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(Local and global optima)
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Optimality

Def. A point x∗ ∈ X is locally optimal if f (x∗) ≤ f (x) for all x
in a neighborhood of x∗. Global if f (x∗) ≤ f (x) for all x ∈ X .

Theorem. For convex f , locally optimal point also global.

I Let x∗ be local minimizer of f onX ; y ∈ X any other feasible point.

I We need to show that f (y) ≥ f (x∗) = p∗ .

I X is cvx., so we have xθ = θy + (1− θ)x∗ ∈ X for θ ∈ (0, 1)

I Since f is cvx, and x∗, y ∈ dom f , we have

f (xθ) ≤ θf (y) + (1− θ)f (x∗)
f (xθ)− f (x∗) ≤ θ(f (y)− f (x∗)).

I Since x∗ is a local minimizer, for small enough θ > 0, lhs ≥ 0.
I So rhs is also nonnegative, proving f (y) ≥ f (x∗) as desired.
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Set of Optimal Solutions

The set of optimal solutions X ∗ may be empty

Example. If X = ∅, i.e., no feasible solutions, then X ∗ = ∅

Example. When only inf not min, e.g., inf ex as x→ −∞
in general, we should worry about the question “Is X ∗ = ∅?”

Exercise: Verify that X ∗ is always a convex set.
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Optimality conditions
(Recognizing optima)
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First-order conditions: unconstrained

Theorem. Let f : Rn → R be continuously differentiable on an
open set S containing x∗, a local minimum. Then,∇f (x∗) = 0.

Proof: Consider function g(t) = f (x∗ + td), where d ∈ Rn; t > 0.
Since x∗ is a local min, for small enough t, f (x∗ + td) ≥ f (x∗).

0 ≤ lim
t↓0

f (x∗ + td)− f (x∗)
t

=
dg(0)

dt
= 〈∇f (x∗), d〉.

Similarly, using −d it follows that 〈∇f (x∗), d〉 ≤ 0, so
〈∇f (x∗), d〉 = 0 must hold. Since d is arbitrary,∇f (x∗) = 0.

Exercise: Prove that if f is convex, then∇f (x∗) = 0 is actually
sufficient for global optimality! For general f this is not true.
(This property is what makes convex optimization special!)
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First-order conditions: constrained

♠ For convex f , we have f (y) ≥ f (x) + 〈∇f (x), y− x〉.

♠ Thus, x∗ is optimal if and only if

〈∇f (x∗), y− x∗〉 ≥ 0, for all y ∈ X .
♠ If X = Rn, this reduces to∇f (x∗) = 0

x∗

∇f(x∗)x
f(x

)

X

♠ If∇f (x∗) 6= 0, it defines supporting hyperplane to X at x∗
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First-order conditions: constrained

I Let f be continuously differentiable, possibly nonconvex
I Suppose ∃y ∈ X such that 〈∇f (x∗), y− x∗〉 < 0
I Using mean-value theorem of calculus, ∃ξ ∈ [0, 1] s.t.

f (x∗ + t(y− x∗)) = f (x∗) + 〈∇f (x∗ + ξt(y− x∗)), t(y− x∗)〉
(we applied MVT to g(t) := f (x∗ + t(y− x∗)))

I For sufficiently small t, since ∇f continuous, by assump on y,
〈∇f (x∗ + ξt(y− x∗)), y− x∗〉 < 0

I This in turn implies that f (x∗ + t(y− x∗)) < f (x∗)
I Since X is convex, x∗ + t(y− x∗) ∈ X is also feasible
I Contradiction to local optimality of x∗
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Optimality without differentiability

Theorem. (Fermat’s rule): Let f : Rn → (−∞,+∞]. Then,

Argmin f = zer(∂f ) := {x ∈ Rn | 0 ∈ ∂f (x)} .

Proof: x ∈ Argmin f implies that f (x) ≤ f (y) for all y ∈ Rn.
Equivalently, f (y) ≥ f (x) + 〈0, y− x〉 ∀y ,⇔ 0 ∈ ∂f (x).

Nonsmooth problem
min

x
f (x) s.t. x ∈ X

min
x

f (x) + 1X (x).
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Optimality – nonsmooth

I Minimizing x must satisfy: 0 ∈ ∂(f + 1X )(x)

I (CQ) Assuming ri(dom f ) ∩ ri(X ) 6= ∅, 0 ∈ ∂f (x) + ∂1X(x)

I Recall, g ∈ ∂1X (x) iff 1X (y) ≥ 1X (x) + 〈g, y− x〉 for all y.
I So g ∈ ∂1X (x) means x ∈ X and 0 ≥ 〈g, y− x〉 ∀y ∈ X .
I Subdifferential of the indicator 1X (x), aka normal cone:

NX (x) := {g ∈ Rn | 0 ≥ 〈g, y− x〉 ∀y ∈ X}

Application

min f (x) + 1X (x).

♦ If f is diff., we get 0 ∈ ∇f (x∗) +NX (x∗)
♦ −∇f (x∗) ∈ NX (x∗)⇐⇒ 〈∇f (x∗), y− x∗〉 ≥ 0 for all y ∈ X .
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Example

min f (x) ‖x‖ ≤ 1.

A point x is optimal if and only if

x ∈ dom f , ‖x‖ ≤ 1,∀y s.t. ‖y‖ ≤ 1 =⇒ ∇f (x)T(y− x) ≥ 0.

In other words

∀‖y‖ ≤ 1, ∇f (x)Ty ≥ ∇f (x)Tx
∀‖y‖ ≤ 1, −∇f (x)Ty ≤ −∇f (x)Tx

sup{−∇f (x)Ty | ‖y‖ ≤ 1} ≤ −∇f (x)Tx
‖−∇f (x)‖∗ ≤ −∇f (x)Tx
‖∇f (x)‖∗ ≤ −∇f (x)Tx.

Observe: If constraint satisfied strictly at optimum (‖x‖ < 1), then
∇f (x) = 0 (else we’d violate the last inequality above).
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Optimality conditions
(KKT and friends)
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Optimality conditions via Lagrangian

min f (x), fi(x) ≤ 0, i = 1, . . . ,m.

I Recall: 〈∇f (x∗), x− x∗〉 ≥ 0 for all feasible x ∈ X
I Can we simplify this using Lagrangian?
I g(λ) = infx (L(x, λ) := f (x) +

∑
i λifi(x))

Assume strong duality and that p∗, d∗ attained!

Thus, there exists a pair (x∗, λ∗) such that

p∗ = f (x∗) = d∗ = g(λ∗) = min
x
L(x, λ∗) ≤ L(x∗, λ∗) ≤ f (x∗) = p∗

I Thus, equalities hold in above chain, and

x∗ ∈ argminxL(x, λ∗).
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Optimality conditions via Lagrangian

x∗ ∈ argminxL(x, λ∗).
If f , f1, . . . , fm are differentiable, this implies

∇xL(x, λ∗)|x=x∗ = ∇f (x∗) +
∑

i
λ∗i∇fi(x∗) = 0.

Moreover, since L(x∗, λ∗) = f (x∗), we also have∑
i
λ∗i fi(x∗) = 0.

But λ∗i ≥ 0 and fi(x∗) ≤ 0, so complementary slackness

λ∗i fi(x∗) = 0, i = 1, . . . ,m.
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KKT conditions

Karush-Kuhn-Tucker Conditions (KKT)

fi(x∗) ≤ 0, i = 1, . . . ,m (primal feasibility)
λ∗i ≥ 0, i = 1, . . . ,m (dual feasibility)

λ∗i fi(x∗) = 0, i = 1, . . . ,m (compl. slackness)
∇xL(x, λ∗)|x=x∗ = 0 (Lagrangian stationarity)

I Thus, if strong duality holds, and (x∗, λ∗) exists, then KKT
conditions are necessary for pair (x∗, λ∗) to be optimal

I If problem is convex, then KKT also sufficient
Exercise: Prove the above sufficiency of KKT.
Hint: Use that L(x, λ∗) is convex, and conclude from KKT conditions that
g(λ∗) = f0(x∗), so that (x∗, λ∗) optimal primal-dual pair.

Read Ch. 5 of BV
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Examples
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Projection onto a hyperplane

min
x

1
2‖x− y‖2, s.t. aTx = b.

KKT Conditions

L(x, ν) = 1
2‖x− y‖2 + ν(aTx− b)

∂L
∂x

= x− y + νa = 0

x = y− νa
aTx = aTy− νaTa
‖a‖2ν = aTy− b

x = y− 1
‖a‖2 (aTy− b)a
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Projection onto simplex

min
x

1
2‖x− y‖2, s.t. xT1 = 1, x ≥ 0.

KKT Conditions

L(x, λ, ν) = 1
2‖x− y‖2 −

∑
i
λixi + ν(xT1− 1)

∂L
∂xi

= xi − yi − λi + ν = 0

λixi = 0
λi ≥ 0

xT1 = 1, x ≥ 0

Challenge A. Solve the above conditions in O(n log n) time.

Challenge A+. Solve the above conditions in O(n) time.
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Total variation minimization

min 1
2‖x− y‖2 + λ

∑
i
|xi+1 − xi|,

min 1
2‖x− y‖2 + λ‖Dx‖1,

(the matrix D is also known as a differencing matrix).

Step 1. Take the dual (recall from L3-25) to obtain:

min
u

1
2‖DTu‖2 − uTDy, s.t. ‖u‖∞ ≤ λ.

Step 2. Replace obj by ‖DTu− y‖2 (argmin is unchanged)
Step 3. Add dummies u0 = un = 0; write s = r− u for r =

∑i
k=1 yk

min
s

∑n

i=1
(si−1 − si)

2, s.t. ‖s− r‖∞ ≤ λ, s0 = 0, sn = rn.

Step 4 (Challenge). Look at KKT conditions, and keep working
. . . finally, obtain O(n) method!
For full-story look at: A. Barbero, S. Sra. “Modular proximal optimization for
multidimensional total-variation regularization” (JMLR 2019, pp. 1–82)
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Nonsmooth KKT
(via subdifferentials)
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KKT via subdifferentials?

Assume all fi(x) are finite valued, and dom f = Rn

min
x∈Rn

f (x) s.t. fi(x) ≤ 0, i ∈ [m].

Assume Slater’s condition: ∃x such that fi(x) < 0 for i ∈ [m]
Write Ci := {x | fi(x) ≤ 0}. Then, above problem becomes

min
x

φ(x) := f (x) + 1C1(x) + · · ·+ 1Cm(x).

An optimal solution to this problem is a vector x̄ such that

0 ∈ ∂φ(x̄).

Slater’s condition tells us that
int C1 ∩ · · · ∩ int Cm 6= ∅.

Exercise: Rigorously justify the above (Hint: use continuity of fi)
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KKT via subdifferentials?

Since int C1 ∩ · · · ∩ int Cm 6= ∅, Rockafellar’s theorem tells us

∂φ(x) = ∂f (x) + ∂1C1(x) + · · ·+ ∂1Cm(x).

Recall: ∂1Ci = NCi (normal cone). Verify (Challenge) that

NCi(x) =


⋃ {λi∂fi(x) | λi ≥ 0} , if fi(x) = 0,
{0} , if fi(x) < 0,
∅, if fi(x) > 0.

Thus, ∂φ(x) 6= ∅ iff x satisfies fi(x) ≤ 0
(Verify: that the Minkowski sum A + ∅ = ∅)
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KKT via subdifferentials?

Thus, ∂φ(x) =
⋃ {∂f (x) + λ1∂f1(x) + · · ·+ λm∂fm(x)}, over all

choices of λi ≥ 0 such that
λifi(x) = 0.

If fi(x) < 0, ∂1Ci = {0}, while for fi(x) = 0, ∂1Ci(x) = {λi∂fi(x) | λi ≥ 0},
and we cannot jointly have λi ≥ 0 and fi(x) > 0.

In other words, 0 ∈ ∂φ(x) iff there exist λ1, . . . , λm that satisfy
the KKT conditions.

Exercise: Double check the above for differentiable f , fi
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Example: Constrained regression

min
x

1
2‖Ax− b‖2, s.t. ‖x‖ ≤ θ.

KKT Conditions

L(x, λ) = 1
2‖Ax− b‖2 + λ(‖x‖ − θ)

0 ∈ AT(Ax− b) + λ∂‖x‖

∂‖x‖ =

{
‖x‖−1x x 6= 0,
{z | ‖z‖ ≤ 1} x = 0.

Hmmm...?

I Case (i). x← pinv(A)b and ‖x‖ < θ, then x∗ = x

I Case (ii). If ‖x‖ ≥ θ, then ‖x∗‖ = θ. Thus, consider instead
1
2‖Ax− b‖2 s.t. ‖x‖2 = θ2. (Exercise: complete the idea.)
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