Convex Optimization

 (EE227A: UC Berkeley)
Lecture 10

Duality, strong-duality

$$
21 \text { Feb, } 2013
$$

Suvrit Sra

Organizational

© Homework grading mechanism
© List of projects to be out soon
© Project timeline
\bigcirc Team lists due by end of Feb
\bigcirc Initial proposal by 14th March
\bigcirc Project midpoint review: 16th April
\bigcirc Project final paper, presentations: Finals week
A Midterm maybe around 21st March (in class, 3 hours, TBD)
© I hope to write lecture notes beginning March
© Email me any concerns, doubts, questions, feedback

Weak duality Recap

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
x \in & \left.x \operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f_{0}(x) \\
\quad \text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
x & \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \tag{P}\\
& x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem
- In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

© Lagrangian helps write problem in unconstrained form

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

© If x is not feasible, then some $f_{i}(x)>0$

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

4. If x is not feasible, then some $f_{i}(x)>0$
© In this case, inner sup is $+\infty$, so claim true by definition

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

Proof:

A If x is not feasible, then some $f_{i}(x)>0$
A In this case, inner sup is $+\infty$, so claim true by definition
© If x is feasible, each $f_{i}(x) \leq 0$, so $\sup _{\lambda} \sum_{i} \lambda_{i} f_{i}(x)=0$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda)
$$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$
- Now minimize over x on Ihs, to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda)
$$

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved
- Lagrange dual is always concave, regardless of original

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda)
$$

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda)
$$

Theorem (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.
Proof: We showed that for all $\lambda \in \mathbb{R}_{+}^{m}, p^{*} \geq g(\lambda)$.
Thus, it follows that $p^{*} \geq \sup g(\lambda)=d^{*}$.

Equality constraints

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

Exercise: Show that we get the Lagrangian dual

$$
g: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}:(\lambda, \nu) \mapsto \inf _{x} \quad \mathcal{L}(x, \lambda, \nu)
$$

where the Lagrange variable ν corresponding to the equality constraints is unconstrained.
Hint: Represent $h_{i}(x)=0$ as $h_{i}(x) \leq 0$ and $-h_{i}(x) \leq 0$.

Equality constraints

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad i=1, \ldots, m \\
& h_{i}(x)=0, \quad i=1, \ldots, p
\end{aligned}
$$

Exercise: Show that we get the Lagrangian dual

$$
g: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}:(\lambda, \nu) \mapsto \inf _{x} \quad \mathcal{L}(x, \lambda, \nu)
$$

where the Lagrange variable ν corresponding to the equality constraints is unconstrained.
Hint: Represent $h_{i}(x)=0$ as $h_{i}(x) \leq 0$ and $-h_{i}(x) \leq 0$.
Again, we see that $p^{*} \geq \sup _{\lambda \geq 0, \nu} g(\lambda, \nu)=d^{*}$

- Least-norm solution of linear equations: $\min x^{T} x$ s.t. $A x=b$
- Linear programming standard form
- Study example (5.7) in BV (binary QP)

Strong duality

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$
Notice: both p^{*} and d^{*} may be $+\infty$

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$
Notice: both p^{*} and d^{*} may be $+\infty$
Several sufficient conditions known!

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$
Notice: both p^{*} and d^{*} may be $+\infty$
Several sufficient conditions known!
"Easy" necessary and sufficient conditions: unknown

Slater's sufficient conditions

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Constraint qualification: There exists $x \in \operatorname{ri} \mathcal{D}$ s.t.

$$
f_{i}(x)<0, \quad A x=b
$$

That is, there is a strictly feasible point.

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri \mathcal{D} s.t.

$$
f_{i}(x)<0, \quad A x=b
$$

That is, there is a strictly feasible point.
Theorem Let the primal problem be convex. If there is a feasible point such that is strictly feasible for the non-affine constraints (and merely feasible for affine, linear ones), then strong duality holds. Moreover, in this case, the dual optimal is attained (i.e., $d^{*}>-\infty$).

Reading: Read BV §5.3.2 for a proof.

Counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.

Counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

Counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

Counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$.

Counterexample

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$.
Here, we had no strictly feasible solution.

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Recall, convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Recall, convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

$$
\begin{aligned}
\max _{\lambda, \nu} & g(\lambda, \nu)=-b^{T} \lambda-v-\sum_{i=1}^{n} e^{-\left(A^{T} \lambda\right)_{i}-\nu-1} \\
& \text { s.t. } \quad \lambda \geq 0
\end{aligned}
$$

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Recall, convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

$$
\begin{aligned}
\max _{\lambda, \nu} & g(\lambda, \nu)=-b^{T} \lambda-v-\sum_{i=1}^{n} e^{-\left(A^{T} \lambda\right)_{i}-\nu-1} \\
& \text { s.t. } \quad \lambda \geq 0 .
\end{aligned}
$$

If there is $x>0$ with $A x \leq b$ and $1^{T} x=1$, strong duality holds.

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Recall, convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

$$
\begin{aligned}
\max _{\lambda, \nu} & g(\lambda, \nu)=-b^{T} \lambda-v-\sum_{i=1}^{n} e^{-\left(A^{T} \lambda\right)_{i}-\nu-1} \\
& \text { s.t. } \quad \lambda \geq 0
\end{aligned}
$$

If there is $x>0$ with $A x \leq b$ and $1^{T} x=1$, strong duality holds.
Exercise: Simplify above dual by optimizing out ν

Support vector machine

$$
\begin{array}{cl}
\min _{x, \xi} & \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & A x \geq 1-\xi, \quad \xi \geq 0
\end{array}
$$

Support vector machine

$$
\begin{gathered}
\min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } A x \geq 1-\xi, \quad \xi \geq 0 . \\
L(x, \xi, \lambda, \nu)=\frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi
\end{gathered}
$$

Support vector machine

$$
\begin{aligned}
& \min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
& \text { s.t. } \quad A x \geq 1-\xi, \quad \xi \geq 0 . \\
L(x, \xi, \lambda, \nu)= & \frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi \\
g(\lambda, \nu):= & \inf L(x, \xi, \lambda, \nu) \\
& = \begin{cases}\lambda^{T} 1-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2} & \lambda+\nu=C \mathbf{1} \\
+\infty & \\
d^{*} & =\max _{\lambda \geq 0, \nu \geq 0} g(\lambda, \nu)\end{cases}
\end{aligned}
$$

Exercise: Using $\nu \geq 0$, eliminate ν from above problem.

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u) .
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x .
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u) .
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} \quad f(x)+r(z), \quad \text { s.t. } \quad z=A x .
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

Example: regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{u \in \mathcal{Y}} \quad f^{*}\left(-A^{T} u\right)+r^{*}(u)
$$

- Introduce new variable $z=A x$

$$
\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} f(x)+r(z), \quad \text { s.t. } \quad z=A x
$$

- The (partial)-Lagrangian is

$$
L(x, z ; u):=f(x)+r(z)+u^{T}(A x-z), \quad x \in \mathcal{X}, z \in \mathcal{Y} ;
$$

- Associated dual function

$$
g(u):=\inf _{x \in \mathcal{X}, z \in \mathcal{Y}} L(x, z ; u)
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
g(y)=\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\}
\end{aligned}
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y}
\end{aligned}
$$

Regularized optimization

$$
\inf _{x \in \mathcal{X}} f(x)+r(A x) \quad \text { s.t. } \quad A x \in \mathcal{Y}
$$

Dual problem

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

The infimum above can be rearranged as follows

$$
\begin{aligned}
g(y) & =\inf _{x \in \mathcal{X}} f(x)+y^{T} A x+\inf _{z \in \mathcal{Y}} r(z)-y^{T} z \\
& =-\sup _{x \in \mathcal{X}}\left\{-x^{T} A^{T} y-f(x)\right\}-\sup _{z \in \mathcal{Y}}\left\{z^{T} y-r(z)\right\} \\
& =-f^{*}\left(-A^{T} y\right)-r^{*}(y) \quad \text { s.t. } y \in \mathcal{Y} .
\end{aligned}
$$

Dual problem computes $\sup _{u \in \mathcal{Y}} g(u)$; so equivalently,

$$
\inf _{y \in \mathcal{Y}} \quad f^{*}\left(-A^{T} y\right)+r^{*}(y)
$$

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:
$1 \exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$
$2 \exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

Strong duality

$$
\inf _{x}\{f(x)+r(A x)\}=\sup _{y}\left\{-f^{*}\left(-A^{T} y\right)+r^{*}(y)\right\}
$$

if either of the following conditions holds:
$1 \exists x \in \operatorname{ri}(\operatorname{dom} f)$ such that $A x \in \operatorname{ri}(\operatorname{dom} r)$
$2 \exists y \in \operatorname{ri}\left(\operatorname{dom} r^{*}\right)$ such that $A^{T} y \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

- Condition 1 ensures 'sup' attained at some y

■ Condition 2 ensures 'inf' attained at some x

Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

$$
\min \quad f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} \quad f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

$$
\min \quad f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality (e.g., for instance $\left.0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)\right)$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\mathcal{L}(x, \lambda, \nu):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b)
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x)$ s.t. $f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x) \\
g(\lambda, \nu) & =-\nu^{T} b-F^{*}\left(-A^{T} \nu\right) .
\end{aligned}
$$

Not so useful! F^{*} hard to compute.

Dual via Fenchel conjugates

Introduce new variables!

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right)
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right) \\
& g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}, z} \mathcal{L}\left(x, x_{i}, z, \lambda, \nu, \pi_{i}\right)
\end{aligned}
$$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$\mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right)$
$:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right)$
$g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}, z} \mathcal{L}\left(x, x_{i}, z, \lambda, \nu, \pi_{i}\right)$
$=-\nu^{T} b+\inf _{x} f(x)+\nu^{T} A x+\inf _{z} \sum_{i}-\pi_{i}^{T} z$
$+\sum_{i} \inf _{x_{i}} \pi_{i}^{T} x_{i}+\lambda_{i} f_{i}\left(x_{i}\right)$

Dual via Fenchel conjugates

Introduce new variables!

$$
\begin{aligned}
\min f(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x_{i}=z, i=1, \ldots, m
\end{aligned}
$$

$\mathcal{L}\left(x, x_{i} z, \lambda, \nu, \pi_{i}\right)$

$$
:=f(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-z\right)
$$

$g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}, z} \mathcal{L}\left(x, x_{i}, z, \lambda, \nu, \pi_{i}\right)$
$=-\nu^{T} b+\inf _{x} f(x)+\nu^{T} A x+\inf _{z} \sum_{i}-\pi_{i}^{T} z$
$+\sum_{i} \inf _{x_{i}} \pi_{i}^{T} x_{i}+\lambda_{i} f_{i}\left(x_{i}\right)$
$= \begin{cases}-\nu^{T} b-f^{*}\left(-A^{T} \nu\right)-\sum_{i}\left(\lambda_{i} f_{i}\right)^{*}\left(-\pi_{i}\right) & \text { if } \sum_{i} \pi_{i}=0 \\ -\infty & \text { otherwise } .\end{cases}$

Example

Exercise: Derive the Lagrangian dual in terms of Fenchel conjugates for the following linearly constrained problem:

$$
\min \quad f(x) \quad \text { s.t. } A x \leq b, \quad C x=d
$$

Hint: No need to introduce extra variables.

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Exercise: Fill in the details for the following steps

$$
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z
$$

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+g(z)+\nu^{T}(x-z)
\end{array}
$$

Example: variable splitting

$$
\min \quad f(x)+g(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} \quad f(x)+g(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+g(z)+\nu^{T}(x-z) \\
g(\nu)=\inf _{x, z} L(x, z, \nu)
\end{array}
$$

Minimax

- Minimax theory treats problems involving a combination of minimization and maximization
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- inf over $y \in \mathcal{Y}$, followed by sup over $x \in \mathcal{X}$

$$
\sup _{x \in \mathcal{X}} \inf _{y \in \mathcal{Y}} \phi(x, y)=\sup _{x \in \mathcal{X}} \psi(y(x))
$$

- Minimax theory treats problems involving a combination of minimization and maximization
- Let \mathcal{X} and \mathcal{Y} be arbitrary nonempty sets
- Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$
- inf over $y \in \mathcal{Y}$, followed by sup over $x \in \mathcal{X}$

$$
\sup _{x \in \mathcal{X}} \inf _{y \in \mathcal{Y}} \phi(x, y)=\sup _{x \in \mathcal{X}} \psi(y(x))
$$

- sup over $x \in \mathcal{X}$, followed by inf over $y \in \mathcal{Y}$

$$
\inf _{y \in \mathcal{Y}} \sup _{x \in \mathcal{X}} \phi(x, y)=\inf _{y \in \mathcal{Y}} \xi(x(y))
$$

When are "inf sup" and "sup inf" equal?

Weak minimax

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \phi(x, y)
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{array}{ll}
\forall x, y, & \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \phi(x, y) \\
\forall x, y, & \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right)
\end{array}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right)
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\Longrightarrow \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \inf _{x \in \mathcal{X}} \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) .
\end{aligned}
$$

Theorem Let $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \cup\{ \pm \infty\}$ be any function. Then,

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y) \leq \inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

Proof:

$$
\begin{aligned}
\forall x, y, \quad \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \phi(x, y) \\
\forall x, y, \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\forall x, \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) \\
\Longrightarrow \quad \sup _{y \in \mathcal{Y}} \inf _{x^{\prime} \in \mathcal{X}} \phi\left(x^{\prime}, y\right) & \leq \inf _{x \in \mathcal{X}} \sup _{y^{\prime} \in \mathcal{Y}} \phi\left(x, y^{\prime}\right) .
\end{aligned}
$$

Exercise: Show that weak duality is follows from above minimax inequality. Hint: Use $\phi=\mathcal{L}$ (Lagrangian), and suitably choose y.

Strong minimax

- If "inf sup" equals "sup inf", common value called saddle-value
- Value exists if there is a saddle-point, i.e., pair $\left(x^{*}, y^{*}\right)$

$$
\phi\left(x, y^{*}\right) \geq \phi\left(x^{*}, y^{*}\right) \geq \phi\left(x^{*}, y\right) \quad \text { for all } x \in \mathcal{X}, y \in \mathcal{Y} .
$$

Exercise: Verify above inequality!

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of $\phi(\mathrm{min}$ over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

Def. Let ϕ be as before. A point $\left(x^{*}, y^{*}\right)$ is a saddle-point of ϕ (min over \mathcal{X} and max over \mathcal{Y}) iff the infimum in the expression

$$
\inf _{x \in \mathcal{X}} \sup _{y \in \mathcal{Y}} \phi(x, y)
$$

is attained at x^{*}, and the supremum in the expression

$$
\sup _{y \in \mathcal{Y}} \inf _{x \in \mathcal{X}} \phi(x, y)
$$

is attained at y^{*}, and these two extrema are equal.

$$
x^{*} \in \underset{x \in \mathcal{X}}{\operatorname{argmin}} \max _{y \in \mathcal{Y}} \phi(x, y) \quad y^{*} \in \underset{y \in \mathcal{Y}}{\operatorname{argmax}} \min _{x \in \mathcal{X}} \phi(x, y)
$$

Strong minimax

A Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,

Strong minimax

A Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,
© More interesting question: Starting from the primal problem over \mathcal{X}, how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?

Strong minimax

- Classes of problems "dual" to each other can be generated by studying classes of functions ϕ,
A More interesting question: Starting from the primal problem over \mathcal{X}, how to introduce a space \mathcal{Y} and a "useful" function ϕ on $\mathcal{X} \times \mathcal{Y}$ so that we have a saddle-point?

Sufficient conditions for saddle-point

- Function ϕ is continuous, and
- It is convex-concave $(\phi(\cdot, y)$ convex for every $y \in \mathcal{Y}$, and $\phi(x, \cdot)$ concave for every $x \in \mathcal{X}$), and
- Both \mathcal{X} and \mathcal{Y} are convex; one of them is compact.

Example: Lasso-like problem

$$
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} .
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
p^{*}=\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\}
\end{aligned}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda
\end{aligned}
$$

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda \\
& =\max _{u} u^{T} b \quad\|u\|_{2} \leq 1, \quad\left\|A^{T} v\right\|_{\infty} \leq \lambda .
\end{aligned}
$$

Nonconvex QP - I (TRS)

> Trust region subproblem (TRS)
> min $x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$
A is symmetric but not necessarily semidefinite!

Nonconvex QP - I (TRS)

> Trust region subproblem (TRS)
> min $x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$
A is symmetric but not necessarily semidefinite!

Theorem TRS always has zero duality gap.

