Convex Optimization (EE227A: UC Berkeley)

Lecture 11

(Duality, minimax, optimality conditions)

26 Feb, 2013

Suvrit Sra

Organizational

4 Project team lists due by end of Feb
© Project suggestions out in a few days Purely theoretical projects Algorithms for particular problem classes Application centric (engg., sig. proc., ML, etc.) Systems centric (software, distributed, parallel algos)

- Initial proposal by 14th March
© Project midpoint review: 16th April
A Project final paper, presentations: Finals week
A Midterm: 21st March (1.5 hours, in class)
© Email me any concerns, doubts, questions, feedback
- $\mathcal{L}(x, \lambda, \nu)=f(x)+\sum_{i} \lambda_{i} f_{i}(x)+\sum_{i} \nu_{i} h_{i}(x)$
- $g(\lambda, \nu):=\inf _{x} \mathcal{L}(x, \lambda, \nu)$
- $d^{*}:=\sup g(\lambda, \nu) \leq p^{*}:=\inf _{x} f(x) \quad$ s.t. $x \in \mathcal{X}$ (weak duality)
- Slater's constraint qualification ensures $d^{*}=p^{*}$ (strong duality)

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u) .
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x .
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u) .
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} \quad f(x)+r(z), \quad \text { s.t. } \quad z=A x .
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

- Associated dual function

$$
g(u):=\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} L(x, z ; u)
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
g(y)=\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\}
\end{aligned}
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y}
\end{aligned}
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y} .
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y} .
\end{aligned}
$$

Dual problem computes $\sup _{u \in \mathcal{Y}} g(u)$; so equivalently,

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

■ 'sup' attained at some y, and

- 'inf' attained at some x

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

■ 'sup' attained at some y, and

- 'inf' attained at some x

Ensured, if either of the following conditions holds:

- $\exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$

■ $\exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

$$
\min \quad f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} \quad f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

$$
\min \quad f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality (e.g., for instance $\left.0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)\right)$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\mathcal{L}(x, \lambda, \nu):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b)
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x) \\
g(\lambda, \nu) & =-\nu^{T} b-F^{*}\left(-A^{T} \nu\right) .
\end{aligned}
$$

Not so useful! F^{*} hard to compute.

Dual via Fenchel conjugates

Introduce new variables!

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right)
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right) \\
& g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}, z} \mathcal{L}\left(x, x_{i}, z, \lambda, \nu, \pi_{i}\right)
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right) \\
& g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}, z} \mathcal{L}\left(x, x_{i}, z, \lambda, \nu, \pi_{i}\right) \\
& =-\nu^{T} b+\inf _{x} f(x)+\nu^{T} A x+\inf _{z} \sum_{i}-\pi_{i}^{T} z \\
& +\sum_{i} \inf _{x_{i}} \pi_{i}^{T} x_{i}+\lambda_{i} f_{i}\left(x_{i}\right)
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$\mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right)$

$$
:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right)
$$

$g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}, z} \mathcal{L}\left(x, x_{i}, z, \lambda, \nu, \pi_{i}\right)$
$=-\nu^{T} b+\inf _{x} f(x)+\nu^{T} A x+\inf _{z} \sum_{i}-\pi_{i}^{T} z$
$+\sum_{i} \inf _{x_{i}} \pi_{i}^{T} x_{i}+\lambda_{i} f_{i}\left(x_{i}\right)$
$= \begin{cases}-\nu^{T} b-f^{*}\left(-A^{T} \nu\right)-\sum_{i}\left(\lambda_{i} f_{i}\right)^{*}\left(-\pi_{i}\right) & \text { if } \sum_{i} \pi_{i}=0 \\ -\infty & \text { otherwise } .\end{cases}$

Example

Exercise: Derive the Lagrangian dual in terms of Fenchel conjugates for the following linearly constrained problem:

$$
\min \quad f(x) \quad \text { s.t. } A x \leq b, \quad C x=d
$$

Hint: No need to introduce extra variables.

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Exercise: Fill in the details for the following steps

$$
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z
$$

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+g(z)+\nu^{T}(x-z)
\end{array}
$$

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+g(z)+\nu^{T}(x-z) \\
g(\nu)=\inf _{x, z} L(x, z, \nu)
\end{array}
$$

Conic duality

LP Duality

- Consider linear program

$$
\min \quad c^{T} x \quad A x \leq b
$$

- Consider linear program

$$
\min \quad c^{T} x \quad A x \leq b
$$

- Corresponding dual is

$$
\max \quad b^{T} \lambda \quad A^{T} \lambda+c=0, \quad \lambda \geq 0 .
$$

LP Duality

- Consider linear program

$$
\min \quad c^{T} x \quad A x \leq b
$$

- Corresponding dual is

$$
\max \quad b^{T} \lambda \quad A^{T} \lambda+c=0, \quad \lambda \geq 0 .
$$

- LP duality facts:

■ If either p^{*} or d^{*} finite, then $p^{*}=d^{*}$, and both primal, dual problem have optimal solutions
■ If $p^{*}=-\infty$, then $d^{*}=-\infty$ (follows from weak-duality)
■ If $d^{*}=\infty$, then $p^{*}=\infty$ (again, weak-duality)

LP Duality

- Consider linear program

$$
\min \quad c^{T} x \quad A x \leq b
$$

- Corresponding dual is

$$
\max \quad b^{T} \lambda \quad A^{T} \lambda+c=0, \quad \lambda \geq 0 .
$$

- LP duality facts:

■ If either p^{*} or d^{*} finite, then $p^{*}=d^{*}$, and both primal, dual problem have optimal solutions
■ If $p^{*}=-\infty$, then $d^{*}=-\infty$ (follows from weak-duality)

- If $d^{*}=\infty$, then $p^{*}=\infty$ (again, weak-duality)

Proof: See lecture notes.

LP Duality

- Consider linear program

$$
\min \quad c^{T} x \quad A x \leq b
$$

- Corresponding dual is

$$
\max \quad b^{T} \lambda \quad A^{T} \lambda+c=0, \quad \lambda \geq 0 .
$$

- LP duality facts:

■ If either p^{*} or d^{*} finite, then $p^{*}=d^{*}$, and both primal, dual problem have optimal solutions
■ If $p^{*}=-\infty$, then $d^{*}=-\infty$ (follows from weak-duality)

- If $d^{*}=\infty$, then $p^{*}=\infty$ (again, weak-duality)

Proof: See lecture notes.
If LP is feasible, strong duality holds.

- Consider SOCP
$\min \quad f^{T} x \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m$.

SOCP Duality

- Consider SOCP

$$
\min \quad f^{T} x \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m .
$$

- Lagrangian (ordinary)

$$
\mathcal{L}(x, \lambda):=f^{T} x+\sum_{i} \lambda_{i}\left(\left\|A_{i} x+b_{i}\right\|_{2}-c_{i}^{T} x+d_{i}\right)
$$

SOCP Duality

- Consider SOCP

$$
\min \quad f^{T} x \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m .
$$

- Lagrangian (ordinary)

$$
\mathcal{L}(x, \lambda):=f^{T} x+\sum_{i} \lambda_{i}\left(\left\|A_{i} x+b_{i}\right\|_{2}-c_{i}^{T} x+d_{i}\right)
$$

- Recall that $\|x\|_{2}=\sup \left\{u^{T} x \mid\|u\|_{2} \leq 1\right\}$.

$$
\lambda_{i}\left\|A_{i} x+b_{i}\right\|_{2}=\max _{u_{i}}\left(\lambda_{i} u_{i}\right)^{T}\left(A_{i} x+b_{i}\right) \quad\left\|u_{i}\right\|_{2} \leq 1
$$

SOCP Duality

- Consider SOCP

$$
\min \quad f^{T} x \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m .
$$

- Lagrangian (ordinary)

$$
\mathcal{L}(x, \lambda):=f^{T} x+\sum_{i} \lambda_{i}\left(\left\|A_{i} x+b_{i}\right\|_{2}-c_{i}^{T} x+d_{i}\right)
$$

- Recall that $\|x\|_{2}=\sup \left\{u^{T} x \mid\|u\|_{2} \leq 1\right\}$.

$$
\begin{aligned}
\lambda_{i}\left\|A_{i} x+b_{i}\right\|_{2} & =\max _{u_{i}}\left(\lambda_{i} u_{i}\right)^{T}\left(A_{i} x+b_{i}\right) & & \left\|u_{i}\right\|_{2} \leq 1 \\
& =\max _{v_{i}} v_{i}^{T}\left(A_{i} x+b_{i}\right) & & \left\|v_{i}\right\|_{2} \leq \lambda_{i}
\end{aligned}
$$

SOCP Duality

- Consider SOCP

$$
\min \quad f^{T} x \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m .
$$

- Lagrangian (ordinary)

$$
\mathcal{L}(x, \lambda):=f^{T} x+\sum_{i} \lambda_{i}\left(\left\|A_{i} x+b_{i}\right\|_{2}-c_{i}^{T} x+d_{i}\right)
$$

- Recall that $\|x\|_{2}=\sup \left\{u^{T} x \mid\|u\|_{2} \leq 1\right\}$.

$$
\begin{aligned}
\lambda_{i}\left\|A_{i} x+b_{i}\right\|_{2} & =\max _{u_{i}}\left(\lambda_{i} u_{i}\right)^{T}\left(A_{i} x+b_{i}\right) & & \left\|u_{i}\right\|_{2} \leq 1 \\
& =\max _{v_{i}} v_{i}^{T}\left(A_{i} x+b_{i}\right) & & \left\|v_{i}\right\|_{2} \leq \lambda_{i}
\end{aligned}
$$

- Thus, with v_{1}, \ldots, v_{m} also as dual variables we have

SOCP Duality

- Consider SOCP

$$
\min \quad f^{T} x \quad\left\|A_{i} x+b_{i}\right\|_{2} \leq c_{i}^{T} x+d_{i}, \quad i=1, \ldots, m
$$

- Lagrangian (ordinary)

$$
\mathcal{L}(x, \lambda):=f^{T} x+\sum_{i} \lambda_{i}\left(\left\|A_{i} x+b_{i}\right\|_{2}-c_{i}^{T} x+d_{i}\right)
$$

- Recall that $\|x\|_{2}=\sup \left\{u^{T} x \mid\|u\|_{2} \leq 1\right\}$.

$$
\begin{aligned}
\lambda_{i}\left\|A_{i} x+b_{i}\right\|_{2} & =\max _{u_{i}}\left(\lambda_{i} u_{i}\right)^{T}\left(A_{i} x+b_{i}\right) & & \left\|u_{i}\right\|_{2} \leq 1 \\
& =\max _{v_{i}} v_{i}^{T}\left(A_{i} x+b_{i}\right) & & \left\|v_{i}\right\|_{2} \leq \lambda_{i}
\end{aligned}
$$

- Thus, with v_{1}, \ldots, v_{m} also as dual variables we have

$$
\begin{gathered}
p^{*}=\inf _{x, v_{1}, \ldots, v_{m}} \sup f^{T} x+\sum_{i} v_{i}^{T}\left(A_{i} x+b_{i}\right)-\sum_{i} \lambda_{i}\left(c_{i}^{T} x+d_{i}\right) \\
\text { s.t. }\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m .
\end{gathered}
$$

- The dual problem is

$$
\begin{gathered}
d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}} \inf _{x} f^{T} x+\sum_{i} v_{i}^{T}\left(A_{i} x+b_{i}\right)-\sum_{i} \lambda_{i}\left(c_{i}^{T} x+d_{i}\right) \\
\text { s.t. }\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{gathered}
$$

- The dual problem is

$$
\begin{gathered}
d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}} \inf _{x} f^{T} x+\sum_{i} v_{i}^{T}\left(A_{i} x+b_{i}\right)-\sum_{i} \lambda_{i}\left(c_{i}^{T} x+d_{i}\right) \\
\text { s.t. }\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{gathered}
$$

- Inner minimization over x very easy (unconstrained)

SOCP Duality

- The dual problem is

$$
\begin{gathered}
d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}} \inf _{x} f^{T} x+\sum_{i} v_{i}^{T}\left(A_{i} x+b_{i}\right)-\sum_{i} \lambda_{i}\left(c_{i}^{T} x+d_{i}\right) \\
\text { s.t. }\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{gathered}
$$

- Inner minimization over x very easy (unconstrained)
- $f+\sum_{i} A_{i}^{T} v_{i}-\lambda_{i} c_{i}=0$

SOCP Duality

- The dual problem is

$$
\begin{gathered}
d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}} \inf _{x} f^{T} x+\sum_{i} v_{i}^{T}\left(A_{i} x+b_{i}\right)-\sum_{i} \lambda_{i}\left(c_{i}^{T} x+d_{i}\right) \\
\text { s.t. }\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{gathered}
$$

- Inner minimization over x very easy (unconstrained)
- $f+\sum_{i} A_{i}^{T} v_{i}-\lambda_{i} c_{i}=0$
- Dual problem becomes

$$
\begin{aligned}
& d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}}-\lambda^{T} d+\sum_{i} v_{i}^{T} b_{i} \\
\text { s.t. } & f+\sum_{i} A_{i}^{T} v_{i}-\lambda_{i} c_{i}=0, \quad\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

- Also an SOCP, like the primal

SOCP Duality

- The dual problem is

$$
\begin{gathered}
d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}} \inf _{x} f^{T} x+\sum_{i} v_{i}^{T}\left(A_{i} x+b_{i}\right)-\sum_{i} \lambda_{i}\left(c_{i}^{T} x+d_{i}\right) \\
\text { s.t. }\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{gathered}
$$

- Inner minimization over x very easy (unconstrained)
- $f+\sum_{i} A_{i}^{T} v_{i}-\lambda_{i} c_{i}=0$
- Dual problem becomes

$$
\begin{aligned}
& d^{*}=\sup _{\lambda, v_{1}, \ldots, v_{m}}-\lambda^{T} d+\sum_{i} v_{i}^{T} b_{i} \\
\text { s.t. } & f+\sum_{i} A_{i}^{T} v_{i}-\lambda_{i} c_{i}=0, \quad\left\|v_{i}\right\|_{2} \leq \lambda_{i}, \quad i=1, \ldots, m
\end{aligned}
$$

- Also an SOCP, like the primal
- Apply Slater to obtain a condition for strong duality.
- SDP primal form

$$
p^{*}:=\min \operatorname{Tr}(C X), \quad \text { s.t. } \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m, \quad X \succeq 0 .
$$

- SDP primal form

$$
p^{*}:=\min \operatorname{Tr}(C X), \quad \text { s.t. } \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m, \quad X \succeq 0 .
$$

- How to handle the matrix constraint $X \succeq 0$?
- SDP primal form

$$
p^{*}:=\min \operatorname{Tr}(C X), \quad \text { s.t. } \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m, \quad X \succeq 0 .
$$

- How to handle the matrix constraint $X \succeq 0$?
- Introduce conic Lagrangian

$$
\mathcal{L}(X, \nu, Y):=\operatorname{Tr}(C X)+\sum_{i} \nu_{i}\left(\operatorname{Tr}\left(A_{i} X\right)-b_{i}\right)-\operatorname{Tr}(Y X)
$$

where we have a matrix dual variable $Y \succeq 0$.

- SDP primal form

$$
p^{*}:=\min \operatorname{Tr}(C X), \quad \text { s.t. } \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m, \quad X \succeq 0 .
$$

- How to handle the matrix constraint $X \succeq 0$?
- Introduce conic Lagrangian

$$
\mathcal{L}(X, \nu, Y):=\operatorname{Tr}(C X)+\sum_{i} \nu_{i}\left(\operatorname{Tr}\left(A_{i} X\right)-b_{i}\right)-\operatorname{Tr}(Y X)
$$

where we have a matrix dual variable $Y \succeq 0$.

- Note: $\operatorname{Tr}(Y X) \geq 0$; so $p^{*} \geq \sup _{\nu, Y} \mathcal{L}(X, \nu, Y)$ for any feasible X
- SDP primal form

$$
p^{*}:=\min \operatorname{Tr}(C X), \quad \text { s.t. } \operatorname{Tr}\left(A_{i} X\right)=b_{i}, \quad i=1, \ldots, m, \quad X \succeq 0 .
$$

- How to handle the matrix constraint $X \succeq 0$?
- Introduce conic Lagrangian

$$
\mathcal{L}(X, \nu, Y):=\operatorname{Tr}(C X)+\sum_{i} \nu_{i}\left(\operatorname{Tr}\left(A_{i} X\right)-b_{i}\right)-\operatorname{Tr}(Y X)
$$

where we have a matrix dual variable $Y \succeq 0$.

- Note: $\operatorname{Tr}(Y X) \geq 0$; so $p^{*} \geq \sup _{\nu, Y} \mathcal{L}(X, \nu, Y)$ for any feasible X
- As before, $p^{*} \geq d^{*}:=\sup _{\nu, Y \succeq 0} \inf _{X} \mathcal{L}(X, \nu, Y)$
- Simplifying $\inf _{X} \mathcal{L}$, we obtain dual function

$$
g(\nu, Y)= \begin{cases}b^{T} \nu & \text { if } C-\sum_{i} \nu_{i} A_{i}-Y=0 \\ -\infty & \text { otherwise }\end{cases}
$$

Dual problem

$$
\max _{\nu, Y \succeq 0} \quad b^{T} \nu \quad \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0
$$

Dual problem

$$
\begin{array}{rll}
\max _{\nu, Y \succeq 0} & b^{T} \nu & \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu & \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{array}
$$

Dual problem

$$
\begin{array}{lll}
\max _{\nu, Y \succeq 0} & b^{T} \nu & \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu & \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{array}
$$

This is the conic form we saw in Lecture 5!

Dual problem

$$
\begin{array}{lll}
\max _{\nu, Y \succeq 0} & b^{T} \nu & \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu & \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{array}
$$

This is the conic form we saw in Lecture 5!

- Weak-duality: $\operatorname{Tr}(C X) \geq \nu^{T} b$ for any feasible pair (X, ν)

Dual problem

$$
\begin{array}{lll}
\max _{\nu, Y \succeq 0} & b^{T} \nu & \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu & \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{array}
$$

This is the conic form we saw in Lecture 5!

- Weak-duality: $\operatorname{Tr}(C X) \geq \nu^{T} b$ for any feasible pair (X, ν)
- Strong-duality: If primal strictly feasible,

Dual problem

$$
\begin{array}{lll}
\max _{\nu, Y \succeq 0} & b^{T} \nu & \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu & \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{array}
$$

This is the conic form we saw in Lecture 5!

- Weak-duality: $\operatorname{Tr}(C X) \geq \nu^{T} b$ for any feasible pair (X, ν)
- Strong-duality: If primal strictly feasible, $X \succ 0$ such that $\operatorname{Tr}\left(A_{i} X\right)=b_{i}$, for $i=1, \ldots, m$, we have strong duality.

Dual problem

$$
\begin{aligned}
\max _{\nu, Y \succeq 0} & b^{T} \nu \quad \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu \quad \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{aligned}
$$

This is the conic form we saw in Lecture 5!

- Weak-duality: $\operatorname{Tr}(C X) \geq \nu^{T} b$ for any feasible pair (X, ν)
- Strong-duality: If primal strictly feasible, $X \succ 0$ such that $\operatorname{Tr}\left(A_{i} X\right)=b_{i}$, for $i=1, \ldots, m$, we have strong duality.
- Alternatively, if dual strictly feasible, we have strong duality.

Dual problem

$$
\begin{array}{rll}
\max _{\nu, Y \succeq 0} & b^{T} \nu & \text { s.t. } C-\sum_{i} \nu_{i} A_{i}=Y \succeq 0 \\
\max _{\nu} & b^{T} \nu & \text { s.t. } \quad \sum_{i} \nu_{i} A_{i} \preceq C .
\end{array}
$$

This is the conic form we saw in Lecture 5!

- Weak-duality: $\operatorname{Tr}(C X) \geq \nu^{T} b$ for any feasible pair (X, ν)
- Strong-duality: If primal strictly feasible, $X \succ 0$ such that $\operatorname{Tr}\left(A_{i} X\right)=b_{i}$, for $i=1, \ldots, m$, we have strong duality.
- Alternatively, if dual strictly feasible, we have strong duality.
- But, contrary to LPs, feasibility alone does not suffice!

Example: failure of strong duality

Primal problem

$$
p^{*}=\min _{X} \quad x_{2} \quad\left[\begin{array}{ccc}
x_{2}+1 & 0 & 0 \\
0 & x_{1} & x_{2} \\
0 & x_{2} & 0
\end{array}\right] \succeq 0 .
$$

Primal problem

$$
p^{*}=\min _{X} \quad x_{2} \quad\left[\begin{array}{ccc}
x_{2}+1 & 0 & 0 \\
0 & x_{1} & x_{2} \\
0 & x_{2} & 0
\end{array}\right] \succeq 0
$$

Any primal feasible requires $\left[\begin{array}{cc}x_{1} & x_{2} \\ x_{2} & 0\end{array}\right] \succeq 0$;

Example: failure of strong duality

Primal problem

$$
p^{*}=\min _{X} \quad x_{2} \quad\left[\begin{array}{ccc}
x_{2}+1 & 0 & 0 \\
0 & x_{1} & x_{2} \\
0 & x_{2} & 0
\end{array}\right] \succeq 0
$$

Any primal feasible requires $\left[\begin{array}{cc}x_{1} & x_{2} \\ x_{2} & 0\end{array}\right] \succeq 0 ; x_{1} \geq 0$ and $x_{2}^{2} \leq 0$.

Example: failure of strong duality

Primal problem

$$
p^{*}=\min _{X} \quad x_{2} \quad\left[\begin{array}{ccc}
x_{2}+1 & 0 & 0 \\
0 & x_{1} & x_{2} \\
0 & x_{2} & 0
\end{array}\right] \succeq 0 .
$$

Any primal feasible requires $\left[\begin{array}{cc}x_{1} & x_{2} \\ x_{2} & 0\end{array}\right] \succeq 0 ; x_{1} \geq 0$ and $x_{2}^{2} \leq 0$.
Thus, we have $x_{2}=0$, whereby $p^{*}=0$.
Primal obj: $\operatorname{Tr}(C X)$ with $c_{23}=c_{32}=1 / 2$ (rest zeros).

Example: failure of strong duality

Primal problem

$$
p^{*}=\min _{X} \quad x_{2} \quad\left[\begin{array}{ccc}
x_{2}+1 & 0 & 0 \\
0 & x_{1} & x_{2} \\
0 & x_{2} & 0
\end{array}\right] \succeq 0 .
$$

Any primal feasible requires $\left[\begin{array}{cc}x_{1} & x_{2} \\ x_{2} & 0\end{array}\right] \succeq 0 ; x_{1} \geq 0$ and $x_{2}^{2} \leq 0$.
Thus, we have $x_{2}=0$, whereby $p^{*}=0$.
Primal obj: $\operatorname{Tr}(C X)$ with $c_{23}=c_{32}=1 / 2$ (rest zeros).
Lagrangian: $\operatorname{Tr}\left([C-X]^{T} Y\right)$

Example: failure of strong duality

$$
\begin{aligned}
\operatorname{Tr}\left([C-X]^{T} Y\right) & =-\left(x_{2}+1\right) y_{11}-x_{1} y_{22}+x_{2}-2 x_{2} y_{23} \\
& =-y_{11}-x_{1} y_{22}+x_{2}-x_{2} y_{11}-2 x_{2} y_{23}
\end{aligned}
$$

Dual function
$g(Y)=\inf _{X \succeq 0} \operatorname{Tr}\left([C-X]^{T} Y\right)= \begin{cases}-y_{11} & y_{22}=0,1-y_{11}-2 y_{23}=0 \\ -\infty & \text { otherwise } .\end{cases}$

Example: failure of strong duality

$$
\begin{gathered}
\operatorname{Tr}\left([C-X]^{T} Y\right)=-\left(x_{2}+1\right) y_{11}-x_{1} y_{22}+x_{2}-2 x_{2} y_{23} \\
=-y_{11}-x_{1} y_{22}+x_{2}-x_{2} y_{11}-2 x_{2} y_{23} . \\
\text { Dual function } \\
g(Y)=\inf _{X \succeq 0} \operatorname{Tr}\left([C-X]^{T} Y\right)= \begin{cases}-y_{11} & y_{22}=0,1-y_{11}-2 y_{23}=0 \\
-\infty & \text { otherwise } .\end{cases}
\end{gathered}
$$

Dual SDP

$$
d^{*}=\max _{Y \succeq 0}-y_{11}, \quad y_{22}=0,1-y_{11}-2 y_{23}=0 .
$$

Example: failure of strong duality

$$
\begin{gathered}
\operatorname{Tr}\left([C-X]^{T} Y\right)=-\left(x_{2}+1\right) y_{11}-x_{1} y_{22}+x_{2}-2 x_{2} y_{23} \\
=-y_{11}-x_{1} y_{22}+x_{2}-x_{2} y_{11}-2 x_{2} y_{23} . \\
\text { Dual function } \\
g(Y)=\inf _{X \succeq 0} \operatorname{Tr}\left([C-X]^{T} Y\right)= \begin{cases}-y_{11} & y_{22}=0,1-y_{11}-2 y_{23}=0 \\
-\infty & \text { otherwise }\end{cases}
\end{gathered}
$$

Dual SDP

$$
d^{*}=\max _{Y \succeq 0}-y_{11}, \quad y_{22}=0,1-y_{11}-2 y_{23}=0 .
$$

- Any feasible Y satisfies, $y_{23}=0\left(\right.$ since $\left.y_{22}=0\right)$

Example: failure of strong duality

$$
\begin{gathered}
\operatorname{Tr}\left([C-X]^{T} Y\right)=-\left(x_{2}+1\right) y_{11}-x_{1} y_{22}+x_{2}-2 x_{2} y_{23} \\
=-y_{11}-x_{1} y_{22}+x_{2}-x_{2} y_{11}-2 x_{2} y_{23} . \\
\text { Dual function } \\
g(Y)=\inf _{X \succeq 0} \operatorname{Tr}\left([C-X]^{T} Y\right)= \begin{cases}-y_{11} & y_{22}=0,1-y_{11}-2 y_{23}=0 \\
-\infty & \text { otherwise. }\end{cases} \\
\text { Dual SDP } \\
d^{*}=\max _{Y \succeq 0}-y_{11}, \quad y_{22}=0,1-y_{11}-2 y_{23}=0 .
\end{gathered}
$$

- Any feasible Y satisfies, $y_{23}=0\left(\right.$ since $\left.y_{22}=0\right)$
- Thus $y_{11}=1$, so $d^{*}=-1$.
- duality gap: $p^{*}-d^{*}=1$

Optimality conditions

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

Optimality conditions

$\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m$.

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right)$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right)$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

Optimality conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality and that both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

Optimality conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

Optimality conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Optimality conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

Optimality conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

Optimality conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$,

Optimality conditions

$x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right)$.

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, so complementary slackness

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m
$$

Karush-Kuhn-Tucker Conditions (KKT)

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

Karush-Kuhn-Tucker Conditions (KKT)

$$
\begin{array}{rlr}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m & \text { (primal feasibility) } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m & \text { (dual feasibility) } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m & \text { (compl. slackness) } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 &
\end{array}
$$

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal

KKT Optimality conditions

Karush-Kuhn-Tucker Conditions (KKT)

$$
\begin{array}{rlr}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m & \text { (primal feasibility) } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m & \text { (dual feasibility) } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m & \text { (compl. slackness) } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 &
\end{array}
$$

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

KKT Optimality conditions

Karush-Kuhn-Tucker Conditions (KKT)

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that $\mathcal{L}\left(x, \lambda^{*}\right)$ is convex, and conclude from KKT conditions that $g\left(\lambda^{*}\right)=f_{0}\left(x^{*}\right)$, so that $\left(x^{*}, \lambda^{*}\right)$ optimal primal-dual pair.

Read Ch. 5 of BV

Minimax

Example: Lasso-like problem

$$
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} .
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
p^{*}=\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\}
\end{aligned}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b, \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda
\end{aligned}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b, \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda \\
& =\max _{u} u^{T} b, \quad\|u\|_{2} \leq 1, \quad\left\|A^{T} u\right\|_{\infty} \leq \lambda .
\end{aligned}
$$

- Minimax theory treats problems involving a combination of minimization and maximization
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- inf over $y \in \mathcal{Y}$, followed by sup over $x \in \mathcal{X}$

$$
\sup _{x \in \mathcal{X}} \inf _{y \in \mathcal{Y}} \phi(x, y)=\sup _{x \in \mathcal{X}} \psi(y(x))
$$

- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- inf over $y \in \mathcal{Y}$, followed by sup over $x \in \mathcal{X}$

$$
\sup _{x \in \mathcal{X}} \inf _{y \in \mathcal{Y}} \phi(x, y)=\sup _{x \in \mathcal{X}} \psi(y(x))
$$

- sup over $x \in \mathcal{X}$, followed by inf over $y \in \mathcal{Y}$

$$
\inf _{y \in \mathcal{Y}} \sup _{x \in \mathcal{X}} \phi(x, y)=\inf _{y \in \mathcal{Y}} \xi(x(y))
$$

When are "inf sup" and "sup inf" equal?

Weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \phi(x, y)
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{array}{ll}
\forall x, y, & \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \phi(x, y) \\
\forall x, y, & \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right)
\end{array}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right)
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\Longrightarrow \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \inf _{x \in \mathcal{X}} \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) .
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\Longrightarrow \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \inf _{x \in \mathcal{X}} \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) .
\end{aligned}
$$

Exercise: Show that weak duality is follows from above minimax inequality. Hint: Use $\phi=\mathcal{L}$ (Lagrangian), and suitably choose y.

Strong minimax

- If "inf sup" equals "sup inf", common value called saddle-value
- Value exists if there is a saddle-point, i.e., pair $\left(x^{*}, y^{*}\right)$

$$
\phi\left(x, y^{*}\right) \geq \phi\left(x^{*}, y^{*}\right) \geq \phi\left(x^{*}, y\right) \quad \text { for all } x \in \mathcal{X}, y \in \mathcal{Y} .
$$

Exercise: Verify above inequality!

Strong minimax

A Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,

Strong minimax

A Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,
© More interesting question: Starting from the primal problem over \mathcal{X}, how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?

Strong minimax

- Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,
A More interesting question: Starting from the primal problem over \mathcal{X}, how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?

Sufficient conditions for saddle-point

- Function ϕ is continuous, and
- It is convex-concave $(\phi(\cdot, y)$ convex for every $y \in \mathcal{Y}$, and $\phi(x, \cdot)$ concave for every $x \in \mathcal{X}$), and
- Both \mathcal{X} and \mathcal{Y} are convex; one of them is compact.

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of $\phi(\mathrm{min}$ over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \min _{x \in \mathcal{X}} \phi(x, y)
$$

Optimality via minimax

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \min _{x \in \mathcal{X}} \phi(x, y) .
$$

Point $\left(x^{*}, y^{*}\right)$ is a saddle-point if and only if

$$
0 \in \partial \phi\left(x^{*}, y^{*}\right)=\partial_{x} \phi\left(x^{*}, y^{*}\right) \times \partial_{y} \phi\left(x^{*}, y^{*}\right)
$$

Optimality via minimax

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \min _{x \in \mathcal{X}} \phi(x, y) .
$$

Point $\left(x^{*}, y^{*}\right)$ is a saddle-point if and only if

$$
0 \in \partial \phi\left(x^{*}, y^{*}\right)=\partial_{x} \phi\left(x^{*}, y^{*}\right) \times \partial_{y} \phi\left(x^{*}, y^{*}\right)
$$

When ϕ is of "convex-concave" form, yields KKT conditions.

