Optimization for Machine Learning

Lecture 6: Tractable nonconvex problems

> 6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

04 Mar, 2021

Tractable nonconvex problems

Not all non-convex problems are bad

Tractable nonconvex problems

Not all non-convex problems are bad

A Generalizing the notion of convexity
A Problems with hidden convexity

- Miscellaneous examples from applications
© The list is much longer and growing!

Spectral problems

Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

$$
A x=\lambda_{\max } x \quad \Leftrightarrow \quad \max _{x^{T} x=1} x^{T} A x .
$$

Nonconvex problem, but we know how to solve it!

Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

$$
A x=\lambda_{\max } x \quad \Leftrightarrow \quad \max _{x^{T} x=1} x^{T} A x .
$$

Nonconvex problem, but we know how to solve it!

$$
\begin{array}{r}
\mathcal{L}(x, \theta):=-x^{T} A x+\theta\left(x^{T} x-1\right) \\
-2 A x+2 \theta x=0 \\
A x=\theta x
\end{array}
$$

Neccessary condition asks for (θ, x) to be eigenpair. Thus, $x^{T} A x$ is maximized by largest such pair.

Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

$$
A x=\lambda_{\max } x \quad \Leftrightarrow \quad \max _{x^{T} x=1} x^{T} A x
$$

Nonconvex problem, but we know how to solve it!

$$
\begin{array}{r}
\mathcal{L}(x, \theta):=-x^{T} A x+\theta\left(x^{T} x-1\right) \\
-2 A x+2 \theta x=0 \\
A x=\theta x
\end{array}
$$

Neccessary condition asks for (θ, x) to be eigenpair. Thus, $x^{T} A x$ is maximized by largest such pair. Alternative: Let $A=U D U^{*}$; then $\max _{x^{T} x=1} x^{T} A x=\max _{y^{T} y=1} \sum_{i} \lambda_{i} y_{i}^{2}$, where $y=U^{*} x$.

Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

$$
A x=\lambda_{\max } x \quad \Leftrightarrow \quad \max _{x^{T} x=1} x^{T} A x .
$$

Nonconvex problem, but we know how to solve it!

$$
\begin{array}{r}
\mathcal{L}(x, \theta):=-x^{T} A x+\theta\left(x^{T} x-1\right) \\
-2 A x+2 \theta x=0 \\
A x=\theta x
\end{array}
$$

Neccessary condition asks for (θ, x) to be eigenpair. Thus, $x^{T} A x$ is maximized by largest such pair. Alternative: Let $A=U D U^{*}$; then $\max _{x^{T} x=1} x^{T} A x=\max _{y^{T} y=1} \sum_{i} \lambda_{i} y_{i}^{2}$, where $y=U^{*} x$.

$$
\max _{y^{T} y=1} \sum_{i} \lambda_{i} y_{i}^{2}=\max _{z^{T} 1=1, z \geq 0} \sum_{i} \lambda_{i} z_{i},
$$

which is a convex optimization problem.

Generalized eigenvalues

Let A, B be symmetric matrices; generalized eigenvalue is:

$$
\max _{x \neq 0} \frac{x^{T} A x}{x^{T} B x}
$$

(more generally: $A x=\lambda B x$, generalized eigenvectors)

Generalized eigenvalues

Let A, B be symmetric matrices; generalized eigenvalue is:

$$
\max _{x \neq 0} \frac{x^{T} A x}{x^{T} B x}
$$

(more generally: $A x=\lambda B x$, generalized eigenvectors)
Exercise: Study its Lagrangian formulation as well as a convex reformulation (similar to the "alternative" on slide 4)

Generalized eigenvalues

Let A, B be symmetric matrices; generalized eigenvalue is:

$$
\max _{x \neq 0} \frac{x^{T} A x}{x^{T} B x}
$$

(more generally: $A x=\lambda B x$, generalized eigenvectors)
Exercise: Study its Lagrangian formulation as well as a convex reformulation (similar to the "alternative" on slide 4)

Read the book: https://web.stanford.edu/-boyd//mibook/lmibook.pdf

Trust region subproblem

$$
\begin{array}{ll}
\min _{x} & x^{T} A x+2 b^{T} x+c \\
\text { s.t. } & x^{T} B x+2 d^{T} x+e \leq 0 .
\end{array}
$$

Here A and B are merely symmetric. Hence, nonconvex

Trust region subproblem

$$
\begin{array}{ll}
\min _{x} & x^{T} A x+2 b^{T} x+c \\
\text { s.t. } & x^{T} B x+2 d^{T} x+e \leq 0 .
\end{array}
$$

Here A and B are merely symmetric. Hence, nonconvex
The dual problem can be formulated as (Verify!)

$$
\begin{array}{ccc}
\max _{u, v \in \mathbb{R}} & u \\
\text { s.t. } & {\left[\begin{array}{cc}
A+v B & b+v d \\
(b+v d)^{T} & c+v e-u
\end{array}\right] \succeq 0,} \\
v & \geq 0 .
\end{array}
$$

Importantly, strong duality holds (see Appendix B of BV). (alternatively: turns out SDP relaxation of the primal is exact)

Trust region subproblem

$$
\begin{array}{ll}
\min _{x} & x^{T} A x+2 b^{T} x+c \\
\text { s.t. } & x^{T} B x+2 d^{T} x+e \leq 0 .
\end{array}
$$

Here A and B are merely symmetric. Hence, nonconvex
The dual problem can be formulated as (Verify!)

$$
\begin{array}{ccc}
\max _{u, v \in \mathbb{R}} & u \\
\text { s.t. } & {\left[\begin{array}{cc}
A+v B & b+v d \\
(b+v d)^{T} & c+v e-u
\end{array}\right] \succeq 0,} \\
v & \geq 0 .
\end{array}
$$

Importantly, strong duality holds (see Appendix B of BV). (alternatively: turns out SDP relaxation of the primal is exact)

Ref: See Wang, Kılın-Karzan, The generalized trust-region subproblem: solution complexity and convex hull results, 2019, for recent results.

Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

$$
W(A):=\left\{x^{*} A x \mid\|x\|_{2}=1, x \in \mathbb{C}^{n}\right\} .
$$

Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

$$
W(A):=\left\{x^{*} A x \mid\|x\|_{2}=1, x \in \mathbb{C}^{n}\right\} .
$$

Theorem. The set $W(A)$ is convex (amazing!).

Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

$$
W(A):=\left\{x^{*} A x \mid\|x\|_{2}=1, x \in \mathbb{C}^{n}\right\} .
$$

Theorem. The set $W(A)$ is convex (amazing!).
Exercise: If A is Hermitian show that $W(A)=\left[\lambda_{\min }, \lambda_{\max }\right]$. Exercise: If $A A^{*}=A^{*} A$, then $W(A)=\operatorname{conv}\left(\lambda_{i}(A)\right)$.

Explore: Let A_{1}, \ldots, A_{n} be Hermitian. When is the set

$$
\left\{\left(z^{*} A_{1} z, z^{*} A_{2} z, \ldots, z^{*} A_{n} z\right) \mid z \in \mathbb{C}^{d},\|z\|=1\right\}
$$

convex (this is also called the "joint numerical range").

Principal Component Analysis (PCA)

Let $A \in \mathbb{R}^{n \times p}$. Consider the nonconvex problem

$$
\min _{X} \quad\|A-X\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \operatorname{rank}(X)=k .
$$

Principal Component Analysis (PCA)

Let $A \in \mathbb{R}^{n \times p}$. Consider the nonconvex problem

$$
\min _{X} \quad\|A-X\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \operatorname{rank}(X)=k .
$$

Well-known Eckart-Young-Mirsky theorem shows that

$$
X^{*}=U_{k} \Sigma_{k} V_{k}^{T}
$$

where A has the SVD $A=U \Sigma V^{T}$.

> Why is this true?

PCA via the Fantope

Another characterization of SVD (nonconvex prob)

$$
\begin{array}{ll}
\min _{Z=Z^{T}}\|A-A Z\|_{\mathrm{F}}^{2}, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection } \\
\Leftrightarrow \max _{Z=Z^{T}}\left\langle A^{T} A, Z\right\rangle, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection. }
\end{array}
$$

PCA via the Fantope

Another characterization of SVD (nonconvex prob)

$$
\begin{array}{ll}
\min _{Z=Z^{T}}\|A-A Z\|_{\mathrm{F}}^{2}, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection } \\
\Leftrightarrow \max _{Z=Z^{T}}\left\langle A^{T} A, Z\right\rangle, \quad \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection. }
\end{array}
$$

Optimal solution here is $\mathrm{Z}=V_{k} V_{k}^{T}$, the top- k evecs of $A^{T} A$

PCA via the Fantope

Another characterization of SVD (nonconvex prob)

$$
\begin{array}{ll}
\min _{Z=Z^{T}}\|A-A Z\|_{\mathrm{F}}^{2}, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection } \\
\Leftrightarrow \max _{Z=Z^{T}}\left\langle A^{T} A, Z\right\rangle, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection. }
\end{array}
$$

Optimal solution here is $Z=V_{k} V_{k}^{T}$, the top- k evecs of $A^{T} A$
Equivalent convex problem!

PCA via the Fantope

Another characterization of SVD (nonconvex prob)

$$
\begin{array}{ll}
\min _{Z=Z^{T}}\|A-A Z\|_{\mathrm{F}}^{2}, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection } \\
\Leftrightarrow \max _{Z=Z^{T}}\left\langle A^{T} A, Z\right\rangle, & \text { s.t. } \quad \operatorname{rank}(Z)=k, Z \text { is a projection. }
\end{array}
$$

Optimal solution here is $Z=V_{k} V_{k}^{T}$, the top- k evecs of $A^{T} A$

Equivalent convex problem!

First, write constraint set C as

$$
C=\left\{Z=Z^{T} \mid \operatorname{rank}(Z)=k, Z \text { is a projection }\right\}
$$

PCA via the Fantope

Another characterization of SVD (nonconvex prob)

$$
\begin{aligned}
& \min _{Z=Z^{T}}\|A-A Z\|_{\mathrm{F}}^{2}, \text { s.t. } \\
& \Leftrightarrow \max _{Z=Z^{T}}\left\langle A^{T} A, Z\right\rangle, \text { s.t. } \\
& \operatorname{rank}(Z)=k, Z \text { is a projection } \\
&
\end{aligned}
$$

Optimal solution here is $Z=V_{k} V_{k}^{T}$, the top- k evecs of $A^{T} A$

Equivalent convex problem!

First, write constraint set C as

$$
\begin{aligned}
C & =\left\{Z=Z^{T} \mid \operatorname{rank}(Z)=k, Z \text { is a projection }\right\} \\
& =\left\{Z=Z^{T} \mid \lambda_{i}(Z) \in\{0,1\}, \operatorname{Tr}(Z)=k\right\} .
\end{aligned}
$$

Fantope

Now consider convex hull: $\mathcal{C}=$ conv C

Fantope

Now consider convex hull: $\mathcal{C}=$ conv C

$$
\mathcal{C}=\left\{Z=Z^{T} \mid \lambda_{i}(Z) \in[0,1], \operatorname{Tr}(Z)=k\right\}
$$

Fantope

Now consider convex hull: $\mathcal{C}=$ conv C

$$
\begin{aligned}
\mathcal{C} & =\left\{Z=Z^{T} \mid \lambda_{i}(Z) \in[0,1], \operatorname{Tr}(Z)=k\right\} \\
& =\left\{Z=Z^{T} \mid 0 \preceq Z \preceq I, \operatorname{Tr}(Z)=k\right\} .
\end{aligned}
$$

The set \mathcal{C} is called the Fantope (named after Ky Fan).

Fantope

Now consider convex hull: $\mathcal{C}=$ conv C

$$
\begin{aligned}
\mathcal{C} & =\left\{Z=Z^{T} \mid \lambda_{i}(Z) \in[0,1], \operatorname{Tr}(Z)=k\right\} \\
& =\left\{Z=Z^{T} \mid 0 \preceq Z \preceq I, \operatorname{Tr}(Z)=k\right\} .
\end{aligned}
$$

The set \mathcal{C} is called the Fantope (named after Ky Fan).

E Exercise: Now invoke the "maximize a convex function" idea from Lecture 5 to claim that the convex problem $\max _{Z=Z^{T}}\left\langle A^{T} A, Z\right\rangle$ s.t. $Z \in \mathcal{C}$ solves the original problem.

Sparsity

The ℓ_{0}-quasi-norm is defined as

$$
\|x\|_{0}:=\operatorname{card}\left\{x_{i} \mid x_{i} \neq 0\right\}
$$

Nonconvex Sparse optimization

The ℓ_{0}-quasi-norm is defined as

$$
\begin{gathered}
\|x\|_{0}:=\operatorname{card}\left\{x_{i} \mid x_{i} \neq 0\right\} . \\
\text { Projection onto } \ell_{0} \text {-ball } \\
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}, \quad \text { s.t. }\|x\|_{0} \leq k .
\end{gathered}
$$

Nonconvex Sparse optimization

The ℓ_{0}-quasi-norm is defined as

$$
\begin{gathered}
\|x\|_{0}:=\operatorname{card}\left\{x_{i} \mid x_{i} \neq 0\right\} . \\
\text { Projection onto } \ell_{0} \text {-ball } \\
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}, \quad \text { s.t. }\|x\|_{0} \leq k .
\end{gathered}
$$

Nonconvex but tractable: If $\|y\|_{0} \leq k$, then clearly $x=y$. Otherwise, pick the k largest entries of $|y|$, and set the rest to 0 .

Nonconvex Sparse optimization

The ℓ_{0}-quasi-norm is defined as

$$
\begin{gathered}
\|x\|_{0}:=\operatorname{card}\left\{x_{i} \mid x_{i} \neq 0\right\} \\
\text { Projection onto } \ell_{0} \text {-ball } \\
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}, \quad \text { s.t. }\|x\|_{0} \leq k
\end{gathered}
$$

Nonconvex but tractable: If $\|y\|_{0} \leq k$, then clearly $x=y$.
Otherwise, pick the k largest entries of $|y|$, and set the rest to 0 .

Exercise: Prove the above claim.
Exercise: Similarly solve $\frac{1}{2}\|x-y\|_{2}^{2}+\lambda\|x\|_{0}$

Used in so-called "Iterative Hard Thresholding" algorithms

Compressed Sensing

$$
\min \|x\|_{0} \quad \text { s.t. } \quad A x=b
$$

Compressed Sensing

$$
\min \|x\|_{0} \text { s.t. } A x=b
$$

If the "measurement matrix" A satisfies so-called restricted isometry condition with the constant $\delta_{s} \in(0,1)$

$$
\left(1-\delta_{s}\right)\|x\|^{2} \leq\|A x\|^{2} \leq\left(1+\delta_{s}\right)\|x\|^{2}, \quad x \text { is } s \text {-sparse },
$$

then the ℓ_{1}-convex relaxation is exact.
Explore: (search keywords): compressed sensing, sparse recovery, restricted isometry

Generalized convexity

Geometric programming

Monomial: $g: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ of the form

$$
g(x)=\gamma x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}, \quad \gamma>0, a_{i} \in \mathbb{R} .
$$

Posynomial: Sum of monomials, e.g, $f(x)=\sum_{j} g_{j}(x)$

Geometric programming

Monomial: $g: \mathbb{R}_{++}^{n} \rightarrow \mathbb{R}$ of the form

$$
g(x)=\gamma x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}, \quad \gamma>0, a_{i} \in \mathbb{R} .
$$

Posynomial: Sum of monomials, e.g, $f(x)=\sum_{j} g_{j}(x)$

\[

\]

where f_{i} are posynomials and g_{j} are monomials.

Clearly, nonconvex.

Geometric programming

Make change of variables: $y_{i}=\log x_{i}\left(\right.$ recall $\left.x_{i}>0\right)$. Then,

$$
f(x)=f\left(e^{y}\right)=\gamma\left(e^{y_{1}}\right)^{a_{1}} \cdots\left(e^{y_{n}}\right)^{a_{n}}=e^{a^{T} y+b},
$$

for $b=\log y$.

Geometric programming

Make change of variables: $y_{i}=\log x_{i}\left(\right.$ recall $\left.x_{i}>0\right)$. Then,

$$
f(x)=f\left(e^{y}\right)=\gamma\left(e^{y_{1}}\right)^{a_{1}} \cdots\left(e^{y_{n}}\right)^{a_{n}}=e^{a^{T} y+b},
$$

for $b=\log y$. Thus, after taking logs, geometric program is

$$
\begin{array}{ll}
\min _{y} & \log \left(\sum_{k} e^{a_{0 k}^{T} y+b_{0 k}}\right) \\
\text { s.t. } & \log \left(\sum_{k} e^{a_{0 k}^{T} y+b_{0 k}}\right) \leq 0, i \in[m] \\
& c_{j}^{T} y+d_{j}=0, j \in[r],
\end{array}
$$

for suitable sets of vectors $\left\{a_{i k}\right\}$, and $\left\{c_{j}\right\}$.

Geometric programming

Make change of variables: $y_{i}=\log x_{i}\left(\right.$ recall $\left.x_{i}>0\right)$. Then,

$$
f(x)=f\left(e^{y}\right)=\gamma\left(e^{y_{1}}\right)^{a_{1}} \cdots\left(e^{y_{n}}\right)^{a_{n}}=e^{a^{T} y+b},
$$

for $b=\log y$. Thus, after taking logs, geometric program is

$$
\begin{array}{ll}
\min _{y} & \log \left(\sum_{k} e^{a_{0 k}^{T} y+b_{0 k}}\right) \\
\text { s.t. } & \log \left(\sum_{k} e^{a_{0 k}^{T} y+b_{0 k}}\right) \leq 0, i \in[m] \\
& c_{j}^{T} y+d_{j}=0, j \in[r],
\end{array}
$$

for suitable sets of vectors $\left\{a_{i k}\right\}$, and $\left\{c_{j}\right\}$.
Recall, log-sum-exp is convex, so above is a convex opt.
Ref: See Chapter 8.8 of BV; search online for "geometric programming"

Generalized convexity

■ Quasiconvexity: If level sets $L_{t}(f)=\{x \mid f(x) \leq t\}$ are convex, we say f is quasiconvex

Generalized convexity

■ Quasiconvexity: If level sets $L_{t}(f)=\{x \mid f(x) \leq t\}$ are convex, we say f is quasiconvex
■ Arcwise Convexity: $f\left(\gamma_{x y}(t)\right) \leq(1-t) f(x)+t f(y)$, where $\operatorname{arc} \gamma:[0,1] \rightarrow X$ joins point x to point y.

Generalized convexity

■ Quasiconvexity: If level sets $L_{t}(f)=\{x \mid f(x) \leq t\}$ are convex, we say f is quasiconvex
■ Arcwise Convexity: $f\left(\gamma_{x y}(t)\right) \leq(1-t) f(x)+t f(y)$, where $\operatorname{arc} \gamma:[0,1] \rightarrow X$ joins point x to point y.

■ Several other notions of generalized convexity exist (see also: genconv.org!)

Generalized convexity

■ Quasiconvexity: If level sets $L_{t}(f)=\{x \mid f(x) \leq t\}$ are convex, we say f is quasiconvex
■ Arcwise Convexity: $f\left(\gamma_{x y}(t)\right) \leq(1-t) f(x)+t f(y)$, where $\operatorname{arc} \gamma:[0,1] \rightarrow X$ joins point x to point y.

■ Several other notions of generalized convexity exist (see also: genconv.org!)

Exercise: Suppose a set X is arcwise convex, and $f: X \rightarrow \mathbb{R}$ is an arcwise convex function. Prove that a local optimum of f is also global (assume regularity as needed).

Exercise: View GP as arcwise convexity using: $\gamma(t)=x^{1-t} y^{t}$

Linear fractional programming

$$
\begin{array}{ll}
\text { min } & \frac{a^{T} x+b}{c^{T} x+d} \\
\text { s.t. } & G x \leq h, c^{T} x+d>0, E x=f .
\end{array}
$$

This problem is nonconvex, but it is quasiconvex.

Linear fractional programming

$$
\begin{array}{ll}
\min & \frac{a^{T} x+b}{c^{T} x+d} \\
\text { s.t. } & G x \leq h, c^{T} x+d>0, E x=f .
\end{array}
$$

This problem is nonconvex, but it is quasiconvex. Provided it is feasible, it is equivalent to the LP

$$
\begin{array}{cl}
\min _{y, z} & a^{T} y+b z \\
\text { s.t. } & G y-h z \leq 0, z \geq 0 \\
& E y=f z, c^{T} y+d z=1 .
\end{array}
$$

Linear fractional programming

$$
\begin{array}{ll}
\min & \frac{a^{T} x+b}{c^{T} x+d} \\
\text { s.t. } & G x \leq h, c^{T} x+d>0, E x=f .
\end{array}
$$

This problem is nonconvex, but it is quasiconvex. Provided it is feasible, it is equivalent to the LP

$$
\begin{array}{ll}
\min _{y, z} & a^{T} y+b z \\
\text { s.t. } & G y-h z \leq 0, z \geq 0 \\
& E y=f z, c^{T} y+d z=1 .
\end{array}
$$

These two problems connected via the transformation

$$
y=\frac{x}{c^{T} x+d}, \quad z=\frac{1}{c^{T} x+d} .
$$

See BV Chapter 4 for details.

Generalized Perron-Frobenius

Let $A, B \in \mathbb{R}^{m \times n}$.

$\max _{x, \lambda}$	λ
s.t.	$\lambda A x \leq B x, x^{T} 1=1, x \geq 0$.

Exercise: Try solving it directly somehow.
Exercise: Cast this as an (extended) linear-fractional program.

Challenge: Simplex convexity

Let Δ_{n} be the probability simplex, i.e., set of vectors $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ such that $x_{i} \geq 0$ and $x^{T} 1=1$. Assume that $n \geq 2$. Prove that the following "Bethe entropy"

$$
g(x)=\sum_{i} x_{i} \log \frac{1}{x_{i}}+\left(1-x_{i}\right) \log \left(1-x_{i}\right)
$$

is concave on Δ_{n}.

The Polyak-Łojasiewicz class

$$
\begin{aligned}
& \text { PL class aka gradient-dominated } \\
& f(x)-f\left(x^{*}\right) \leq \tau\|\nabla f(x)\|^{\alpha}, \quad \alpha \geq 1
\end{aligned}
$$

Observe that if $\nabla f(x)=0$, then x must be global opt.

The Polyak-Łojasiewicz class

PL class aka gradient-dominated

$$
f(x)-f\left(x^{*}\right) \leq \tau\|\nabla f(x)\|^{\alpha}, \quad \alpha \geq 1 .
$$

Observe that if $\nabla f(x)=0$, then x must be global opt.
Exercise: Let f be convex on \mathbb{R}^{n}. Prove that on the set $\left\{x \mid\left\|x-x^{*}\right\| \leq R\right\}, f$ is PL with $\tau=R$ and $\alpha=1$.

The Polyak-Łojasiewicz class

PL class aka gradient-dominated

$$
f(x)-f\left(x^{*}\right) \leq \tau\|\nabla f(x)\|^{\alpha}, \quad \alpha \geq 1 .
$$

Observe that if $\nabla f(x)=0$, then x must be global opt.
Exercise: Let f be convex on \mathbb{R}^{n}. Prove that on the set $\left\{x \mid\left\|x-x^{*}\right\| \leq R\right\}, f$ is PL with $\tau=R$ and $\alpha=1$.

Exercise: Let f be strongly-convex with parameter μ. Prove that f is a PL function with $\tau=1 / 2 \mu$ and $\alpha=2$.

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$
- Assume that $m \leq n$ and that $\exists x^{*}$ s.t. $g\left(x^{*}\right)=0$.

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$
- Assume that $m \leq n$ and that $\exists x^{*}$ s.t. $g\left(x^{*}\right)=0$.
- Assume Jacobian $J(x)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ non-degenerate on a convex set \mathcal{X} containing x^{*}. Then, $\sigma=\inf _{x \in \mathcal{X}} \lambda_{\text {min }}\left(J(x)^{T} J(x)\right)>0$.

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$
- Assume that $m \leq n$ and that $\exists x^{*}$ s.t. $g\left(x^{*}\right)=0$.
- Assume Jacobian $J(x)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ non-degenerate on a convex set \mathcal{X} containing x^{*}. Then, $\sigma=\inf _{x \in \mathcal{X}} \lambda_{\text {min }}\left(J(x)^{T} J(x)\right)>0$.
- Let $f(x)=\frac{1}{2} \sum_{i} g_{i}^{2}(x)$; note that $\nabla f(x)=J(x) g(x)$

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$
- Assume that $m \leq n$ and that $\exists x^{*}$ s.t. $g\left(x^{*}\right)=0$.
- Assume Jacobian $J(x)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ non-degenerate on a convex set \mathcal{X} containing x^{*}. Then, $\sigma=\inf _{x \in \mathcal{X}} \lambda_{\text {min }}\left(J(x)^{T} J(x)\right)>0$.
- Let $f(x)=\frac{1}{2} \sum_{i} g_{i}^{2}(x)$; note that $\nabla f(x)=J(x) g(x)$
$\|\nabla f(x)\|^{2}=g(x)^{T} J(x)^{T} J(x) g(x) \geq \sigma\|g(x)\|^{2}=2 \sigma\left(f(x)-f\left(x^{*}\right)\right)$
Thus, f is PL with $\tau=1 / 2 \sigma, \alpha=2$.

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$
- Assume that $m \leq n$ and that $\exists x^{*}$ s.t. $g\left(x^{*}\right)=0$.
- Assume Jacobian $J(x)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ non-degenerate on a convex set \mathcal{X} containing x^{*}. Then, $\sigma=\inf _{x \in \mathcal{X}} \lambda_{\text {min }}\left(J(x)^{T} J(x)\right)>0$.
- Let $f(x)=\frac{1}{2} \sum_{i} g_{i}^{2}(x)$; note that $\nabla f(x)=J(x) g(x)$
$\|\nabla f(x)\|^{2}=g(x)^{T} J(x)^{T} J(x) g(x) \geq \sigma\|g(x)\|^{2}=2 \sigma\left(f(x)-f\left(x^{*}\right)\right)$
Thus, f is PL with $\tau=1 / 2 \sigma, \alpha=2$.
Exercise: When $m<n$, are the Hessians of f degenerate at solutions?

Important non-convex PL example

- Let $g(x)=\left(g_{1}(x), \ldots, g_{m}(x)\right)$ be a differentiable func.
- Consider the system of nonlinear equations $g(x)=0$
- Assume that $m \leq n$ and that $\exists x^{*}$ s.t. $g\left(x^{*}\right)=0$.
- Assume Jacobian $J(x)=\left(\nabla g_{1}(x), \ldots, \nabla g_{m}(x)\right)$ non-degenerate on a convex set \mathcal{X} containing x^{*}. Then, $\sigma=\inf _{x \in \mathcal{X}} \lambda_{\text {min }}\left(J(x)^{T} J(x)\right)>0$.
- Let $f(x)=\frac{1}{2} \sum_{i} g_{i}^{2}(x)$; note that $\nabla f(x)=J(x) g(x)$
$\|\nabla f(x)\|^{2}=g(x)^{T} J(x)^{T} J(x) g(x) \geq \sigma\|g(x)\|^{2}=2 \sigma\left(f(x)-f\left(x^{*}\right)\right)$
Thus, f is PL with $\tau=1 / 2 \sigma, \alpha=2$.
Exercise: When $m<n$, are the Hessians of f degenerate at solutions? Explore: Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition. https://arxiv.org/abs/1608.04636

Others tractable nonconvex problems

- Instances of matrix completion, deep linear neural networks, tensor factorization, many others. Check out the great collection by Ju Sun: https://sunju.org/research/nonconvex/

Others tractable nonconvex problems

- Instances of matrix completion, deep linear neural networks, tensor factorization, many others. Check out the great collection by Ju Sun: https://sunju.org/research/nonconvex/
- Submodular optimization (later in course)
- Any combinatorial problem whose convex relaxation is tight

Others tractable nonconvex problems

- Instances of matrix completion, deep linear neural networks, tensor factorization, many others. Check out the great collection by Ju Sun: https://sunju.org/research/nonconvex/
- Submodular optimization (later in course)
- Any combinatorial problem whose convex relaxation is tight
- Non-Eucidean convexity (hinted at today, later in course)

Others tractable nonconvex problems

- Instances of matrix completion, deep linear neural networks, tensor factorization, many others. Check out the great collection by Ju Sun: https://sunju.org/research/nonconvex/
- Submodular optimization (later in course)
- Any combinatorial problem whose convex relaxation is tight

■ Non-Eucidean convexity (hinted at today, later in course)
Example without "spurious" local minima: Deep Linear Network

Others tractable nonconvex problems

- Instances of matrix completion, deep linear neural networks, tensor factorization, many others. Check out the great collection by Ju Sun: https://sunju.org/research/nonconvex/
- Submodular optimization (later in course)
- Any combinatorial problem whose convex relaxation is tight
- Non-Eucidean convexity (hinted at today, later in course)

Example without "spurious" local minima: Deep Linear Network $\min L\left(W_{1}, \ldots, W_{L}\right)=\frac{1}{2}\left\|W_{L} W_{L-1} \cdots W_{1} X-Y\right\|_{\mathrm{F}}^{2}$,
here $X \in \mathbb{R}^{d_{x} \times n}:$ data/input matrix; and $Y \in \mathbb{R}^{d_{y} \times n}$ "label"/output matrix.

Others tractable nonconvex problems

- Instances of matrix completion, deep linear neural networks, tensor factorization, many others. Check out the great collection by Ju Sun: https://sunju.org/research/nonconvex/
- Submodular optimization (later in course)
- Any combinatorial problem whose convex relaxation is tight

■ Non-Eucidean convexity (hinted at today, later in course)
Example without "spurious" local minima: Deep Linear Network

$$
\min L\left(W_{1}, \ldots, W_{L}\right)=\frac{1}{2}\left\|W_{L} W_{L-1} \cdots W_{1} X-Y\right\|_{\mathbb{F}}^{2},
$$

here $X \in \mathbb{R}^{d_{x} \times n}$: data/input matrix; and $Y \in \mathbb{R}^{d_{y} \times n}$ "label"/output matrix.
Theorem. Let $k=\min \left(d_{x}, d_{y}\right)$ be the "width" of the network. Let $V=$
$\left\{\left(W_{1}, \ldots, W_{L}\right) \mid \operatorname{rank}\left(\prod_{l} W_{l}\right)=k\right\}$. Then, every critical point of $L(W)$ in V
is a global minimum, while every critical point in V^{c} is a saddle point.
Ref. Chulhee Yun, Suvrit Sra, Ali Jadbabaie. Global optimality conditions for deep neural networks. ICLR 2018.

