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Tractable nonconvex problems

Not all non-convex problems are bad

♠ Generalizing the notion of convexity
♠ Problems with hidden convexity
♠ Miscellaneous examples from applications
♠ The list is much longer and growing!
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Spectral problems
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Simplest example: eigenvalues

Largest eigenvalue of a symmetric matrix

Ax = λmaxx ⇔ max
xTx=1

xTAx.

Nonconvex problem, but we know how to solve it!

L(x, θ) := −xTAx + θ(xTx− 1)

−2Ax + 2θx = 0
Ax = θx

Neccessary condition asks for (θ, x) to be eigenpair. Thus, xTAx
is maximized by largest such pair. Alternative: Let A = UDU∗;
then maxxTx=1 xTAx = maxyTy=1

∑
i λiy2

i , where y = U∗x.

max
yTy=1

∑
i

λiy2
i = max

zT1=1,z≥0

∑
i
λizi,

which is a convex optimization problem.
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Generalized eigenvalues

Let A,B be symmetric matrices; generalized eigenvalue is:

max
x6=0

xTAx
xTBx

(more generally: Ax = λBx, generalized eigenvectors)

Exercise: Study its Lagrangian formulation as well as a convex
reformulation (similar to the “alternative” on slide 4)

Read the book: https://web.stanford.edu/˜boyd/lmibook/lmibook.pdf
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Trust region subproblem

min
x

xTAx + 2bTx + c

s.t. xTBx + 2dTx + e ≤ 0.
Here A and B are merely symmetric. Hence, nonconvex

The dual problem can be formulated as (Verify!)
max
u,v∈R

u

s.t.
[

A + vB b + vd
(b + vd)T c + ve− u

]
� 0,

v ≥ 0.

Importantly, strong duality holds (see Appendix B of BV).
(alternatively: turns out SDP relaxation of the primal is exact)

Ref: See Wang, Kılıņ-Karzan, The generalized trust-region subproblem: solution
complexity and convex hull results, 2019, for recent results.
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Toeplitz-Hausdorff Theorem

Let A be a complex, square matrix. Its numerical range is

W(A) := {x∗Ax | ‖x‖2 = 1, x ∈ Cn} .

Theorem. The set W(A) is convex (amazing!).

Exercise: If A is Hermitian show that W(A) = [λmin, λmax].
Exercise: If AA∗ = A∗A, then W(A) = conv(λi(A)).

Explore: Let A1, . . . ,An be Hermitian. When is the set{
(z∗A1z, z∗A2z, . . . , z∗Anz) | z ∈ Cd, ‖z‖ = 1

}
convex (this is also called the “joint numerical range”).
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Principal Component Analysis (PCA)

Let A ∈ Rn×p. Consider the nonconvex problem

min
X

‖A− X‖2
F s.t. rank(X) = k.

Well-known Eckart-Young-Mirsky theorem shows that

X∗ = UkΣkVT
k

where A has the SVD A = UΣVT.

Why is this true?
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PCA via the Fantope

Another characterization of SVD (nonconvex prob)

min
Z=ZT

‖A− AZ‖2
F, s.t. rank(Z) = k,Z is a projection

⇔ max
Z=ZT
〈ATA, Z〉, s.t. rank(Z) = k,Z is a projection.

Optimal solution here is Z = VkVT
k , the top-k evecs of ATA

Equivalent convex problem!
First, write constraint set C as

C =
{

Z = ZT | rank(Z) = k,Z is a projection
}

=
{

Z = ZT | λi(Z) ∈ {0, 1} ,Tr(Z) = k
}
.
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Fantope

Now consider convex hull: C = conv C

C =
{

Z = ZT | λi(Z) ∈ [0, 1],Tr(Z) = k
}

=
{

Z = ZT | 0 � Z � I,Tr(Z) = k
}
.

The set C is called the Fantope (named after Ky Fan).

Exercise: Now invoke the “maximize a convex function”
idea from Lecture 5 to claim that the convex problem
maxZ=ZT〈ATA, Z〉 s.t. Z ∈ C solves the original problem.
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Sparsity
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Nonconvex Sparse optimization

The `0-quasi-norm is defined as

‖x‖0 := card {xi | xi 6= 0} .

Projection onto `0-ball

min 1
2‖x− y‖2

2, s.t. ‖x‖0 ≤ k.

Nonconvex but tractable: If ‖y‖0 ≤ k, then clearly x = y.
Otherwise, pick the k largest entries of |y|, and set the rest to 0.

Exercise: Prove the above claim.

Exercise: Similarly solve 1
2‖x− y‖2

2 + λ‖x‖0

Used in so-called “Iterative Hard Thresholding” algorithms
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Compressed Sensing

min ‖x‖0 s.t. Ax = b

If the “measurement matrix” A satisfies so-called restricted
isometry condition with the constant δs ∈ (0, 1)

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2, x is s-sparse,

then the `1-convex relaxation is exact.

Explore: (search keywords): compressed sensing, sparse re-
covery, restricted isometry
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Generalized convexity
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Geometric programming

Monomial: g : Rn
++ → R of the form

g(x) = γxa1
1 · · · x

an
n , γ > 0, ai ∈ R.

Posynomial: Sum of monomials, e.g, f (x) =
∑

j gj(x)

Geometric Program
min

x
f (x)

s.t. fi(x) ≤ 1, i ∈ [m]

gj(x) = 1, j ∈ [r],

where fi are posynomials and gj are monomials.

Clearly, nonconvex.
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Geometric programming

Make change of variables: yi = log xi (recall xi > 0). Then,

f (x) = f (ey) = γ(ey1)a1 · · · (eyn)an = eaTy+b,

for b = log y.

Thus, after taking logs, geometric program is

min
y

log
(∑

k
eaT

0ky+b0k
)

s.t. log
(∑

k
eaT

0ky+b0k
)
≤ 0, i ∈ [m]

cT
j y + dj = 0, j ∈ [r],

for suitable sets of vectors {aik}, and
{

cj
}

.
Recall, log-sum-exp is convex, so above is a convex opt.

Ref: See Chapter 8.8 of BV; search online for “geometric programming”
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Generalized convexity

Quasiconvexity: If level sets Lt(f ) = {x | f (x) ≤ t} are
convex, we say f is quasiconvex

Arcwise Convexity: f (γxy(t)) ≤ (1− t)f (x) + tf (y), where
arc γ : [0, 1]→ X joins point x to point y.

Several other notions of generalized convexity exist (see
also: genconv.org!)

Exercise: Suppose a set X is arcwise convex, and f : X→ R is an
arcwise convex function. Prove that a local optimum of f is also
global (assume regularity as needed).

Exercise: View GP as arcwise convexity using: γ(t) = x1−tyt
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Exercise: Suppose a set X is arcwise convex, and f : X→ R is an
arcwise convex function. Prove that a local optimum of f is also
global (assume regularity as needed).

Exercise: View GP as arcwise convexity using: γ(t) = x1−tyt

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (03/04/21; Lecture 6) 17

genconv.org


Generalized convexity

Quasiconvexity: If level sets Lt(f ) = {x | f (x) ≤ t} are
convex, we say f is quasiconvex

Arcwise Convexity: f (γxy(t)) ≤ (1− t)f (x) + tf (y), where
arc γ : [0, 1]→ X joins point x to point y.

Several other notions of generalized convexity exist (see
also: genconv.org!)

Exercise: Suppose a set X is arcwise convex, and f : X→ R is an
arcwise convex function. Prove that a local optimum of f is also
global (assume regularity as needed).

Exercise: View GP as arcwise convexity using: γ(t) = x1−tyt

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (03/04/21; Lecture 6) 17

genconv.org


Generalized convexity

Quasiconvexity: If level sets Lt(f ) = {x | f (x) ≤ t} are
convex, we say f is quasiconvex

Arcwise Convexity: f (γxy(t)) ≤ (1− t)f (x) + tf (y), where
arc γ : [0, 1]→ X joins point x to point y.

Several other notions of generalized convexity exist (see
also: genconv.org!)

Exercise: Suppose a set X is arcwise convex, and f : X→ R is an
arcwise convex function. Prove that a local optimum of f is also
global (assume regularity as needed).

Exercise: View GP as arcwise convexity using: γ(t) = x1−tyt

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (03/04/21; Lecture 6) 17

genconv.org


Linear fractional programming

min
aTx + b
cTx + d

s.t. Gx ≤ h, cTx + d > 0,Ex = f .

This problem is nonconvex, but it is quasiconvex.

Provided it is
feasible, it is equivalent to the LP

min
y,z

aTy + bz

s.t. Gy− hz ≤ 0, z ≥ 0
Ey = fz, cTy + dz = 1.

These two problems connected via the transformation

y =
x

cTx + d
, z =

1
cTx + d

.

See BV Chapter 4 for details.
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Generalized Perron-Frobenius

Let A,B ∈ Rm×n.
max

x,λ
λ

s.t. λAx ≤ Bx, xT1 = 1, x ≥ 0.

Exercise: Try solving it directly somehow.

Exercise: Cast this as an (extended) linear-fractional program.
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Challenge: Simplex convexity

Let ∆n be the probability simplex, i.e., set of vectors x =
(x1, . . . , xn) such that xi ≥ 0 and xT1 = 1. Assume that n ≥ 2.
Prove that the following “Bethe entropy”

g(x) =
∑

i
xi log

1
xi

+ (1− xi) log(1− xi),

is concave on ∆n.
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The Polyak-Łojasiewicz class

PL class aka gradient-dominated

f (x)− f (x∗) ≤ τ‖∇f (x)‖α, α ≥ 1.

Observe that if∇f (x) = 0, then x must be global opt.

Exercise: Let f be convex on Rn. Prove that on the set
{x | ‖x− x∗‖ ≤ R}, f is PL with τ = R and α = 1.

Exercise: Let f be strongly-convex with parameter µ. Prove
that f is a PL function with τ = 1/2µ and α = 2.
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Important non-convex PL example

I Let g(x) = (g1(x), . . . , gm(x)) be a differentiable func.

I Consider the system of nonlinear equations g(x) = 0
I Assume that m ≤ n and that ∃x∗ s.t. g(x∗) = 0.
I Assume Jacobian J(x) = (∇g1(x), . . . ,∇gm(x))

non-degenerate on a convex set X containing x∗. Then,
σ = infx∈X λmin(J(x)TJ(x)) > 0.

I Let f (x) = 1
2
∑

i g2
i (x); note that∇f (x) = J(x)g(x)

‖∇f (x)‖2 = g(x)TJ(x)TJ(x)g(x) ≥ σ‖g(x)‖2 = 2σ(f (x)− f (x∗))

Thus, f is PL with τ = 1/2σ, α = 2.

Exercise: When m < n, are the Hessians of f degenerate at solutions?
Explore: Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear
Convergence of Gradient and Proximal-Gradient Methods Under the
Polyak-Łojasiewicz Condition. https://arxiv.org/abs/1608.04636
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Others tractable nonconvex problems

Instances of matrix completion, deep linear neural networks,
tensor factorization, many others. Check out the great collection
by Ju Sun: https://sunju.org/research/nonconvex/

Submodular optimization (later in course)
Any combinatorial problem whose convex relaxation is tight
Non-Eucidean convexity (hinted at today, later in course)

Example without “spurious” local minima: Deep Linear Network

min L(W1, . . . ,WL) =
1
2‖WLWL−1 · · ·W1X − Y‖2

F,

here X ∈ Rdx×n: data/input matrix; and Y ∈ Rdy×n “label”/output matrix.

Theorem. Let k = min(dx, dy) be the “width” of the network. Let V ={
(W1, . . . ,WL) | rank(

∏
l Wl) = k

}
. Then, every critical point of L(W) in V

is a global minimum, while every critical point in Vc is a saddle point.

Ref. Chulhee Yun, Suvrit Sra, Ali Jadbabaie. Global optimality conditions for
deep neural networks. ICLR 2018.
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