Optimization for Machine Learning

Lecture 4: Optimality conditions

6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

25 Feb, 2021

(Local and global optima)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

• Let x^* be local minimizer of f on \mathcal{X} ; $y \in \mathcal{X}$ any other feasible point.

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

• Let x^* be local minimizer of f on \mathcal{X} ; $y \in \mathcal{X}$ any other feasible point.

• We need to show that $f(y) \ge f(x^*) = p^*$.

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

- Let x^* be local minimizer of f on \mathcal{X} ; $y \in \mathcal{X}$ any other feasible point.
- We need to show that $f(y) \ge f(x^*) = p^*$.
- \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

- Let x^* be local minimizer of f on \mathcal{X} ; $y \in \mathcal{X}$ any other feasible point.
- We need to show that $f(y) \ge f(x^*) = p^*$.
- ► \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- Since *f* is cvx, and $x^*, y \in \text{dom} f$, we have

$$\begin{array}{rcl} f(x_{\theta}) & \leq & \theta f(y) + (1-\theta) f(x^{*}) \\ f(x_{\theta}) - f(x^{*}) & \leq & \theta (f(y) - f(x^{*})). \end{array}$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all xin a **neighborhood** of x^* . *Global* if $f(x^*) \le f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

- Let x^* be local minimizer of f on \mathcal{X} ; $y \in \mathcal{X}$ any other feasible point.
- We need to show that $f(y) \ge f(x^*) = p^*$.
- ▶ \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta) x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- Since *f* is cvx, and $x^*, y \in \text{dom } f$, we have

 $f(x_{\theta}) \leq \theta f(y) + (1-\theta)f(x^*)$ $f(x_{\theta}) - f(x^*) < \theta(f(y) - f(x^*)).$

Since x^* is a local minimizer, for small enough $\theta > 0$, lhs > 0.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Def. A point $x^* \in \mathcal{X}$ is *locally optimal* if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . *Global* if $f(x^*) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex *f*, locally optimal point also global.

- Let x^* be local minimizer of f on \mathcal{X} ; $y \in \mathcal{X}$ any other feasible point.
- We need to show that $f(y) \ge f(x^*) = p^*$.
- \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- Since *f* is cvx, and $x^*, y \in \text{dom} f$, we have

 $\begin{array}{rcl} f(x_{\theta}) & \leq & \theta f(y) + (1-\theta) f(x^*) \\ f(x_{\theta}) - f(x^*) & \leq & \theta (f(y) - f(x^*)). \end{array}$

Since x* is a local minimizer, for small enough θ > 0, lhs ≥ 0.
So rhs is also nonnegative, proving f(y) ≥ f(x*) as desired.

Set of Optimal Solutions

The set of optimal solutions \mathcal{X}^* may be empty

Example. If $\mathcal{X} = \emptyset$, i.e., no feasible solutions, then $\mathcal{X}^* = \emptyset$

Example. When only inf not min, e.g., $\inf e^x$ as $x \to -\infty$ in general, we should worry about the question "Is $\mathcal{X}^* = \emptyset$?"

Exercise: Verify that \mathcal{X}^* is always a convex set.

6.881 Optimization for Machine Learning

Optimality conditions

(Recognizing optima)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

6.881 Optimization for Machine Learning

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

$$0 \leq \frac{f(x^* + td) - f(x^*)}{2}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

$$0 \leq \frac{f(x^* + td) - f(x^*)}{t}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

$$0 \leq \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough $t, f(x^* + td) \ge f(x^*)$.

$$0 \leq \lim_{t\downarrow 0} \frac{f(x^*+td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Similarly, using -d it follows that $\langle \nabla f(x^*), d \rangle \le 0$, so $\langle \nabla f(x^*), d \rangle = 0$ **must hold**. Since *d* is arbitrary, $\nabla f(x^*) = 0$.

6.881 Optimization for Machine Learning

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable on an open set *S* containing x^* , a local minimum. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough $t, f(x^* + td) \ge f(x^*)$.

$$0 \leq \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Similarly, using -d it follows that $\langle \nabla f(x^*), d \rangle \le 0$, so $\langle \nabla f(x^*), d \rangle = 0$ **must hold**. Since *d* is arbitrary, $\nabla f(x^*) = 0$.

Exercise: Prove that if *f* is convex, then $\nabla f(x^*) = 0$ is actually **sufficient** for global optimality! For general *f* this is *not* true. (This property is what makes convex optimization special!)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

♠ For convex *f*, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

- ♦ For convex *f*, we have $f(y) \ge f(x) + \langle \nabla f(x), y x \rangle$. ♦ Thus, *x*^{*} is optimal if and only if
 - $\langle \nabla f(x^*), y x^* \rangle \ge 0,$ for all $y \in \mathcal{X}$.

♦ For convex *f*, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$. ♦ Thus, *x*^{*} is optimal if and only if

$$\langle \nabla f(x^*), y - x^* \rangle \ge 0,$$
 for all $y \in \mathcal{X}$.

• If $\mathcal{X} = \mathbb{R}^n$, this reduces to $\nabla f(x^*) = 0$

♠ If $\nabla f(x^*) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^*

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

- ► Let *f* be continuously differentiable, possibly nonconvex
- ► Suppose $\exists y \in \mathcal{X}$ such that $\langle \nabla f(x^*), y x^* \rangle < 0$
- ► Using mean-value theorem of calculus, $\exists \xi \in [0, 1]$ s.t.

$$f(x^* + t(y - x^*)) = f(x^*) + \langle \nabla f(x^* + \xi t(y - x^*)), t(y - x^*) \rangle$$

(we applied MVT to $g(t) := f(x^* + t(y - x^*)))$

- ► For sufficiently small *t*, since ∇f continuous, by assump on *y*, $\langle \nabla f(x^* + \xi t(y x^*)), y x^* \rangle < 0$
- ► This in turn implies that $f(x^* + t(y x^*)) < f(x^*)$
- ▶ Since \mathcal{X} is convex, $x^* + t(y x^*) \in \mathcal{X}$ is also feasible
- ► Contradiction to local optimality of *x**

Theorem. (Fermat's rule): Let $f : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

Argmin
$$f = \operatorname{zer}(\partial f) := \{x \in \mathbb{R}^n \mid 0 \in \partial f(x)\}.$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

Argmin
$$f = \operatorname{zer}(\partial f) := \{x \in \mathbb{R}^n \mid 0 \in \partial f(x)\}.$$

Proof: $x \in \text{Argmin } f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$.

Theorem. (Fermat's rule): Let $f : \mathbb{R}^n \to (-\infty, +\infty]$. Then,

Argmin
$$f = \operatorname{zer}(\partial f) := \{x \in \mathbb{R}^n \mid 0 \in \partial f(x)\}.$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y$,

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

Argmin
$$f = \operatorname{zer}(\partial f) := \{x \in \mathbb{R}^n \mid 0 \in \partial f(x)\}.$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y , \Leftrightarrow 0 \in \partial f(x)$.

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{Argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{Argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y , \Leftrightarrow 0 \in \partial f(x)$.

Nonsmooth problem \min_{x} f(x)s.t. $x \in \mathcal{X}$ \min_{x} $f(x) + \mathbb{1}_{\mathcal{X}}(x).$

F

6.881 Optimization for Machine Learning

Hii

• Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ► So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- ► Subdifferential of the indicator $\mathbb{1}_{\mathcal{X}}(x)$, aka normal cone: $\mathcal{N}_{\mathcal{X}}(x) := \{g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X}\}$

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- ► Subdifferential of the indicator $\mathbb{1}_{\mathcal{X}}(x)$, aka normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \}$$

Application

 $\min f(x) + \mathbb{1}_{\mathcal{X}}(x).$

♦ If *f* is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning
Optimality – nonsmooth

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $\operatorname{ri}(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- ► Subdifferential of the indicator $\mathbb{1}_{\mathcal{X}}(x)$, aka normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \}$$

Application

$$\min f(x) + \mathbb{1}_{\mathcal{X}}(x).$$

◊ If *f* is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$

 $\diamond \ -\nabla f(x^*) \in \mathcal{N}_{\mathcal{X}}(x^*) \Longleftrightarrow \langle \nabla f(x^*), \, y - x^* \rangle \ge 0 \text{ for all } y \in \mathcal{X}.$

Suvrit Sra (suvrit@mit.edu)

$\min \quad f(x) \qquad \|x\| \le 1.$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point *x* is optimal if and only if

 $x\in {\rm dom} f, \ \|x\|\leq 1,$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$\min \quad f(x) \qquad \|x\| \le 1.$

A point *x* is optimal if and only if

 $x \in \operatorname{dom} f$, $||x|| \le 1, \forall y \text{ s.t. } ||y|| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$

6.881 Optimization for Machine Learning

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point *x* is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$ In other words $\forall \|y\| \le 1 \quad \nabla f(x)^T y \Rightarrow \nabla f(x)^T x$

$$\forall \|y\| \le 1, \quad \nabla f(x)^T y \ge \nabla f(x)^T x \\ \forall \|y\| \le 1, \quad -\nabla f(x)^T y \le -\nabla f(x)^T x$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point *x* is optimal if and only if

 $x \in \operatorname{dom} f, \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$ In other words $\forall \|y\| \le 1, \quad \nabla f(x)^T y \ge \nabla f(x)^T x$

$$\begin{aligned} \forall \|y\| \le 1, \quad \nabla f(x)^T y &\ge \quad \nabla f(x)^T x \\ \forall \|y\| \le 1, \quad -\nabla f(x)^T y &\le \quad -\nabla f(x)^T x \\ \sup\{-\nabla f(x)^T y \mid \|y\| \le 1\} &\le \quad -\nabla f(x)^T x \end{aligned}$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point *x* is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$ In other words

$$\begin{aligned} \forall \|y\| \leq 1, \quad \nabla f(x)^T y \geq \nabla f(x)^T x \\ \forall \|y\| \leq 1, \quad -\nabla f(x)^T y \leq -\nabla f(x)^T x \\ \sup\{-\nabla f(x)^T y \mid \|y\| \leq 1\} \leq -\nabla f(x)^T x \\ \|-\nabla f(x)\|_* \leq -\nabla f(x)^T x \\ \|\nabla f(x)\|_* \leq -\nabla f(x)^T x. \end{aligned}$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

 $\min \quad f(x) \qquad \|x\| \le 1.$

A point *x* is optimal if and only if

 $x \in \operatorname{dom} f, \ \|x\| \le 1, \forall y \text{ s.t. } \|y\| \le 1 \implies \nabla f(x)^T (y-x) \ge 0.$ In other words

$$\begin{aligned} \forall \|y\| \leq 1, \quad \nabla f(x)^T y \geq \nabla f(x)^T x \\ \forall \|y\| \leq 1, \quad -\nabla f(x)^T y \leq -\nabla f(x)^T x \\ \sup\{-\nabla f(x)^T y \mid \|y\| \leq 1\} \leq -\nabla f(x)^T x \\ \|-\nabla f(x)\|_* \leq -\nabla f(x)^T x \\ \|\nabla f(x)\|_* \leq -\nabla f(x)^T x. \end{aligned}$$

Observe: If constraint satisfied strictly at optimum (||x|| < 1), then $\nabla f(x) = 0$ (else we'd violate the last inequality above).

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Optimality conditions

(KKT and friends)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min f(x), $f_i(x) \le 0$, i = 1, ..., m.

▶ Recall: $\langle \nabla f(x^*), x - x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

 $p^* = f(x^*)$

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f(x^*) = d^* = g(\lambda^*)$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*)$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*)$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f(x^*) = p^*$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f(x^*) = p^*$$

▶ Thus, equalities hold in above chain, and

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

min
$$f(x)$$
, $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $g(\lambda) = \inf_x \left(\mathcal{L}(x, \lambda) := f(x) + \sum_i \lambda_i f_i(x) \right)$

Assume strong duality and that p^* , d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f(x^*) = p^*$$

▶ Thus, equalities hold in above chain, and

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

Suvrit Sra (suvrit@mit.edu)

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f, f_1, \ldots, f_m are differentiable, this implies

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f(x^*)$, we also have

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{x}\mathcal{L}(x,\lambda^{*})|_{x=x^{*}} = \nabla f(x^{*}) + \sum_{i} \lambda_{i}^{*} \nabla f_{i}(x^{*}) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f(x^*)$, we also have

$$\sum_{i} \lambda_i^* f_i(x^*) = 0.$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{x}\mathcal{L}(x,\lambda^{*})|_{x=x^{*}} = \nabla f(x^{*}) + \sum_{i} \lambda_{i}^{*} \nabla f_{i}(x^{*}) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f(x^*)$, we also have

$$\sum_i \lambda_i^* f_i(x^*) = 0.$$

But $\lambda_i^* \ge 0$ and $f_i(x^*) \le 0$,

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f(x^*)$, we also have

$$\sum_i \lambda_i^* f_i(x^*) = 0.$$

But $\lambda_i^* \ge 0$ and $f_i(x^*) \le 0$, so *complementary slackness*

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Karush-Kuhn-Tucker Conditions (KKT)

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

6.881 Optimization for Machine Learning

Karush-Kuhn-Tucker Conditions (KKT)

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

Thus, if strong duality holds, and (x*, λ*) exists, then KKT conditions are necessary for pair (x*, λ*) to be optimal

Karush-Kuhn-Tucker Conditions (KKT)

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ {}_{x}\mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

- ► Thus, if strong duality holds, and (x*, λ*) exists, then KKT conditions are necessary for pair (x*, λ*) to be optimal
- ► If problem is convex, then KKT also sufficient

 ∇

Karush-Kuhn-Tucker Conditions (KKT)

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

- Thus, if strong duality holds, and (x*, λ*) exists, then KKT conditions are necessary for pair (x*, λ*) to be optimal
- ► If problem is convex, then KKT also **sufficient**

Exercise: Prove the above sufficiency of KKT. *Hint:* Use that $\mathcal{L}(x, \lambda^*)$ is convex, and conclude from KKT conditions that $g(\lambda^*) = f_0(x^*)$, so that (x^*, λ^*) optimal primal-dual pair.

Read Ch. 5 of BV

Suvrit Sra (suvrit@mit.edu)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$\min_{x} \ \frac{1}{2} \|x - y\|^2, \quad \text{s.t.} \ a^T x = b.$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$\min_{x} \ \frac{1}{2} \|x - y\|^2, \quad \text{s.t.} \ a^T x = b.$$

KKT Conditions

$$L(x,\nu) = \frac{1}{2} ||x - y||^2 + \nu (a^T x - b)$$
$$\frac{\partial L}{\partial x} = x - y + \nu a = 0$$

$$\min_{x} \ \frac{1}{2} \|x - y\|^2, \quad \text{s.t.} \ a^T x = b.$$

KKT Conditions

$$L(x,\nu) = \frac{1}{2} ||x - y||^2 + \nu (a^T x - b)$$

$$\frac{\partial L}{\partial x} = x - y + \nu a = 0$$

$$x = y - \nu a$$

Suvrit Sra (suvrit@mit.edu)

$$\min_{x} \ \frac{1}{2} \|x - y\|^2, \quad \text{s.t.} \ a^T x = b.$$

KKT Conditions

$$L(x,\nu) = \frac{1}{2} ||x - y||^2 + \nu (a^T x - b)$$

$$\frac{\partial L}{\partial x} = x - y + \nu a = 0$$

$$x = y - \nu a$$

$$a^T x = a^T y - \nu a^T a$$

$$||a||^2 \nu = a^T y - b$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning
Projection onto a hyperplane

$$\min_{x} \ \frac{1}{2} \|x - y\|^2, \quad \text{s.t.} \ a^T x = b.$$

KKT Conditions

$$L(x,\nu) = \frac{1}{2} ||x - y||^2 + \nu (a^T x - b)$$

$$\frac{\partial L}{\partial x} = x - y + \nu a = 0$$

$$x = y - \nu a$$

$$a^T x = a^T y - \nu a^T a$$

$$||a||^2 \nu = a^T y - b$$

$$x = y - \frac{1}{\|a\|^2} (a^T y - b)a$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Plii

Projection onto simplex

$$\min_{x} \frac{1}{2} \|x - y\|^{2}, \quad \text{s.t.} \ x^{T} 1 = 1, x \ge 0.$$

KKT Conditions

$$L(x, \lambda, \nu) = \frac{1}{2} ||x - y||^2 - \sum_i \lambda_i x_i + \nu (x^T 1 - 1)$$

Suvrit Sra (suvrit@mit.edu)

Projection onto simplex

$$\begin{split} \min_{x} \ \frac{1}{2} \|x - y\|^{2}, \quad \text{s.t.} \quad x^{T} 1 = 1, x \geq 0. \\ \text{KKT Conditions} \\ L(x, \lambda, \nu) &= \frac{1}{2} \|x - y\|^{2} - \sum_{i} \lambda_{i} x_{i} + \nu(x^{T} 1 - 1) \\ \frac{\partial L}{\partial x_{i}} &= x_{i} - y_{i} - \lambda_{i} + \nu = 0 \\ \lambda_{i} x_{i} &= 0 \\ \lambda_{i} &\geq 0 \\ x^{T} 1 &= 1, x \geq 0 \end{split}$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Projection onto simplex

$$\begin{split} \min_{x} \ \frac{1}{2} \|x - y\|^{2}, \quad \text{s.t.} \quad x^{T} 1 = 1, x \ge 0. \\ \text{KKT Conditions} \\ L(x, \lambda, \nu) &= \frac{1}{2} \|x - y\|^{2} - \sum_{i} \lambda_{i} x_{i} + \nu(x^{T} 1 - 1) \\ \frac{\partial L}{\partial x_{i}} &= x_{i} - y_{i} - \lambda_{i} + \nu = 0 \\ \lambda_{i} x_{i} &= 0 \\ \lambda_{i} &\geq 0 \\ x^{T} 1 &= 1, x \ge 0 \end{split}$$

Challenge A. Solve the above conditions in $O(n \log n)$ time.

Challenge A+. Solve the above conditions in O(n) time.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$\min \quad \frac{1}{2} \|x - y\|^2 + \lambda \sum_i |x_{i+1} - x_i|, \\ \min \quad \frac{1}{2} \|x - y\|^2 + \lambda \|Dx\|_1,$$

(the matrix *D* is also known as a differencing matrix).

$$\min \quad \frac{1}{2} \|x - y\|^2 + \lambda \sum_i |x_{i+1} - x_i|, \\ \min \quad \frac{1}{2} \|x - y\|^2 + \lambda \|Dx\|_1,$$

(the matrix *D* is also known as a differencing matrix). **Step 1.** Take the dual (recall from L3-25) to obtain:

$$\min_{u} \frac{1}{2} \|D^T u\|^2 - u^T D y, \quad \text{s.t.} \quad \|u\|_{\infty} \le \lambda.$$

Step 2. Replace obj by $||D^T u - y||^2$ (argmin is unchanged)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

$$\min \quad \frac{1}{2} \|x - y\|^2 + \lambda \sum_i |x_{i+1} - x_i|, \\ \min \quad \frac{1}{2} \|x - y\|^2 + \lambda \|Dx\|_1,$$

(the matrix *D* is also known as a differencing matrix). **Step 1.** Take the dual (recall from L3-25) to obtain:

$$\min_{u} \frac{1}{2} \|D^T u\|^2 - u^T D y, \quad \text{s.t.} \quad \|u\|_{\infty} \le \lambda.$$

Step 2. Replace obj by $||D^T u - y||^2$ (argmin is unchanged) **Step 3.** Add dummies $u_0 = u_n = 0$; write s = r - u for $r = \sum_{k=1}^{i} y_k$

$$\min_{s} \sum_{i=1}^{n} (s_{i-1} - s_i)^2, \quad \text{s.t.} \quad \|s - r\|_{\infty} \le \lambda, s_0 = 0, s_n = r_n.$$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Plii

$$\min \quad \frac{1}{2} \|x - y\|^2 + \lambda \sum_i |x_{i+1} - x_i|, \\ \min \quad \frac{1}{2} \|x - y\|^2 + \lambda \|Dx\|_1,$$

(the matrix *D* is also known as a differencing matrix). **Step 1.** Take the dual (recall from L3-25) to obtain:

$$\min_{u} \frac{1}{2} \|D^T u\|^2 - u^T D y, \quad \text{s.t.} \quad \|u\|_{\infty} \le \lambda.$$

Step 2. Replace obj by $||D^T u - y||^2$ (argmin is unchanged) **Step 3.** Add dummies $u_0 = u_n = 0$; write s = r - u for $r = \sum_{k=1}^{i} y_k$

$$\min_{s} \sum_{i=1}^{n} (s_{i-1} - s_i)^2, \quad \text{s.t.} \quad \|s - r\|_{\infty} \le \lambda, s_0 = 0, s_n = r_n.$$

Step 4 (Challenge). Look at KKT conditions, and keep working ... finally, obtain *O*(*n*) method! For full-story look at: *A. Barbero, S. Sra. "Modular proximal optimization for multidimensional total-variation regularization" (JMLR 2019, pp. 1–82)*

Suvrit Sra (suvrit@mit.edu)

Nonsmooth KKT

(via subdifferentials)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Assume all $f_i(x)$ are finite valued, and dom $f = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}f(x)\quad \text{s.t.}\ f_i(x)\leq 0,\ i\in[m].$$

Assume all $f_i(x)$ are finite valued, and dom $f = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}f(x)\quad \text{s.t.}\ f_i(x)\leq 0,\ i\in[m].$$

Assume Slater's condition: $\exists x \text{ such that } f_i(x) < 0 \text{ for } i \in [m]$

Assume all $f_i(x)$ are finite valued, and dom $f = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}f(x)\quad \text{s.t.}\ f_i(x)\leq 0,\ i\in[m].$$

Assume Slater's condition: $\exists x \text{ such that } f_i(x) < 0 \text{ for } i \in [m]$ Write $C_i := \{x \mid f_i(x) \le 0\}$. Then, above problem becomes

$$\min_{x} \quad \phi(x) := f(x) + \mathbb{1}_{C_1}(x) + \cdots + \mathbb{1}_{C_m}(x).$$

6.881 Optimization for Machine Learning

Assume all $f_i(x)$ are finite valued, and dom $f = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n} f(x) \quad \text{s.t.} \ f_i(x) \le 0, \ i\in[m].$$

Assume Slater's condition: $\exists x \text{ such that } f_i(x) < 0 \text{ for } i \in [m]$ Write $C_i := \{x \mid f_i(x) \le 0\}$. Then, above problem becomes

$$\min_{x} \quad \phi(x) := f(x) + \mathbb{1}_{C_1}(x) + \cdots + \mathbb{1}_{C_m}(x).$$

An optimal solution to this problem is a vector \bar{x} such that

 $0 \in \partial \phi(\bar{x}).$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Assume all $f_i(x)$ are finite valued, and dom $f = \mathbb{R}^n$

$$\min_{x\in\mathbb{R}^n}f(x)\quad \text{s.t.}\ f_i(x)\leq 0,\ i\in[m].$$

Assume Slater's condition: $\exists x \text{ such that } f_i(x) < 0 \text{ for } i \in [m]$ Write $C_i := \{x \mid f_i(x) \le 0\}$. Then, above problem becomes

$$\min_{x} \quad \phi(x) := f(x) + \mathbb{1}_{C_1}(x) + \cdots + \mathbb{1}_{C_m}(x).$$

An optimal solution to this problem is a vector \bar{x} such that

 $0 \in \partial \phi(\bar{x}).$

Slater's condition tells us that

```
int C_1 \cap \cdots \cap int C_m \neq \emptyset.
```

Exercise: Rigorously justify the above (*Hint:* use continuity of f_i)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Since int $C_1 \cap \cdots \cap$ int $C_m \neq \emptyset$, Rockafellar's theorem tells us

$$\partial \phi(x) = \partial f(x) + \partial \mathbb{1}_{C_1}(x) + \dots + \partial \mathbb{1}_{C_m}(x).$$

Since int $C_1 \cap \cdots \cap$ int $C_m \neq \emptyset$, Rockafellar's theorem tells us

$$\partial \phi(x) = \partial f(x) + \partial \mathbb{1}_{C_1}(x) + \cdots + \partial \mathbb{1}_{C_m}(x).$$

Recall: $\partial \mathbb{1}_{C_i} = \mathcal{N}_{C_i}$ (normal cone). Verify (Challenge) that $\mathcal{N}_{C_i}(x) = \begin{cases} \bigcup \{\lambda_i \partial f_i(x) \mid \lambda_i \ge 0\}, & \text{if } f_i(x) = 0, \\ \{0\}, & \text{if } f_i(x) < 0, \\ \emptyset, & \text{if } f_i(x) > 0. \end{cases}$

6.881 Optimization for Machine Learning

Since int $C_1 \cap \cdots \cap$ int $C_m \neq \emptyset$, Rockafellar's theorem tells us

$$\partial \phi(x) = \partial f(x) + \partial \mathbb{1}_{C_1}(x) + \cdots + \partial \mathbb{1}_{C_m}(x).$$

Recall: $\partial \mathbb{1}_{C_i} = \mathcal{N}_{C_i}$ (normal cone). Verify (Challenge) that $\mathcal{N}_{C_i}(x) = \begin{cases} \bigcup \{\lambda_i \partial f_i(x) \mid \lambda_i \ge 0\}, & \text{if } f_i(x) = 0, \\ \{0\}, & \text{if } f_i(x) < 0, \\ \emptyset, & \text{if } f_i(x) > 0. \end{cases}$

> Thus, $\partial \phi(x) \neq \emptyset$ iff *x* satisfies $f_i(x) \leq 0$ (Verify: that the Minkowski sum $A + \emptyset = \emptyset$)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Thus, $\partial \phi(x) = \bigcup \{ \partial f(x) + \lambda_1 \partial f_1(x) + \dots + \lambda_m \partial f_m(x) \}$, over all *choices* of $\lambda_i \ge 0$ such that

$$\lambda_i f_i(x) = 0.$$

If $f_i(x) < 0$, $\partial \mathbb{1}_{C_i} = \{0\}$, while for $f_i(x) = 0$, $\partial \mathbb{1}_{C_i}(x) = \{\lambda_i \partial f_i(x) \mid \lambda_i \ge 0\}$, and we cannot jointly have $\lambda_i \ge 0$ and $f_i(x) > 0$.

Thus, $\partial \phi(x) = \bigcup \{ \partial f(x) + \lambda_1 \partial f_1(x) + \dots + \lambda_m \partial f_m(x) \}$, over all *choices* of $\lambda_i \ge 0$ such that

$$\lambda_i f_i(x) = 0.$$

If $f_i(x) < 0$, $\partial \mathbb{1}_{C_i} = \{0\}$, while for $f_i(x) = 0$, $\partial \mathbb{1}_{C_i}(x) = \{\lambda_i \partial f_i(x) \mid \lambda_i \ge 0\}$, and we cannot jointly have $\lambda_i \ge 0$ and $f_i(x) > 0$.

In other words, $0 \in \partial \phi(x)$ iff there exist $\lambda_1, \ldots, \lambda_m$ that satisfy the KKT conditions.

Exercise: Double check the above for differentiable f, f_i

Example: Constrained regression

$$\begin{split} \min_{x} \ \frac{1}{2} \|Ax - b\|^{2}, \quad \text{s.t.} \ \|x\| \leq \theta. \\ & \mathbf{KKT \ Conditions} \\ L(x, \lambda) &= \frac{1}{2} \|Ax - b\|^{2} + \lambda(\|x\| - \theta) \\ 0 &\in A^{T}(Ax - b) + \lambda \partial \|x\| \\ \partial \|x\| &= \begin{cases} \|x\|^{-1}x & x \neq 0, \\ \{z \mid \|z\| \leq 1\} & x = 0. \end{cases} \end{split}$$

Hmmm...?

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Example: Constrained regression

$$\min_{x} \frac{1}{2} \|Ax - b\|^{2}, \quad \text{s.t. } \|x\| \le \theta.$$

KKT Conditions

$$\begin{split} L(x,\lambda) &= \frac{1}{2} \|Ax - b\|^2 + \lambda(\|x\| - \theta) \\ 0 &\in A^T(Ax - b) + \lambda \partial \|x\| \\ \partial \|x\| &= \begin{cases} \|x\|^{-1}x & x \neq 0, \\ \{z \mid \|z\| \leq 1\} & x = 0. \end{cases} \end{split}$$

Hmmm...?

▶ *Case (i).* $x \leftarrow pinv(A)b$ and $||x|| < \theta$, then $x^* = x$

► *Case (ii).* If $||x|| \ge \theta$, then $||x^*|| = \theta$. Thus, consider instead $\frac{1}{2} ||Ax - b||^2$ s.t. $||x||^2 = \theta^2$. (Exercise: complete the idea.)

Suvrit Sra (suvrit@mit.edu)