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Organizational

♠ Homework grading mechanism

♠ List of projects to be out soon

♠ Project timeline

♥ Team lists due by end of Feb
♥ Initial proposal by 14th March
♥ Project midpoint review: 16th April
♥ Project final paper, presentations: Finals week

♠ Midterm maybe around 21st March (in class, 3 hours, TBD)

♠ I hope to write lecture notes beginning March

♠ Email me any concerns, doubts, questions, feedback
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Weak duality
Recap
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Primal problem

Let fi : Rn → R (0 ≤ i ≤ m). Generic nonlinear program

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
x ∈{dom f0 ∩ dom f1 · · · ∩ dom fm} .

(P)

Def. Domain: The set D := {dom f0 ∩ dom f1 · · · ∩ dom fm}

I We call (P ) the primal problem

I The variable x is the primal variable

I We will attach to (P ) a dual problem

I In our initial derivation: no restriction to convexity.
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Lagrangian

To the primal problem, associate Lagrangian L : Rn × Rm → R,

L(x, λ) := f0(x) +
∑m

i=1
λifi(x).

♠ Variables λ ∈ Rm called Lagrange multipliers

♠ Suppose x is feasible, and λ ≥ 0. Then, we get the lower-bound:

f0(x) ≥ L(x, λ) ∀x ∈ X , λ ∈ Rm+ .

♠ Lagrangian helps write problem in unconstrained form
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Lagrangian

Claim: Since, f0(x) ≥ L(x, λ) ∀x ∈ X , λ ∈ Rm+ , primal optimal

p∗ = inf
x∈X

sup
λ≥0

L(x, λ).

Proof:

♠ If x is not feasible, then some fi(x) > 0

♠ In this case, inner sup is +∞, so claim true by definition

♠ If x is feasible, each fi(x) ≤ 0, so supλ
∑

i λifi(x) = 0
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Lagrange dual function

Def. We define the Lagrangian dual as

g(λ) := infx L(x, λ).

Observations:

I g is pointwise inf of affine functions of λ

I Thus, g is concave; it may take value −∞
I Recall: f0(x) ≥ L(x, λ) ∀x ∈ X ; thus

I ∀x ∈ X , f0(x) ≥ infx′ L(x′, λ) = g(λ)

I Now minimize over x on lhs, to obtain

∀ λ ∈ Rm+ p∗ ≥ g(λ).
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Lagrange dual problem

sup
λ
g(λ) s.t. λ ≥ 0.

I dual feasible: if λ ≥ 0 and g(λ) > −∞
I dual optimal: λ∗ if sup is achieved

I Lagrange dual is always concave, regardless of original
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Weak duality

Def. Denote dual optimal value by d∗, i.e.,

d∗ := sup
λ≥0

g(λ).

Theorem (Weak-duality): For problem (P), we have p∗ ≥ d∗.

Proof: We showed that for all λ ∈ Rm+ , p∗ ≥ g(λ).
Thus, it follows that p∗ ≥ sup g(λ) = d∗.
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Equality constraints

min f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p.

Exercise: Show that we get the Lagrangian dual

g : Rm+ × Rp : (λ, ν) 7→ inf
x
L(x, λ, ν),

where the Lagrange variable ν corresponding to the equality
constraints is unconstrained.
Hint: Represent hi(x) = 0 as hi(x) ≤ 0 and −hi(x) ≤ 0.

Again, we see that p∗ ≥ supλ≥0,ν g(λ, ν) = d∗
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Some duals

I Least-norm solution of linear equations: minxTx s.t. Ax = b

I Linear programming standard form

I Study example (5.7) in BV (binary QP)
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Strong duality
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Duality gap

p∗ − d∗ ≥ 0

Strong duality if duality gap is zero: p∗ = d∗

Notice: both p∗ and d∗ may be +∞

Several sufficient conditions known!

“Easy” necessary and sufficient conditions: unknown
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Slater’s sufficient conditions

min f0(x)

s.t. fi(x) ≤ 0, 1 ≤ i ≤ m,
Ax = b.

Constraint qualification: There exists x ∈ riD s.t.

fi(x) < 0, Ax = b.

That is, there is a strictly feasible point.

Theorem Let the primal problem be convex. If there is a feasible
point such that is strictly feasible for the non-affine constraints (and
merely feasible for affine, linear ones), then strong duality holds.
Moreover, in this case, the dual optimal is attained (i.e., d∗ > −∞).

Reading: Read BV §5.3.2 for a proof.
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Counterexample

min
x,y

e−x x2/y ≤ 0,

over the domain D = {(x, y) | y > 0}.

Clearly, only feasible x = 0. So p∗ = 1

L(x, y, λ) = e−x + λx2/y,

so dual function is

g(λ) = inf
x,y>0

e−x + λx2y =

{
0 λ ≥ 0

−∞ λ < 0.

Dual problem

d∗ = max
λ

0 s.t. λ ≥ 0.

Thus, d∗ = 0, and gap is p∗ − d∗ = 1.
Here, we had no strictly feasible solution.
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Example: Maxent

min
∑

i
xi log xi

Ax ≤ b, 1Tx = 1, x > 0.

Recall, convex conjugate of f(x) = x log x is f∗(y) = ey−1.

max
λ,ν

g(λ, ν) = −bTλ− v −
∑n

i=1
e−(A

Tλ)i−ν−1

s.t. λ ≥ 0.

If there is x > 0 with Ax ≤ b and 1Tx = 1, strong duality holds.
Exercise: Simplify above dual by optimizing out ν
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Support vector machine

min
x,ξ

1
2‖x‖

2
2 + C

∑
i
ξi

s.t. Ax ≥ 1− ξ, ξ ≥ 0.

L(x, ξ, λ, ν) = 1
2‖x‖

2
2 + C1T ξ − λT (Ax− 1 + ξ)− νT ξ

g(λ, ν) := inf L(x, ξ, λ, ν)

=

{
λT 1− 1

2‖A
Tλ‖22 λ+ ν = C1

+∞ otherwise

d∗ = max
λ≥0,ν≥0

g(λ, ν)

Exercise: Using ν ≥ 0, eliminate ν from above problem.
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Example: regularized optimization

inf
x∈X

f(x) + r(Ax) s.t. Ax ∈ Y.

Dual problem

inf
u∈Y

f∗(−ATu) + r∗(u).

I Introduce new variable z = Ax

inf
x∈X ,z∈Y

f(x) + r(z), s.t. z = Ax.

I The (partial)-Lagrangian is

L(x, z;u) := f(x) + r(z) + uT (Ax− z), x ∈ X , z ∈ Y;

I Associated dual function

g(u) := inf
x∈X ,z∈Y

L(x, z;u).
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Regularized optimization

inf
x∈X

f(x) + r(Ax) s.t. Ax ∈ Y.

Dual problem

inf
y∈Y

f∗(−AT y) + r∗(y).

The infimum above can be rearranged as follows

g(y) = inf
x∈X

f(x) + yTAx+ inf
z∈Y

r(z)− yT z

= − sup
x∈X

{
−xTAT y − f(x)

}
− sup
z∈Y

{
zT y − r(z)

}
= −f∗(−AT y)− r∗(y) s.t. y ∈ Y.

Dual problem computes supu∈Y g(u); so equivalently,

inf
y∈Y

f∗(−AT y) + r∗(y).
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Regularized optimization

Strong duality

inf
x
{f(x) + r(Ax)} = sup

y

{
−f∗(−AT y) + r∗(y)

}
if either of the following conditions holds:

1 ∃x ∈ ri(dom f) such that Ax ∈ ri(dom r)

2 ∃y ∈ ri(dom r∗) such that AT y ∈ ri(dom f∗)

Condition 1 ensures ’sup’ attained at some y

Condition 2 ensures ’inf’ attained at some x
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Example: norm regularized problems

min f(x) + ‖Ax‖

Dual problem

min
y

f∗(−AT y) s.t. ‖y‖∗ ≤ 1.

Say ‖ȳ‖∗ < 1, such that AT ȳ ∈ ri(dom f∗), then we have strong
duality (e.g., for instance 0 ∈ ri(dom f∗))
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Dual via Fenchel conjugates

min f(x) s.t. fi(x) ≤ 0, Ax = b.

L(x, λ, ν) := f0(x) +
∑
i

λifi(x) + νT (Ax− b)

g(λ, ν) = inf
x
L(x, λ, ν)

g(λ, ν) = −νT b+ inf
x
xTAT ν + F (x)

F (x) := f0(x) +
∑
i

λifi(x)

g(λ, ν) = −νT b− sup
x
〈x, −AT ν〉 − F (x)

g(λ, ν) = −νT b− F ∗(−AT ν).

Not so useful! F ∗ hard to compute.
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Dual via Fenchel conjugates

Introduce new variables!

min f(x) s.t. fi(xi) ≤ 0, Ax = b

xi = z, i = 1, . . . ,m.

L(x, xiz, λ, ν, πi)

:= f(x) +
∑

i
λifi(xi) + νT (Ax− b) +

∑
i
πTi (xi − z)

g(λ, ν, πi) = inf
x,xi,z

L(x, xi, z, λ, ν, πi)

= −νT b+ inf
x
f(x) + νTAx+ inf

z

∑
i
−πTi z

+
∑

i
inf
xi
πTi xi + λifi(xi)

=

{
−νT b− f∗(−AT ν)−

∑
i (λifi)

∗(−πi) if
∑

i πi = 0

−∞ otherwise.
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Example

Exercise: Derive the Lagrangian dual in terms of Fenchel
conjugates for the following linearly constrained problem:

min f(x) s.t. Ax ≤ b, Cx = d.

Hint: No need to introduce extra variables.
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Example: variable splitting

min f(x) + g(x)

Exercise: Fill in the details for the following steps

min
x,z

f(x) + g(z) s.t. x = z

L(x, z, ν) = f(x) + g(z) + νT (x− z)
g(ν) = inf

x,z
L(x, z, ν)

25 / 33



Example: variable splitting

min f(x) + g(x)

Exercise: Fill in the details for the following steps

min
x,z

f(x) + g(z) s.t. x = z

L(x, z, ν) = f(x) + g(z) + νT (x− z)
g(ν) = inf

x,z
L(x, z, ν)

25 / 33



Example: variable splitting

min f(x) + g(x)

Exercise: Fill in the details for the following steps

min
x,z

f(x) + g(z) s.t. x = z

L(x, z, ν) = f(x) + g(z) + νT (x− z)

g(ν) = inf
x,z
L(x, z, ν)

25 / 33



Example: variable splitting

min f(x) + g(x)

Exercise: Fill in the details for the following steps

min
x,z

f(x) + g(z) s.t. x = z

L(x, z, ν) = f(x) + g(z) + νT (x− z)
g(ν) = inf

x,z
L(x, z, ν)

25 / 33



Minimax
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Minimax problems

I Minimax theory treats problems involving a combination of
minimization and maximization

I Let X and Y be arbitrary nonempty sets

I Let φ : X × Y → R ∪ {±∞}
I inf over y ∈ Y, followed by sup over x ∈ X

sup
x∈X

inf
y∈Y

φ(x, y) = sup
x∈X

ψ(y(x))

I sup over x ∈ X , followed by inf over y ∈ Y

inf
y∈Y

sup
x∈X

φ(x, y) = inf
y∈Y

ξ(x(y))

When are “inf sup” and “sup inf” equal?
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Weak minimax

Theorem Let φ : X × Y → R ∪ {±∞} be any function. Then,

sup
y∈Y

inf
x∈X

φ(x, y) ≤ inf
x∈X

sup
y∈Y

φ(x, y)

Proof:

∀x, y, inf
x′∈X

φ(x′, y) ≤ φ(x, y)

∀x, y, inf
x′∈X

φ(x′, y) ≤ sup
y′∈Y

φ(x, y′)

∀x, sup
y∈Y

inf
x′∈X

φ(x′, y) ≤ sup
y′∈Y

φ(x, y′)

=⇒ sup
y∈Y

inf
x′∈X

φ(x′, y) ≤ inf
x∈X

sup
y′∈Y

φ(x, y′).

Exercise: Show that weak duality is follows from above minimax
inequality. Hint: Use φ = L (Lagrangian), and suitably choose y.
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Strong minimax

I If “inf sup” equals “sup inf”, common value called saddle-value

I Value exists if there is a saddle-point, i.e., pair (x∗, y∗)

φ(x, y∗) ≥ φ(x∗, y∗) ≥ φ(x∗, y) for all x ∈ X , y ∈ Y.

Exercise: Verify above inequality!
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Strong minimax

Def. Let φ be as before. A point (x∗, y∗) is a saddle-point of φ (min
over X and max over Y) iff the infimum in the expression

inf
x∈X

sup
y∈Y

φ(x, y)

is attained at x∗, and the supremum in the expression

sup
y∈Y

inf
x∈X

φ(x, y)

is attained at y∗, and these two extrema are equal.

x∗ ∈ argmin
x∈X

max
y∈Y

φ(x, y) y∗ ∈ argmax
y∈Y

min
x∈X

φ(x, y).
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Strong minimax

♠ Classes of problems “dual” to each other can be generated by
studying classes of functions φ,

♠ More interesting question: Starting from the primal problem
over X , how to introduce a space Y and a “useful” function φ
on X × Y so that we have a saddle-point?

Sufficient conditions for saddle-point

I Function φ is continuous, and

I It is convex-concave (φ(·, y) convex for every y ∈ Y, and φ(x, ·)
concave for every x ∈ X ), and

I Both X and Y are convex; one of them is compact.
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Example: Lasso-like problem

p∗ := minx ‖Ax− b‖2 + λ‖x‖1.

‖x‖1 = max
{
xT v | ‖v‖∞ ≤ 1

}
‖x‖2 = max

{
xTu | ‖u‖2 ≤ 1

}
.

Saddle-point formulation

p∗ = min
x

max
u,v

{
uT (b−Ax) + vTx | ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

}
= max

u,v
min
x

{
uT (b−Ax) + xT v | ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

}
= max

u,v
uT b ATu = v, ‖u‖2 ≤ 1, ‖v‖∞ ≤ λ

= max
u

uT b ‖u‖2 ≤ 1, ‖AT v‖∞ ≤ λ.
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Nonconvex QP – I (TRS)

Trust region subproblem (TRS)

min xTAx+ 2bTx xTx ≤ 1.

A is symmetric but not necessarily semidefinite!

Theorem TRS always has zero duality gap.
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