Convex Optimization

 (EE227A: UC Berkeley)Lecture 13
(Gradient methods)

05 March, 2013

Suvrit Sra

Organizational

- HW2 deadline now 7th March, 2013
- Project guidelines now on course website
- Email me to schedule meeting if you need
- Midterm on: 19th March, 2013 (in class or take home?)
a $x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} g^{k}\right)$
© Different choices of α_{k} (const, diminishing, Polyak)
A Can be slow; tuning α_{k} not so nice
© How to decide when to stop?
A Some other subgradient methods

Differentiable optimization

$$
\min \quad f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0, i=1, \ldots, m
$$

Differentiable optimization

$$
\min \quad f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0, i=1, \ldots, m
$$

KKT Necessary conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility) (dual feasibility) (compl. slackness)
(Lagrangian stationarity)

Differentiable optimization

$$
\min \quad f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0, i=1, \ldots, m
$$

KKT Necessary conditions

$$
\begin{array}{rlr}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m & \text { (primal feasibility) } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m & \text { (dual feasibility) } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m & \text { (compl. slackness) } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 &
\end{array}
$$

Could try to solve these directly!
Nonlinear equations; sometimes solvable directly

Differentiable optimization

$$
\min \quad f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0, i=1, \ldots, m
$$

KKT Necessary conditions

$$
\begin{array}{rlrr}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m & \text { (primal feasibility) } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m & \text { (dual feasibility) } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m & \text { (compl. slackness) } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 & & \text { (Lagrangian stationarity) }
\end{array}
$$

Could try to solve these directly!
 Nonlinear equations; sometimes solvable directly

Usually quite hard; so we'll discuss iterative methods

Descent methods
$\min _{x} \quad f(x)$

Descent methods

$$
\min _{x} \quad f(x)
$$

Unconstrained optimization

$\min \quad f(x) \quad x \in \mathbb{R}^{n}$.

Unconstrained optimization

$$
\min \quad f(x) \quad x \in \mathbb{R}^{n}
$$

- Suppose we have a vector $x \in \mathbb{R}^{n}$ for which $\nabla f(x) \neq 0$

Unconstrained optimization

$$
\min \quad f(x) \quad x \in \mathbb{R}^{n}
$$

- Suppose we have a vector $x \in \mathbb{R}^{n}$ for which $\nabla f(x) \neq 0$
- Consider the ray: $x(\alpha)=x-\alpha \nabla f(x)$ for $\alpha \geq 0$

Gradient methods

Unconstrained optimization

$$
\min \quad f(x) \quad x \in \mathbb{R}^{n} .
$$

- Suppose we have a vector $x \in \mathbb{R}^{n}$ for which $\nabla f(x) \neq 0$
- Consider the ray: $x(\alpha)=x-\alpha \nabla f(x)$ for $\alpha \geq 0$
- As before, make first-order Taylor expansion around x

$$
f(x(\alpha))=f(x)+\langle\nabla f(x), x(\alpha)-x\rangle+o\left(\|x(\alpha)-x\|_{2}\right)
$$

Gradient methods

Unconstrained optimization

$$
\min \quad f(x) \quad x \in \mathbb{R}^{n} .
$$

- Suppose we have a vector $x \in \mathbb{R}^{n}$ for which $\nabla f(x) \neq 0$
- Consider the ray: $x(\alpha)=x-\alpha \nabla f(x)$ for $\alpha \geq 0$
- As before, make first-order Taylor expansion around x

$$
\begin{aligned}
f(x(\alpha)) & =f(x)+\langle\nabla f(x), x(\alpha)-x\rangle+o\left(\|x(\alpha)-x\|_{2}\right) \\
& =f(x)-\alpha\|\nabla f(x)\|_{2}^{2}+o\left(\alpha\|\nabla f(x)\|_{2}\right)
\end{aligned}
$$

Gradient methods

Unconstrained optimization

$$
\min \quad f(x) \quad x \in \mathbb{R}^{n} .
$$

- Suppose we have a vector $x \in \mathbb{R}^{n}$ for which $\nabla f(x) \neq 0$
- Consider the ray: $x(\alpha)=x-\alpha \nabla f(x)$ for $\alpha \geq 0$
- As before, make first-order Taylor expansion around x

$$
\begin{aligned}
f(x(\alpha)) & =f(x)+\langle\nabla f(x), x(\alpha)-x\rangle+o\left(\|x(\alpha)-x\|_{2}\right) \\
& =f(x)-\alpha\|\nabla f(x)\|_{2}^{2}+o\left(\alpha\|\nabla f(x)\|_{2}\right) \\
& =f(x)-\alpha\|\nabla f(x)\|_{2}^{2}+o(\alpha)
\end{aligned}
$$

Gradient methods

Unconstrained optimization

$$
\min \quad f(x) \quad x \in \mathbb{R}^{n} .
$$

- Suppose we have a vector $x \in \mathbb{R}^{n}$ for which $\nabla f(x) \neq 0$
- Consider the ray: $x(\alpha)=x-\alpha \nabla f(x)$ for $\alpha \geq 0$
- As before, make first-order Taylor expansion around x

$$
\begin{aligned}
f(x(\alpha)) & =f(x)+\langle\nabla f(x), x(\alpha)-x\rangle+o\left(\|x(\alpha)-x\|_{2}\right) \\
& =f(x)-\alpha\|\nabla f(x)\|_{2}^{2}+o\left(\alpha\|\nabla f(x)\|_{2}\right) \\
& =f(x)-\alpha\|\nabla f(x)\|_{2}^{2}+o(\alpha)
\end{aligned}
$$

- For α near $0, \alpha\|\nabla f(x)\|_{2}^{2}$ dominates $o(\alpha)$
- For positive, sufficiently small $\alpha, f(x(\alpha))$ smaller than $f(x)$

Descent methods

- Carrying the idea further, consider

$$
x(\alpha)=x+\alpha d
$$

where direction $d \in \mathbb{R}^{n}$ obtuse to $\nabla f(x)$, i.e.,

$$
\langle\nabla f(x), d\rangle<0
$$

Descent methods

- Carrying the idea further, consider

$$
x(\alpha)=x+\alpha d
$$

where direction $d \in \mathbb{R}^{n}$ obtuse to $\nabla f(x)$, i.e.,

$$
\langle\nabla f(x), d\rangle<0
$$

- Again, we have the Taylor expansion

$$
f(x(\alpha))=f(x)+\alpha\langle\nabla f(x), d\rangle+o(\alpha),
$$

where $\langle\nabla f(x), d\rangle$ dominates $o(\alpha)$ for suff. small α

Descent methods

- Carrying the idea further, consider

$$
x(\alpha)=x+\alpha d
$$

where direction $d \in \mathbb{R}^{n}$ obtuse to $\nabla f(x)$, i.e.,

$$
\langle\nabla f(x), d\rangle<0
$$

- Again, we have the Taylor expansion

$$
f(x(\alpha))=f(x)+\alpha\langle\nabla f(x), d\rangle+o(\alpha)
$$

where $\langle\nabla f(x), d\rangle$ dominates $o(\alpha)$ for suff. small α

- Since d is obtuse to $\nabla f(x)$, this implies $f(x(\alpha))<f(x)$

Descent methods

Descent methods

Descent methods

$$
x-\alpha \nabla f(x)
$$

Descent methods

$$
x-\alpha \nabla f(x)
$$

Algorithm

1 Start with some guess x^{0};
■ For each $k=0,1, \ldots$

- $x^{k+1} \leftarrow x^{k}+\alpha_{k} d^{k}$
- Check when to stop (e.g., if $\left.\nabla f\left(x^{k+1}\right)=0\right)$

Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$
■ Descent direction d^{k} satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

■ Descent direction d^{k} satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Numerous ways to select α_{k} and d^{k}

Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

■ Descent direction d^{k} satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Numerous ways to select α_{k} and d^{k}
Usually methods seek monotonic descent

$$
f\left(x^{k+1}\right)<f\left(x^{k}\right)
$$

Generic matlab code

```
function [x,f]= gradientDescent(x0)
```

```
fx = @(x) objfn(x); % handle to f(x)
```

fx = @(x) objfn(x); % handle to f(x)
gfx =@(x) grad(x); % handle to nabla f(x)
gfx =@(x) grad(x); % handle to nabla f(x)
x=x0; % input starting point
x=x0; % input starting point
maxiter = 100; % tunable parameter
maxiter = 100; % tunable parameter
for k=1:maxiter % or other criterion
for k=1:maxiter % or other criterion
g}=\operatorname{gfx}(\textrm{x}); % compute gradient at x
g}=\operatorname{gfx}(\textrm{x}); % compute gradient at x
al = stepSize(x); % compute a stepsize
al = stepSize(x); % compute a stepsize
x = x - al*g; % perform update
x = x - al*g; % perform update
fprintf('Iter: „%d\t_Obj: „%d\n', fx(x));
fprintf('Iter: „%d\t_Obj: „%d\n', fx(x));
end
end
end

```

\section*{Gradient methods - direction}
\[
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
\]
- Different choices of direction \(d^{k}\)
- Scaled gradient: \(d^{k}=-D^{k} \nabla f\left(x^{k}\right), D^{k} \succ 0\)
- Newton's method: \(\left(D^{k}=\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\right)\)
- Quasi-Newton: \(D^{k} \approx\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\)
- Steepest descent: \(D^{k}=\boldsymbol{I}\)
- Diagonally scaled: \(D^{k}\) diagonal with \(D_{i i}^{k} \approx\left(\frac{\partial^{2} f\left(x^{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}\)
- Discretized Newton: \(D^{k}=\left[H\left(x^{k}\right)\right]^{-1}, H\) via finite-diff.

\section*{Gradient methods - direction}
\[
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
\]
- Different choices of direction \(d^{k}\)
- Scaled gradient: \(d^{k}=-D^{k} \nabla f\left(x^{k}\right), D^{k} \succ 0\)
- Newton's method: \(\left(D^{k}=\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\right)\)
- Quasi-Newton: \(D^{k} \approx\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\)
- Steepest descent: \(D^{k}=\boldsymbol{I}\)
- Diagonally scaled: \(D^{k}\) diagonal with \(D_{i i}^{k} \approx\left(\frac{\partial^{2} f\left(x^{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}\)
- Discretized Newton: \(D^{k}=\left[H\left(x^{k}\right)\right]^{-1}, H\) via finite-diff.
- ...

Exercise: Verify that \(\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0\) for above choices

\section*{Gradient methods - stepsize}
- Exact: \(\alpha_{k}:=\underset{\operatorname{argmin}}{ } f\left(x^{k}+\alpha d^{k}\right)\)
\[
\alpha \geq 0
\]

\section*{Gradient methods - stepsize}
- Exact: \(\alpha_{k}:=\underset{\operatorname{argmin}}{ } f\left(x^{k}+\alpha d^{k}\right)\)
\[
\alpha \geq 0
\]
- Limited min: \(\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
0 \leq \alpha \leq s
\]

\section*{Gradient methods - stepsize}
- Exact: \(\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
\alpha \geq 0
\]
- Limited min: \(\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
0 \leq \alpha \leq s
\]
- Armijo-rule. Given fixed scalars, \(s, \beta, \sigma\) with \(0<\beta<1\) and \(0<\sigma<1\) (chosen experimentally). Set
\[
\alpha_{k}=\beta^{m_{k}} s
\]
where we try \(\beta^{m} s\) for \(m=0,1, \ldots\) until sufficient descent
\[
f\left(x^{k}\right)-f\left(x+\beta^{m} s d^{k}\right) \geq-\sigma \beta^{m} s\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle
\]

\section*{Gradient methods - stepsize}
- Exact: \(\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
\alpha \geq 0
\]
- Limited min: \(\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
0 \leq \alpha \leq s
\]
- Armijo-rule. Given fixed scalars, \(s, \beta, \sigma\) with \(0<\beta<1\) and \(0<\sigma<1\) (chosen experimentally). Set
\[
\alpha_{k}=\beta^{m_{k}} s
\]
where we try \(\beta^{m} s\) for \(m=0,1, \ldots\) until sufficient descent
\[
f\left(x^{k}\right)-f\left(x+\beta^{m} s d^{k}\right) \geq-\sigma \beta^{m} s\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle
\]

If \(\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0\), stepsize guaranteed to exist

\section*{Gradient methods - stepsize}
- Exact: \(\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
\alpha \geq 0
\]
- Limited min: \(\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)\)
\[
0 \leq \alpha \leq s
\]
- Armijo-rule. Given fixed scalars, \(s, \beta, \sigma\) with \(0<\beta<1\) and \(0<\sigma<1\) (chosen experimentally). Set
\[
\alpha_{k}=\beta^{m_{k}} s
\]
where we try \(\beta^{m} s\) for \(m=0,1, \ldots\) until sufficient descent
\[
f\left(x^{k}\right)-f\left(x+\beta^{m} s d^{k}\right) \geq-\sigma \beta^{m} s\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle
\]

If \(\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0\), stepsize guaranteed to exist Usually, \(\sigma\) small \(\in\left[10^{-5}, 0.1\right]\), while \(\beta\) from \(1 / 2\) to \(1 / 10\) depending on how confident we are about initial stepsize \(s\).

\section*{Gradient methods - stepsize}
- Constant: \(\alpha_{k}=1 / L\) (for suitable value of \(L\) )
- Diminishing: \(\alpha_{k} \rightarrow 0\) but \(\sum_{k} \alpha_{k}=\infty\).

\section*{Gradient methods - stepsize}
- Constant: \(\alpha_{k}=1 / L\) (for suitable value of \(L\) )
- Diminishing: \(\alpha_{k} \rightarrow 0\) but \(\sum_{k} \alpha_{k}=\infty\). Latter condition ensures that \(\left\{x^{k}\right\}\) does not converge to nonstationary points.
- Constant: \(\alpha_{k}=1 / L\) (for suitable value of \(L\) )
- Diminishing: \(\alpha_{k} \rightarrow 0\) but \(\sum_{k} \alpha_{k}=\infty\).

Latter condition ensures that \(\left\{x^{k}\right\}\) does not converge to nonstationary points.
Say, \(x^{k} \rightarrow \bar{x}\); then for sufficiently large \(m\) and \(n,(m>n)\)
\[
x^{m} \approx x^{n} \approx \bar{x}
\]

\section*{Gradient methods - stepsize}
- Constant: \(\alpha_{k}=1 / L\) (for suitable value of \(L\) )
- Diminishing: \(\alpha_{k} \rightarrow 0\) but \(\sum_{k} \alpha_{k}=\infty\).

Latter condition ensures that \(\left\{x^{k}\right\}\) does not converge to nonstationary points.
Say, \(x^{k} \rightarrow \bar{x}\); then for sufficiently large \(m\) and \(n,(m>n)\)
\[
x^{m} \approx x^{n} \approx \bar{x}, x^{m} \approx x^{n}-\left(\sum_{k=n}^{m-1} \alpha_{k}\right) \nabla f(\bar{x})
\]
- Constant: \(\alpha_{k}=1 / L\) (for suitable value of \(L\) )
- Diminishing: \(\alpha_{k} \rightarrow 0\) but \(\sum_{k} \alpha_{k}=\infty\). Latter condition ensures that \(\left\{x^{k}\right\}\) does not converge to nonstationary points.
Say, \(x^{k} \rightarrow \bar{x}\); then for sufficiently large \(m\) and \(n,(m>n)\)
\[
x^{m} \approx x^{n} \approx \bar{x}, x^{m} \approx x^{n}-\left(\sum_{k=n}^{m-1} \alpha_{k}\right) \nabla f(\bar{x})
\]

The sum can be made arbitrarily large, contradicting nonstationarity of \(\bar{x}\)

\section*{Gradient methods - nonmonotonic steps*}
- Stepsize computation can be expensive

■ Convergence analysis depends on monotonic descent

\section*{Gradient methods - nonmonotonic steps*}
- Stepsize computation can be expensive

■ Convergence analysis depends on monotonic descent
■ Give up search for stepsizes
■ Use closed-form formulae for stepsizes
■ Don't insist on monotonic descent?
- (e.g., diminishing stepsizes do not enforce monotonic descent)

\section*{Gradient methods - nonmonotonic steps*}

■ Stepsize computation can be expensive
■ Convergence analysis depends on monotonic descent
■ Give up search for stepsizes
■ Use closed-form formulae for stepsizes
■ Don't insist on monotonic descent?
■ (e.g., diminishing stepsizes do not enforce monotonic descent)
\[
\begin{gathered}
\text { Barzilai \& Borwein stepsizes } \\
x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
\end{gathered}
\]

\section*{Gradient methods - nonmonotonic steps*}
- Stepsize computation can be expensive

■ Convergence analysis depends on monotonic descent
■ Give up search for stepsizes
■ Use closed-form formulae for stepsizes
■ Don't insist on monotonic descent?
- (e.g., diminishing stepsizes do not enforce monotonic descent)
\[
\begin{gathered}
\text { Barzilai \& Borwein stepsizes } \\
x^{k+1}=x^{k}-\alpha^{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots \\
\alpha_{k}=\frac{\left\langle u^{k}, v^{k}\right\rangle}{\left\|v^{k}\right\|^{2}}, \quad \alpha_{k}=\frac{\left\|u^{k}\right\|^{2}}{\left\langle u^{k}, v^{k}\right\rangle} \\
u^{k}=x^{k}-x^{k-1}, \quad v^{k}=\nabla f\left(x^{k}\right)-\nabla f\left(x^{k-1}\right)
\end{gathered}
\]

\section*{Intriguing behavior:}

A Akin to simultaneous descent-direction \(\times\) step
A Result in non-monotonic descent
© Work quite well empirically
© Good for large-scale problems
A Difficult convergence analysis
© Often supplemented with nonmonotonic line-search

\section*{Convergence theory}

\section*{Gradient descent - convergence}
\[
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
\]

\section*{Gradient descent - convergence}
\[
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
\]

Convergence
Theorem \(\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0\) as \(k \rightarrow \infty\)

\section*{Gradient descent - convergence}
\[
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
\]

Convergence
Theorem \(\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0\) as \(k \rightarrow \infty\)
Convergence rate with constant stepsize
Theorem Let \(f \in C_{L}^{1}\) and \(\left\{x^{k}\right\}\) be sequence generated as above, with \(\alpha_{k}=1 / L\). Then, \(f\left(x^{T+1}\right)-f\left(x^{*}\right)=O(1 / T)\).

\section*{Gradient descent - convergence}
\[
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right), \quad k=0,1, \ldots
\]

Convergence
Theorem \(\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0\) as \(k \rightarrow \infty\)
Convergence rate with constant stepsize
Theorem Let \(f \in C_{L}^{1}\) and \(\left\{x^{k}\right\}\) be sequence generated as above, with \(\alpha_{k}=1 / L\). Then, \(f\left(x^{T+1}\right)-f\left(x^{*}\right)=O(1 / T)\).

\section*{Proof plan:}
- Show that \(f\left(x^{k+1}\right)<f\left(x^{k}\right)\) (for suitable \(L\) )
- Measure progress via \(\left\|x^{k}-x^{*}\right\|_{2}^{2}\) as before
- Sum up bounds, induct to obtain rate

\section*{Gradient descent - convergence}

Assumption: Lipschitz continuous gradient; denoted \(f \in C_{L}^{1}\)
\[
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
\]

\section*{Gradient descent - convergence}

Assumption: Lipschitz continuous gradient; denoted \(f \in C_{L}^{1}\)
\[
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
\]
4. Gradient vectors of closeby points are close to each other
\(\%\) Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded

\section*{Gradient descent - convergence}

Assumption: Lipschitz continuous gradient; denoted \(f \in C_{L}^{1}\)
\[
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
\]
\& Gradient vectors of closeby points are close to each other
\(\%\) Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let \(f \in C_{L}^{1}\). Then,
\[
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|_{2}^{2}
\]

\section*{Gradient descent - convergence}

Assumption: Lipschitz continuous gradient; denoted \(f \in C_{L}^{1}\)
\[
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
\]
\& Gradient vectors of closeby points are close to each other
\(\%\) Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded
Lemma (Descent). Let \(f \in C_{L}^{1}\). Then,
\[
f(x) \leq f(y)+\langle\nabla f(y), x-y\rangle+\frac{L}{2}\|x-y\|_{2}^{2}
\]

For convex \(f\), compare with
\[
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
\]

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

\section*{Descent lemma}

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

Add and subtract \(\langle\nabla f(y), x-y\rangle\) on rhs we have
\[
f(x)-f(y)-\langle\nabla f(y), x-y\rangle=\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t
\]

\section*{Descent lemma}

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

Add and subtract \(\langle\nabla f(y), x-y\rangle\) on rhs we have
\[
\begin{aligned}
f(x)-f(y)-\langle\nabla f(y), x-y\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t \\
|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| & \leq\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t\right|
\end{aligned}
\]

\section*{Descent lemma}

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

Add and subtract \(\langle\nabla f(y), x-y\rangle\) on rhs we have
\[
\begin{aligned}
f(x)-f(y)-\langle\nabla f(y), x-y\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t \\
|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| & \leq\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle\right| d t
\end{aligned}
\]

\section*{Descent lemma}

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

Add and subtract \(\langle\nabla f(y), x-y\rangle\) on rhs we have
\[
\begin{aligned}
f(x)-f(y)-\langle\nabla f(y), x-y\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t \\
|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| & \leq\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(y)\right\|_{2} x-y d t
\end{aligned}
\]

\section*{Descent lemma}

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

Add and subtract \(\langle\nabla f(y), x-y\rangle\) on rhs we have
\[
\begin{aligned}
f(x)-f(y)-\langle\nabla f(y), x-y\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t \\
|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| & \leq\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(y)\right\|_{2} x-y d t \\
& \leq L \int_{0}^{1} t\|x-y\|_{2}^{2} d t
\end{aligned}
\]

\section*{Descent lemma}

Proof. Since \(f \in C_{L}^{1}\), by Taylor's theorem, for the vector \(z_{t}=y+t(x-y)\) we have
\[
f(x)=f(y)+\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right), x-y\right\rangle d t
\]

Add and subtract \(\langle\nabla f(y), x-y\rangle\) on rhs we have
\[
\begin{aligned}
f(x)-f(y)-\langle\nabla f(y), x-y\rangle & =\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t \\
|f(x)-f(y)-\langle\nabla f(y), x-y\rangle| & \leq\left|\int_{0}^{1}\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle d t\right| \\
& \leq \int_{0}^{1}\left|\left\langle\nabla f\left(z_{t}\right)-\nabla f(y), x-y\right\rangle\right| d t \\
& \leq \int_{0}^{1}\left\|\nabla f\left(z_{t}\right)-\nabla f(y)\right\|_{2} x-y d t \\
& \leq L \int_{0}^{1} t\|x-y\|_{2}^{2} d t \\
& =\frac{L}{2}\|x-y\|_{2}^{2} .
\end{aligned}
\]

Bounds \(f(x)\) above and below with quadratic functions

\section*{Descent lemma - corollaries}

Coroll. 1 If \(f \in C_{L}^{1}\), and \(0<\alpha_{k}<2 / L\), then \(f\left(x^{k+1}\right)<f\left(x^{k}\right)\)
\[
f\left(x^{k+1}\right) \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2}
\]

\section*{Descent lemma - corollaries}

Coroll. 1 If \(f \in C_{L}^{1}\), and \(0<\alpha_{k}<2 / L\), then \(f\left(x^{k+1}\right)<f\left(x^{k}\right)\)
\[
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
\]

\section*{Descent lemma - corollaries}

Coroll. 1 If \(f \in C_{L}^{1}\), and \(0<\alpha_{k}<2 / L\), then \(f\left(x^{k+1}\right)<f\left(x^{k}\right)\)
\[
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
\]

\section*{Descent lemma - corollaries}

Coroll. 1 If \(f \in C_{L}^{1}\), and \(0<\alpha_{k}<2 / L\), then \(f\left(x^{k+1}\right)<f\left(x^{k}\right)\)
\[
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
\]

Thus, if \(\alpha_{k}<2 / L\) we have descent.

\section*{Descent lemma - corollaries}

Coroll. 1 If \(f \in C_{L}^{1}\), and \(0<\alpha_{k}<2 / L\), then \(f\left(x^{k+1}\right)<f\left(x^{k}\right)\)
\[
\begin{aligned}
f\left(x^{k+1}\right) & \leq f\left(x^{k}\right)+\left\langle\nabla f\left(x^{k}\right), x^{k+1}-x^{k}\right\rangle+\frac{L}{2}\left\|x^{k+1}-x^{k}\right\|_{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}+\frac{\alpha_{k}^{2} L}{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =f\left(x^{k}\right)-\alpha_{k}\left(1-\frac{\alpha_{k}}{2} L\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
\]

Thus, if \(\alpha_{k}<2 / L\) we have descent. Minimize over \(\alpha_{k}\) to get best bound: this yields \(\alpha_{k}=1 / L\)-we'll use this stepsize

\section*{Convergence}
- We showed that
\[
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\]
( \(c=1 / 2\) for \(\alpha_{k}=1 / L ; c\) has diff. value for other stepsize rules)

\section*{Convergence}
- We showed that
\[
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\]
( \(c=1 / 2\) for \(\alpha_{k}=1 / L ; c\) has diff. value for other stepsize rules)
- Sum up above inequalities for \(k=0,1, \ldots, T\) to obtain
\[
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right)
\]

\section*{Convergence}
- We showed that
\[
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\]
( \(c=1 / 2\) for \(\alpha_{k}=1 / L ; c\) has diff. value for other stepsize rules)
- Sum up above inequalities for \(k=0,1, \ldots, T\) to obtain
\[
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
\]

\section*{Convergence}
- We showed that
\[
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\]
( \(c=1 / 2\) for \(\alpha_{k}=1 / L ; c\) has diff. value for other stepsize rules)
- Sum up above inequalities for \(k=0,1, \ldots, T\) to obtain
\[
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
\]
- We assume \(f^{*}>-\infty\), so rhs is some fixed positive constant

\section*{Convergence}
- We showed that
\[
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
\]
( \(c=1 / 2\) for \(\alpha_{k}=1 / L\); \(c\) has diff. value for other stepsize rules)
- Sum up above inequalities for \(k=0,1, \ldots, T\) to obtain
\[
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
\]
- We assume \(f^{*}>-\infty\), so rhs is some fixed positive constant
- Thus, as \(k \rightarrow \infty\), Ihs must converge; thus
\[
\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
\]

\section*{Convergence}
- We showed that
\[
f\left(x^{k}\right)-f\left(x^{k+1}\right) \geq \frac{c}{L}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2},
\]
( \(c=1 / 2\) for \(\alpha_{k}=1 / L ; c\) has diff. value for other stepsize rules)
- Sum up above inequalities for \(k=0,1, \ldots, T\) to obtain
\[
\frac{c}{L} \sum_{k=0}^{T}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \leq f\left(x^{0}\right)-f\left(x^{T+1}\right) \leq f\left(x^{0}\right)-f^{*}
\]
- We assume \(f^{*}>-\infty\), so rhs is some fixed positive constant
- Thus, as \(k \rightarrow \infty\), Ihs must converge; thus
\[
\left\|\nabla f\left(x^{k}\right)\right\|_{2} \rightarrow 0 \quad \text { as } \quad k \rightarrow \infty
\]
- Notice, we did not require \(f\) to be convex...

\section*{Descent lemma - another corollary}

Corollary 2 If \(f\) is a convex function \(\in C_{L}^{1}\), then
\[
\frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2} \leq\langle\nabla f(x)-\nabla f(y), x-y\rangle
\]

Exercise: Prove this corollary.

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)
Consider, \(r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}\).

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)
Consider, \(r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}\).
\[
r_{k+1}^{2}=r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle
\]

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)
Consider, \(r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}\).
\[
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0
\end{aligned}
\]

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)
Consider, \(r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}\).
\[
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0 \\
& \leq r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-\frac{2 \alpha_{k}}{L}\left\|g^{k}-g^{*}\right\|_{2}^{2} \quad \text { (Coroll. 2) }
\end{aligned}
\]

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)
Consider, \(r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}\).
\[
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0 \\
& \leq r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-\frac{2 \alpha_{k}}{L}\left\|g^{k}-g^{*}\right\|_{2}^{2} \quad \text { (Coroll. 2) } \\
& =r_{k}^{2}-\alpha_{k}\left(\frac{2}{L}-\alpha_{k}\right)\left\|g^{k}\right\|_{2}^{2} .
\end{aligned}
\]

\section*{Convergence rate - convex \(f\)}
\(\star\) Let \(\alpha_{k}=1 / L\)
\(\star\) Shorthand notation \(g^{k}=\nabla f\left(x^{k}\right), g^{*}=\nabla f\left(x^{*}\right)\)
\(\star\) Let \(r_{k}:=\left\|x^{k}-x^{*}\right\|_{2}\) (distance to optimum)
Lemma Distance to min shrinks monotonically; \(r_{k+1} \leq r_{k}\)
Proof. Descent lemma implies that: \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\)
Consider, \(r_{k+1}^{2}=\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-x^{*}-\alpha_{k} g^{k}\right\|_{2}^{2}\).
\[
\begin{aligned}
r_{k+1}^{2} & =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \\
& =r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left\langle g^{k}-g^{*}, x^{k}-x^{*}\right\rangle \quad \text { as } g^{*}=0 \\
& \leq r_{k}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-\frac{2 \alpha_{k}}{L}\left\|g^{k}-g^{*}\right\|_{2}^{2} \quad \text { (Coroll. 2) } \\
& =r_{k}^{2}-\alpha_{k}\left(\frac{2}{L}-\alpha_{k}\right)\left\|g^{k}\right\|_{2}^{2} .
\end{aligned}
\]

Since \(\alpha_{k}<2 / L\), it follows that \(r_{k+1} \leq r_{k}\)

\section*{Convergence rate}

Lemma Let \(\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)\). Then, \(\Delta_{k+1} \leq \Delta_{k}(1-\beta)\)

\section*{Convergence rate}

Lemma Let \(\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)\). Then, \(\Delta_{k+1} \leq \Delta_{k}(1-\beta)\)
\(f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle\)

\section*{Convergence rate}

Lemma Let \(\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)\). Then, \(\Delta_{k+1} \leq \Delta_{k}(1-\beta)\)
\[
f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\text { anf }}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { cs }}{\leq}\left\|g^{k}\right\|_{2} \mid \underbrace{\left\|^{k}-x^{*}\right\|_{2}}_{r_{k}} .
\]

\section*{Convergence rate}

Lemma Let \(\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)\). Then, \(\Delta_{k+1} \leq \Delta_{k}(1-\beta)\)
\(f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\mathrm{cvx}}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { CS }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}}\).
That is, \(\left\|g^{k}\right\|_{2} \geq \Delta_{k} / r_{k}\).

\section*{Convergence rate}

Lemma Let \(\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)\). Then, \(\Delta_{k+1} \leq \Delta_{k}(1-\beta)\)
\(f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { CS }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}}\).
That is, \(\left\|g^{k}\right\|_{2} \geq \Delta_{k} / r_{k}\). In particular, since \(r_{k} \leq r_{0}\), we have
\[
\left\|g^{k}\right\|_{2} \geq \frac{\Delta_{k}}{r_{0}}
\]

\section*{Convergence rate}

Lemma Let \(\Delta_{k}:=f\left(x^{k}\right)-f\left(x^{*}\right)\). Then, \(\Delta_{k+1} \leq \Delta_{k}(1-\beta)\)
\(f\left(x^{k}\right)-f\left(x^{*}\right)=\Delta_{k} \stackrel{\operatorname{cvx} f}{\leq}\left\langle g^{k}, x^{k}-x^{*}\right\rangle \stackrel{\text { CS }}{\leq}\left\|g^{k}\right\|_{2} \underbrace{\left\|x^{k}-x^{*}\right\|_{2}}_{r_{k}}\).
That is, \(\left\|g^{k}\right\|_{2} \geq \Delta_{k} / r_{k}\). In particular, since \(r_{k} \leq r_{0}\), we have
\[
\left\|g^{k}\right\|_{2} \geq \frac{\Delta_{k}}{r_{0}}
\]

Now we have a bound on the gradient norm...

\section*{Convergence rate}

Recall \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\); subtracting \(f^{*}\) from both sides
\[
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)
\]

\section*{Convergence rate}

Recall \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\); subtracting \(f^{*}\) from both sides
\[
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
\]

\section*{Convergence rate}

Recall \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\); subtracting \(f^{*}\) from both sides
\[
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
\]

But we want to bound: \(f\left(x^{T+1}\right)-f\left(x^{*}\right)\)

\section*{Convergence rate}

Recall \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\); subtracting \(f^{*}\) from both sides
\[
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
\]

But we want to bound: \(f\left(x^{T+1}\right)-f\left(x^{*}\right)\)
\[
\Longrightarrow \quad \frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}(1+\beta)=\frac{1}{\Delta_{k}}+\frac{1}{2 L r_{0}^{2}}
\]

\section*{Convergence rate}

Recall \(f\left(x^{k+1}\right) \leq f\left(x^{k}\right)-\frac{1}{2 L}\left\|g^{k}\right\|_{2}^{2}\); subtracting \(f^{*}\) from both sides
\[
\Delta_{k+1} \leq \Delta_{k}-\frac{\Delta_{k}^{2}}{2 L r_{0}^{2}}=\Delta_{k}\left(1-\frac{\Delta_{k}}{2 L r_{0}^{2}}\right)=\Delta_{k}(1-\beta)
\]

But we want to bound: \(f\left(x^{T+1}\right)-f\left(x^{*}\right)\)
\[
\Longrightarrow \quad \frac{1}{\Delta_{k+1}} \geq \frac{1}{\Delta_{k}}(1+\beta)=\frac{1}{\Delta_{k}}+\frac{1}{2 L r_{0}^{2}}
\]
- Sum both sides over \(k=0, \ldots, T\) to obtain
\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
\]

\section*{Convergence rate}
- Sum both sides over \(k=0, \ldots, T\) to obtain
\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
\]

\section*{Convergence rate}
- Sum both sides over \(k=0, \ldots, T\) to obtain
\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
\]
- Rearrange to conclude
\[
f\left(x^{T}\right)-f^{*} \leq \frac{2 L \Delta_{0} r_{0}^{2}}{2 L r_{0}^{2}+T \Delta_{0}}
\]

\section*{Convergence rate}
- Sum both sides over \(k=0, \ldots, T\) to obtain
\[
\frac{1}{\Delta_{T+1}} \geq \frac{1}{\Delta_{0}}+\frac{T+1}{2 L r_{0}^{2}}
\]
- Rearrange to conclude
\[
f\left(x^{T}\right)-f^{*} \leq \frac{2 L \Delta_{0} r_{0}^{2}}{2 L r_{0}^{2}+T \Delta_{0}}
\]
- Use descent lemma to bound \(\Delta_{0} \leq(L / 2)\left\|x^{0}-x^{*}\right\|_{2}^{2}\); simplify
\[
f\left(x^{T}\right)-f\left(x^{*}\right) \leq \frac{2 L \Delta_{0}\left\|x^{0}-x^{*}\right\|_{2}^{2}}{T+4}=O(1 / T) .
\]

Exercise: Prove above simplification.

\section*{Gradient descent - faster rate}

Assumption: Strong convexity; denote \(f \in S_{L, \mu}^{1}\)
\[
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
\]
- Setting \(\alpha_{k}=2 /(\mu+L)\) yields linear rate \((\mu>0)\)

\section*{Strongly convex case}

Thm 2. Suppose \(f \in S_{L, \mu}^{1}\). Then, for any \(x, y \in \mathbb{R}^{n}\)
\[
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\]

\section*{Strongly convex case}

Thm 2. Suppose \(f \in S_{L, \mu}^{1}\). Then, for any \(x, y \in \mathbb{R}^{n}\)
\[
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\]
- Consider the convex function \(\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}\)

\section*{Strongly convex case}

Thm 2. Suppose \(f \in S_{L, \mu}^{1}\). Then, for any \(x, y \in \mathbb{R}^{n}\)
\[
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\]
- Consider the convex function \(\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}\)
- \(\nabla \phi(x)=\nabla f(x)-\mu x\)

\section*{Strongly convex case}

Thm 2. Suppose \(f \in S_{L, \mu}^{1}\). Then, for any \(x, y \in \mathbb{R}^{n}\)
\[
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\]
- Consider the convex function \(\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}\)
- \(\nabla \phi(x)=\nabla f(x)-\mu x\)
- If \(\mu=L\), then easily true (due to strong convexity and Coroll. 2)

\section*{Strongly convex case}

Thm 2. Suppose \(f \in S_{L, \mu}^{1}\). Then, for any \(x, y \in \mathbb{R}^{n}\)
\[
\langle\nabla f(x)-\nabla f(y), x-y\rangle \geq \frac{\mu L}{\mu+L}\|x-y\|_{2}^{2}+\frac{1}{\mu+L}\|\nabla f(x)-\nabla f(y)\|_{2}^{2}
\]
- Consider the convex function \(\phi(x)=f(x)-\frac{\mu}{2}\|x\|_{2}^{2}\)
- \(\nabla \phi(x)=\nabla f(x)-\mu x\)
- If \(\mu=L\), then easily true (due to strong convexity and Coroll. 2)
- If \(\mu<L\), then \(\phi \in C_{L-\mu}^{1}\); now invoke Coroll. 2
\[
\langle\nabla \phi(x)-\nabla \phi(y), x-y\rangle \geq \frac{1}{L-\mu}\|\nabla \phi(x)-\nabla \phi(y)\|_{2}
\]

\section*{Strongly convex - rate}

Theorem. If \(f \in S_{L, \mu}^{1}, 0<\alpha<2 /(L+\mu)\), then the gradient method generates a sequence \(\left\{x^{k}\right\}\) that satisfies
\[
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right)^{k}\left\|x^{0}-x^{*}\right\|_{2}
\]

Moreover, if \(\alpha=2 /(L+\mu)\) then
\[
f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\]
where \(\kappa=L / \mu\) is the condition number.

Strongly convex - rate
- As before, let \(r_{k}=\left\|x^{k}-x^{*}\right\|_{2}\), and consider
- As before, let \(r_{k}=\left\|x^{k}-x^{*}\right\|_{2}\), and consider
\[
r_{k+1}^{2}=\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2}
\]
- As before, let \(r_{k}=\left\|x^{k}-x^{*}\right\|_{2}\), and consider
\[
\begin{aligned}
r_{k+1}^{2} & =\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 \alpha\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\alpha^{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
\]
- As before, let \(r_{k}=\left\|x^{k}-x^{*}\right\|_{2}\), and consider
\[
\begin{aligned}
r_{k+1}^{2} & =\left\|x^{k}-x^{*}-\alpha \nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& =r_{k}^{2}-2 \alpha\left\langle\nabla f\left(x^{k}\right), x^{k}-x^{*}\right\rangle+\alpha^{2}\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2} \\
& \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right) r_{k}^{2}+\alpha\left(\alpha-\frac{2}{\mu+L}\right)\left\|\nabla f\left(x^{k}\right)\right\|_{2}^{2}
\end{aligned}
\]
where we used Thm. 2 with \(\nabla f\left(x^{*}\right)=0\) for last inequality.
Exercise: Complete the proof using above argument.

\section*{Gradient methods - lower bounds}
\[
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
\]

Theorem Lower bound I (Nesterov) For any \(x^{0} \in \mathbb{R}^{n}\), and \(1 \leq T \leq\) \(\frac{1}{2}(n-1)\), there is a smooth \(f\), s.t.
\[
f\left(x^{T}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(T+1)^{2}}
\]

\section*{Gradient methods - lower bounds}
\[
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
\]

Theorem Lower bound I (Nesterov) For any \(x^{0} \in \mathbb{R}^{n}\), and \(1 \leq T \leq\) \(\frac{1}{2}(n-1)\), there is a smooth \(f\), s.t.
\[
f\left(x^{T}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(T+1)^{2}}
\]

Theorem Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., \(S_{L, \mu}^{\infty}(\mu>0, \kappa>1)\)
\[
f\left(x^{T}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 T}\left\|x^{0}-x^{*}\right\|_{2}^{2} .
\]

We'll come back to these towards end of course
- Let \(D\) be the \((n-1) \times n\) differencing matrix
\[
D=\left(\begin{array}{cccccc}
-1 & 1 & & & & \\
& -1 & 1 & & & \\
& & & \ddots & & \\
& & & & -1 & 1
\end{array}\right) \in \mathbb{R}^{(n-1) \times n}
\]
^ \(f(x)=\frac{1}{2}\left\|D^{T} x-b\right\|_{2}^{2}=\frac{1}{2}\left(\left\|D^{T} x\right\|_{2}^{2}+\|b\|_{2}^{2}-2\left\langle D^{T} x, b\right\rangle\right)\)
© Notice that \(\nabla f(x)=D\left(D^{T} x-b\right)\)
© Try different choices of \(b\), and different initial vectors \(x_{0}\)
© Exercise: Experiment to see how large \(n\) must be before subgradient method starts outperforming CVX
中 Exercise: Minimize \(f(x)\) for large \(n\); e.g., \(n=10^{6}, n=10^{7}\)
© Exercise: Repeat same exercise with constraints: \(x_{i} \in[-1,1]\).

\section*{References}
\(\bigcirc\) Bertsekas (1999); "Nonlinear programming" (1999)
\(\bigcirc\) Nesterov (2003); "Introductory lectures on convex optimization"```

