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ADMIN

I Homeworks due today
I Project questions?
I Nonconvexity...
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Nonconvex: hardness of global optima

Does there exist a subset of {a1, . . . , an} that sums to s?

SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

min
z

(∑n

i=1
ziai − s

)2
+
∑

i
zi(1− zi)

s.t. 0 ≤ zi ≤ 1, i = 1, . . . ,n.

Is the global min of above problem equal to 0?

Concrete proof of intractability

To be pedantic, need to care for model of computing used.
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Nonconvex: what about local minima?

Let f (x) =
(
1− 1

s

)
maxi |xi| −mini |xi|+ |aTx|

where a ∈ Zn
+, s =

∑
i ai ≥ 1.

(Ref: Example due to Y. Nesterov.)

Clearly f (0) = 0, but!
NP-Hard to decide if there’s an x s.t. f (x) < 0?

I Assume y ∈ {±1}n satisfies aTy = 0. Then, f (y) = −1/s.
I Let maxi |xi| = 1 and δ = |aTx|
I If f (x) < 0, then |xi| > 1− 1

s + δ for 1 ≤ i ≤ n
I If yi = sgn xi; then yixi > 1− 1

s + δ and |yi − xi| = 1− yixi <
1
s − δ; so

|aTy| ≤ |aTx|+ |aT(y− x)| ≤ δ + s max
i
|yi − xi|

< (1− s)δ + 1 ≤ 1.

I Since a ∈ Zn
+, this is possible iff aTy = 0 (latter is like subset-sum)
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Convex but hard
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Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CPn :=
{

A ∈ Sn×n | xTAx ≥ 0 for all x ≥ 0
}

Exercise: Verify that CPn is a convex cone.
Challenge. Given matrix A, decide if A ∈ CPn?

minx xTAx s.t. x ≥ 0
Is there an x s.t. xTAx < 0?

Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).

Explore: the topic “testing copositivity”.

Read: K. Murty, S. Kabadi. Some NP-Complete Problems in Quadratic and
Nonlinear Programming, Math. Prog. v39, pp. 117–129. 1987.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) 6



Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CPn :=
{

A ∈ Sn×n | xTAx ≥ 0 for all x ≥ 0
}

Exercise: Verify that CPn is a convex cone.
Challenge. Given matrix A, decide if A ∈ CPn?

minx xTAx s.t. x ≥ 0
Is there an x s.t. xTAx < 0?

Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).

Explore: the topic “testing copositivity”.

Read: K. Murty, S. Kabadi. Some NP-Complete Problems in Quadratic and
Nonlinear Programming, Math. Prog. v39, pp. 117–129. 1987.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) 6



Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CPn :=
{

A ∈ Sn×n | xTAx ≥ 0 for all x ≥ 0
}

Exercise: Verify that CPn is a convex cone.
Challenge. Given matrix A, decide if A ∈ CPn?

minx xTAx s.t. x ≥ 0
Is there an x s.t. xTAx < 0?

Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).

Explore: the topic “testing copositivity”.

Read: K. Murty, S. Kabadi. Some NP-Complete Problems in Quadratic and
Nonlinear Programming, Math. Prog. v39, pp. 117–129. 1987.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) 6



Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CPn :=
{

A ∈ Sn×n | xTAx ≥ 0 for all x ≥ 0
}

Exercise: Verify that CPn is a convex cone.
Challenge. Given matrix A, decide if A ∈ CPn?

minx xTAx s.t. x ≥ 0
Is there an x s.t. xTAx < 0?

Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).

Explore: the topic “testing copositivity”.

Read: K. Murty, S. Kabadi. Some NP-Complete Problems in Quadratic and
Nonlinear Programming, Math. Prog. v39, pp. 117–129. 1987.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) 6



Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CPn :=
{

A ∈ Sn×n | xTAx ≥ 0 for all x ≥ 0
}

Exercise: Verify that CPn is a convex cone.
Challenge. Given matrix A, decide if A ∈ CPn?

minx xTAx s.t. x ≥ 0
Is there an x s.t. xTAx < 0?

Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).

Explore: the topic “testing copositivity”.

Read: K. Murty, S. Kabadi. Some NP-Complete Problems in Quadratic and
Nonlinear Programming, Math. Prog. v39, pp. 117–129. 1987.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) 6



Copositive matrices: exercises

Exercise: Verify that the following matrix is copositive

A :=


1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1
−1 1 1 −1 1

 .

Exercise: Non-negative matrix factorization (NMF) seeks to solve

min
B,C≥0

‖A− BC‖2
F,

for a given A ≥ 0 (elementwise). Restricting C = BT, rewrite
NMF as a “copositive programming” problem.
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Maximizing convex functions

Theorem. Let f be a convex function and let C = conv S,
where S is an arbitrary set of points. Then,

sup {f (x) | x ∈ C} = sup {f (x) | x ∈ S} ,

where the first sup is attained only when the second one is.

Theorem. Let f be convex; C be a closed convex set in dom f .
Suppose C contains no lines. Then, if the sup of f relative to C
is attained at all, it is attained at some extreme point of C.

Example: LP optimum at a vertex (vertices extreme points for polyhedra)

Ref. See Section 32 of R. T. Rockafellar, Convex Analysis.
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How hard is global opt?
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Complexity of global optimization

How much computation required to ensure
f (x)− f ∗ ≤ ε?

How to measure complexity?

Oracle based complexity: count number of calls to an “oracle”
Zeroth order oracle: inputs a point x, outputs f (x)

First-order oracle: inputs a point x, outputs f (x),∇f (x)

Higher order oracles can also be considered; also, later, we’ll
consider other oracles (stochastic, inexact, etc.)
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Complexity of global optimization

How much computation required to ensure
f (x)− f ∗ ≤ ε?

Problem: f ∗ = min
x
{f (x) | x ∈ [0, 1]n}

Problem class: f is L-Lipschitz on [0, 1]n

|f (x)− f (y)| ≤ L‖x− y‖∞ for constant L and x, y ∈ [0, 1]n.

Algorithm: Brute force search.
I Pick integer p ≥ 1 and place a uniform grid (width 1/2p)

over [0, 1]n centered around pn points
I We can ensure f (x̄)− f ∗ ≤ L/2p in O(pn) calls of oracle f (x)

I (this translates into O
(( L

2ε

)n) for p ≥ L/2ε)

The brute force method is worst-case optimal!
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Constructing the lower bound

Idea: Create “resisting” oracles.

Let p = b L
2εc. Suppose, we have a method that needs N < pn

oracle calls to solve problems to accuracy ε in problem class.

◦

Resisting oracle

Return f (x) = 0 at any test point x

(so method can only find x̄ ∈ [0, 1]n s.t. f (x̄) = 0)

But N < pn, so there’s a box with no test points.

Thus, put x∗ inside this box of width ε/L and set

f (x) = min {0,L‖x− x∗‖ − ε}
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Lower bound for global optimization

f (x) = min {0,L‖x− x∗‖ − ε}

This function is L-Lipschitz, its accuracy is ε.

Thus, without at least pn points, accuracy cannot be
better than ε

In general, brute force (exponential time) method the
best. Moreover, vastly worse than “just” 2n!

Exercise: Provide similar lower bounds for C1 functions.

Ref. Section 1.1 of Yu. Nesterov, “Lectures on Convex Optimization”
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Stationarity
(More modest goal)
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More modest goal: stationarity

First-order necessary condition

Assuming f ∈ C1, ∇f (x) = 0 necessary
Weak requirement: ‖∇f (x)‖ ≤ ε

Consider f (x) = x3 on the set [−1, 1]. Global
opt is at −1, while f ′(x) = 3x2 = 0 as x = 0.

Second-order necessary conditions

Assume f ∈ C2. Then, ∇f (x) = 0 and ∇2f (x) � 0

Second-order sufficient conditions (local opt)

Assume f ∈ C2. Then, ∇f (x) = 0 and ∇2f (x) � 0
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Second-order necessary conditions

Assume f ∈ C2. Then,∇f (x∗) = 0 and ∇2f (x∗) � 0

Taylor expand f (x∗ + td), where d is arbitrary and t > 0:

f (x∗ + td) = f (x∗) + t∇f (x∗)Td + t2

2 dT∇2f (x∗)d + o(t2).

Since x∗ is a local min,∇f (x∗) = 0 holds. Thus,

f (x∗ + td)− f (x∗)
t2 = 1

2 dT∇2f (x∗)d +
o(t2)

t2

Since x∗ is local min, for small enough t lhs above is ≥ 0. Thus,

0 ≤ lim
t↓0

1
2 dT∇2f (x∗)d +

o(t2)

t2

=⇒ dT∇2f (x∗)d ≥ 0 ↔ ∇2f (x∗) � 0.
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Sufficient condition

Assume f ∈ C2, ∇f (x∗) = 0 and ∇2f (x∗) � 0.

Exercise: Prove that x∗ is a local minimum. (Hint: Analyze
f (x∗ + y)− f (x∗) via Taylor series, use∇2f (x∗) � δI for some δ > 0.)

Remark: It can still happen that ∇2f (x∗) 6� 0 but x∗ is a lo-
cal min (e.g., consider f (x) = x4 + 2 at x = 0). Such criti-
cal points are called degenerate; functions without degenerate
critical points called “Morse functions” (Explore!).

◦

Useful convergence criterion: (ε, δ)-stationarity

‖∇f (x)‖2 ≤ ε and∇2f (x) � −
√
δI
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Nonsmooth & Nonconvex
(Introduction)
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First-order conditions

I For convex, 0 ∈ ∂f necessary and sufficient for global opt.

I For nonconvex, we hope for only (first-order) stationarity.

How should we define ∂f ?
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How to generalize ∂f ?

I If f is nonsmooth, nonconvex, ∂f defined via
∂f (x) := {g | f (y) ≥ f (x) + 〈g, y− x〉 ∀ y} not helpful!

I It is a global notion; we seek a local one.
I Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to directional
derivative

f ′(x; d) := lim
t↓0

f (x + td)− f (x)

t
.

A key property of f ′(x; d) and ∂f
f ′(x; d) = max {〈g, d〉 | g ∈ ∂f (x)}

Thus, generalize ∂f via directional derivatives.
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Clarke directional derivative?

Clarke directional derivative

f ◦(x; d) := lim sup
y→x
t↓0

f (y + td)− f (y)

t

Prop. f ◦(x; ·) is positively homogeneous and subadditive.

Proof sketch: homogeneity is clear; we prove subadditivity.

f ◦(x; u + v) = lim sup
f (y + t(u + v))− f (y))

t

≤ lim sup
f (y + tu + tv)− f (y + tv)

t
+ lim sup

f (y + tv)− f (y)

t
= f ◦(x; u) + f ◦(x; v).

(first limsup is f ◦(x; u) since y + tv essentially dummy var converging to x)

F. Clarke. Generalized Gradients and Applications, TAMS 1975.
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Exercises

Exercise: Let f (x) = x2 sin(1/x). This function is Lipschitz near
0. Show that f ◦(0; v) = |v|.

Exercise: What should ∂◦f (0) be? (Answer: [−1, 1]; why?)

Exercise: What is f ◦(0; v) for f = −|x|? (Verify it is |v|.)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) 22



Clarke subdifferential?

Clarke subdifferential

∂◦f (x) := {g ∈ X | 〈g, d〉 ≤ f ◦(x; d) for all d ∈ X} .

Exercise: Prove that ∂◦f (x) is a convex, compact set.

Theorem. A. When f is C1, ∂◦f (x) = {∇f (x)}.
B. If f is convex, then ∂◦f (x) = ∂f (x).

Prop. Let f ∈ C0
L. f ◦(x; d) = max {〈g, d〉 | g ∈ ∂◦f (x)}

Proof: Assume ∃ v s.t. f ◦(x; v) exceeds the given max. Then, there exists
(why?) a linear functional ζ majorized by f ◦(x; v) agreeing with it at v. It
follows that ζ ∈ ∂◦f (x), leading to a contradiction.
(we used definition of ∂◦f along with sublinearity of f ◦(x; ·))

Exercise: Prove that for a locally Lipschitz function, f ′(x; d) is
the support function of the (convex) set ∂◦f (x).
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Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: 0 ∈ ∂◦f (x)

Proof: Since ∂(−f ) = −∂f , suffices to consider when x is a local min-
imum. When x is a local min, as before, starting from

f (y + td)− f (y)

t

evident that f ◦(x; d) ≥ 0. Thus, ζ = 0 belongs to ∂◦f (x) because of
the “max-rule” which implies that

ζ ∈ ∂◦f (x) iff f ◦(x; d) ≥ 〈ζ, d〉 ∀ d ∈ X.

Could use dist(0, ∂◦f (x)) ≤ ε as stationarity criterion
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Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: 0 ∈ ∂◦f (x)
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Clarke subdifferential – key properties

Theorem. Let f ∈ C1 and g convex. Then, ∂◦(f + g) = ∇f + ∂g

Theorem. If f and g are LL around a point x ∈ X, then
∂◦(f + g)(x) ⊂ ∂◦f (x) + ∂◦g(x)

Recalling Rademacher’s theorem, we can “simplify” ∂◦f

Theorem. An LL function is a.e. differentiable

Theorem. Let f be LL around x ∈ X and let S ⊂ X have mea-
sure zero. Then, ∂◦f (x) = conv {limr∇f (xr) | xr → x, xr 6∈ S}

Corollary. Approximate ∂◦f (x) using “gradient sampling”
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