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Tractable nonconvex problems

Not all non-convex problems are bad
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Tractable nonconvex problems

Not all non-convex problems are bad

& Generalizing the notion of convexity
& Problems with hidden convexity
& Miscellaneous examples from applications

& The list is much longer and growing!
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Spectral problems

-
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Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

AX = ApaxX & max xTAx.
xTx=1

Nonconvex problem, but we know how to solve it!
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Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix
AX = ApaxX & max xTAx.
xTx=1
Nonconvex problem, but we know how to solve it!
L(x,0) ;= —xTAx + 0(xTx — 1)
—2Ax +20x =0
Ax = 0x

Neccessary condition asks for (6, x) to be eigenpair. Thus, xT Ax
is maximized by largest such pair.
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Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

AX = ApaxX & max xTAx.
xTx=1

Nonconvex problem, but we know how to solve it!
L(x,0) ;= —xTAx + 0(xTx — 1)
—2Ax +20x =0
Ax = Ox
Neccessary condition asks for (6, x) to be eigenpair. Thus, xT Ax

is maximized by largest such pair. Alternative: Let A = UDU";
then max,r,_; X" Ax = max,r,_; >, \iy7, where y = U*x.
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Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

AX = ApaxX & max xTAx.
xTx=1

Nonconvex problem, but we know how to solve it!
L(x,0) ;= —xTAx + 0(xTx — 1)
—2Ax +20x =0
Ax = Ox
Neccessary condition asks for (6, x) to be eigenpair. Thus, xT Ax

is maximized by largest such pair. Alternative: Let A = UDU";
then max,r,_; X" Ax = max,r,_; >, \iy7, where y = U*x.

maxg )\iyl-z: max Z‘)‘izi’
yTy=1 - zT1=1,z>0 !

which is a convex optimization problem.
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Generalized eigenvalues

Let A, B be symmetric matrices; generalized eigenvalue is:

xTAx
xTBx

max
x£0

(more generally: Ax = ABx, generalized eigenvectors)
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Generalized eigenvalues

Let A, B be symmetric matrices; generalized eigenvalue is:

xTAx
max
x£0 xTBx

(more generally: Ax = ABx, generalized eigenvectors)

' Exercise: Study its Lagrangian formulation as well as a Convex
. reformulation (similar to the “alternative” on slide 4) |

____________________________________________________
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Generalized eigenvalues

Let A, B be symmetric matrices; generalized eigenvalue is:

xTAx
max
x£0 xTBx

(more generally: Ax = ABx, generalized eigenvectors)
' Exercise: Study its Lagrangian formulation as well as a Convex
. reformulation (similar to the “alternative” on slide 4) |

____________________________________________________
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Trust region subproblem

min xTAx +2bTx + ¢
X

s.t. x"Bx +2dTx + e <0.
Here A and B are merely symmetric. Hence, nonconvex
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Trust region subproblem

min xTAx +2bTx + ¢
X

s.t. x"Bx +2dTx + e <0.
Here A and B are merely symmetric. Hence, nonconvex

The dual problem can be formulated as (Verify!)

max u
u,veR

A+vB b+ vd
(b+od)T c+ve—u
v > 0.

s.t. =0,

Importantly, strong duality holds (see Appendix B of BV).
(alternatively: turns out SDP relaxation of the primal is exact)
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Trust region subproblem

min xTAx +2bTx + ¢
X

s.t. x"Bx +2dTx + e <0.
Here A and B are merely symmetric. Hence, nonconvex

The dual problem can be formulated as (Verify!)

max u
u,veR
A +vB b+ vd
.t =
st (b+od)T c+ve—u =0,
v > 0.

Importantly, strong duality holds (see Appendix B of BV).
(alternatively: turns out SDP relaxation of the primal is exact)

Ref: See Wang, Kilin;Karzan, The generalized trust-region subproblem: solution

complexity and convex hull results, 2019, for recent results.
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Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

W(A) .= {x*Ax | ||x] = 1,x € C"}.
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Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

W(A) .= {x*Ax | ||x] = 1,x € C"}.

Theorem. The set W(A) is convex (amazing!).
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Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

W(A) .= {x*Ax | ||x] = 1,x € C"}.

Theorem. The set W(A) is convex (amazing!).

Exercise: If A is Hermitian show that W(A) = [Amin, Amax)-
Exercise: If AA* = A*A, then W(A) = conv()\;(A)).

i Explore: Let Ay, ..., A, be Hermitian. When is the set :
{(z*A1z,2" Az, ..., 2" Anz) | z € C, ||2]| = 1} :

convex (this is also called the “joint numerical range”).

____________________________________________________
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Principal Component Analysis (PCA)

Let A € R"*P. Consider the nonconvex problem

min
X

Suvrit Sra (suvrit@mit.edu)

|A—X||2 st rank(X) =k
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Principal Component Analysis (PCA)

Let A € R"*P. Consider the nonconvex problem
m}}n |A—X||2 st rank(X) =k
Well-known Eckart-Young-Mirsky theorem shows that
X* = U Vi

where A has the SVD A = UX VT,

Why is this true?
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PCA via the Fantope

Another characterization of SVD (nonconvex prob)
min [|A — AZ|3, st rank(Z) = k,Z is a projection
7=7

& ma>§(ATA, Z), st rank(Z) =k, Zis a projection.
7=7
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PCA via the Fantope

Another characterization of SVD (nonconvex prob)
min [|A — AZ|3, st rank(Z) = k,Z is a projection
7=7

& ma>§(ATA, Z), st rank(Z) =k, Zis a projection.
7=7

Optimal solution here is Z = Vi VI, the top-k evecs of ATA
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PCA via the Fantope

Another characterization of SVD (nonconvex prob)

min [|A — AZ|3, st rank(Z) = k,Z is a projection
7=7

& max(ATA, Z), st rank(Z) =k, Z is a projection.

Z=7T
Optimal solution here is Z = Vi VI, the top-k evecs of ATA

Equivalent convex problem!
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PCA via the Fantope

Another characterization of SVD (nonconvex prob)
min [|A — AZ|3, st rank(Z) = k,Z is a projection
7=7

& ma>§(ATA, Z), st rank(Z) =k, Zis a projection.
7=7

Optimal solution here is Z = Vi VI, the top-k evecs of ATA

Equivalent convex problem!
First, write constraint set C as

C = {Z=2"|rank(Z) =k, Zis a projection }
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PCA via the Fantope

Another characterization of SVD (nonconvex prob)
min [|A — AZ|3, st rank(Z) = k,Z is a projection
7=7

& ma>§(ATA, Z), st rank(Z) =k, Zis a projection.
7=7

Optimal solution here is Z = Vi VI, the top-k evecs of ATA

Equivalent convex problem!
First, write constraint set C as

C = {Z=2"|rank(Z) =k, Zis a projection }
= {Z=2Z"|X(2) € {0,1},Tx(Z) = k}.
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Fantope

Now consider convex hull: C = conv C

-
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Fantope

Now consider convex hull: C = conv C ‘

c = {z = 7T | M(Z) € [0,1], Tx(Z) = k}
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Fantope

Now consider convex hull: C = conv C ‘

c = {z = 7T | M(Z) € [0,1], Tx(Z) = k}
= {Z:ZT|OijI,Tr(Z):k}.

The set C is called the Fantope (named after Ky Fan).
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Fantope

Now consider convex hull: C = conv C ‘

c = {z = 7T | M(Z) € [0,1], Tx(Z) = k}
= {Z:ZT|OijI,Tr(Z):k}.

The set C is called the Fantope (named after Ky Fan).

r--r-—--=-=-"=-"7"7""~"~"="~"~"~*"°"~°"°"°*"°"~*"°"~*"°"°*"°"*"*°"*"°=‘*"°*°‘*" =T ‘*°" =T/ -~/ ~,o~oO~T-~-=-= 1
I
I

Exercise: Now invoke the “maximize a convex function” !

idea from Lecture 5 to claim that the convex problem ;
E max,_,r(ATA, Z) s.t. Z € C solves the original problem. E
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Sparsity

-
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Nonconvex Sparse optimization

The /yp-quasi-norm is defined as

HXHO := card {xi ’ X 75 0}.
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Nonconvex Sparse optimization

The /yp-quasi-norm is defined as
Hng := card {xi ’ Xi 75 0}.

Projection onto /y-ball

min  lx —yl3, st fxllo <k
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Nonconvex Sparse optimization

The /yp-quasi-norm is defined as
HXHO := card {xi | X 7& 0}.
Projection onto /y-ball
min - glx—yl3, st fxfo<k.

Nonconvex but tractable: If ||y||o < k, then clearly x = y.
Otherwise, pick the k largest entries of |y|, and set the rest to 0.
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Nonconvex Sparse optimization

The /yp-quasi-norm is defined as
HXHO := card {xi ’ Xi 7& 0}.

Projection onto /y-ball
min - glx—yl3, st fxfo<k.

Nonconvex but tractable: If ||y||o < k, then clearly x = y.
Otherwise, pick the k largest entries of |y|, and set the rest to 0.

Exercise: Prove the above claim.

Exercise: Similarly solve 3 ||x — y[3 + Al|x]lo

Used in so-called “Iterative Hard Thresholding” algorithms
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Compressed Sensing

min |x[o st Ax=0b

-
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Compressed Sensing

min |[|x]jp st Ax=0D
If the “measurement matrix” A satisfies so-called restricted
isometry condition with the constant d; € (0,1)
(1= 6)lx]1* < JAx||* < (14 65)[lxl*,  xis s-sparse,
then the /;-convex relaxation is exact.

] | Explore: (search keywords): compressed sensing, sparse re- |
i + covery, restricted isometry |
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Generalized convexity

-
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Geometric programming

Monomial: g : R, , — R of the form
gx) = -, >0, €R.

Posynomial: Sum of monomials, e.g, f(x) = >, gj(x)
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Geometric programming

Monomial: g : R, , — R of the form
gx) = -, >0, €R.
Posynomial: Sum of monomials, e.g, f(x) = Z]' gj(x)

Geometric Program
min - f(x)
s.t. filx) <1, i€ [m]
gix) =1, jelr,

where f; are posynomials and g; are monomials.

‘ Clearly, nonconvex.
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Geometric programming

Make change of variables: y; = log x; (recall x; > 0). Then,

f) =f(e) = ey (@)t = &Y,

for b = logy.
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Geometric programming

Make change of variables: y; = log x; (recall x; > 0). Then,
f) =f(e) = ey (@)t = &Y,
for b = logy. Thus, after taking logs, geometric program is
. T ytb
mym log (Zk oY ok)

s.t. log (Zk eugky+b0k) <0,i € [m]

¢jy+di=0,jelrl,

for suitable sets of vectors {ay}, and {c;}.
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Geometric programming

Make change of variables: y; = log x; (recall x; > 0). Then,

f) =f(e) = ey (@)t = &Y,

for b = logy. Thus, after taking logs, geometric program is

] a, y+b0k)
myln log (Zke Ok
s.t. log <Zk eﬂgkﬁbr)k) <0,i € [m]

¢jy+di=0,jelrl,

for suitable sets of vectors {ay}, and {c;}.
Recall, log-sum-exp is convex, so above is a convex opt.

Ref: See Chapter 8.8 of BV; search online for “geometric programming”
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Generalized convexity

m Quasiconvexity: If level sets L(f) = {x | f(x) < t} are
convex, we say f is quasiconvex
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Generalized convexity

m Quasiconvexity: If level sets L(f) = {x | f(x) < t} are
convex, we say f is quasiconvex

m Arcwise Convexity: f(vy(t)) < (1 —t)f(x) + tf(y), where
arc vy : [0,1] — X joins point x to point y.
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Generalized convexity

m Quasiconvexity: If level sets L(f) = {x | f(x) < t} are
convex, we say f is quasiconvex

m Arcwise Convexity: f(vy(t)) < (1 —t)f(x) + tf(y), where
arc vy : [0,1] — X joins point x to point y.

m Several other notions of generalized convexity exist (see
also: genconv.org!)
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Generalized convexity

m Quasiconvexity: If level sets L(f) = {x | f(x) < t} are
convex, we say f is quasiconvex

m Arcwise Convexity: f(vy(t)) < (1 —t)f(x) + tf(y), where
arc vy : [0,1] — X joins point x to point y.

m Several other notions of generalized convexity exist (see
also: genconv.org!)

Exercise: Suppose a set X is arcwise convex, and f : X — Ris an
arcwise convex function. Prove that a local optimum of f is also
global (assume regularity as needed).

1t t

Exercise: View GP as arcwise convexity using: v(t) = x

y
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Linear fractional programming

i alx+b
cIx+d
s.t. Gxgh,ch+d>0,Ex:f.

This problem is nonconvex, but it is quasiconvex.
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Linear fractional programming

in alx+b
cIx+d
s.t. Gxgh,ch+d>0,Ex:f.

This problem is nonconvex, but it is quasiconvex. Provided it is
feasible, it is equivalent to the LP

: T
n;lzn a'y+bz
s.t. Gy—hz<0,z>0

Ey=fz,cly+dz=1.
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Linear fractional programming

in alx+b
cIx+d
s.t. Gxgh,ch+d>0,Ex:f.

This problem is nonconvex, but it is quasiconvex. Provided it is

feasible, it is equivalent to the LP

: T
n;l}ZH a'y+bz
s.t. Gy—hz<0,z>0

Ey=fz,cly+dz=1.

These two problems connected via the transformation
X L 1
o dIx+d T Ix+d

See BV Chapter 4 for details.

y
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Generalized Perron-Frobenius

Let A, B € R"*",

max A
X,
s.t. Mx < Bx,x'1=1,x>0.

Exercise: Try solving it directly somehow.

Exercise: Cast this as an (extended) linear-fractional program.
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Challenge: Simplex convexity

:rLet A, be the probability simplex, i.e., set of vectors x =
! (x1,...,x,) such that x; > 0 and x1 = 1. Assume that n > 2.
' Prove that the following “Bethe entropy”

E Z xllog— (1 —x;)log(1 — x;),

____________________________________________________
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The Polyak-Lojasiewicz class

PL class aka gradient-dominated

fo) =f(&%) <7V a=1.
Observe that if Vf(x) = 0, then x must be global opt.
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The Polyak-Lojasiewicz class

PL class aka gradient-dominated

fo) =f(&%) <7V a=1.
Observe that if Vf(x) = 0, then x must be global opt.

'Exerc1se Let f be convex on R". Prove that on the set'
{x|||x—x||<R}f1sPLw1thT—Randa—1 |
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The Polyak-Lojasiewicz class

PL class aka gradient-dominated

fo) =f(&%) <7V a=1.
Observe that if Vf(x) = 0, then x must be global opt.

'Exerc1se Let f be convex on R". Prove that on the set'
{x|||x—x||<R}f1sPLw1thT—Randa—1 |

' Exercise: Let f be strongly-convex with parameter p. Prove |
| that f is a PL function with 7 = 1/2p and o = 2. |
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
» Assume that m < n and that 3x* s.t. g(x*) = 0.
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
» Assume that m < n and that 3x* s.t. g(x*) = 0.

» Assume Jacobian J(x) = (Vgi(x), ..., Vgu(x))
non-degenerate on a convex set X containing x*. Then,
o = infyex Apin (](X)T](x>) > 0.
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Important non-convex PL example

v

Let g(x) = (g1(%), ..., gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
» Assume that m < n and that 3x* s.t. g(x*) = 0.

» Assume Jacobian J(x) = (Vgi(x), ..., Vgu(x))
non-degenerate on a convex set X containing x*. Then,
o = infyex Apin (](X)T](x)) > 0.

Letf(x) = 1 Y°,¢2(x); note that VF(x) = J(x)g(x)

v
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
» Assume that m < n and that 3x* s.t. g(x*) = 0.

» Assume Jacobian J(x) = (Vgi(x), ..., Vgu(x))
non-degenerate on a convex set X containing x*. Then,
o = infyex Apin (](X)T](x>) >0

» Letf(x) = 337, ¢%(x); note that Vf(x) = J(x)g(x)
HVf( )|? = g@)TTx)(x)g(x) = ollg(@)|? = 20(f(x) - f(x*
:Thus,f is PLwith 7 =1/20, a = 2.

____________________________________________________
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
» Assume that m < n and that 3x* s.t. g(x*) = 0.

» Assume Jacobian J(x) = (Vgi(x), ..., Vgu(x))
non-degenerate on a convex set X containing x*. Then,
o = infyex Apin (](X)T](x>) >0

» Letf(x) = 337, ¢%(x); note that Vf(x) = J(x)g(x)
HVf( )|? = g@)TTx)(x)g(x) = ollg(@)|? = 20(f(x) - f(x*
:Thus,f is PLwith 7 =1/20, a = 2.

____________________________________________________

Exercise: When m < n, are the Hessians of f degenerate at solutions?
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Important non-convex PL example

» Letg(x) = (g1(x),...,gm(x)) be a differentiable func.
» Consider the system of nonlinear equations g(x) = 0
» Assume that m < n and that 3x* s.t. g(x*) = 0.
» Assume Jacobian J(x) = (Vgi(x), ..., Vgu(x))

non-degenerate on a convex set X containing x*. Then,

o = infyex Apin (I(X)T](X)) >0
- Letf(x) = 1 32, £2(x); note that VF(x) = J(x)g(x)

L IVF@)IP = g(®) 1) T (0)3(x) > ollg()|* = 20 (f(x) - f(x*
E Thus, f is PL with 7 = 1/20, a = 2.

_________________________________________________

Exercise: When m < n, are the Hessians of f degenerate at solutions?

Explore: Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear
Convergence of Gradient and Proximal-Gradient Methods Under the
Polyak-Lojasiewicz Condition. https://arxiv.org/abs/1608.04636
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Others tractable nonconvex problems

m Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/
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Others tractable nonconvex problems

m Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/

m Submodular optimization (later in course)

m Any combinatorial problem whose convex relaxation is tight
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Others tractable nonconvex problems

m Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/

m Submodular optimization (later in course)
m Any combinatorial problem whose convex relaxation is tight
m Non-Eucidean convexity (hinted at today, later in course)
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Others tractable nonconvex problems

m Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/

m Submodular optimization (later in course)
m Any combinatorial problem whose convex relaxation is tight
m Non-Eucidean convexity (hinted at today, later in course)

Example without “spurious” local minima: Deep Linear Network
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Others tractable nonconvex problems

m Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/

m Submodular optimization (later in course)
m Any combinatorial problem whose convex relaxation is tight
m Non-Eucidean convexity (hinted at today, later in course)

Example without “spurious” local minima: Deep Linear Network
min L(W1, ..., W) = LW, Wi_1 - Wi X — Y|J7,

here X € R**": data/input matrix; and Y € R%*" “label” /output matrix.
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Others tractable nonconvex problems

m Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/

m Submodular optimization (later in course)
m Any combinatorial problem whose convex relaxation is tight
m Non-Eucidean convexity (hinted at today, later in course)

Example without “spurious” local minima: Deep Linear Network
min L(W1, ..., W) = LW, Wi_1 - Wi X — Y|J7,

here X € R**": data/input matrix; and Y € R%*" “label” /output matrix.

-
! Theorem. Let k = min(dy,dy) be the “width” of the network. Let V =
! {(Wl, ..+, Wr) | rank(I, Wi) = k}. Then, every critical point of L(W) in V' !
] isa global minimum, while every critical point in V* is a saddle point. I

Ref. Chulhee Yun, Suvrit Sra, Ali Jadbabaie. Global optimality conditions for
deep neural networks. ICLR 2018.
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