Optimization for Machine Learning

Lecture 4: Optimality conditions
6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

25 Feb, 2021

Optimality

(Local and global optima)

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.
Let x^{*} be local minimizer of f on $\mathcal{X} ; y \in \mathcal{X}$ any other feasible point.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.

Let x^{*} be local minimizer of f on $\mathcal{X} ; y \in \mathcal{X}$ any other feasible point.
We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.

Let x^{*} be local minimizer of f on $\mathcal{X} ; y \in \mathcal{X}$ any other feasible point.
We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
\mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.

Let x^{*} be local minimizer of f on $\mathcal{X} ; y \in \mathcal{X}$ any other feasible point.
We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
\mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
\begin{aligned}
f\left(x_{\theta}\right) & \leq \theta f(y)+(1-\theta) f\left(x^{*}\right) \\
f\left(x_{\theta}\right)-f\left(x^{*}\right) & \leq \theta\left(f(y)-f\left(x^{*}\right)\right)
\end{aligned}
$$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.

Let x^{*} be local minimizer of f on $\mathcal{X} ; y \in \mathcal{X}$ any other feasible point.
We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
\mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
\begin{aligned}
f\left(x_{\theta}\right) & \leq \theta f(y)+(1-\theta) f\left(x^{*}\right) \\
f\left(x_{\theta}\right)-f\left(x^{*}\right) & \leq \theta\left(f(y)-f\left(x^{*}\right)\right) .
\end{aligned}
$$

Since x^{*} is a local minimizer, for small enough $\theta>0, \mathrm{lhs} \geq 0$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex f, locally optimal point also global.

Let x^{*} be local minimizer of f on $\mathcal{X} ; y \in \mathcal{X}$ any other feasible point.
We need to show that $f(y) \geq f\left(x^{*}\right)=p^{*}$.
\mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
\begin{aligned}
f\left(x_{\theta}\right) & \leq \theta f(y)+(1-\theta) f\left(x^{*}\right) \\
f\left(x_{\theta}\right)-f\left(x^{*}\right) & \leq \theta\left(f(y)-f\left(x^{*}\right)\right) .
\end{aligned}
$$

Since x^{*} is a local minimizer, for small enough $\theta>0, \mathrm{lhs} \geq 0$.

- So rhs is also nonnegative, proving $f(y) \geq f\left(x^{*}\right)$ as desired.

Set of Optimal Solutions

The set of optimal solutions \mathcal{X}^{*} may be empty

Example. If $\mathcal{X}=\emptyset$, i.e., no feasible solutions, then $\mathcal{X}^{*}=\emptyset$

Example. When only inf not min, e.g., inf e^{x} as $x \rightarrow-\infty$ in general, we should worry about the question "Is $\mathcal{X}^{*}=\emptyset$?"

Exercise: Verify that \mathcal{X}^{*} is always a convex set.

Optimality conditions
 (Recognizing optima)

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \quad \underline{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}
$$

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}
$$

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}
$$

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}
$$

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

Similarly, using $-d$ it follows that $\left\langle\nabla f\left(x^{*}\right), d\right\rangle \leq 0$, so $\left\langle\nabla f\left(x^{*}\right), d\right\rangle=0$ must hold. Since d is arbitrary, $\nabla f\left(x^{*}\right)=0$.

First-order conditions: unconstrained

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable on an open set S containing x^{*}, a local minimum. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

Similarly, using - d it follows that $\left\langle\nabla f\left(x^{*}\right), d\right\rangle \leq 0$, so $\left\langle\nabla f\left(x^{*}\right), d\right\rangle=0$ must hold. Since d is arbitrary, $\nabla f\left(x^{*}\right)=0$.

Exercise: Prove that if f is convex, then $\nabla f\left(x^{*}\right)=0$ is actually sufficient for global optimality! For general f this is not true. (This property is what makes convex optimization special!)

First-order conditions: constrained

© For convex f, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.

First-order conditions: constrained

© For convex f, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

First-order conditions: constrained

© For convex f, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

© If $\mathcal{X}=\mathbb{R}^{n}$, this reduces to $\nabla f\left(x^{*}\right)=0$

© If $\nabla f\left(x^{*}\right) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^{*}

First-order conditions: constrained

- Let f be continuously differentiable, possibly nonconvex
- Suppose $\exists y \in \mathcal{X}$ such that $\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle<0$
- Using mean-value theorem of calculus, $\exists \xi \in[0,1]$ s.t.

$$
f\left(x^{*}+t\left(y-x^{*}\right)\right)=f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}+\xi t\left(y-x^{*}\right)\right), t\left(y-x^{*}\right)\right\rangle
$$

(we applied MVT to $g(t):=f\left(x^{*}+t\left(y-x^{*}\right)\right.$))

- For sufficiently small t, since ∇f continuous, by assump on y, $\left\langle\nabla f\left(x^{*}+\xi t\left(y-x^{*}\right)\right), y-x^{*}\right\rangle<0$
- This in turn implies that $f\left(x^{*}+t\left(y-x^{*}\right)\right)<f\left(x^{*}\right)$
- Since \mathcal{X} is convex, $x^{*}+t\left(y-x^{*}\right) \in \mathcal{X}$ is also feasible
- Contradiction to local optimality of x^{*}

Optimality without differentiability

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}
$$

Optimality without differentiability

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}
$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.

Optimality without differentiability

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}
$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y$,

Optimality without differentiability

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \Leftrightarrow 0 \in \partial f(x)$.

Optimality without differentiability

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{Argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \Leftrightarrow 0 \in \partial f(x)$.
Nonsmooth problem

$\min _{x}$	$f(x) \quad$ s.t. $x \in \mathcal{X}$
$\min _{x}$	$f(x)+\mathbb{1}_{\mathcal{X}}(x)$.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Subdifferential of the indicator $\mathbb{1}_{\mathcal{X}}(x)$, aka normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Subdifferential of the indicator $\mathbb{1}_{\mathcal{X}}(x)$, aka normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application

$$
\min f(x)+\mathbb{1}_{\mathcal{X}}(x) .
$$

\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N} \mathcal{X}\left(x^{*}\right)$

Optimality - nonsmooth

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Subdifferential of the indicator $\mathbb{1}_{\mathcal{X}}(x)$, aka normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application

$$
\min f(x)+\mathbb{1}_{\mathcal{X}}(x) .
$$

\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$
$\diamond-\nabla f\left(x^{*}\right) \in \mathcal{N}_{\mathcal{X}}\left(x^{*}\right) \Longleftrightarrow\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$ for all $y \in \mathcal{X}$.

Example

$\min f(x) \quad\|x\| \leq 1$

Example

$$
\min \quad f(x) \quad\|x\| \leq 1
$$

A point x is optimal if and only if

$x \in \operatorname{dom} f, \quad\|x\| \leq 1$,

Example

$$
\min \quad f(x) \quad\|x\| \leq 1
$$

A point x is optimal if and only if

$$
x \in \operatorname{dom} f,\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0
$$

Example

$\min \quad f(x) \quad\|x\| \leq 1$.

A point x is optimal if and only if

$x \in \operatorname{dom} f,\|x\| \leq 1, \forall y$ s.t. $\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0$.

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x
\end{aligned}
$$

Example

$\min \quad f(x) \quad\|x\| \leq 1$.

A point x is optimal if and only if

$x \in \operatorname{dom} f,\|x\| \leq 1, \forall y$ s.t. $\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0$.
In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x \\
\sup \left\{-\nabla f(x)^{T} y \mid\|y\| \leq 1\right\} & \leq-\nabla f(x)^{T} x
\end{aligned}
$$

Example

$\min \quad f(x) \quad\|x\| \leq 1$.

A point x is optimal if and only if

$$
x \in \operatorname{dom} f,\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0
$$

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x \\
\sup \left\{-\nabla f(x)^{T} y \mid\|y\| \leq 1\right\} & \leq-\nabla f(x)^{T} x \\
\|-\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x \\
\|\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x .
\end{aligned}
$$

Example

$\min \quad f(x) \quad\|x\| \leq 1$.

A point x is optimal if and only if

$$
x \in \operatorname{dom} f,\|x\| \leq 1, \forall y \text { s.t. }\|y\| \leq 1 \Longrightarrow \nabla f(x)^{T}(y-x) \geq 0
$$

In other words

$$
\begin{aligned}
\forall\|y\| \leq 1, \quad \nabla f(x)^{T} y & \geq \nabla f(x)^{T} x \\
\forall\|y\| \leq 1, \quad-\nabla f(x)^{T} y & \leq-\nabla f(x)^{T} x \\
\sup \left\{-\nabla f(x)^{T} y \mid\|y\| \leq 1\right\} & \leq-\nabla f(x)^{T} x \\
\|-\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x \\
\|\nabla f(x)\|_{*} & \leq-\nabla f(x)^{T} x .
\end{aligned}
$$

Observe: If constraint satisfied strictly at optimum $(\|x\|<1)$, then $\nabla f(x)=0$ (else we'd violate the last inequality above).

Optimality conditions (KKT and friends)

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

Optimality conditions via Lagrangian

$$
\min f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Assume strong duality and that p^{*}, d^{*} attained!

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Assume strong duality and that p^{*}, d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f\left(x^{*}\right)$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Assume strong duality and that p^{*}, d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Assume strong duality and that p^{*}, d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right)$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Assume strong duality and that p^{*}, d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that

$$
p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right)
$$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$ Assume strong duality and that p^{*}, d^{*} attained!

Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that

$$
p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f\left(x^{*}\right)=p^{*}
$$

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$ Assume strong duality and that p^{*}, d^{*} attained!

Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain, and

Optimality conditions via Lagrangian

$$
\min \quad f(x), \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x}\left(\mathcal{L}(x, \lambda):=f(x)+\sum_{i} \lambda_{i} f_{i}(x)\right)$

Assume strong duality and that p^{*}, d^{*} attained!

Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain, and

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

Optimality conditions via Lagrangian

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If f, f_{1}, \ldots, f_{m} are differentiable, this implies

Optimality conditions via Lagrangian

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If f, f_{1}, \ldots, f_{m} are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Optimality conditions via Lagrangian

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If f, f_{1}, \ldots, f_{m} are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f\left(x^{*}\right)$, we also have

Optimality conditions via Lagrangian

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If f, f_{1}, \ldots, f_{m} are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

Optimality conditions via Lagrangian

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If f, f_{1}, \ldots, f_{m} are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$,

Optimality conditions via Lagrangian

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If f, f_{1}, \ldots, f_{m} are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, so complementary slackness

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m
$$

$$
\begin{array}{rlrr}
\text { Karush-Kuhn-Tucker Conditions (KKT) } \\
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m & \text { (prima } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m & \text { (dua } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m & \text { (comp) } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 & \text { (Lagrangians }
\end{array}
$$

(primal feasibility)
(dual feasibility) (compl. slackness)
(Lagrangian stationarity)

$$
\begin{array}{rlr}
\text { Karush-Kuhn-Tucker Conditions (KKT) } \\
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \quad \text { (prima } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \quad \text { (dua } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \quad \text { (comp } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 & \text { (Lagrangians }
\end{array}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- Thus, if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exists, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal

KKT conditions

$$
\begin{array}{rlr}
\text { Karush-Kuhn-Tucker Conditions (KKT) } \\
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \quad \text { (prima } \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \quad \text { (dua } \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \quad \text { (comp } \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0 & \text { (Lagrangians }
\end{array}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- Thus, if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exists, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

KKT conditions

Karush-Kuhn-Tucker Conditions (KКT)

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- Thus, if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exists, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT.
Hint: Use that $\mathcal{L}\left(x, \lambda^{*}\right)$ is convex, and conclude from KKT conditions that $g\left(\lambda^{*}\right)=f_{0}\left(x^{*}\right)$, so that $\left(x^{*}, \lambda^{*}\right)$ optimal primal-dual pair.

Read Ch. 5 of BV

Examples

Projection onto a hyperplane

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad a^{T} x=b
$$

Projection onto a hyperplane

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad a^{T} x=b
$$

KKT Conditions

$$
\begin{aligned}
L(x, \nu) & =\frac{1}{2}\|x-y\|^{2}+\nu\left(a^{T} x-b\right) \\
\frac{\partial L}{\partial x} & =x-y+\nu a=0
\end{aligned}
$$

Projection onto a hyperplane

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad a^{T} x=b
$$

KKT Conditions

$$
\begin{aligned}
L(x, \nu) & =\frac{1}{2}\|x-y\|^{2}+\nu\left(a^{T} x-b\right) \\
\frac{\partial L}{\partial x} & =x-y+\nu a=0 \\
& x=y-\nu a
\end{aligned}
$$

Projection onto a hyperplane

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad a^{T} x=b
$$

KKT Conditions

$$
\begin{aligned}
L(x, \nu) & =\frac{1}{2}\|x-y\|^{2}+\nu\left(a^{T} x-b\right) \\
\frac{\partial L}{\partial x} & =x-y+\nu a=0 \\
& x=y-\nu a \\
& a^{T} x=a^{T} y-\nu a^{T} a \\
& \|a\|^{2} \nu=a^{T} y-b
\end{aligned}
$$

Projection onto a hyperplane

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad a^{T} x=b
$$

KKT Conditions

$$
\begin{aligned}
L(x, \nu) & =\frac{1}{2}\|x-y\|^{2}+\nu\left(a^{T} x-b\right) \\
\frac{\partial L}{\partial x} & =x-y+\nu a=0 \\
& x=y-\nu a \\
& a^{T} x=a^{T} y-\nu a^{T} a \\
& \|a\|^{2} \nu=a^{T} y-b
\end{aligned}
$$

$$
x=y-\frac{1}{\|a\|^{2}}\left(a^{T} y-b\right) a
$$

Projection onto simplex

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad x^{T} 1=1, x \geq 0
$$

KKT Conditions

$$
L(x, \lambda, \nu) \quad=\frac{1}{2}\|x-y\|^{2}-\sum_{i} \lambda_{i} x_{i}+\nu\left(x^{T} 1-1\right)
$$

Projection onto simplex

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad x^{T} 1=1, x \geq 0
$$

KKT Conditions

$$
\begin{aligned}
L(x, \lambda, \nu) & =\frac{1}{2}\|x-y\|^{2}-\sum_{i} \lambda_{i} x_{i}+\nu\left(x^{T} 1-1\right) \\
\frac{\partial L}{\partial x_{i}} & =x_{i}-y_{i}-\lambda_{i}+\nu=0 \\
\lambda_{i} x_{i} & =0 \\
\lambda_{i} & \geq 0 \\
x^{T} 1 & =1, x \geq 0
\end{aligned}
$$

Projection onto simplex

$$
\min _{x} \frac{1}{2}\|x-y\|^{2}, \quad \text { s.t. } \quad x^{T} 1=1, x \geq 0
$$

KKT Conditions

$$
\begin{aligned}
L(x, \lambda, \nu) & =\frac{1}{2}\|x-y\|^{2}-\sum_{i} \lambda_{i} x_{i}+\nu\left(x^{T} 1-1\right) \\
\frac{\partial L}{\partial x_{i}} & =x_{i}-y_{i}-\lambda_{i}+\nu=0 \\
\lambda_{i} x_{i} & =0 \\
\lambda_{i} & \geq 0 \\
x^{T} 1 & =1, x \geq 0
\end{aligned}
$$

Challenge A. Solve the above conditions in $O(n \log n)$ time.
Challenge A+. Solve the above conditions in $O(n)$ time.

Total variation minimization

$$
\begin{array}{ll}
\min & \frac{1}{2}\|x-y\|^{2}+\lambda \sum_{i}\left|x_{i+1}-x_{i}\right|, \\
\min & \frac{1}{2}\|x-y\|^{2}+\lambda\|D x\|_{1},
\end{array}
$$

(the matrix D is also known as a differencing matrix).

Total variation minimization

$$
\begin{array}{ll}
\text { min } & \frac{1}{2}\|x-y\|^{2}+\lambda \sum_{i}\left|x_{i+1}-x_{i}\right|, \\
\min & \frac{1}{2}\|x-y\|^{2}+\lambda\|D x\|_{1},
\end{array}
$$

(the matrix D is also known as a differencing matrix). Step 1. Take the dual (recall from L3-25) to obtain:

$$
\min _{u} \frac{1}{2}\left\|D^{T} u\right\|^{2}-u^{T} D y \text {, s.t. }\|u\|_{\infty} \leq \lambda \text {. }
$$

Step 2. Replace obj by $\left\|D^{T} u-y\right\|^{2}$ (argmin is unchanged)

Total variation minimization

$$
\begin{array}{ll}
\text { min } & \frac{1}{2}\|x-y\|^{2}+\lambda \sum_{i}\left|x_{i+1}-x_{i}\right|, \\
\min & \frac{1}{2}\|x-y\|^{2}+\lambda\|D x\|_{1},
\end{array}
$$

(the matrix D is also known as a differencing matrix). Step 1. Take the dual (recall from L3-25) to obtain:

$$
\min _{u} \frac{1}{2}\left\|D^{T} u\right\|^{2}-u^{T} D y \text {, s.t. }\|u\|_{\infty} \leq \lambda \text {. }
$$

Step 2. Replace obj by $\left\|D^{T} u-y\right\|^{2}$ (argmin is unchanged)
Step 3. Add dummies $u_{0}=u_{n}=0$; write $s=r-u$ for $r=\sum_{k=1}^{i} y_{k}$

$$
\min _{s} \sum_{i=1}^{n}\left(s_{i-1}-s_{i}\right)^{2}, \quad \text { s.t. } \quad\|s-r\|_{\infty} \leq \lambda, s_{0}=0, s_{n}=r_{n}
$$

Total variation minimization

$$
\begin{array}{ll}
\min & \frac{1}{2}\|x-y\|^{2}+\lambda \sum_{i}\left|x_{i+1}-x_{i}\right|, \\
\min & \frac{1}{2}\|x-y\|^{2}+\lambda\|D x\|_{1},
\end{array}
$$

(the matrix D is also known as a differencing matrix). Step 1. Take the dual (recall from L3-25) to obtain:

$$
\min _{u} \frac{1}{2}\left\|D^{T} u\right\|^{2}-u^{T} D y, \quad \text { s.t. }\|u\|_{\infty} \leq \lambda .
$$

Step 2. Replace obj by $\left\|D^{T} u-y\right\|^{2}$ (argmin is unchanged)
Step 3. Add dummies $u_{0}=u_{n}=0$; write $s=r-u$ for $r=\sum_{k=1}^{i} y_{k}$

$$
\min _{s} \sum_{i=1}^{n}\left(s_{i-1}-s_{i}\right)^{2}, \quad \text { s.t. } \quad\|s-r\|_{\infty} \leq \lambda, s_{0}=0, s_{n}=r_{n}
$$

Step 4 (Challenge). Look at KKT conditions, and keep working , ...finally, obtain $O(n)$ method!
'For full-story look at: A. Barbero, S. Sra. "Modular proximal optimization for multidimensional total-variation regularization" (JMLR 2019, pp. 1-82)

Nonsmooth KKT

(via subdifferentials)

KKT via subdifferentials^

Assume all $f_{i}(x)$ are finite valued, and $\operatorname{dom} f=\mathbb{R}^{n}$

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } f_{i}(x) \leq 0, i \in[m] .
$$

KKT via subdifferentials^

Assume all $f_{i}(x)$ are finite valued, and $\operatorname{dom} f=\mathbb{R}^{n}$

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } f_{i}(x) \leq 0, i \in[m] .
$$

Assume Slater's condition: $\exists x$ such that $f_{i}(x)<0$ for $i \in[m]$

KKT via subdifferentials^

Assume all $f_{i}(x)$ are finite valued, and $\operatorname{dom} f=\mathbb{R}^{n}$

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } f_{i}(x) \leq 0, i \in[m] .
$$

Assume Slater's condition: $\exists x$ such that $f_{i}(x)<0$ for $i \in[m]$ Write $C_{i}:=\left\{x \mid f_{i}(x) \leq 0\right\}$. Then, above problem becomes

$$
\min _{x} \quad \phi(x):=f(x)+\mathbb{1}_{C_{1}}(x)+\cdots+\mathbb{1}_{C_{m}}(x)
$$

KKT via subdifferentials^

Assume all $f_{i}(x)$ are finite valued, and $\operatorname{dom} f=\mathbb{R}^{n}$

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } f_{i}(x) \leq 0, i \in[m] .
$$

Assume Slater's condition: $\exists x$ such that $f_{i}(x)<0$ for $i \in[m]$ Write $C_{i}:=\left\{x \mid f_{i}(x) \leq 0\right\}$. Then, above problem becomes

$$
\min _{x} \quad \phi(x):=f(x)+\mathbb{1}_{C_{1}}(x)+\cdots+\mathbb{1}_{C_{m}}(x) .
$$

An optimal solution to this problem is a vector \bar{x} such that

$$
0 \in \partial \phi(\bar{x})
$$

KKT via subdifferentials^

Assume all $f_{i}(x)$ are finite valued, and $\operatorname{dom} f=\mathbb{R}^{n}$

$$
\min _{x \in \mathbb{R}^{n}} f(x) \quad \text { s.t. } f_{i}(x) \leq 0, i \in[m] .
$$

Assume Slater's condition: $\exists x$ such that $f_{i}(x)<0$ for $i \in[m]$ Write $C_{i}:=\left\{x \mid f_{i}(x) \leq 0\right\}$. Then, above problem becomes

$$
\min _{x} \quad \phi(x):=f(x)+\mathbb{1}_{C_{1}}(x)+\cdots+\mathbb{1}_{C_{m}}(x) .
$$

An optimal solution to this problem is a vector \bar{x} such that

$$
0 \in \partial \phi(\bar{x})
$$

Slater's condition tells us that

$$
\operatorname{int} C_{1} \cap \cdots \cap \operatorname{int} C_{m} \neq \emptyset
$$

Exercise: Rigorously justify the above (Hint: use continuity of f_{i})

KKT via subdifferentials^

Since $\operatorname{int} C_{1} \cap \cdots \cap \operatorname{int} C_{m} \neq \emptyset$, Rockafellar's theorem tells us

$$
\partial \phi(x)=\partial f(x)+\partial \mathbb{1}_{C_{1}}(x)+\cdots+\partial \mathbb{1}_{C_{m}}(x) .
$$

KKT via subdifferentials^

Since int $C_{1} \cap \cdots \cap \operatorname{int} C_{m} \neq \emptyset$, Rockafellar's theorem tells us

$$
\partial \phi(x)=\partial f(x)+\partial \mathbb{1}_{C_{1}}(x)+\cdots+\partial \mathbb{1}_{C_{m}}(x) .
$$

Recall: $\partial \mathbb{1}_{C_{i}}=\mathcal{N}_{C_{i}}$ (normal cone). Verify (Challenge) that

$$
\mathcal{N}_{C_{i}}(x)= \begin{cases}\bigcup\left\{\lambda_{i} \partial f_{i}(x) \mid \lambda_{i} \geq 0\right\}, & \text { if } f_{i}(x)=0 \\ \{0\}, & \text { if } f_{i}(x)<0 \\ \emptyset, & \text { if } f_{i}(x)>0\end{cases}
$$

KKT via subdifferentials^

Since $\operatorname{int} C_{1} \cap \cdots \cap \operatorname{int} C_{m} \neq \emptyset$, Rockafellar's theorem tells us

$$
\partial \phi(x)=\partial f(x)+\partial \mathbb{1}_{C_{1}}(x)+\cdots+\partial \mathbb{1}_{C_{m}}(x) .
$$

Recall: $\partial \mathbb{1}_{C_{i}}=\mathcal{N}_{C_{i}}$ (normal cone). Verify (Challenge) that

$$
\mathcal{N}_{C_{i}}(x)= \begin{cases}\bigcup\left\{\lambda_{i} \partial f_{i}(x) \mid \lambda_{i} \geq 0\right\}, & \text { if } f_{i}(x)=0 \\ \{0\}, & \text { if } f_{i}(x)<0 \\ \emptyset, & \text { if } f_{i}(x)>0\end{cases}
$$

Thus, $\partial \phi(x) \neq \emptyset$ iff x satisfies $f_{i}(x) \leq 0$ (Verify: that the Minkowski sum $A+\emptyset=\emptyset$)

KKT via subdifferentials^

Thus, $\partial \phi(x)=\bigcup\left\{\partial f(x)+\lambda_{1} \partial f_{1}(x)+\cdots+\lambda_{m} \partial f_{m}(x)\right\}$, over all choices of $\lambda_{i} \geq 0$ such that

$$
\lambda_{i} f_{i}(x)=0
$$

If $f_{i}(x)<0, \partial \mathbb{1}_{c_{i}}=\{0\}$, while for $f_{i}(x)=0, \partial \mathbb{1}_{C_{i}}(x)=\left\{\lambda_{i} \partial f_{i}(x) \mid \lambda_{i} \geq 0\right\}$, and we cannot jointly have $\lambda_{i} \geq 0$ and $f_{i}(x)>0$.

KKT via subdifferentials^

Thus, $\partial \phi(x)=\bigcup\left\{\partial f(x)+\lambda_{1} \partial f_{1}(x)+\cdots+\lambda_{m} \partial f_{m}(x)\right\}$, over all choices of $\lambda_{i} \geq 0$ such that

$$
\lambda_{i} f_{i}(x)=0
$$

If $f_{i}(x)<0, \partial \mathbb{1}_{c_{i}}=\{0\}$, while for $f_{i}(x)=0, \partial \mathbb{1}_{C_{i}}(x)=\left\{\lambda_{i} \partial f_{i}(x) \mid \lambda_{i} \geq 0\right\}$, and we cannot jointly have $\lambda_{i} \geq 0$ and $f_{i}(x)>0$.

In other words, $0 \in \partial \phi(x)$ iff there exist $\lambda_{1}, \ldots, \lambda_{m}$ that satisfy the KKT conditions.

Exercise: Double check the above for differentiable f, f_{i}

Example: Constrained regression

$$
\min _{x} \frac{1}{2}\|A x-b\|^{2}, \quad \text { s.t. }\|x\| \leq \theta
$$

KKT Conditions

$$
\begin{aligned}
L(x, \lambda) & =\frac{1}{2}\|A x-b\|^{2}+\lambda(\|x\|-\theta) \\
0 & \in A^{T}(A x-b)+\lambda \partial\|x\| \\
\partial\|x\| & = \begin{cases}\|x\|^{-1} x & x \neq 0 \\
\{z \mid\|z\| \leq 1\} & x=0\end{cases}
\end{aligned}
$$

Hmmm...?

Example: Constrained regression

$$
\min _{x} \frac{1}{2}\|A x-b\|^{2}, \quad \text { s.t. }\|x\| \leq \theta
$$

KKT Conditions

$$
\begin{aligned}
L(x, \lambda) & =\frac{1}{2}\|A x-b\|^{2}+\lambda(\|x\|-\theta) \\
0 & \in A^{T}(A x-b)+\lambda \partial\|x\| \\
\partial\|x\| & = \begin{cases}\|x\|^{-1} x & x \neq 0 \\
\{z \mid\|z\| \leq 1\} & x=0 .\end{cases}
\end{aligned}
$$

Hmmm...?

- Case (i). $x \leftarrow \operatorname{pinv}(A) b$ and $\|x\|<\theta$, then $x^{*}=x$
- Case (ii). If $\|x\| \geq \theta$, then $\left\|x^{*}\right\|=\theta$. Thus, consider instead $\frac{1}{2}\|A x-b\|^{2}$ s.t. $\|x\|^{2}=\theta^{2}$. (Exercise: complete the idea.)

