimization

min f(x) $x \in \mathbb{R}^n$.

Unconstrained optimization

 $\min \quad f(x) \qquad x \in \mathbb{R}^n.$

• Suppose we have a vector $x \in \mathbb{R}^n$ for which $\nabla f(x) \neq 0$

Unconstrained optimization

- \blacktriangleright Suppose we have a vector $x\in \mathbb{R}^n$ for which $\nabla f(x)\neq 0$
- Consider the ray: $x(\alpha) = x \alpha \nabla f(x)$ for $\alpha \ge 0$

Unconstrained optimization

- \blacktriangleright Suppose we have a vector $x\in \mathbb{R}^n$ for which $\nabla f(x)\neq 0$
- Consider the ray: $x(\alpha) = x \alpha \nabla f(x)$ for $\alpha \ge 0$
- \blacktriangleright As before, make first-order Taylor expansion around x

$$f(x(\alpha)) = f(x) + \langle \nabla f(x), x(\alpha) - x \rangle + o(\|x(\alpha) - x\|_2)$$

Unconstrained optimization

- \blacktriangleright Suppose we have a vector $x\in \mathbb{R}^n$ for which $\nabla f(x)\neq 0$
- Consider the ray: $x(\alpha) = x \alpha \nabla f(x)$ for $\alpha \ge 0$
- \blacktriangleright As before, make first-order Taylor expansion around x

$$f(x(\alpha)) = f(x) + \langle \nabla f(x), x(\alpha) - x \rangle + o(||x(\alpha) - x||_2)$$

= $f(x) - \alpha ||\nabla f(x)||_2^2 + o(\alpha ||\nabla f(x)||_2)$

Unconstrained optimization

 $\min \quad f(x) \qquad x \in \mathbb{R}^n.$

- \blacktriangleright Suppose we have a vector $x\in \mathbb{R}^n$ for which $\nabla f(x)\neq 0$
- Consider the ray: $x(\alpha) = x \alpha \nabla f(x)$ for $\alpha \ge 0$

 \blacktriangleright As before, make first-order Taylor expansion around x

$$f(x(\alpha)) = f(x) + \langle \nabla f(x), x(\alpha) - x \rangle + o(||x(\alpha) - x||_2) = f(x) - \alpha ||\nabla f(x)||_2^2 + o(\alpha ||\nabla f(x)||_2) = f(x) - \alpha ||\nabla f(x)||_2^2 + o(\alpha)$$

Unconstrained optimization

- \blacktriangleright Suppose we have a vector $x\in \mathbb{R}^n$ for which $\nabla f(x)\neq 0$
- Consider the ray: $x(\alpha) = x \alpha \nabla f(x)$ for $\alpha \ge 0$
- \blacktriangleright As before, make first-order Taylor expansion around x

$$f(x(\alpha)) = f(x) + \langle \nabla f(x), x(\alpha) - x \rangle + o(||x(\alpha) - x||_2) = f(x) - \alpha ||\nabla f(x)||_2^2 + o(\alpha ||\nabla f(x)||_2) = f(x) - \alpha ||\nabla f(x)||_2^2 + o(\alpha)$$

- For α near 0, $\alpha \|\nabla f(x)\|_2^2$ dominates $o(\alpha)$
- ▶ For positive, sufficiently small α , $f(x(\alpha))$ smaller than f(x)

► Carrying the idea further, consider

 $x(\alpha) = x + \alpha d,$

where direction $d \in \mathbb{R}^n$ obtuse to $\nabla f(x)$, i.e.,

 $\langle \nabla f(x), d \rangle < 0.$

► Carrying the idea further, consider

 $x(\alpha) = x + \alpha d,$

where direction $d \in \mathbb{R}^n$ obtuse to $\nabla f(x)$, i.e.,

 $\langle \nabla f(x), d \rangle < 0.$

► Again, we have the Taylor expansion

$$f(x(\alpha)) = f(x) + \alpha \langle \nabla f(x), d \rangle + o(\alpha),$$

where $\langle \nabla f(x), d \rangle$ dominates $o(\alpha)$ for suff. small α

► Carrying the idea further, consider

 $x(\alpha) = x + \alpha d,$

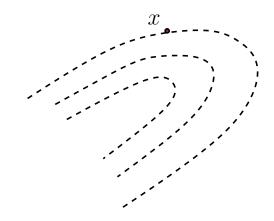
where direction $d \in \mathbb{R}^n$ obtuse to $\nabla f(x)$, i.e.,

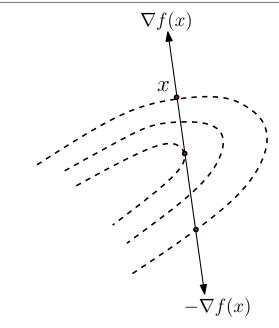
 $\langle \nabla f(x), d \rangle < 0.$

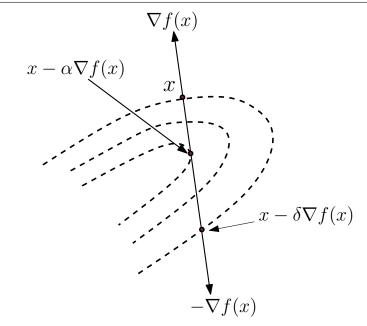
► Again, we have the Taylor expansion

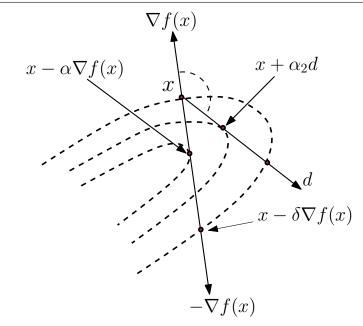
$$f(x(\alpha)) = f(x) + \alpha \langle \nabla f(x), d \rangle + o(\alpha),$$

where $\langle \nabla f(x), d \rangle$ dominates $o(\alpha)$ for suff. small α • Since d is obtuse to $\nabla f(x)$, this implies $f(x(\alpha)) < f(x)$

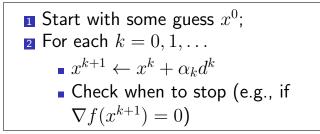








Algorithm



$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

Descent direction d^k satisfies

 $\langle \nabla f(x^k), \, d^k \rangle < 0$

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

Descent direction d^k satisfies

$$\langle \nabla f(x^k),\, d^k\rangle < 0$$

Numerous ways to select α_k and d^k

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

- stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$
- Descent direction d^k satisfies

$$\langle \nabla f(x^k), d^k \rangle < 0$$

Numerous ways to select α_k and d^k

Usually methods seek monotonic descent

$$f(x^{k+1}) < f(x^k)$$

Generic matlab code

function [x, f] = gradientDescent(x0)

 $fx = @(x) \quad objfn(x);$ % handle to f(x)gfx = @(x) grad(x); % handle to nabla f(x)x = x0;% input starting point maxiter = 100;% tunable parameter % or other criterion for k=1:maxiter % compute gradient at x g = gfx(x);al = stepSize(x); % compute a stepsize x = x - al*g; % perform update $fprintf('Iter: \carbon{d} t_Obj: \carbon{d} n', fx(x));$ end end

Gradient methods – direction

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

- ▶ Different choices of direction d^k
- $\circ~$ Scaled gradient: $d^k = -D^k \nabla f(x^k),~D^k \succ 0$
- \circ Newton's method: $(D^k = [\nabla^2 f(x^k)]^{-1})$
- Quasi-Newton: $D^k \approx [\nabla^2 f(x^k)]^{-1}$
- Steepest descent: $D^k = I$
- **Diagonally scaled:** D^k diagonal with $D^k_{ii} \approx \left(rac{\partial^2 f(x^k)}{(\partial x_i)^2}
 ight)^{-1}$
- Discretized Newton: $D^k = [H(x^k)]^{-1}$, H via finite-diff.

Gradient methods – direction

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

- ▶ Different choices of direction d^k
- $\circ~$ Scaled gradient: $d^k = -D^k \nabla f(x^k),~D^k \succ 0$
- \circ Newton's method: $(D^k = [\nabla^2 f(x^k)]^{-1})$
- Quasi-Newton: $D^k \approx [\nabla^2 f(x^k)]^{-1}$
- Steepest descent: $D^k = I$
- **Diagonally scaled:** D^k diagonal with $D_{ii}^k \approx \left(\frac{\partial^2 f(x^k)}{(\partial x_i)^2}\right)^{-1}$
- Discretized Newton: $D^k = [H(x^k)]^{-1}$, H via finite-diff. • ...

Exercise: Verify that $\langle \nabla f(x^k), d^k \rangle < 0$ for above choices

• Exact:
$$\alpha_k := \operatorname*{argmin}_{\alpha \ge 0} f(x^k + \alpha d^k)$$

• Exact:
$$\alpha_k := \underset{\alpha \ge 0}{\operatorname{argmin}} f(x^k + \alpha d^k)$$

• Limited min:
$$\alpha_k = \underset{0 \le \alpha \le s}{\operatorname{argmin}} f(x^k + \alpha d^k)$$

• **Exact:**
$$\alpha_k := \underset{\alpha \ge 0}{\operatorname{argmin}} f(x^k + \alpha d^k)$$

- Limited min: $\alpha_k = \underset{0 \le \alpha \le s}{\operatorname{argmin}} f(x^k + \alpha d^k)$
- ► Armijo-rule. Given fixed scalars, s, β, σ with $0 < \beta < 1$ and $0 < \sigma < 1$ (chosen experimentally). Set

$$\alpha_k = \beta^{m_k} s,$$

where we try $\beta^m s$ for $m = 0, 1, \ldots$ until sufficient descent

$$f(x^k) - f(x + \beta^m s d^k) \ge -\sigma \beta^m s \langle \nabla f(x^k), d^k \rangle$$

• **Exact:**
$$\alpha_k := \underset{\alpha \ge 0}{\operatorname{argmin}} f(x^k + \alpha d^k)$$

- Limited min: $\alpha_k = \underset{0 \le \alpha \le s}{\operatorname{argmin}} f(x^k + \alpha d^k)$
- ► Armijo-rule. Given fixed scalars, s, β, σ with $0 < \beta < 1$ and $0 < \sigma < 1$ (chosen experimentally). Set

$$\alpha_k = \beta^{m_k} s,$$

where we try $\beta^m s$ for $m = 0, 1, \ldots$ until sufficient descent

$$f(x^k) - f(x + \beta^m s d^k) \ge -\sigma \beta^m s \langle \nabla f(x^k), d^k \rangle$$

If $\langle \nabla f(x^k),\, d^k\rangle < 0$, stepsize guaranteed to exist

• **Exact:**
$$\alpha_k := \operatorname*{argmin}_{\alpha \ge 0} f(x^k + \alpha d^k)$$

- Limited min: $\alpha_k = \underset{0 \le \alpha \le s}{\operatorname{argmin}} f(x^k + \alpha d^k)$
- ► Armijo-rule. Given fixed scalars, s, β, σ with $0 < \beta < 1$ and $0 < \sigma < 1$ (chosen experimentally). Set

$$\alpha_k = \beta^{m_k} s,$$

where we try $\beta^m s$ for $m = 0, 1, \ldots$ until sufficient descent

$$f(x^k) - f(x + \beta^m s d^k) \ge -\sigma\beta^m s \langle \nabla f(x^k), d^k \rangle$$

If $\langle \nabla f(x^k), d^k \rangle < 0$, stepsize guaranteed to exist Usually, σ small $\in [10^{-5}, 0.1]$, while β from 1/2 to 1/10 depending on how confident we are about initial stepsize s.

- **Constant:** $\alpha_k = 1/L$ (for suitable value of *L*)
- **Diminishing:** $\alpha_k \to 0$ but $\sum_k \alpha_k = \infty$.

- **Constant:** $\alpha_k = 1/L$ (for suitable value of *L*)
- ▶ Diminishing: α_k → 0 but ∑_k α_k = ∞. Latter condition ensures that {x^k} does not converge to nonstationary points.

- **Constant:** $\alpha_k = 1/L$ (for suitable value of *L*)
- ▶ Diminishing: α_k → 0 but ∑_k α_k = ∞. Latter condition ensures that {x^k} does not converge to nonstationary points.

Say, $x^k \to \bar{x}$; then for sufficiently large m and n, (m > n)

 $x^m \approx x^n \approx \bar{x},$

- **Constant:** $\alpha_k = 1/L$ (for suitable value of *L*)
- ▶ Diminishing: α_k → 0 but ∑_k α_k = ∞. Latter condition ensures that {x^k} does not converge to nonstationary points.

Say, $x^k
ightarrow ar{x}$; then for sufficiently large m and n, (m>n)

$$x^m \approx x^n \approx \bar{x}, \ x^m \approx x^n - \left(\sum_{k=n}^{m-1} \alpha_k\right) \nabla f(\bar{x}).$$

- **Constant:** $\alpha_k = 1/L$ (for suitable value of *L*)
- ▶ Diminishing: α_k → 0 but ∑_k α_k = ∞. Latter condition ensures that {x^k} does not converge to nonstationary points.

Say, $x^k
ightarrow ar{x}$; then for sufficiently large m and n, (m>n)

$$x^m \approx x^n \approx \bar{x}, \ x^m \approx x^n - \left(\sum_{k=n}^{m-1} \alpha_k\right) \nabla f(\bar{x}).$$

The sum can be made arbitrarily large, contradicting nonstationarity of $\bar{\boldsymbol{x}}$

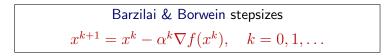
- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent
- Give up search for stepsizes
- Use closed-form formulae for stepsizes
- Don't insist on monotonic descent?
- (e.g., diminishing stepsizes do not enforce monotonic descent)

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent
- Give up search for stepsizes
- Use closed-form formulae for stepsizes
- Don't insist on monotonic descent?
- (e.g., diminishing stepsizes do not enforce monotonic descent)

Barzilai & Borwein stepsizes $x^{k+1} = x^k - \alpha^k \nabla f(x^k), \quad k = 0, 1, \dots$

- Stepsize computation can be expensive
- Convergence analysis depends on monotonic descent
- Give up search for stepsizes
- Use closed-form formulae for stepsizes
- Don't insist on monotonic descent?
- (e.g., diminishing stepsizes do not enforce monotonic descent)



$$\alpha_k = \frac{\langle u^k, v^k \rangle}{\|v^k\|^2}, \qquad \alpha_k = \frac{\|u^k\|^2}{\langle u^k, v^k \rangle}$$
$$u^k = x^k - x^{k-1}, \quad v^k = \nabla f(x^k) - \nabla f(x^{k-1})$$

Barzilai-Borwein steps – remarks

Intriguing behavior:

- \blacklozenge Akin to simultaneous descent-direction \times step
- Result in *non-monotonic* descent
- Work quite well empirically
- Good for large-scale problems
- Difficult convergence analysis
- Often supplemented with nonmonotonic line-search

Convergence theory

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

Convergence

Theorem
$$\|\nabla f(x^k)\|_2 \to 0$$
 as $k \to \infty$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

Convergence

Theorem
$$\|\nabla f(x^k)\|_2 \to 0$$
 as $k \to \infty$

Convergence rate with constant stepsize

Theorem Let $f \in C_L^1$ and $\{x^k\}$ be sequence generated as above, with $\alpha_k = 1/L$. Then, $f(x^{T+1}) - f(x^*) = O(1/T)$.

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k), \quad k = 0, 1, \dots$$

Convergence

Theorem
$$\|\nabla f(x^k)\|_2 \to 0$$
 as $k \to \infty$

Convergence rate with constant stepsize

Theorem Let $f \in C_L^1$ and $\{x^k\}$ be sequence generated as above, with $\alpha_k = 1/L$. Then, $f(x^{T+1}) - f(x^*) = O(1/T)$.

Proof plan:

- Show that $f(x^{k+1}) < f(x^k)$ (for suitable L)
- ▶ Measure progress via $\|x^k x^*\|_2^2$ as before
- ▶ Sum up bounds, induct to obtain rate

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

- Sradient vectors of closeby points are close to each other
- Objective function has "bounded curvature"
- Speed at which gradient varies is bounded

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

- Sradient vectors of closeby points are close to each other
- Objective function has "bounded curvature"
- Speed at which gradient varies is bounded

Lemma (Descent). Let
$$f \in C_L^1$$
. Then,
 $f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||_2^2$

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

- Sradient vectors of closeby points are close to each other
- Objective function has "bounded curvature"
- Speed at which gradient varies is bounded

Lemma (Descent). Let
$$f \in C_L^1$$
. Then,
 $f(x) \le f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} ||x - y||_2^2$

For convex f, compare with $f(x) \geq f(y) + \langle \nabla f(y), \ x-y \rangle.$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

$$f(x) - f(y) - \langle \nabla f(y), x - y \rangle = \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt$$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

$$\begin{aligned} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \\ |f(x) - f(y) - \langle \nabla f(y), x - y \rangle| &\leq \left| \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \right| \end{aligned}$$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

$$\begin{aligned} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \\ |f(x) - f(y) - \langle \nabla f(y), x - y \rangle| &\leq \left| \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \right| \\ &\leq \int_0^1 |\langle \nabla f(z_t) - \nabla f(y), x - y \rangle |dt \end{aligned}$$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

$$\begin{aligned} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \\ |f(x) - f(y) - \langle \nabla f(y), x - y \rangle| &\leq \left| \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \right| \\ &\leq \int_0^1 |\langle \nabla f(z_t) - \nabla f(y), x - y \rangle |dt \\ &\leq \int_0^1 \|\nabla f(z_t) - \nabla f(y)\|_2 x - y dt \end{aligned}$$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

$$\begin{aligned} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \\ |f(x) - f(y) - \langle \nabla f(y), x - y \rangle| &\leq \left| \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \right| \\ &\leq \int_0^1 |\langle \nabla f(z_t) - \nabla f(y), x - y \rangle| dt \\ &\leq \int_0^1 \|\nabla f(z_t) - \nabla f(y)\|_2 x - y dt \\ &\leq L \int_0^1 t \|x - y\|_2^2 dt \end{aligned}$$

Proof. Since $f \in C_L^1$, by Taylor's theorem, for the vector $z_t = y + t(x - y)$ we have

$$f(x) = f(y) + \int_0^1 \langle \nabla f(z_t), x - y \rangle dt.$$

Add and subtract $\langle \nabla f(y),\, x-y\rangle$ on rhs we have

$$\begin{aligned} f(x) - f(y) - \langle \nabla f(y), x - y \rangle &= \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \\ |f(x) - f(y) - \langle \nabla f(y), x - y \rangle| &\leq \left| \int_0^1 \langle \nabla f(z_t) - \nabla f(y), x - y \rangle dt \right| \\ &\leq \int_0^1 |\langle \nabla f(z_t) - \nabla f(y), x - y \rangle| dt \\ &\leq L \int_0^1 \|\nabla f(z_t) - \nabla f(y)\|_2 x - y dt \\ &\leq L \int_0^1 t \|x - y\|_2^2 dt \\ &= \frac{L}{2} \|x - y\|_2^2. \end{aligned}$$

Bounds f(x) above and below with quadratic functions

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$f(x^{k+1}) \leq f(x^k) + \langle \nabla f(x^k), x^{k+1} - x^k \rangle + \frac{L}{2} \|x^{k+1} - x^k\|_2$$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$\begin{aligned} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), \, x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\ &= f(x^k) - \alpha_k \| \nabla f(x^k) \|_2^2 + \frac{\alpha_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \end{aligned}$$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$\begin{aligned} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), \, x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\ &= f(x^k) - \alpha_k \| \nabla f(x^k) \|_2^2 + \frac{\alpha_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\ &= f(x^k) - \frac{\alpha_k (1 - \frac{\alpha_k}{2} L)}{2} \| \nabla f(x^k) \|_2^2 \end{aligned}$$

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$\begin{aligned} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), \, x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\ &= f(x^k) - \alpha_k \| \nabla f(x^k) \|_2^2 + \frac{\alpha_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\ &= f(x^k) - \alpha_k (1 - \frac{\alpha_k}{2} L) \| \nabla f(x^k) \|_2^2 \end{aligned}$$

Thus, if $\alpha_k < 2/L$ we have descent.

Coroll. 1 If $f \in C_L^1$, and $0 < \alpha_k < 2/L$, then $f(x^{k+1}) < f(x^k)$

$$\begin{aligned} f(x^{k+1}) &\leq f(x^k) + \langle \nabla f(x^k), \, x^{k+1} - x^k \rangle + \frac{L}{2} \| x^{k+1} - x^k \|_2 \\ &= f(x^k) - \alpha_k \| \nabla f(x^k) \|_2^2 + \frac{\alpha_k^2 L}{2} \| \nabla f(x^k) \|_2^2 \\ &= f(x^k) - \alpha_k (1 - \frac{\alpha_k}{2} L) \| \nabla f(x^k) \|_2^2 \end{aligned}$$

Thus, if $\alpha_k < 2/L$ we have descent. Minimize over α_k to get best bound: this yields $\alpha_k = 1/L$ —we'll use this stepsize

► We showed that

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$

Convergence

We showed that

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$

 \blacktriangleright Sum up above inequalities for $k=0,1,\ldots,T$ to obtain

$$\frac{c}{L} \sum_{k=0}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1})$$

Convergence

We showed that

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$ \blacktriangleright Sum up above inequalities for $k = 0, 1, \dots, T$ to obtain $\frac{c}{L} \sum_{k=1}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$

Convergence

We showed that

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$ \blacktriangleright Sum up above inequalities for $k = 0, 1, \dots, T$ to obtain $\frac{c}{L} \sum_{k=0}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$

 \blacktriangleright We assume $f^*>-\infty,$ so rhs is some fixed positive constant

Convergence

We showed that

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$ \blacktriangleright Sum up above inequalities for $k = 0, 1, \dots, T$ to obtain $\frac{c}{L} \sum_{k=0}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$

- ▶ We assume $f^* > -\infty$, so rhs is some fixed positive constant
- ▶ Thus, as $k \to \infty$, lhs must converge; thus $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$.

Convergence

We showed that

$$f(x^k) - f(x^{k+1}) \ge \frac{c}{L} \|\nabla f(x^k)\|_2^2$$

 $(c = 1/2 \text{ for } \alpha_k = 1/L; c \text{ has diff. value for other stepsize rules})$ \blacktriangleright Sum up above inequalities for $k = 0, 1, \dots, T$ to obtain $\frac{c}{L} \sum_{k=0}^{T} \|\nabla f(x^k)\|_2^2 \leq f(x^0) - f(x^{T+1}) \leq f(x^0) - f^*$

- ▶ We assume $f^* > -\infty$, so rhs is some fixed positive constant
- ▶ Thus, as $k \to \infty$, lhs must converge; thus $\|\nabla f(x^k)\|_2 \to 0$ as $k \to \infty$.
- ▶ Notice, we **did not require** *f* to be convex . . .

Descent lemma – another corollary

Corollary 2 If f is a **convex** function $\in C_L^1$, then

$$\frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le \langle \nabla f(x) - \nabla f(y), \, x - y \rangle,$$

Exercise: Prove this corollary.

- $\star \ {\rm Let} \ \alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k:=\|x^k-x^*\|_2$ (distance to optimum)

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k) \text{, } g^* = \nabla f(x^*)$
- * Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k) \text{, } g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

Proof. Descent lemma implies that: $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$ Consider, $r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2$.

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{ll} \textit{Proof. Descent lemma implies that: } f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, \, x^k - x^* \rangle \end{array}$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- * Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{l} \textit{Proof. Descent lemma implies that: } f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, x^k - x^* \rangle \\ &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k - g^*, x^k - x^* \rangle \\ &\leq r_k^2 + \alpha_k^2 \|g^k\|_2^2 - \frac{2\alpha_k}{L} \|g^k - g^*\|_2^2 \quad (\textit{Coroll. 2}) \\ &= r_k^2 - \alpha_k (\frac{2}{L} - \alpha_k) \|g^k\|_2^2. \end{array}$

- \star Let $\alpha_k = 1/L$
- \star Shorthand notation $g^k = \nabla f(x^k), \ g^* = \nabla f(x^*)$
- \star Let $r_k := \|x^k x^*\|_2$ (distance to optimum)

Lemma Distance to min shrinks monotonically; $r_{k+1} \leq r_k$

 $\begin{array}{l} \textit{Proof. Descent lemma implies that: } f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2 \\ \textit{Consider, } r_{k+1}^2 = \|x^{k+1} - x^*\|_2^2 = \|x^k - x^* - \alpha_k g^k\|_2^2. \\ r_{k+1}^2 &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k, x^k - x^* \rangle \\ &= r_k^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k \langle g^k - g^*, x^k - x^* \rangle \\ &\leq r_k^2 + \alpha_k^2 \|g^k\|_2^2 - \frac{2\alpha_k}{L} \|g^k - g^*\|_2^2 \quad (\textit{Coroll. 2}) \\ &= r_k^2 - \alpha_k (\frac{2}{L} - \alpha_k) \|g^k\|_2^2. \end{array}$

Since $\alpha_k < 2/L$, it follows that $r_{k+1} \leq r_k$

Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

Lemma Let $\Delta_k := f(x^k) - f(x^*)$. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^k) - f(x^*) = \Delta_k \stackrel{\text{cvx } f}{\leq} \langle g^k, \, x^k - x^* \rangle$$

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \stackrel{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \overset{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \overset{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

That is, $\|g^k\|_2 \ge \Delta_k/r_k$.

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \stackrel{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

That is, $\|g^k\|_2 \geq \Delta_k/r_k$. In particular, since $r_k \leq r_0$, we have

$$\|g^k\|_2 \ge \frac{\Delta_k}{r_0}.$$

Lemma Let
$$\Delta_k := f(x^k) - f(x^*)$$
. Then, $\Delta_{k+1} \leq \Delta_k(1-\beta)$

$$f(x^{k}) - f(x^{*}) = \Delta_{k} \stackrel{\text{cvx } f}{\leq} \langle g^{k}, x^{k} - x^{*} \rangle \stackrel{\text{CS}}{\leq} \|g^{k}\|_{2} \underbrace{\|x^{k} - x^{*}\|_{2}}_{r_{k}}.$$

That is, $\|g^k\|_2 \ge \Delta_k/r_k$. In particular, since $r_k \le r_0$, we have $\|g^k\|_2 \ge \frac{\Delta_k}{r_0}.$

Now we have a bound on the gradient norm...

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2;$ subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right)$$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2;$ subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

$$\implies \quad \frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_k} (1+\beta) = \frac{1}{\Delta_k} + \frac{1}{2Lr_0^2}$$

Recall $f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|g^k\|_2^2$; subtracting f^* from both sides

$$\Delta_{k+1} \le \Delta_k - \frac{\Delta_k^2}{2Lr_0^2} = \Delta_k \left(1 - \frac{\Delta_k}{2Lr_0^2}\right) = \Delta_k (1 - \beta).$$

But we want to bound: $f(x^{T+1}) - f(x^*)$

$$\implies \quad \frac{1}{\Delta_{k+1}} \ge \frac{1}{\Delta_k} (1+\beta) = \frac{1}{\Delta_k} + \frac{1}{2Lr_0^2}$$

 \blacktriangleright Sum both sides over $k=0,\ldots,T$ to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

 \blacktriangleright Sum both sides over $k=0,\ldots,T$ to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

 \blacktriangleright Sum both sides over $k=0,\ldots,T$ to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

► Rearrange to conclude

$$f(x^{T}) - f^{*} \le \frac{2L\Delta_{0}r_{0}^{2}}{2Lr_{0}^{2} + T\Delta_{0}}$$

▶ Sum both sides over k = 0, ..., T to obtain

$$\frac{1}{\Delta_{T+1}} \ge \frac{1}{\Delta_0} + \frac{T+1}{2Lr_0^2}$$

► Rearrange to conclude

$$f(x^T) - f^* \le \frac{2L\Delta_0 r_0^2}{2Lr_0^2 + T\Delta_0}$$

▶ Use descent lemma to bound $\Delta_0 \leq (L/2) \|x^0 - x^*\|_2^2$; simplify

$$f(x^{T}) - f(x^{*}) \le \frac{2L\Delta_{0} ||x^{0} - x^{*}||_{2}^{2}}{T+4} = O(1/T).$$

Exercise: Prove above simplification.

Gradient descent – faster rate

Assumption: Strong convexity; denote $f \in S^1_{L,\mu}$ $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$

• Setting $\alpha_k = 2/(\mu + L)$ yields linear rate ($\mu > 0$)

Thm 2. Suppose
$$f \in S^1_{L,\mu}$$
. Then, for any $x, y \in \mathbb{R}^n$
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$

Thm 2. Suppose
$$f \in S^1_{L,\mu}$$
. Then, for any $x, y \in \mathbb{R}^n$
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$

▶ Consider the convex function $\phi(x) = f(x) - \frac{\mu}{2} \|x\|_2^2$

Thm 2. Suppose
$$f \in S^1_{L,\mu}$$
. Then, for any $x, y \in \mathbb{R}^n$
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$

▶ Consider the **convex** function $\phi(x) = f(x) - \frac{\mu}{2} ||x||_2^2$

$$\blacktriangleright \nabla \phi(x) = \nabla f(x) - \mu x$$

Thm 2. Suppose
$$f \in S^1_{L,\mu}$$
. Then, for any $x, y \in \mathbb{R}^n$
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$

 \blacktriangleright Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_2^2$

$$\blacktriangleright \nabla \phi(x) = \nabla f(x) - \mu x$$

• If $\mu = L$, then easily true (due to strong convexity and Coroll. 2)

Thm 2. Suppose
$$f \in S^1_{L,\mu}$$
. Then, for any $x, y \in \mathbb{R}^n$
 $\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge \frac{\mu L}{\mu + L} \|x - y\|_2^2 + \frac{1}{\mu + L} \|\nabla f(x) - \nabla f(y)\|_2^2$

 \blacktriangleright Consider the convex function $\phi(x)=f(x)-\frac{\mu}{2}\|x\|_2^2$

$$\blacktriangleright \nabla \phi(x) = \nabla f(x) - \mu x$$

- If $\mu = L$, then easily true (due to strong convexity and Coroll. 2)
- ▶ If $\mu < L$, then $\phi \in C^1_{L-\mu}$; now invoke Coroll. 2

$$\langle \nabla \phi(x) - \nabla \phi(y), x - y \rangle \ge \frac{1}{L - \mu} \| \nabla \phi(x) - \nabla \phi(y) \|_2$$

Theorem. If $f \in S^1_{L,\mu}$, $0 < \alpha < 2/(L + \mu)$, then the gradient method generates a sequence $\{x^k\}$ that satisfies

$$||x^{k} - x^{*}||_{2}^{2} \le \left(1 - \frac{2\alpha\mu L}{\mu + L}\right)^{k} ||x^{0} - x^{*}||_{2}.$$

Moreover, if $\alpha=2/(L+\mu)$ then

$$f(x^k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x^0 - x^*\|_2^2$$

where $\kappa = L/\mu$ is the condition number.

▶ As before, let $r_k = ||x^k - x^*||_2$, and consider

▶ As before, let $r_k = \|x^k - x^*\|_2$, and consider

$$r_{k+1}^2 \ = \ \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2$$

▶ As before, let $r_k = ||x^k - x^*||_2$, and consider

$$\begin{aligned} r_{k+1}^2 &= \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \\ &= r_k^2 - 2\alpha \langle \nabla f(x^k), \, x^k - x^* \rangle + \alpha^2 \|\nabla f(x^k)\|_2^2 \end{aligned}$$

• As before, let $r_k = ||x^k - x^*||_2$, and consider

$$\begin{aligned} r_{k+1}^2 &= \|x^k - x^* - \alpha \nabla f(x^k)\|_2^2 \\ &= r_k^2 - 2\alpha \langle \nabla f(x^k), \, x^k - x^* \rangle + \alpha^2 \|\nabla f(x^k)\|_2^2 \\ &\leq \left(1 - \frac{2\alpha\mu L}{\mu + L}\right) r_k^2 + \alpha \left(\alpha - \frac{2}{\mu + L}\right) \|\nabla f(x^k)\|_2^2 \end{aligned}$$

where we used Thm. 2 with $\nabla f(x^*) = 0$ for last inequality.

Exercise: Complete the proof using above argument.

Gradient methods – lower bounds

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

Theorem Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \leq T \leq \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$f(x^{T}) - f(x^{*}) \ge \frac{3L\|x^{0} - x^{*}\|_{2}^{2}}{32(T+1)^{2}}$$

Gradient methods – lower bounds

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

Theorem Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \leq T \leq \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$f(x^{T}) - f(x^{*}) \ge \frac{3L\|x^{0} - x^{*}\|_{2}^{2}}{32(T+1)^{2}}$$

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L,\mu}^{\infty}$ ($\mu > 0$, $\kappa > 1$)

$$f(x^T) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2T} \|x^0 - x^*\|_2^2.$$

We'll come back to these towards end of course

Exercise

• Let D be the $(n-1) \times n$ differencing matrix

$$D = \begin{pmatrix} -1 & 1 & & & \\ & -1 & 1 & & \\ & & \ddots & & \\ & & & & -1 & 1 \end{pmatrix} \in \mathbb{R}^{(n-1) \times n}$$

- ♠ f(x) = ¹/₂ ||D^Tx b||²/₂ = ¹/₂(||D^Tx||²/₂ + ||b||²/₂ 2⟨D^Tx, b⟩)
 ♠ Notice that ∇f(x) = D(D^Tx b)
- \blacklozenge Try different choices of b, and different initial vectors x_0
- ♠ Exercise: Experiment to see how large n must be before subgradient method starts outperforming CVX
- **A** Exercise: Minimize f(x) for large n; e.g., $n = 10^6$, $n = 10^7$
- **Exercise:** Repeat same exercise with constraints: $x_i \in [-1, 1]$.

References

- \heartsuit Bertsekas (1999); "Nonlinear programming" (1999)
- ♡ Nesterov (2003); "Introductory lectures on convex optimization"