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Unconstrained convex problem

min
x

f (x)

1 Start with some guess x0; set k = 0
2 If 0 ∈ ∂f (xk), stop; output xk

3 Otherwise, generate next guess xk+1

4 Repeat above procedure until f (xk) ≤ f (x∗) + ε
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Subgradient method

xk+1 = xk − ηkgk

where gk ∈ ∂f (xk) is any subgradient

Stepsize ηk > 0 must be chosen

I Method generates sequence
{

xk}
k≥0

I Does this sequence converge to an optimal solution x∗?
I If yes, then how fast?
I What if we have constraints: x ∈ C?
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Example

min 1
2‖Ax− b‖2

2 + λ‖x‖1

xk+1 = xk − ηk(AT(Axk − b) + λ sgn(xk))
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Exercise

Exercise: Experiment with deep neural network classifier
where we want to learn sparse weights. In particular, exper-
iment with the following loss function:

min
x

L(x) :=
1
n

n∑
i=1

`(yi,NN (x, ai)) + λ‖x‖1.

Implement a stochastic subgradient update to minimize L.
(Hint: If we pretend that the loss part is differentiable, then we can
invoke Clarke’s rule: ∂◦L = ∇loss + λ∂reg)
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Subgradient method – stepsizes

I Constant Set ηk = η > 0, for k ≥ 0
I Normalized ηk = η/‖gk‖2 (‖xk+1 − xk‖2 = η)
I Square summable∑

k
η2

k <∞,
∑

k
ηk =∞

I Diminishing

lim
k
ηk = 0,

∑
k
ηk =∞

I Adaptive stepsizes (not covered)

Not a descent method!
Could use best f k so far: f k

min := min0≤i≤k f i
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Convergence
(sketch)
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Convergence analysis

Assumptions
I Min is attained: f ∗ := infx f (x) > −∞, with f (x∗) = f ∗

I Bounded subgradients: ‖g‖2 ≤ G for all g ∈ ∂f
I Bounded domain: ‖x0 − x∗‖2 ≤ R

Convergence results for: f k
min := min0≤i≤k f i
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Subgradient method – convergence

Lyapunov function: Distance to x∗ (instead of f − f ∗)

‖xk+1 − x∗‖2
2 = ‖xk − ηkgk − x∗‖2

2

= ‖xk − x∗‖2
2 + η2

k‖g
k‖2

2 − 2〈ηkgk, xk − x∗〉
≤ ‖xk − x∗‖2

2 + η2
k‖g

k‖2
2 − 2ηk(f (xk)− f ∗),

since f ∗ = f (x∗) ≥ f (xk) + 〈gk, x∗ − xk〉

Apply same argument to ‖xk − x∗‖2
2 recursively

‖xk+1 − x∗‖2
2 ≤ ‖x0 − x∗‖2

2 +
∑k

t=1
η2

t ‖gt‖2
2 − 2

∑k

t=1
ηt(f t − f ∗).

Now use our convenient assumptions!
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Subgradient method – convergence

‖xk+1 − x∗‖2
2 ≤ R2 + G2

∑k

t=1
η2

t − 2
∑k

t=1
ηt(f t − f ∗).

I To get a bound on the last term, simply notice (for t ≤ k)

f t ≥ f t
min ≥ f k

min since f t
min := min

0≤i≤t
f (xi)

I Plugging this in yields the bound

2
∑k

t=1
ηt(f t − f ∗) ≥ 2(f k

min − f ∗)
∑k

t=1
ηt.

I So that we finally have

0 ≤ ‖xk+1 − x∗‖2 ≤ R2 + G2
∑k

t=1
η2

t − 2(f k
min − f ∗)

∑k

t=1
ηt

f k
min − f ∗ ≤ R2+G2∑k

t=1 η
2
t

2
∑k

t=1 ηt
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Subgradient method – convergence

f k
min − f ∗ ≤ R2+G2∑k

t=1 η
2
t

2
∑k

t=1 ηt

Exercise: Analyze limk→∞ f k
min − f ∗ for the different choices of

stepsize that we mentioned.

Constant step: ηk = η; We obtain

f k
min − f ∗ ≤ R2 + G2kη2

2kη
→ G2η

2
as k→∞.

Square summable, not summable:
∑

k η
2
k <∞,

∑
k ηk =∞

As k→∞, numerator <∞ but denominator→∞; so f k
min → f ∗

In practice, fair bit of stepsize tuning needed, e.g. ηt = a/(b + t)
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Subgradient method – convergence

I Suppose we want f k
min − f ∗ ≤ ε, how big should k be?

I Optimize the bound for ηt: want

f k
min − f ∗ ≤

R2 + G2∑k
t=1 η

2
t

2
∑k

t=1 ηt
≤

ε

I For fixed k: best possible stepsize is constant η

R2 + G2kη2

2kη
≤ ε ⇒ η =

R
G
√

k

I Then, after k steps f k
min − f ∗ ≤ RG/

√
k.

I For accuracy ε, we need at least (RG/ε)2 = O(1/ε2) steps
I (quite slow
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Exercise: Support vector machines

I Let D := {(xi, yi) | xi ∈ Rn, yi ∈ {±1}}
I We wish to find w ∈ Rn and b ∈ R such that

min
w,b

1
2‖w‖

2
2 + C

∑m

i=1
max[0, 1− yi(wTxi + b)]

I Derive and implement a subgradient method
I Plot evolution of objective function
I Experiment with different values of C > 0
I Plot and keep track of f k

min := min0≤t≤k f (xt)
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Exercise: Geometric median

• Let a ∈ Rn be a given vector.
• Let f (x) =

∑
i |x− ai|, i.e., f : R→ R+

• Implement different subgradient methods to minimize f
• Also keep track of f k

best := min0≤i<k f (xi)

Exercise: Implement the above. Plot the f (xk) values; also try
to guess what optimum is being found.
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Optimization with simple constraints

min f (x) s.t. x ∈ C

Previously:
xt+1 = xt − ηtgt

This could be infeasible!
Use projection
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Projected subgradient method

xk+1 = PC(xk − ηkgk)

where gk ∈ ∂f (xk) is any subgradient

I Projection closest feasible point

PC(x) = arg min
y∈C
‖x− y‖2

(Assume C is closed and convex, then projection is unique)

I Great as long as projection is “easy”
I Same questions as before:

Does it converge? For which stepsizes? How fast?
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Key idea: Projection Theorem

Let C be nonempty, closed and convex.
Recall: Optimality conditions: y∗ = PC(z) iff

〈z− y∗, y− y∗〉 ≤ 0 for all y ∈ C

Verify: Projection is nonexpansive:

‖PC(x)− PC(z)‖ ≤ ‖x− z‖2 for all x, z ∈ Rn.
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Convergence analysis

Assumptions
I Min is attained: f ∗ := infx f (x) > −∞, with f (x∗) = f ∗

I Bounded subgradients: ‖g‖2 ≤ G for all g ∈ ∂f
I Bounded domain: ‖x0 − x∗‖2 ≤ R

Analysis
I Let zt+1 = PC(xt − ηtgt).
I Then xt+1 = PC(zt+1).
I Recall analysis of unconstrained method:

‖zt+1 − x∗‖2
2 = ‖xt − ηtgt − x∗‖2

2

≤ ‖xt − x∗‖2
2 + η2

t ‖gt‖2
2 − 2ηt(f (xt)− f ∗)

. . .

I Need to relate to ‖xt+1 − x∗‖2
2, the rest is as before
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Convergence analysis: Key idea

I Using nonexpansiveness of projection:

‖xt+1 − x∗‖2
2 = ‖PC(xt − ηtgt)− PC(x∗)‖2

2

≤

‖xt − ηtgt − x∗‖2
2

≤ ‖xt − x∗‖2
2 + η2

t ‖gt‖2
2 − 2ηt(f (xt)− f ∗)

. . .

Same convergence results as in unconstrained case:
I within neighborhood of optimal for constant step size
I converges for diminishing non-summable
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Examples of simple projections

I Nonnegativity x ≥ 0, PC(z) = [z]+

I `∞-ball ‖x‖∞ ≤ 1
Projection: min ‖x− z‖2 s.t. x ≤ 1 and x ≥ −1
P‖x‖∞≤1(z) = y where yi = sgn(zi) min{|zi|, 1}

I Linear equality constraints Ax = b (A ∈ Rn×m has rank n)

PC(x) = z− A>(AA>)−1(Az− b)

= (I − A>(A>A)−1A)z + A>(AA>)−1b

I Simplex: x>1 = 1 and x ≥ 0
doable in O(n) time; similarly `1-norm ball
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Some remarks

I Why care?
simple
low-memory
stochastic version possible

Another perspective

xk+1 = min
x∈C
〈x, gk〉+

1
2ηk
‖x− xk‖2

Mirror Descent version

xk+1 = min
x∈C
〈x, gk〉+

1
ηk

Dϕ(x, xk)
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Accelerated gradient
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Gradient methods – upper bounds

Theorem. (Upper bound I). Let f ∈ C1
L. Then,

min
k
‖∇f (xk)‖ ≤ ε in O(1/ε2) iterations.

Theorem. (Upper bound II). Let f ∈ S1
L,µ. Then,

f (xk)− f (x∗) ≤ L
2

(
κ− 1
κ+ 1

)2k

‖x0 − x∗‖2
2

Theorem. (Upper bound III). Let f ∈ C1
L be convex. Then,

f (xk)− f (x∗) ≤
2L(f (x0)− f (x∗))‖x0 − x∗‖2

2
k + 4

.
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Gradient methods – lower bounds

Theorem. (Carmon-Duchi-Hinder-Sidford 2017). There’s an f ∈ C1
L,

such that ‖∇f (x)‖ ≤ ε requires Ω(ε−2) gradient evaluations.

Theorem. (Nesterov). There exists f ∈ S∞L,µ (µ > 0, κ > 1) s.t.

f (xk)− f (x∗) ≥ µ

2

(√
κ− 1√
κ+ 1

)2k

‖x0 − x∗‖2
2,

Theorem. (Nesterov). For any x0 ∈ Rn, and 1 ≤ k ≤ 1
2(n− 1),

there is a convex f ∈ C1
L, s.t.

f (xk)− f (x∗) ≥
3L‖x0 − x∗‖2

2
32(k + 1)2

‖xk − x0‖2 ≥ 1
8‖x

0 − x∗‖2.
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Accelerated gradient methods

Upper bounds: (i) O(1/k); and (ii) linear rate involving κ

Lower bounds: (i) O(1/k2); and (ii) linear rate involving
√
κ

Challenge: Close this gap!

Nesterov (1983) closed the gap.
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Background: ravine method

Long, narrow ravines slow
down GD

Gel’fand-Tsetlin (1961):
Ravine method

Intuition: descent to bottom of
ravine not hard, but moving
along narrow ravine harder.
Thus, mix two types of steps:
gradient step and a “ravine step”

Simplest form of ravine method

xk+1 = yk − α∇f (yk), yk+1 = xk+1 + β(xk+1 − xk)
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Background: Heavy-ball method

Polyak’s Momentum Method (1964)

xk+1 = xk − ηk∇f (xk) + βk(xk − xk−1)

Theorem. Let f = 1
2 xTAx + bTx ∈ S1

L,µ. Then, choose

ηk = 4/(
√

L +
√
µ), βk = q2, q =

√
κ− 1√
κ+ 1

the heavy-ball method satisfies ‖xk − x∗‖ = O(qk).

Motivated originally from so-called “Ravine method” of
Gelfand-Tsetlin (1961), that runs the iteration

zk = xk − ηk∇f (xk), xk+1 = zk + βk(zk − zk−1)
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Background: Heavy-ball method

Polyak’s Momentum Method (1964)

xk+1 = xk − ηk∇f (xk) + βk(xk − xk−1)

Can view it as a discretization of 2nd-order ODE:

ẍ + aẋ + b∇f (x) = 0

(analogy: movement of a heavy-ball in a potential field f (x)
governed not only by∇f (x) but by a momentum term)

Why does momentum help?
Explore: Check out: https://distill.pub/2017/momentum/

What about the general convex case?
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Nesterov’s AGM
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Nesterov’s AGM

Nesterov’s (1983) method

xk+1 = yk − 1
L∇f (yk)

yk+1 = xk+1 + βk(xk+1 − xk)

Essentially same as the ravine method!!

βk =
αk − 1
αk+1

, 2αk+1 = 1 +
√

4α2
k + 1, α0 = 1

f (xk)− f (x∗) ≤ 2L‖y0 − x∗‖2

(k + 2)2 .

In the strongly convex case, instead we use βk =
√
κ−1√
κ+1 . This leads to

O(
√
κ log(1/ε)) iterations to ensure f (xk)− f (x∗) ≤ ε.

(Remark: Nemirovski proposed a method that achieves optimal complexity,
but it required 2D line-search. Nesterov’s method was the real breakthrough
and remains a fascinating topic to study even today.)
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Analyzing Nesterov’s method

(II Ravine method worked well and sparked numerous heuristics for
selecting its parameters and improving its behavior. However, its
convergence was never proved. Inspired Polyak’s heavy-ball method, which
seems to have inspired Nesterov’s AGM.)

Some ways to analyze AGM
Nesterov’s Estimate sequence method
Approaches based on potential (Lyapunov) functions
Derivation based on viewing AGM as approximate PPM
Using “linear coupling,” mixing a primal-dual view
Analysis based on SDPs

See discussion in the paper
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Potential analysis – sketch

Choose potential: judge closeness of iterates to the optimal
Ensure the potential is decreasing with iteration
AGM does not satisfy f (xk+1) ≤ f (xk), so...

Slightly more general AGM iteration

xk+1 ← yk + αk+1(zk − yk)

yk+1 ← xk+1 − γk+1∇f (xk+1)

zk+1 ← xk+1 + βk+1(zk − xk+1)− ηk+1∇f (xk+1)

Mixing intution from “descent” and “ravines”

Φk := Ak(f (yk)− f (x∗)) + Bk‖zk − x∗‖2

Pick parameters Ak,Bk, ηk, γk, αk, βk to ensure that we have
Φk − Φk−1 ≤ 0. Turns out a “simple” choice does that job!
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Potential analysis – sketch

Using the shorthand:

∆γ := γ(1− Lγ/2) , ∇ := ∇f (xt+1) , X := xt+1 − x∗ , and W := zt − xt+1,

using smoothness and convexity, show that Φk+1 − Φk is upper-boudned by

c1‖W‖2 + c2‖X‖2 + c3‖∇‖2 + c4 〈W,X〉+ c5 〈W,∇〉+ c6 〈X,∇〉 ,
c1 := β2Bk+1 − Bk − µ

2
α2

(1−α)2 Ak , c2 := Bk+1 − Bk − µ
2 (Ak+1 − Ak) ,

c3 := η2Bk+1 −∆γ · Ak+1 , c4 := 2 · (βBk+1 − Bk) ,

c5 := α
1−α

Ak − 2βηBk+1 , and c6 := (Ak+1 − Ak)− 2ηBk+1 .

Now choose parameters to ensure Φk+1 − Φk ≤ 0. Finally, leads to a bound of
the form

f (yk)− f (x∗) = O((1− ξ1) · · · (1− ξk)),

where the sequence {ξk} fully characterizes convergence.

Ref: See details in the paper: Ahn, Sra (2020). From Nesterov’s Estimate
Sequence to Riemannian Acceleration.
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