Optimization for Machine Learning

Lecture 5: Nonconvex Optimality, Stationarity 6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

02 Mar, 2021

ADMIN

- Homeworks due today
- Project questions?
- ► Nonconvexity...

Does there exist a subset of $\{a_1, \ldots, a_n\}$ that sums to *s*?

Suvrit Sra (suvrit@mit.edu)

Does there exist a subset of $\{a_1, \ldots, a_n\}$ that sums to *s*? SUBSETSUM, well-known to be NP-Hard

Does there exist a subset of $\{a_1, \ldots, a_n\}$ that sums to *s*? SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

$$\min_{z} \quad \left(\sum_{i=1}^{n} z_{i}a_{i} - s\right)^{2} + \sum_{i} z_{i}(1 - z_{i})$$

s.t. $0 \le z_{i} \le 1, \ i = 1, \dots, n.$

Does there exist a subset of $\{a_1, \ldots, a_n\}$ that sums to *s*? SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

$$\min_{z} \quad \left(\sum_{i=1}^{n} z_{i}a_{i} - s\right)^{2} + \sum_{i} z_{i}(1 - z_{i})$$

s.t. $0 \le z_{i} \le 1, \ i = 1, \dots, n.$

Is the **global min** of above problem equal to 0?

6.881 Optimization for Machine Learning

Does there exist a subset of $\{a_1, \ldots, a_n\}$ that sums to *s*? SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

$$\min_{z} \quad \left(\sum_{i=1}^{n} z_{i}a_{i} - s\right)^{2} + \sum_{i} z_{i}(1 - z_{i})$$

s.t. $0 \le z_{i} \le 1, \ i = 1, \dots, n.$

Is the **global min** of above problem equal to 0?

Concrete proof of intractability

To be pedantic, need to care for model of computing used.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

3

Suvrit Sra (suvrit@mit.edu)

Let
$$f(x) = (1 - \frac{1}{s}) \max_i |x_i| - \min_i |x_i| + |a^T x|$$

where $a \in \mathbb{Z}^n_+$, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Suvrit Sra (suvrit@mit.edu)

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_{i}| - \min_{i} |x_{i}| + |a^{T}x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, **but**!

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_i| - \min_{i} |x_i| + |a^T x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, **but**!

NP-Hard to decide if there's an *x* s.t. f(x) < 0?

Suvrit Sra (suvrit@mit.edu)

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_{i}| - \min_{i} |x_{i}| + |a^{T}x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, **but**!

NP-Hard to decide if there's an *x* s.t. f(x) < 0?

• Assume $y \in {\pm 1}^n$ satisfies $a^T y = 0$. Then, f(y) = -1/s.

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_{i}| - \min_{i} |x_{i}| + |a^{T}x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, **but**!

NP-Hard to decide if there's an *x* s.t. f(x) < 0?

- Assume $y \in {\pm 1}^n$ satisfies $a^T y = 0$. Then, f(y) = -1/s.
- Let $\max_i |x_i| = 1$ and $\delta = |a^T x|$

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_{i}| - \min_{i} |x_{i}| + |a^{T}x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, **but**!

NP-Hard to decide if there's an *x* s.t. f(x) < 0?

- Assume $y \in {\pm 1}^n$ satisfies $a^T y = 0$. Then, f(y) = -1/s.
- Let $\max_i |x_i| = 1$ and $\delta = |a^T x|$
- If f(x) < 0, then $|x_i| > 1 \frac{1}{s} + \delta$ for $1 \le i \le n$

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_{i}| - \min_{i} |x_{i}| + |a^{T}x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!

NP-Hard to decide if there's an *x* s.t. f(x) < 0?

Assume y ∈ {±1}ⁿ satisfies a^Ty = 0. Then, f(y) = -1/s.
Let max_i |x_i| = 1 and δ = |a^Tx|
If f(x) < 0, then |x_i| > 1 - ¹/_s + δ for 1 ≤ i ≤ n
If y_i = sgn x_i; then y_ix_i > 1 - ¹/_s + δ and |y_i - x_i| = 1 - y_ix_i < ¹/_s - δ; so
|a^Ty| ≤ |a^Tx| + |a^T(y - x)| ≤ δ + s max_i |y_i - x_i|
< (1 - s)δ + 1 ≤ 1.

Let
$$f(x) = (1 - \frac{1}{s}) \max_{i} |x_{i}| - \min_{i} |x_{i}| + |a^{T}x|$$

where
$$a \in \mathbb{Z}_+^n$$
, $s = \sum_i a_i \ge 1$.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!

NP-Hard to decide if there's an *x* s.t. f(x) < 0?

Assume y ∈ {±1}ⁿ satisfies a^Ty = 0. Then, f(y) = -1/s.
Let max_i |x_i| = 1 and δ = |a^Tx|
If f(x) < 0, then |x_i| > 1 - ¹/_s + δ for 1 ≤ i ≤ n
If y_i = sgn x_i; then y_ix_i > 1 - ¹/_s + δ and |y_i - x_i| = 1 - y_ix_i < ¹/_s - δ; so
|a^Ty| ≤ |a^Tx| + |a^T(y - x)| ≤ δ + s max_i |y_i - x_i|
< (1 - s)δ + 1 ≤ 1.
Since a ∈ Zⁿ₊, this is possible iff a^Ty = 0 (latter is like subset-sum)

Convex but hard

Suvrit Sra (suvrit@mit.edu)

Consider the following subset of real symmetric matrices:

$$CP_n := \left\{ A \in \mathbb{S}^{n \times n} \mid x^T A x \ge 0 \text{ for all } x \ge 0 \right\}$$

Consider the following subset of real symmetric matrices:

$$CP_n := \{A \in \mathbb{S}^{n \times n} \mid x^T A x \ge 0 \text{ for all } x \ge 0\}$$

Exercise: Verify that CP_n is a convex cone. **Challenge.** Given matrix *A*, decide if $A \in CP_n$?

Suvrit Sra (suvrit@mit.edu)

Consider the following subset of real symmetric matrices:

$$CP_n := \{A \in \mathbb{S}^{n \times n} \mid x^T A x \ge 0 \text{ for all } x \ge 0\}$$

Exercise: Verify that CP_n is a convex cone. **Challenge.** Given matrix *A*, decide if $A \in CP_n$?

 $\min_{x} \quad x^{T}Ax \quad \text{s.t.} \quad x \ge 0$ Is there an *x* s.t. $x^{T}Ax < 0$? Is x = 0 a local min?

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Consider the following subset of real symmetric matrices:

$$CP_n := \{A \in \mathbb{S}^{n \times n} \mid x^T A x \ge 0 \text{ for all } x \ge 0\}$$

Exercise: Verify that CP_n is a convex cone. **Challenge.** Given matrix *A*, decide if $A \in CP_n$?

 $\min_{x} \quad x^{T}Ax \quad \text{s.t.} \quad x \ge 0 \\ \text{Is there an } x \text{ s.t. } x^{T}Ax < 0? \\ \text{Is } x = 0 \text{ a local min?}$

Amounts to checking if *A* is *copositive*, known to be co-NPC (which implies that checking copositivity is NP-Hard).

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Consider the following subset of real symmetric matrices:

$$CP_n := \left\{ A \in \mathbb{S}^{n \times n} \mid x^T A x \ge 0 \text{ for all } x \ge 0 \right\}$$

Exercise: Verify that CP_n is a convex cone. **Challenge.** Given matrix *A*, decide if $A \in CP_n$?

 $\begin{array}{ll} \min_{x} & x^{T}Ax & \text{s.t. } x \geq 0 \\ \text{Is there an } x \text{ s.t. } x^{T}Ax < 0? \\ \text{Is } x = 0 \text{ a local min}? \end{array}$

Amounts to checking if *A* is *copositive*, known to be co-NPC (which implies that checking copositivity is NP-Hard). **Explore:** the topic "testing copositivity".

Read: K. Murty, S. Kabadi. *Some NP-Complete Problems in Quadratic and Nonlinear Programming*, Math. Prog. v39, pp. 117–129. 1987.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Copositive matrices: exercises

Exercise: Verify that the following matrix is copositive

$$A := \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{bmatrix}.$$

6.881 Optimization for Machine Learning

Copositive matrices: exercises

Exercise: Verify that the following matrix is copositive

$$A := \begin{bmatrix} 1 & -1 & 1 & 1 & -1 \\ -1 & 1 & -1 & 1 & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & -1 & 1 \end{bmatrix}.$$

Exercise: Non-negative matrix factorization (NMF) seeks to solve

$$\min_{B,C\geq 0} \|A - BC\|_{\mathrm{F}}^2,$$

for a given $A \ge 0$ (elementwise). Restricting $C = B^T$, rewrite NMF as a "copositive programming" problem.

Suvrit Sra (suvrit@mit.edu)

Maximizing convex functions

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Maximizing convex functions

Theorem. Let *f* be a convex function and let C = conv S, where *S* is an *arbitrary* set of points. Then,

$$\sup \{ f(x) \mid x \in C \} = \sup \{ f(x) \mid x \in S \} \,,$$

where the first sup is attained only when the second one is.

Maximizing convex functions

Theorem. Let *f* be a convex function and let C = conv S, where *S* is an *arbitrary* set of points. Then,

 $\sup \{ f(x) \mid x \in C \} = \sup \{ f(x) \mid x \in S \} \,,$

where the first sup is attained only when the second one is.

Theorem. Let f be convex; C be a closed convex set in dom f. Suppose C contains no lines. Then, if the sup of f relative to C is attained at all, it is attained at some extreme point of C.

Example: LP optimum at a vertex (vertices extreme points for polyhedra)

Ref. See Section 32 of R. T. Rockafellar, Convex Analysis.

Suvrit Sra (suvrit@mit.edu)

How hard is global opt?

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

How much computation required to ensure $f(x) - f^* \le \epsilon$?

How to measure complexity?

How much computation required to ensure $f(x) - f^* \le \epsilon$?

How to measure complexity?

Oracle based complexity: count number of calls to an "oracle"

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

How much computation required to ensure $f(x) - f^* \le \epsilon$?

How to measure complexity?

Oracle based complexity: count number of calls to an "oracle"

- **Zeroth order** oracle: inputs a point *x*, outputs f(x)
- **First-order** oracle: inputs a point *x*, outputs f(x), $\nabla f(x)$

Higher order oracles can also be considered; also, later, we'll consider other oracles (stochastic, inexact, etc.)

How much computation required to ensure $f(x) - f^* \le \epsilon$?

How much computation required to ensure $f(x) - f^* \le \epsilon$? **Problem:** $f^* = \min_x \{f(x) \mid x \in [0, 1]^n\}$

How much computation required to ensure $f(x) - f^* \le \epsilon$?

Problem:
$$f^* = \min_{x} \{ f(x) \mid x \in [0, 1]^n \}$$

Problem class: f is L-Lipschitz on $[0, 1]^n$ $|f(x) - f(y)| \le L ||x - y||_{\infty}$ for constant L and $x, y \in [0, 1]^n$.

6.881 Optimization for Machine Learning

How much computation required to ensure $f(x) - f^* \le \epsilon$?

Problem:
$$f^* = \min_{x} \{ f(x) \mid x \in [0, 1]^n \}$$

Problem class: f is L-Lipschitz on $[0, 1]^n$ $|f(x) - f(y)| \le L ||x - y||_{\infty}$ for constant L and $x, y \in [0, 1]^n$.

Algorithm: Brute force search.

Pick integer p ≥ 1 and place a uniform grid (width 1/2p) over [0, 1]ⁿ centered around pⁿ points

How much computation required to ensure $f(x) - f^* \le \epsilon$?

Problem:
$$f^* = \min_{x} \{ f(x) \mid x \in [0, 1]^n \}$$

Problem class: f is L-Lipschitz on $[0, 1]^n$ $|f(x) - f(y)| \le L ||x - y||_{\infty}$ for constant L and $x, y \in [0, 1]^n$.

Algorithm: Brute force search.

- ▶ Pick integer p ≥ 1 and place a uniform grid (width 1/2p) over [0, 1]ⁿ centered around pⁿ points
- ▶ We can ensure $f(\bar{x}) f^* \le L/2p$ in $O(p^n)$ calls of oracle f(x)
Complexity of global optimization

How much computation required to ensure $f(x) - f^* \le \epsilon$?

Problem:
$$f^* = \min_{x} \{ f(x) \mid x \in [0, 1]^n \}$$

Problem class: f is L-Lipschitz on $[0, 1]^n$ $|f(x) - f(y)| \le L ||x - y||_{\infty}$ for constant L and $x, y \in [0, 1]^n$.

Algorithm: Brute force search.

- ▶ Pick integer p ≥ 1 and place a uniform grid (width 1/2p) over [0, 1]ⁿ centered around pⁿ points
- ▶ We can ensure $f(\bar{x}) f^* \le L/2p$ in $O(p^n)$ calls of oracle f(x)
- (this translates into $O(\left(\frac{L}{2\epsilon}\right)^n)$ for $p \ge L/2\epsilon$)

Suvrit Sra (suvrit@mit.edu)

Complexity of global optimization

How much computation required to ensure $f(x) - f^* \le \epsilon$?

Problem:
$$f^* = \min_{x} \{ f(x) \mid x \in [0, 1]^n \}$$

Problem class: f is L-Lipschitz on $[0, 1]^n$ $|f(x) - f(y)| \le L ||x - y||_{\infty}$ for constant L and $x, y \in [0, 1]^n$.

Algorithm: Brute force search.

- Pick integer p ≥ 1 and place a uniform grid (width 1/2p) over [0, 1]ⁿ centered around pⁿ points
- ▶ We can ensure $f(\bar{x}) f^* \le L/2p$ in $O(p^n)$ calls of oracle f(x)
- (this translates into $O(\left(\frac{L}{2\epsilon}\right)^n)$ for $p \ge L/2\epsilon$)

The brute force method is worst-case optimal!

Suvrit Sra (suvrit@mit.edu)

Idea: Create "resisting" oracles.

Suvrit Sra (suvrit@mit.edu)

Idea: Create "resisting" oracles.

Let $p = \lfloor \frac{L}{2\epsilon} \rfloor$. Suppose, we have a method that needs $N < p^n$ oracle calls to solve problems to accuracy ϵ in problem class.

Idea: Create "resisting" oracles.

Let $p = \lfloor \frac{L}{2\epsilon} \rfloor$. Suppose, we have a method that needs $N < p^n$ oracle calls to solve problems to accuracy ϵ in problem class.

Resisting oracle

Return f(x) = 0 at any test point x

(so method can only find $\bar{x} \in [0, 1]^n$ s.t. $f(\bar{x}) = 0$)

But $N < p^n$, so there's a box with **no** test points.

Idea: Create "resisting" oracles.

Let $p = \lfloor \frac{L}{2\epsilon} \rfloor$. Suppose, we have a method that needs $N < p^n$ oracle calls to solve problems to accuracy ϵ in problem class.

Resisting oracle

Return f(x) = 0 at any test point x

(so method can only find $\bar{x} \in [0, 1]^n$ s.t. $f(\bar{x}) = 0$)

But $N < p^n$, so there's a box with **no** test points.

Thus, put x^* inside this box of width ϵ/L and set $f(x) = \min \{0, L || x - x^* || - \epsilon\}$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Lower bound for global optimization

 $f(x) = \min \{0, L \| x - x^* \| - \epsilon \}$

This function is *L*-Lipschitz, its accuracy is ϵ .

Thus, without at least p^n points, accuracy cannot be better than ϵ

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Lower bound for global optimization

 $f(x) = \min \{0, L \| x - x^* \| - \epsilon \}$

This function is *L*-Lipschitz, its accuracy is ϵ .

Thus, without at least p^n points, accuracy cannot be better than ϵ

In general, brute force (exponential time) method the best. Moreover, vastly worse than "just" 2^{*n*}!

Exercise: Provide similar lower bounds for C^1 functions.

Ref. Section 1.1 of Yu. Nesterov, "Lectures on Convex Optimization"

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Stationarity

(More modest goal)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

First-order necessary condition

Assuming $f \in C^1$, $\nabla f(x) = 0$ necessary Weak requirement: $\|\nabla f(x)\| \le \epsilon$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

First-order necessary condition

Assuming $f \in C^1$, $\nabla f(x) = 0$ necessary Weak requirement: $\|\nabla f(x)\| \le \epsilon$

Consider $f(x) = x^3$ on the set [-1, 1]. Global opt is at -1, while $f'(x) = 3x^2 = 0$ as x = 0.

6.881 Optimization for Machine Learning

First-order necessary condition

Assuming $f \in C^1$, $\nabla f(x) = 0$ necessary Weak requirement: $\|\nabla f(x)\| \le \epsilon$

Consider $f(x) = x^3$ on the set [-1, 1]. Global opt is at -1, while $f'(x) = 3x^2 = 0$ as x = 0.

Second-order necessary conditions

Assume $f \in C^2$. Then, $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$

Suvrit Sra (suvrit@mit.edu)

First-order necessary condition

Assuming $f \in C^1$, $\nabla f(x) = 0$ necessary Weak requirement: $\|\nabla f(x)\| \le \epsilon$

Consider $f(x) = x^3$ on the set [-1, 1]. Global opt is at -1, while $f'(x) = 3x^2 = 0$ as x = 0.

Second-order necessary conditions

Assume $f \in C^2$. Then, $\nabla f(x) = 0$ and $\nabla^2 f(x) \succeq 0$

Second-order sufficient conditions (local opt)

Assume $f \in C^2$. Then, $\nabla f(x) = 0$ and $\nabla^2 f(x) \succ 0$

Suvrit Sra (suvrit@mit.edu)

Second-order necessary conditions

Assume $f \in C^2$. Then, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$

Taylor expand $f(x^* + td)$, where *d* is arbitrary and t > 0:

 $f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{t^2}{2} d^T \nabla^2 f(x^*) d + o(t^2).$

Second-order necessary conditions

Assume
$$f \in C^2$$
. Then, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$

Taylor expand $f(x^* + td)$, where *d* is arbitrary and t > 0:

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{t^2}{2} d^T \nabla^2 f(x^*) d + o(t^2).$$

Since x^* is a local min, $\nabla f(x^*) = 0$ holds. Thus,

$$\frac{f(x^* + td) - f(x^*)}{t^2} = \frac{1}{2}d^T \nabla^2 f(x^*)d + \frac{o(t^2)}{t^2}$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Second-order necessary conditions

Assume
$$f \in C^2$$
. Then, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succeq 0$

Taylor expand $f(x^* + td)$, where *d* is arbitrary and t > 0:

$$f(x^* + td) = f(x^*) + t\nabla f(x^*)^T d + \frac{t^2}{2} d^T \nabla^2 f(x^*) d + o(t^2).$$

Since x^* is a local min, $\nabla f(x^*) = 0$ holds. Thus, $\frac{f(x^* + td) - f(x^*)}{t^2} = \frac{1}{2}d^T \nabla^2 f(x^*)d + \frac{o(t^2)}{t^2}$ Since x^* is local min, for small enough t lhs above is ≥ 0 . Thus, $0 \leq \lim_{t \downarrow 0} \frac{1}{2}d^T \nabla^2 f(x^*)d + \frac{o(t^2)}{t^2}$

$$\implies d^T \nabla^2 f(x^*) d \ge 0 \quad \leftrightarrow \quad \nabla^2 f(x^*) \succeq 0.$$

Suvrit Sra (suvrit@mit.edu)

Sufficient condition

Assume
$$f \in C^2$$
, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$.

Exercise: Prove that x^* is a local minimum. (*Hint:* Analyze $f(x^* + y) - f(x^*)$ via Taylor series, use $\nabla^2 f(x^*) \succeq \delta I$ for some $\delta > 0$.)

Sufficient condition

Assume $f \in C^2$, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$.

Exercise: Prove that x^* is a local minimum. (*Hint:* Analyze $f(x^* + y) - f(x^*)$ via Taylor series, use $\nabla^2 f(x^*) \succeq \delta I$ for some $\delta > 0$.)

Remark: It can still happen that $\nabla^2 f(x^*) \not\geq 0$ but x^* is a local min (e.g., consider $f(x) = x^4 + 2$ at x = 0). Such critical points are called *degenerate*; functions without degenerate critical points called *"Morse functions"* (Explore!).

Sufficient condition

Assume $f \in C^2$, $\nabla f(x^*) = 0$ and $\nabla^2 f(x^*) \succ 0$.

Exercise: Prove that *x*^{*} is a local minimum. (*Hint:* Analyze $f(x^* + y) - f(x^*)$ via Taylor series, use $\nabla^2 f(x^*) \succeq \delta I$ for some $\delta > 0$.)

Remark: It can still happen that $\nabla^2 f(x^*) \neq 0$ but x^* is a local min (e.g., consider $f(x) = x^4 + 2$ at x = 0). Such critical points are called *degenerate*; functions without degenerate critical points called "Morse functions" (Explore!).

Useful convergence criterion: (ϵ, δ) -stationarity

$$\|\nabla f(x)\|_2 \le \epsilon \text{ and } \nabla^2 f(x) \succeq -\sqrt{\delta}I$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Nonsmooth & Nonconvex

(Introduction)

Suvrit Sra (suvrit@mit.edu)

First-order conditions

▶ For convex, $0 \in \partial f$ necessary and sufficient for global opt.

First-order conditions

For convex, 0 ∈ ∂f necessary and sufficient for global opt.
For nonconvex, we hope for only (first-order) stationarity.

First-order conditions

For convex, 0 ∈ ∂f necessary and sufficient for global opt.
For nonconvex, we hope for only (first-order) stationarity.

How should we define ∂f ?

► If *f* is nonsmooth, nonconvex, ∂f defined via $\partial f(x) := \{g \mid f(y) \ge f(x) + \langle g, y - x \rangle \forall y\}$ not helpful!

- ► If *f* is nonsmooth, nonconvex, ∂f defined via $\partial f(x) := \{g \mid f(y) \ge f(x) + \langle g, y x \rangle \ \forall y\}$ not helpful!
- ▶ It is a global notion; we seek a local one.
- ▶ Regularity assumption: locally Lipschitz functions

- ► If *f* is nonsmooth, nonconvex, ∂f defined via $\partial f(x) := \{g \mid f(y) \ge f(x) + \langle g, y x \rangle \ \forall y\}$ not helpful!
- ▶ It is a global notion; we seek a local one.
- ▶ Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to *directional derivative* $f'(x;d) := \lim_{t \downarrow 0} \frac{f(x+td) - f(x)}{t}.$

- ► If *f* is nonsmooth, nonconvex, ∂f defined via $\partial f(x) := \{g \mid f(y) \ge f(x) + \langle g, y x \rangle \ \forall y\}$ not helpful!
- ▶ It is a global notion; we seek a local one.
- ▶ Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to *directional derivative* $f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}.$

> **A key property of** f'(x; d) and ∂f $f'(x; d) = \max \{ \langle g, d \rangle \mid g \in \partial f(x) \}$

Suvrit Sra (suvrit@mit.edu)

- ► If *f* is nonsmooth, nonconvex, ∂f defined via $\partial f(x) := \{g \mid f(y) \ge f(x) + \langle g, y x \rangle \ \forall y\}$ not helpful!
- ▶ It is a global notion; we seek a local one.
- ► Regularity assumption: locally Lipschitz functions

For convex functions, ∂f intimately related to *directional derivative* $f'(x; d) := \lim_{t \downarrow 0} \frac{f(x + td) - f(x)}{t}.$

A key property of f'(x; d) and ∂f

$$f'(x;d) = \max \{ \langle g, d \rangle \mid g \in \partial f(x) \}$$

Thus, generalize ∂f via directional derivatives.

Suvrit Sra (suvrit@mit.edu)

Clarke directional derivative*

Clarke directional derivative

$$f^{\circ}(x;d) := \limsup_{\substack{y \to x \\ t \downarrow 0}} \frac{f(y+td) - f(y)}{t}$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Clarke directional derivative*

Clarke directional derivative

$$f^{\circ}(x;d) := \limsup_{\substack{y \to x \\ t \downarrow 0}} \frac{f(y+td) - f(y)}{t}$$

Prop. $f^{\circ}(x; \cdot)$ is positively homogeneous and subadditive.

Proof sketch: homogeneity is clear; we prove subadditivity.

$$f^{\circ}(x; u + v) = \limsup \frac{f(y + t(u + v)) - f(y))}{t}$$

$$\leq \limsup \frac{f(y + tu + tv) - f(y + tv)}{t} + \limsup \frac{f(y + tv) - f(y)}{t}$$

$$= f^{\circ}(x; u) + f^{\circ}(x; v).$$
(first limsup is $f^{\circ}(x; u)$ since $y + tv$ essentially dummy var converging to x)

F. Clarke. Generalized Gradients and Applications, TAMS 1975.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Exercises

Exercise: Let $f(x) = x^2 \sin(1/x)$. This function is Lipschitz near 0. Show that $f^{\circ}(0; v) = |v|$.

Exercise: What should $\partial_{\circ} f(0)$ be? (Answer: [-1, 1]; why?)

Exercise: What is $f^{\circ}(0; v)$ for f = -|x|? (Verify it is |v|.)

Clarke subdifferential*

Clarke subdifferential

 $\partial_{\circ} f(x) := \{g \in X \mid \langle g, d \rangle \leq f^{\circ}(x; d) \text{ for all } d \in X\}.$

Exercise: Prove that $\partial_{\circ} f(x)$ is a convex, compact set.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Clarke subdifferential*

Clarke subdifferential

 $\partial_{\circ} f(x) := \{g \in X \mid \langle g, d \rangle \leq f^{\circ}(x; d) \text{ for all } d \in X\}.$

Exercise: Prove that $\partial_{\circ} f(x)$ is a convex, compact set.

Theorem. A. When *f* is C^1 , $\partial_{\circ} f(x) = \{\nabla f(x)\}$. **B.** If *f* is convex, then $\partial_{\circ} f(x) = \partial f(x)$.

Clarke subdifferential*

Clarke subdifferential

 $\partial_{\circ} f(x) := \{g \in X \mid \langle g, d \rangle \leq f^{\circ}(x; d) \text{ for all } d \in X\}.$

Exercise: Prove that $\partial_{\circ} f(x)$ is a convex, compact set.

Theorem. A. When *f* is C^1 , $\partial_{\circ} f(x) = \{\nabla f(x)\}$. **B.** If *f* is convex, then $\partial_{\circ} f(x) = \partial f(x)$.

Prop. Let
$$f \in C_L^0$$
. $f^{\circ}(x; d) = \max \{ \langle g, d \rangle \mid g \in \partial_{\circ} f(x) \}$

Proof: Assume $\exists v \text{ s.t. } f^{\circ}(x; v)$ exceeds the given max. Then, there exists (**why?**) a linear functional ζ majorized by $f^{\circ}(x; v)$ agreeing with it at v. It follows that $\zeta \in \partial_{\circ} f(x)$, leading to a contradiction.

(we used definition of $\partial_{\circ} f$ along with sublinearity of $f^{\circ}(x; \cdot)$)

Exercise: Prove that for a locally Lipschitz function, f'(x; d) is the support function of the (convex) set $\partial_{\circ} f(x)$.

Suvrit Sra (suvrit@mit.edu)

Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: $0 \in \partial_{\circ} f(x)$

Suvrit Sra (suvrit@mit.edu)

Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: $0 \in \partial_{\circ} f(x)$

Proof: Since $\partial(-f) = -\partial f$, suffices to consider when *x* is a local minimum. When *x* is a local min, as before, starting from

$$\frac{f(y+td)-f(y)}{t}$$

evident that $f^{\circ}(x; d) \ge 0$. Thus, $\zeta = 0$ belongs to $\partial_{\circ} f(x)$ because of the "max-rule" which implies that

 $\zeta \in \partial_{\circ} f(x) \quad \text{iff } f^{\circ}(x; d) \ge \langle \zeta, d \rangle \quad \forall d \in X.$

Suvrit Sra (suvrit@mit.edu)
Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: $0 \in \partial_{\circ} f(x)$

Proof: Since $\partial(-f) = -\partial f$, suffices to consider when *x* is a local minimum. When *x* is a local min, as before, starting from

$$\frac{f(y+td)-f(y)}{t}$$

evident that $f^{\circ}(x; d) \ge 0$. Thus, $\zeta = 0$ belongs to $\partial_{\circ} f(x)$ because of the "max-rule" which implies that

 $\zeta \in \partial_{\circ} f(x) \quad \text{iff } f^{\circ}(x; d) \ge \langle \zeta, d \rangle \quad \forall d \in X.$

Could use dist $(0, \partial_{\circ} f(x)) \leq \epsilon$ as stationarity criterion

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Theorem. Let $f \in C^1$ and g convex. Then, $\partial_{\circ}(f + g) = \nabla f + \partial g$

6.881 Optimization for Machine Learning

Theorem. Let $f \in C^1$ and g convex. Then, $\partial_{\circ}(f+g) = \nabla f + \partial g$

Theorem. If *f* and *g* are LL around a point $x \in X$, then $\partial_{\circ}(f+g)(x) \subset \partial_{\circ}f(x) + \partial_{\circ}g(x)$

Theorem. Let $f \in C^1$ and g convex. Then, $\partial_{\circ}(f+g) = \nabla f + \partial g$

Theorem. If *f* and *g* are LL around a point $x \in X$, then $\partial_{\circ}(f+g)(x) \subset \partial_{\circ}f(x) + \partial_{\circ}g(x)$

Recalling Rademacher's theorem, we can "simplify" $\partial_{\circ} f$

Theorem. An LL function is a.e. differentiable

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Theorem. Let $f \in C^1$ and g convex. Then, $\partial_{\circ}(f + g) = \nabla f + \partial g$

Theorem. If *f* and *g* are LL around a point $x \in X$, then $\partial_{\circ}(f+g)(x) \subset \partial_{\circ}f(x) + \partial_{\circ}g(x)$

Recalling Rademacher's theorem, we can "simplify" $\partial_{\circ} f$

Theorem. An LL function is a.e. differentiable

Theorem. Let *f* be LL around $x \in X$ and let $S \subset X$ have measure zero. Then, $\partial_{\circ}f(x) = \operatorname{conv} \{\lim_{r} \nabla f(x^{r}) \mid x^{r} \to x, x^{r} \notin S\}$

Corollary. Approximate $\partial_{\circ} f(x)$ using "gradient sampling"

6.881 Optimization for Machine Learning