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ADMIN

» Homeworks due today
» Project questions?
» Nonconvexity...
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Nonconvex: hardness of global optima

Does there exist a subset of {a1, ...,a,} that sums to s?

-
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Nonconvex: hardness of global optima

Does there exist a subset of {a1, ...,a,} that sums to s?
SUBSETSUM, well-known to be NP-Hard
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Nonconvex: hardness of global optima

Does there exist a subset of {a1, ...,a,} that sums to s?
SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

mzin (Z:'l:l Zid; — 8)2 + Zi zi(1 — z;)

st. 0<z<1,i=1,...,n
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Nonconvex: hardness of global optima

Does there exist a subset of {a1, ...,a,} that sums to s?
SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

Inzin (Z:'l:l Zid; — 8)2 + Zi zi(1 — z;)

st. 0<z<1,i=1,...,n

Is the global min of above problem equal to 0?
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Nonconvex: hardness of global optima

Does there exist a subset of {a1, ...,a,} that sums to s?
SUBSETSUM, well-known to be NP-Hard

SUBSETSUM via nonconvex opt

mzin (Zi: zia; —s)* + Z zi(1

st. 0<z<1,i=1,...,n

Is the global min of above problem equal to 0?

Concrete proof of intractability

To be pedantic, need to care for model of computing used.
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Nonconvex: what about local minima?

-
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Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|

wherea € Z',s = ;a; > 1.

(Ref: Example due to Y. Nesterov.)
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Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
wherea € Z',s = ;a; > 1.
(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!
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Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
wherea € Z',s = ;a; > 1.
(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!
NP-Hard to decide if there’s an x s.t. f(x) < 0?
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Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
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Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
wherea € Z',s = ;a; > 1.
(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!
NP-Hard to decide if there’s an x s.t. f(x) < 0?

i» Assume y € {+1}" satisfies a”y = 0. Then, f(y) = —1/s.
I
> Let max;|x| = 1and § = |a’x|



Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
wherea € Z',s = ;a; > 1.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!

NP-Hard to decide if there’s an x s.t. f(x) < 0?

:» Assume y € {+1}" satisfies a”y = 0. Then, f(y) = —1/s.
l» Let max; |x;| = 1and 6 = |a"x|
:» Iff(x) <O, then|x| >1—14+5for1 <i<n
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Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
wherea € Z',s = ;a; > 1.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!

NP-Hard to decide if there’s an x s.t. f(x) < 0?

:» Assume y € {+1}" satisfies a”y = 0. Then, f(y) = —1/s.

l» Let max; |x;| = 1and 6 = |a"x|

:> If f(x) <0, then |x;| >17—+6f0r1<1<n

» Ify; =sgnx; thenyix; >1— ; +dand |y —xi| =1 —yix; <

1 .
s —96;s0

"yl < la'x| + " (y — x)| < 6+ smax |y; — xi
< (I-s)+1<1.



Nonconvex: what about local minima?

Letf(x) = (1 — %) max; [x;| — min; |x;| + [aTx]|
wherea € Z',s = ;a; > 1.

(Ref: Example due to Y. Nesterov.)

Clearly f(0) = 0, but!

NP-Hard to decide if there’s an x s.t. f(x) < 0?

:» Assume y € {+1}" satisfies a”y = 0. Then, f(y) = —1/s.

l» Let max; |x;| = 1and 6 = |a"x|

:> If f(x) <0, then |x;| >17—+6f0r1<1<n

» Ify; =sgnx; thenyix; >1— ; +dand |y —xi| =1 —yix; <

1 .
s —96;s0

@yl < I3 4 1a"(y — )| < 64 s max]y;
< (I-s)+1<1.



Convex but hard
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Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CP, :={A e ™" | xTAx > 0 forall x > 0}
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Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CP, :={A e ™" | xTAx > 0 forall x > 0}

' Exercise: Verify that CP, is a convex cone.
. Challenge Given matrix A, decide if A € CP,,?
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Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CP, :={A e ™" | xTAx > 0 forall x > 0}

' Exercise: Verify that CP, is a convex cone.
| Challenge Given matrix A, decide if A € CP,;?

min, xTAx st x>0
Is there an x s.t. xTAx < 0?
Is x = 0 a local min?
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Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CP, :={A e ™" | xTAx > 0 forall x > 0}

' Exercise: Verify that CP, is a convex cone.
| Challenge Given matrix A, decide if A € CP,;?

min, xTAx st x>0
Is there an x s.t. xTAx < 0?
Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).
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Hardness due to a fundamental failure

Consider the following subset of real symmetric matrices:

CP, :={A e ™" | xTAx > 0 forall x > 0}

' Exercise: Verify that CP, is a convex cone.
. Challenge Given matrix A, decide if A € CP,,?

min, xTAx st x>0
Is there an x s.t. xTAx < 0?
Is x = 0 a local min?

Amounts to checking if A is copositive, known to be co-NPC
(which implies that checking copositivity is NP-Hard).

Read: K. Murty, S. Kabadi. Some NP-Complete Problems in Quadratic and
Nonlinear Programming, Math. Prog. v39, pp. 117-129. 1987.

S7
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Copositive matrices: exercises
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Copositive matrices: exercises

| Exercise: Non-negative matrix factorization (NMF) seeks to solve

1
:
1
in ||A — BC|[3 '
Brgloll Il |
:

1

1

1

1

1

for a given A > 0 (elementwise). Restricting C = BT, rewrite
NMF as a “copositive programming” problem.
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Maximizing convex functions
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Maximizing convex functions

Theorem. Let f be a convex function and let C = conv S,
where S is an arbitrary set of points. Then,

sup {f(x) | x € C} = sup {f(x) | x € S},

where the first sup is attained only when the second one is.
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Maximizing convex functions

Theorem. Let f be a convex function and let C = conv S,
where S is an arbitrary set of points. Then,

sup {f(x) | x € C} = sup {f(x) | x € S},

where the first sup is attained only when the second one is.

Theorem. Let f be convex; C be a closed convex set in dom f.
Suppose C contains no lines. Then, if the sup of f relative to C
is attained at all, it is attained at some extreme point of C.

Example: LP optimum at a vertex (vertices extreme points for polyhedra)

Ref. See Section 32 of R. T. Rockafellar, Convex Analysis.
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How hard is global opt?

=
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Complexity of global optimization

How much computation required to ensure

flx) - fr<e

How to measure complexity?

-
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Complexity of global optimization

How much computation required to ensure

fl) —fr<e

How to measure complexity?

Oracle based complexity: count number of calls to an “oracle”
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Complexity of global optimization

How much computation required to ensure

fl) —fr<e

How to measure complexity? ‘

Oracle based complexity: count number of calls to an “oracle”
m Zeroth order oracle: inputs a point x, outputs f(x)

m First-order oracle: inputs a point x, outputs f(x), Vf(x)

Higher order oracles can also be considered; also, later, we’ll
consider other oracles (stochastic, inexact, etc.)
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Complexity of global optimization

How much computation required to ensure

fl) —fr < e
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Complexity of global optimization

r--r-—--=--=- - - -" - -" - """ " -"-" " °-~" -~ -~ "~ "=~ "=~ "=~ -/ -~/ /o~ O-T-T-T-TTT-T-=-=-= 1
: How much computation required to ensure ;
L O s E
r--r-—--=-=-=-"-"7"7"°"="~"~"~"°"~"°"~°"°"~*"°"~*"°"°*"°"*"°"*" = ‘*"°=T "=~ -/ /o~ Oo~TO-T--T-T-=-= 1
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Complexity of global optimization

r--r-—--=--=- - - -" - -" - """ " -"-" " °-~" -~ -~ "~ "=~ "=~ "=~ -/ -~/ /o~ O-T-T-T-TTT-T-=-=-= 1
: How much computation required to ensure ;
L O s E
r--r-—--=-=-=-"-"7"7"°"="~"~"~"°"~"°"~°"°"~*"°"~*"°"°*"°"*"°"*" = ‘*"°=T "=~ -/ /o~ Oo~TO-T--T-T-=-= 1

Problem class: f is L-Lipschitz on [0, 1]"
If (x) — f(y)| < L||x — y|| for constant L and x,y € [0,1]".
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Complexity of global optimization

How much computation required to ensure

flo) - fr<e

Problem class: f is L-Lipschitz on [0, 1)"
If (x) = f(y)| < L||x — yl||oc for constant L and x,y € [0,1]".

Algorithm: Brute force search.

» Pick integer p > 1 and place a uniform grid (width 1/2p)
over [0,1]" centered around p" points
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Complexity of global optimization

How much computation required to ensure

flo) - fr<e

Problem class: f is L-Lipschitz on [0, 1)"
If (x) = f(y)| < L||x — yl||oc for constant L and x,y € [0,1]".
Algorithm: Brute force search.

» Pick integer p > 1 and place a uniform grid (width 1/2p)
over [0,1]" centered around p" points

» We can ensure f(x) — f* < L/2p in O(p") calls of oracle f(x)
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Complexity of global optimization

How much computation required to ensure

flo) - fr<e

Problem class: f is L-Lipschitz on [0, 1)"
If (x) = f(y)| < L||x — yl||oc for constant L and x,y € [0,1]".
Algorithm: Brute force search.

» Pick integer p > 1 and place a uniform grid (width 1/2p)
over [0,1]" centered around p" points

» We can ensure f(x) — f* < L/2p in O(p") calls of oracle f(x)
» (this translates into O((Z—Le)") forp > L/2¢)
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Complexity of global optimization

How much computation required to ensure

flo) - fr<e

Problem class: f is L-Lipschitz on [0, 1)"
If (x) = f(y)| < L||x — yl||oc for constant L and x,y € [0,1]".
Algorithm: Brute force search.

» Pick integer p > 1 and place a uniform grid (width 1/2p)
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Constructing the lower bound

Idea: Create “resisting” oracles.
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Constructing the lower bound

Idea: Create “resisting” oracles.
Letp = | £]. Suppose, we have a method that needs N < p"
oracle calls to solve problems to accuracy e in problem class.
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Constructing the lower bound

Idea: Create “resisting” oracles.
Letp = | £]. Suppose, we have a method that needs N < p"
oracle calls to solve problems to accuracy e in problem class.

o

Resisting oracle

‘ Return f(x) = 0 at any test point x ‘

(so method can only find x € [0,1]" s.t. f(X) = 0)

‘ But N < p", so there’s a box with no test points. ‘
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Constructing the lower bound

Idea: Create “resisting” oracles.
Letp = | £]. Suppose, we have a method that needs N < p"
oracle calls to solve problems to accuracy € in problem class.

o

Resisting oracle

‘ Return f(x) = 0 at any test point x ‘

(so method can only find x € [0,1]" s.t. f(X) = 0)

‘ But N < p", so there’s a box with no test points. ‘

Thus, put x* inside this box of width ¢/L and set
f(x) = min{0, Lllx — x*|| — €}
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Lower bound for global optimization

f(x) = min {0, Lfjx — x™[| — €}

This function is L-Lipschitz, its accuracy is e.

Thus, without at least p” points, accuracy cannot be
better than e

-
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Lower bound for global optimization

f(x) = min {0, Lfjx — x™[| — €}

This function is L-Lipschitz, its accuracy is e.

Thus, without at least p” points, accuracy cannot be
better than e

In general, brute force (exponential time) method the
best. Moreover, vastly worse than “just” 2"!

Exercise: Provide similar lower bounds for C! functions.

Ref. Section 1.1 of Yu. Nesterov, “Lectures on Convex Optimization”
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Stationarity

(More modest goal)
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More modest goal: stationarity

First-order necessary condition

Assuming f € C!, Vf(x) = 0 necessary
Weak requirement: |Vf(x)|| < e

-
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More modest goal: stationarity

First-order necessary condition

Assuming f € C!, Vf(x) = 0 necessary
Weak requirement: |Vf(x)|| < e

Consider f(x) = x> on the set [-1,1]. Global
optis at —1, while f/(x) = 3x*> = 0 as x = 0.
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More modest goal: stationarity

First-order necessary condition

Assuming f € C!, Vf(x) = 0 necessary
Weak requirement: |Vf(x)|| < e

Consider f(x) = x> on the set [-1,1]. Global
optis at —1, while f/(x) = 3x*> = 0 as x = 0.

Second-order necessary conditions

Assume f € C2. Then, Vf(x) = 0 and V?f(x) = 0
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More modest goal: stationarity

First-order necessary condition

Assuming f € C!, Vf(x) = 0 necessary
Weak requirement: |Vf(x)|| < e

Consider f(x) = x> on the set [-1,1]. Global
optis at —1, while f/(x) = 3x*> = 0 as x = 0.

Second-order necessary conditions

Assume f € C2. Then, Vf(x) = 0 and V?f(x) = 0

Second-order sufficient conditions (local opt)

Assume f € C2. Then, Vf(x) = 0 and V?f(x) = 0
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Second-order necessary conditions

Assume f € C2. Then, Vf(x*) = 0 and V?f(x*) = 0

Taylor expand f(x* + td), where d is arbitrary and ¢ > 0:

FO + td) = f(x*) + tVF(x)Td + LdT0F (x*)d + o(1).
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Second-order necessary conditions

Assume f € C2. Then, Vf(x*) = 0 and V?f(x*) = 0

Taylor expand f(x* + td), where d is arbitrary and ¢ > 0:

FO + td) = f(x*) + tVF(x)Td + LdT0F (x*)d + o(1).

Since x* is a local min, Vf(x*) = 0 holds. Thus,

f(X* + td) _f(X*) — %dTVZf(x*)d + O(tz)

t2 2
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Second-order necessary conditions

Assume f € C2. Then, Vf(x*) = 0 and V?f(x*) = 0

Taylor expand f(x* + td), where d is arbitrary and ¢ > 0:

FO + td) = f(x*) + tVF(x)Td + LdT0F (x*)d + o(1).

Since x* is a local min, Vf(x*) = 0 holds. Thus,

f(X* + td) _f(X*) — %dTVZf(x*)d + O(tz)

t2 t2

Since x* is local min, for small enough ¢ lhs above is > 0. Thus,

o(t?)

: 1 4T72 *

— AV ()d>0 & V(') =0.
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Sufficient condition

Assume f € C?, Vf(x*) = 0 and V2f(x*) > 0.

Exercise: Prove that x* is a local minimum. (Hint: Analyze
f(x* +y) — f(x*) via Taylor series, use V*f(x*) = &I for some & > 0.)
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Sufficient condition

Assume f € C?, Vf(x*) = 0 and V2f(x*) = 0

Exercise: Prove that x* is a local minimum. (Hint: Analyze
f(x* +y) — f(x*) via Taylor series, use V*f(x*) = &I for some & > 0.)

. Remark It can still happen that sz (x*) % 0 but x* is a lo-
: cal min (e.g., consider f(x) = x* + 2 at x = 0). Such criti-
' cal points are called degenerate; functions without degenerate
| critical points called “Morse functions” (Explore!).
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Sufficient condition

Assume f € C?, Vf(x*) = 0 and V2f(x*) = 0

Exercise: Prove that x* is a local minimum. (Hint: Analyze
f(x* +y) — f(x*) via Taylor series, use V*f(x*) = &I for some & > 0.)

. Remark It can still happen that sz (x*) % 0 but x* is a lo-
: cal min (e.g., consider f(x) = x* + 2 at x = 0). Such criti-
' cal points are called degenerate; functions without degenerate
| critical points called “Morse functions” (Explore!).

Useful convergence criterion: (e, §)-stationarity

IVf(x)]l2 < e and V3f(x) = —V/il
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Nonsmooth & Nonconvex

(Introduction)

-
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First-order conditions

» For convex, 0 € Of necessary and sufficient for global opt.
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First-order conditions

» For convex, 0 € Of necessary and sufficient for global opt.
» For nonconvex, we hope for only (first-order) stationarity.
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First-order conditions

» For convex, 0 € Of necessary and sufficient for global opt.
» For nonconvex, we hope for only (first-order) stationarity.

How should we define 0f?
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How to generalize 0f?

» If f is nonsmooth, nonconvex, df defined via
Of (x) = {g [ f(y) = f(x) + (g, y = x) Vy} not helpful!
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How to generalize 0f?

» If f is nonsmooth, nonconvex, df defined via
Of (x) = {g [ f(y) = f(x) + (g, y = x) Vy} not helpful!

» Itis a global notion; we seek a local one.

» Regularity assumption: locally Lipschitz functions
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How to generalize 0f?

» If f is nonsmooth, nonconvex, df defined via
Of (x) = {g [ f(y) = f(x) + (g, y = x) Vy} not helpful!

» Itis a global notion; we seek a local one.

» Regularity assumption: locally Lipschitz functions

For convex functions, Jf intimately related to directional
derivative
t —
i) e g T D) )
10 t
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How to generalize 0f?

» If f is nonsmooth, nonconvex, df defined via
Of (x) = {g [ f(y) = f(x) + (g, y = x) Vy} not helpful!

» Itis a global notion; we seek a local one.

» Regularity assumption: locally Lipschitz functions

For convex functions, Jf intimately related to directional
derivative

i) e g T D) )

10 t

A key property of f'(x;d) and Of
f'(x;d) = max {(g, d) | g € If (¥)}

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) Illll

20



How to generalize 0f?

» If f is nonsmooth, nonconvex, df defined via
Of (x) = {g [ f(y) = f(x) + (g, y = x) Vy} not helpful!

» Itis a global notion; we seek a local one.

» Regularity assumption: locally Lipschitz functions

For convex functions, Jf intimately related to directional
derivative

f/(x. d) =] mf(x + td) —f(X) )

10 t

A key property of f'(x;d) and Of
f'(x;d) = max {(g, d) | g € If (¥)}
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Clarke rrdirectiornal derivative*

Clarke directional derivative

____________________________________________________

-
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Clarke directional derivative*

Clarke directional derivative

i £(x:d) = limsup LY D) =F )

y—x t
£10

____________________________________________________

Fly+ Hu +0)) —f(y) i

f°(;u+v) = limsup 7
fly+ tu+to) — f(y + to) +llmsupf(y+tv) —f(
t t

E < limsup |
| = fEu) +£(x0). i

F. Clarke. Generalized Gradients and Applications, TAMS 1975.

-
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Exercises

Exercise: Let f(x) = x?sin(1/x). This function is Lipschitz near
0. Show that f°(0;v) = |v|.

Exercise: What should 0.f(0) be? (Answer: [—1, 1]; why?)
Exercise: What is f°(0;v) for f = —|x|? (Verify it is |v].)
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Clarke subdifferential*

Clarke subdifferential

| Bof (x) 1= {g € X | (g, d) < f°(x;d) forall d € X} . |

Exercise: Prove that 0.f(x) is a convex, compact set.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (3/02/21; Lecture 5) II|" 23



Clarke subdifferential*

Clarke subdifferential

| Duf (x) = {g € X | (g, d) <f°(x;d) forall d € X} . |

Exercise: Prove that 0.f(x) is a convex, compact set.

Theorem. A. When f is C', 9,f(x) = {Vf(x)}.
B. If f is convex, then d.f (x) = Of (x).
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Clarke subdifferential*

Clarke subdifferential

Exercise: Prove that 0.f(x) is a convex, compact set.

Theorem. A. When f is C', 9,f(x) = {Vf(x)}.
B. If f is convex, then d.f (x) = Of (x).

Prop. Letf € CY. f°(x;d) = max {(g, d) | g € Oof (x)}

] ! Proof: Assume 3 v s.t. f°(x;v) exceeds the given max. Then, there exists

\ (why?) a linear functional ¢ majorized by f°(x;v) agreeing with it at v. It
 follows that ¢ € f(x), leading to a contradiction.
! (we used definition of dof along with sublinearity of /°(x; -))

Exercise: Prove that for a locally Lipschitz function, f'(x;d) is
the support function of the (convex) set d.f (x).
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Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: 0 € Jof ()

-
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Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: 0 € dof (x)

] ! Proof: Since 0(—f) = —0f, suffices to consider when x is a local min- |

: imum. When x is a local min, as before, starting from

fly+td) —f(y)
t

the “max-rule” which implies that

E evident that f°(x;d) > 0. Thus, {( = 0 belongs to J.f(x) because of

Cedf(x) itffo(x;d) > (¢, d) VdeX.
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Nonsmooth necessary conditions

Theorem. Necessary condition for optimality: 0 € dof (x)

] ! Proof: Since 0(—f) = —0f, suffices to consider when x is a local min- !
: imum. When x is a local min, as before, starting from

fly+td) —f(y)
t

E evident that f°(x;d) > 0. Thus, {( = 0 belongs to J.f(x) because of
! the “max-rule” which implies that

Cedf(x) itffo(x;d) > (¢, d) VdeX.

‘ Could use dist(0, 0of (x)) < € as stationarity criterion
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Clarke subdifferential — key properties

Theorem. Let f € C! and g convex. Then, d(f +¢) = Vf + d¢

-
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Clarke subdifferential — key properties

Theorem. Let f € C! and g convex. Then, d(f +¢) = Vf + d¢

Theorem. If f and g are LL around a point x € X, then
o(f +8)(x) C Dof () + o8 (x)
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Clarke subdifferential — key properties

Theorem. Let f € C! and g convex. Then, 0 (f +g) = Vf + d¢

Theorem. If f and g are LL around a point x € X, then
9o(f +8)(x) C Dof (x) + Dog(x)

Recalling Rademacher’s theorem, we can “simplify” 0.f

’ Theorem. An LL function is a.e. differentiable ‘
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Clarke subdifferential — key properties

Theorem. Let f € C! and g convex. Then, 0 (f +g) = Vf + d¢

Theorem. If f and g are LL around a point x € X, then
9o(f +8)(x) C Dof (x) + Dog(x)

Recalling Rademacher’s theorem, we can “simplify” 0.f

’ Theorem. An LL function is a.e. differentiable ‘

Theorem. Let f be LL around x € X and let S C X have mea-
sure zero. Then, Oof (x) = conv {lim, Vf(x") | x" — x,x" ¢ S}

Corollary. Approximate 0.f(x) using “gradient sampling”
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