# Optimization for Machine Learning 

Lecture 3: Basic problems, Duality
6.881: MIT

## Suvrit Sra

Massachusetts Institute of Technology

23 Feb, 2021


## Basic convex problems

## Linear Programming

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b, \quad C x=d .
\end{aligned}
$$

## Linear Programming

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b, \quad C x=d .
\end{aligned}
$$

## Piecewise linear minimization is an LP

$$
\min f(x)=\max _{1 \leq i \leq m}\left(a_{i}^{T} x+b_{i}\right)
$$



## Linear Programming

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b, \quad C x=d .
\end{aligned}
$$

Piecewise linear minimization is an LP

$$
\min f(x)=\max _{1 \leq i \leq m}\left(a_{i}^{T} x+b_{i}\right)
$$



$$
\min _{x, t} \quad t \quad \text { s.t. } \quad a_{i}^{T} x+b_{i} \leq t, \quad i=1, \ldots, m
$$

## Exercises

Formulate $\min _{x}\|A x-b\|_{1}$ as an LP $\left(\|x\|_{1}=\sum_{i}\left|x_{i}\right|\right)$
Formulate $\min _{x}\|A x-b\|_{\infty}$ as an LP
$\left(\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|\right)$

## Exercises

Formulate $\min _{x}\|A x-b\|_{1}$ as an LP $\left(\|x\|_{1}=\sum_{i}\left|x_{i}\right|\right)$
Formulate $\min _{x}\|A x-b\|_{\infty}$ as an LP

$$
\left(\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|\right)
$$

Explore: LP formulations for Markov Decision Processes (MDPs). MDPs are frequently used models in Reinforcement Learning, and in some cases admit nice LP formulations.

## Exercises

Formulate $\min _{x}\|A x-b\|_{1}$ as an LP $\left(\|x\|_{1}=\sum_{i}\left|x_{i}\right|\right)$
Formulate $\min _{x}\|A x-b\|_{\infty}$ as an LP

$$
\left(\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|\right)
$$

Explore: LP formulations for Markov Decision Processes (MDPs). MDPs are frequently used models in Reinforcement Learning, and in some cases admit nice LP formulations.

Explore: Integer LP: $\min _{x} c^{T} x, A x \leq b, x \in \mathbb{Z}^{n}$.

## Exercises

Formulate $\min _{x}\|A x-b\|_{1}$ as an $\operatorname{LP}\left(\|x\|_{1}=\sum_{i}\left|x_{i}\right|\right)$
$\ddot{シ}$
Formulate $\min _{x}\|A x-b\|_{\infty}$ as an LP $\left(\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|\right)$

Explore: LP formulations for Markov Decision Processes (MDPs). MDPs are frequently used models in Reinforcement Learning, and in some cases admit nice LP formulations.

Explore: Integer LP: $\min _{x} c^{T} x, A x \leq b, x \in \mathbb{Z}^{n}$.

Open Problem. Can we solve the system of inequalities $A x \leq b$ in strongly polynomial time in the dimensions of the system, indepdent of the magnitudes of the coefficients? Best known result (Tardos, 1984) depends on coefficients of $A$ but permits indpendence on magnitudes of $b$ and the cost vector $c$.
N. Meggido, On the complexity of linear programing: Click here!

## Quadratic Programming

$$
\min \quad \frac{1}{2} x^{T} A x+b^{T} x+c \quad \text { s.t. } G x \leq h
$$

We assume $A \succeq 0$ (semidefinite).

## Quadratic Programming

$$
\min \quad \frac{1}{2} x^{T} A x+b^{T} x+c \quad \text { s.t. } G x \leq h
$$

We assume $A \succeq 0$ (semidefinite).
Exercise: Suppose no constraints; does QP always have solutions?

## Quadratic Programming

$$
\min \quad \frac{1}{2} x^{T} A x+b^{T} x+c \quad \text { s.t. } G x \leq h
$$

We assume $A \succeq 0$ (semidefinite).
Exercise: Suppose no constraints; does QP always have solutions?
Nonnegative least squares (NNLS)

$$
\min \quad \frac{1}{2}\|A x-b\|^{2} \quad \text { s.t. } x \geq 0 .
$$

Exercise: Prove that NNLS always has a solution.

## Regularized least-squares

$$
\begin{array}{cc} 
& \text { Lasso } \\
\min & \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} .
\end{array}
$$

Exercise: How large must $\lambda>0$ so that $x=0$ is the optimum?

## Regularized least-squares

Lasso

$$
\min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} .
$$

Exercise: How large must $\lambda>0$ so that $x=0$ is the optimum?

$$
\begin{array}{ll} 
& \text { Total-variation denoising } \\
\min & \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right| .
\end{array}
$$

Exercise: Is the total-variation term a norm? Prove or disprove.

## Regularized least-squares

Lasso

$$
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1}
$$

Exercise: How large must $\lambda>0$ so that $x=0$ is the optimum?
Total-variation denoising

$$
\min \quad \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda \sum_{i=1}^{n-1}\left|x_{i+1}-x_{i}\right| .
$$

Exercise: Is the total-variation term a norm? Prove or disprove.

$$
\begin{gathered}
\text { Group Lasso } \\
\min _{x_{1}, \ldots, x_{T}} \frac{1}{2}\left\|b-\sum_{j=1}^{T} A_{j} x_{j}\right\|_{2}^{2}+\lambda \sum_{j=1}^{T}\left\|x_{j}\right\|_{2} .
\end{gathered}
$$

Exercise: What is the dual norm of the regularizer above?

## Robust LP as an SOCP

$$
\begin{gathered}
\min \quad c^{T} x, \quad \text { s.t. } a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{gathered}
$$

Constraints are uncertain but with bounded uncertainty.

## Robust LP as an SOCP

$$
\begin{gathered}
\min \quad c^{T} x, \quad \text { s.t. } a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{gathered}
$$

Constraints are uncertain but with bounded uncertainty.
(Adversarially) Robust LP formulation

$$
\min _{x} \max _{\|u\|_{2} \leq 1}\left\{c^{T} x \mid a_{i}^{T} x \leq b_{i}, \quad a_{i} \in \mathcal{E}_{i}\right\}
$$

## Robust LP as an SOCP

$$
\begin{gathered}
\min \quad c^{T} x, \quad \text { s.t. } a_{i}^{T} x \leq b_{i} \forall a_{i} \in \mathcal{E}_{i} \\
\mathcal{E}_{i}:=\left\{\bar{a}_{i}+P_{i} u \mid\|u\|_{2} \leq 1\right\}
\end{gathered}
$$

Constraints are uncertain but with bounded uncertainty.

## (Adversarially) Robust LP formulation

$$
\min _{x} \max _{\|u\|_{2} \leq 1}\left\{c^{T} x \mid a_{i}^{T} x \leq b_{i}, \quad a_{i} \in \mathcal{E}_{i}\right\}
$$

## Second Order Cone Program

$$
\min \quad c^{T} x, \quad \text { s.t. }\left\|P_{i}^{T} x\right\|_{2} \leq-\bar{a}_{i}^{T} x+b_{i}, i=1, \ldots, m .
$$

SOCP constraint comes from:

$$
\max _{\|u\|_{2} \leq 1}\left(\bar{a}_{i}+P_{i} u\right)^{T} x=\bar{a}_{i}^{T} x+\left\|P_{i}^{T} x\right\|_{2}
$$

Exercise: Give a quick argument for above equality.

## Semidefinite Program (SDP)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

## Semidefinite Program (SDP)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

- $A_{0}, \ldots, A_{n}$ are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)


## Semidefinite Program (SDP)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0 .
\end{aligned}
$$

- $A_{0}, \ldots, A_{n}$ are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)
- SDP $\supset$ SOCP $\supset$ QP $\supset$ LP
- Exercise: Write LPs, QPs, and SOCPs as SDPs


## Semidefinite Program (SDP)

$$
\begin{aligned}
\min _{x \in \mathbb{R}^{n}} & c^{T} x \\
\text { s.t. } & A(x):=A_{0}+x_{1} A_{1}+x_{2} A_{2}+\ldots+x_{n} A_{n} \succeq 0
\end{aligned}
$$

- $A_{0}, \ldots, A_{n}$ are real, symmetric matrices
- Inequality $A \preceq B$ means $B-A$ is semidefinite
- Also a cone program (conic optimization problem)
- SDP $\supset \mathrm{SOCP} \supset \mathrm{QP} \supset \mathrm{LP}$
- Exercise: Write LPs, QPs, and SOCPs as SDPs
- Feasible set of SDP is \{semidefinite cone $\bigcap$ hyperplanes $\}$

Explore: Which convex problems representable as SDPs?
(This is an important topic in optimization theory).

## Examples

© Eigenvalue optimization: $\min _{x} \lambda_{\max }(A(x))$

$$
\min \quad t \quad \text { s.t. } \quad A(x) \preceq t I .
$$

## Examples

© Eigenvalue optimization: $\min _{x} \lambda_{\max }(A(x))$

$$
\min \quad t \quad \text { s.t. } \quad A(x) \preceq t I .
$$

© Norm minimization: $\min _{x}\|A(x)\|$

$$
\begin{array}{lll}
\min & t & \text { s.t. }
\end{array}\left[\begin{array}{cc}
t I & A(x)^{T} \\
A(x) & t I
\end{array}\right] \succeq 0 .
$$

## Examples

© Eigenvalue optimization: $\min _{x} \lambda_{\max }(A(x))$

$$
\min \quad t \quad \text { s.t. } \quad A(x) \preceq t I .
$$

© Norm minimization: $\min _{x}\|A(x)\|$

$$
\min \quad t \quad \text { s.t. }\left[\begin{array}{cc}
t I & A(x)^{T} \\
A(x) & t I
\end{array}\right] \succeq 0 .
$$

- More examples - see CVX documentation and BV book

> Explore: SDP relaxations of nonconvex probs: important technique, starting with MAxCut SDP (Goemans-Williamson).

> Explore: Sum-of-squares (SOS) optimization, Lasserre hierarchy of relaxations; see also: https://wwww.sumofsquares.org

## Duality

## (Weak duality, strong duality)

## Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(1 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m  \tag{P}\\
x & \in\left\{\operatorname{dom} f \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

## Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(1 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m  \tag{P}\\
x & \in\left\{\operatorname{dom} f \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Domain: The set $\mathcal{X}:=\left\{\operatorname{dom} f \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call $(P)$ the primal problem
- The variable $x$ is the primal variable


## Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(1 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
\min & f(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m  \tag{P}\\
x & \in\left\{\operatorname{dom} f \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Domain: The set $\mathcal{X}:=\left\{\operatorname{dom} f \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call $(P)$ the primal problem
- The variable $x$ is the primal variable


## Lagrangians and Duality



The reader will find no figures in this work. The methods which I set forth do not require either constructions or geometrical or mechanical reasonings: but only algebraic operations, subject to a regular and uniform rule of procedure.
-Joseph-Louis Lagrange
Preface to Mécanique Analytique

## Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

## Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

© Variables $\lambda \in \mathbb{R}_{+}^{m}$ called Lagrange multipliers

## Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}_{+}^{m}$ called Lagrange multipliers
© Suppose $x$ feasible, and $\lambda \geq 0$. Lower-bound holds:

$$
f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

## Lagrangian

To primal, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}_{+}^{m} \rightarrow(-\infty, \infty]$,

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}_{+}^{m}$ called Lagrange multipliers
© Suppose $x$ feasible, and $\lambda \geq 0$. Lower-bound holds:

$$
f(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

© In other words,

$$
\sup _{\lambda \in \mathbb{R}_{+}^{m}} \mathcal{L}(x, \lambda)= \begin{cases}f(x), & \text { if } x \text { feasible } \\ +\infty & \text { otherwise }\end{cases}
$$

Proof on next slide

## Lagrangian - proof

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- $f(x) \geq \mathcal{L}(x, \lambda), \forall x \in \mathcal{X}, \lambda \in \mathbb{R}_{+}^{m}$; so primal optimal (value)

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

## Lagrangian - proof

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- $f(x) \geq \mathcal{L}(x, \lambda), \forall x \in \mathcal{X}, \lambda \in \mathbb{R}_{+}^{m}$; so primal optimal (value)

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

- If $x$ is not feasible, then some $f_{i}(x)>0$


## Lagrangian - proof

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- $f(x) \geq \mathcal{L}(x, \lambda), \forall x \in \mathcal{X}, \lambda \in \mathbb{R}_{+}^{m}$; so primal optimal (value)

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

- If $x$ is not feasible, then some $f_{i}(x)>0$
- In this case, inner sup is $+\infty$, so claim true by definition


## Lagrangian - proof

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

- $f(x) \geq \mathcal{L}(x, \lambda), \forall x \in \mathcal{X}, \lambda \in \mathbb{R}_{+}^{m}$; so primal optimal (value)

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
$$

- If $x$ is not feasible, then some $f_{i}(x)>0$
- In this case, inner sup is $+\infty$, so claim true by definition
- If $x$ is feasible, each $f_{i}(x) \leq 0, \operatorname{so~sup}_{\lambda} \sum_{i} \lambda_{i} f_{i}(x)=0$


## Dual value

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

$$
\begin{aligned}
& \text { Primal value } \in[-\infty,+\infty] \\
& \quad p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
\end{aligned}
$$

## Dual value

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

$$
\begin{gathered}
\text { Primal value } \in[-\infty,+\infty] \\
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
\end{gathered}
$$

Dual value $\in[-\infty,+\infty]$

$$
d^{*}=\sup _{\lambda \geq 0} \inf _{x \in \mathcal{X}} \quad \mathcal{L}(x, \lambda) .
$$

## Dual value

$$
\mathcal{L}(x, \lambda):=f(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x) .
$$

$$
\begin{aligned}
& \text { Primal value } \in[-\infty,+\infty] \\
& \qquad p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda) .
\end{aligned}
$$

Dual value $\in[-\infty,+\infty]$

$$
d^{*}=\sup _{\lambda \geq 0} \inf _{x \in \mathcal{X}} \quad \mathcal{L}(x, \lambda) .
$$

Dual function

$$
g(\lambda):=\inf _{x \in \mathcal{X}} \mathcal{L}(x, \lambda) .
$$

Observe that $g(\lambda)$ is always concave!

## Weak duality theorem

Theorem. (Weak duality). $p^{*} \geq d^{*}$. (i.e., WD always holds)
Proof:

1. $f\left(x^{\prime}\right) \geq \mathcal{L}\left(x^{\prime}, \lambda\right) \quad \forall x^{\prime} \in \mathcal{X}$
2. Thus, for any $x \in \mathcal{X}$, we have $f(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=g(\lambda)$
3. Now minimize over $x$ on lhs to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda) .
$$

4. Thus, taking sup over $\lambda \in \mathbb{R}_{+}^{m}$ we obtain $p^{*} \geq d^{*}$.

## Lagrangians - Exercise

$$
\begin{aligned}
& \min f(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad i=1, \ldots, m, \\
& h_{i}(x)=0, \quad i=1, \ldots, p .
\end{aligned}
$$

Exercise: Show that we get the Lagrangian dual

$$
g: \mathbb{R}_{+}^{m} \times \mathbb{R}^{p}:(\lambda, \nu) \mapsto \inf _{x} \quad \mathcal{L}(x, \lambda, \nu),
$$

Lagrange variable $\nu$ corresponds to the equality constraints.
Exercise: Prove that $p^{*} \geq \sup _{\lambda \geq 0, \nu \in \mathbb{R}^{p}} g(\lambda, \nu)=d^{*}$.

## Exercises: Some duals

Derive Lagrangian duals for the following problems

- Least-norm solution of linear equations: $\min x^{T} x$ s.t. $A x=b$
- Dual of an LP
- Dual of an SOCP
- Dual of an SDP
- Study example (5.7) in BV (binary QP)


## Strong duality

## Duality gap



## Duality gap

## $p^{*}-d^{*}$

Strong duality holds if duality gap is zero: $p^{*}=d^{*}$

## Duality gap

## $p^{*}-d^{*}$

Strong duality holds if duality gap is zero: $p^{*}=d^{*}$
Several sufficient conditions known!

## Duality gap

```
p*}-\mp@subsup{d}{}{*
```

Strong duality holds if duality gap is zero: $p^{*}=d^{*}$
Several sufficient conditions known!
"Easy" necessary and sufficient conditions: unknown

## Abstract duality gap theorem ${ }^{\star}$

Theorem. Let $v: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the primal value function

$$
v(u):=\inf \left\{f(x) \mid f_{i}(x) \leq u_{i}, 1 \leq i \leq m\right\} .
$$

The following relations hold:
$1 p^{*}=v(0)$
2 $v^{*}(-\lambda)= \begin{cases}-g(\lambda) & \lambda \geq 0 \\ +\infty & \text { otherwise. }\end{cases}$
$3 d^{*}=v^{* *}(0)$

## So if $v(0)=v^{* *}(0)$ we have strong duality

Remark: Conditions such as Slater's ensure $\partial v(0) \neq \emptyset$, which ensures $v$ is finite and lsc at 0 , whereby $v(0)=v^{* *}(0)$ holds.

## Slater's sufficient conditions

$$
\begin{aligned}
& \min \quad f(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad A x=b
\end{aligned}
$$

## Slater's sufficient conditions

$$
\begin{aligned}
& \min \quad f(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad A x=b
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri $\mathcal{X}$ s.t.

$$
f_{i}(x)<0, \quad A x=b
$$

In words: there is a strictly feasible point.

## Slater's sufficient conditions

$$
\begin{aligned}
& \min \quad f(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad A x=b
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri $\mathcal{X}$ s.t.

$$
f_{i}(x)<0, \quad A x=b
$$

In words: there is a strictly feasible point.
Theorem. Let the primal problem be convex. If there is a point that is strictly feasible for the non-affine constraints (merely feasible for affine), then strong duality holds. Moreover, in this case, the dual optimal is attained (i.e., $\partial v(0) \neq \emptyset$ ).

See BV §5.3.2 for a proof; (above, $v$ is the primal value function)

## Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

$$
\text { over the domain } \mathcal{X}=\{(x, y) \mid y>0\} .
$$

## Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

## Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

## Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

## Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0
$$

## Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0 \text {. }
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$.

## Example with positive duality-gap

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{X}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

## Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0 \text {. }
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$. Here, we had no strictly feasible solution.

## Example: Support Vector Machine (SVM)

$$
\begin{array}{cl}
\min _{x, \xi} & \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & A x \geq 1-\xi, \quad \xi \geq 0 .
\end{array}
$$

## Example: Support Vector Machine (SVM)

$$
\begin{gathered}
\min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } \quad A x \geq 1-\xi, \quad \xi \geq 0 . \\
L(x, \xi, \lambda, \nu)=\frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi
\end{gathered}
$$

## Example: Support Vector Machine (SVM)

$$
\begin{aligned}
& \min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
& \text { s.t. } \quad A x \geq 1-\xi, \quad \xi \geq 0 . \\
& L(x, \xi, \lambda, \nu)= \frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi \\
& g(\lambda, \nu):=\inf L(x, \xi, \lambda, \nu) \\
&= \begin{cases}\lambda^{T} 1-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2} & \lambda+\nu=C \mathbf{1} \\
+\infty & \text { otherwise }\end{cases} \\
& d^{*}=\max _{\lambda \geq 0, \nu \geq 0} g(\lambda, \nu)
\end{aligned}
$$

Exercise: Using $\nu \geq 0$, eliminate $\nu$ from above dual and obtain the canonical dual SVM formulation.

## Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

## Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

## Dual problem

$$
\min _{y} \quad f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

## Example: norm regularized problems

$$
\min \quad f(x)+\|A x\|
$$

## Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality-for instance if $0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$

Exercise. Write the constrained form of group-lasso:

$$
\min _{x_{1}, \ldots, x_{T}} \frac{1}{2}\left\|b-\sum_{j=1}^{T} A_{j} x_{j}\right\|_{2}^{2}+\lambda \sum_{j=1}^{T}\left\|x_{j}\right\|_{2}
$$

## Example: Dual via Fenchel conjugates

$$
\min _{x} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \quad(1 \leq i \leq m), \quad A x=b .
$$

Introduce $\nu$ and $\lambda$ as dual variables; consider Lagrangian

$$
\mathcal{L}(x, \lambda, \nu):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b)
$$

## Example: Dual via Fenchel conjugates

$$
\min _{x} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \quad(1 \leq i \leq m), \quad A x=b .
$$

Introduce $\nu$ and $\lambda$ as dual variables; consider Lagrangian

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu)
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

$$
\min _{x} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \quad(1 \leq i \leq m), \quad A x=b
$$

Introduce $\nu$ and $\lambda$ as dual variables; consider Lagrangian

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x)
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

$$
\min _{x} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \quad(1 \leq i \leq m), \quad A x=b
$$

Introduce $\nu$ and $\lambda$ as dual variables; consider Lagrangian

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

$$
\min _{x} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \quad(1 \leq i \leq m), \quad A x=b
$$

Introduce $\nu$ and $\lambda$ as dual variables; consider Lagrangian

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x)
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

$$
\min _{x} f_{0}(x) \quad \text { s.t. } f_{i}(x) \leq 0 \quad(1 \leq i \leq m), \quad A x=b
$$

Introduce $\nu$ and $\lambda$ as dual variables; consider Lagrangian

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x) \\
g(\lambda, \nu) & =-\nu^{T} b-F^{*}\left(-A^{T} \nu\right)
\end{aligned}
$$

$F^{*}$ seems rather opaque...

## Example: Dual via Fenchel conjugates

Important trick: "variable splitting"

$$
\begin{aligned}
\min _{x} f_{0}(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x=x_{i}, i=1, \ldots, m
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

Important trick: "variable splitting"

$$
\begin{gathered}
\min _{x} f_{0}(x) \quad \text { s.t. } \quad f_{i}\left(x_{i}\right) \leq 0, A x=b \\
x=x_{i}, i=1, \ldots, m \\
\mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right) \\
:=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-x\right)
\end{gathered}
$$

## Example: Dual via Fenchel conjugates

## Important trick: "variable splitting"

$$
\begin{aligned}
& \min _{x} f_{0}(x) \quad \text { s.t. } \quad f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x=x_{i}, i=1, \ldots, m . \\
& \mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right) \\
& :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-x\right) \\
& g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}} \mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right)
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

## Important trick: "variable splitting"

$$
\begin{aligned}
\min _{x} f_{0}(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x=x_{i}, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-x\right) \\
& g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}} \mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right) \\
& =-\nu^{T} b+\inf _{x}\left(f_{0}(x)+\nu^{T} A x-\sum_{i} \pi_{i}^{T} x\right) \\
& \quad+\sum_{i} \inf _{x_{i}}\left(\pi_{i}^{T} x_{i}+\lambda_{i} f_{i}\left(x_{i}\right)\right)
\end{aligned}
$$

## Example: Dual via Fenchel conjugates

Important trick: "variable splitting"

$$
\begin{aligned}
\min _{x} f_{0}(x) \quad \text { s.t. } & f_{i}\left(x_{i}\right) \leq 0, A x=b \\
& x=x_{i}, i=1, \ldots, m
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right) \\
& \quad:=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}\left(x_{i}\right)+\nu^{T}(A x-b)+\sum_{i} \pi_{i}^{T}\left(x_{i}-x\right) \\
& g\left(\lambda, \nu, \pi_{i}\right)=\inf _{x, x_{i}} \mathcal{L}\left(x, x_{i}, \lambda, \nu, \pi_{i}\right) \\
& =-\nu^{T} b+\inf _{x}\left(f_{0}(x)+\nu^{T} A x-\sum_{i} \pi_{i}^{T} x\right) \\
& \quad+\sum_{i} \inf _{x_{i}}\left(\pi_{i}^{T} x_{i}+\lambda_{i} f_{i}\left(x_{i}\right)\right) \\
& =-\nu^{T} b-f^{*}\left(-A^{T} \nu+\sum_{i} \pi_{i}\right)-\sum_{i}\left(\lambda_{i} f_{i}\right)^{*}\left(-\pi_{i}\right)
\end{aligned}
$$

(you may want to write $\sum_{i} \pi_{i}=s$ )

## Exercise: the variable splitting trick

$$
\min _{x} f(x)+h(x)
$$

Exercise: Fill in the details for the following steps

$$
\begin{array}{r}
\min _{x, z} f(x)+h(z) \quad \text { s.t. } \quad x=z \\
L(x, z, \nu)=f(x)+h(z)+\nu^{T}(x-z) \\
g(\nu)=\inf _{x, z} L(x, z, \nu)
\end{array}
$$

## Strong duality: nonconvex example

Trust region subproblem (TRS)
min $\quad x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$.
$A$ is symmetric but not necessarily semidefinite!

## Strong duality: nonconvex example

Trust region subproblem (TRS)
$\min \quad x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$.
$A$ is symmetric but not necessarily semidefinite!

Theorem. TRS always has zero duality gap.

## Proof: Read Section 5.2.4 of BV.

See the challenge problems on pg 18, Lect1

## von Neumann minmax theorem ${ }^{\star}$

(Simplified.) Let $A$ be linear, $C, D$ be compact convex sets.

$$
\min _{x \in C} \max _{y \in D}\langle A x, y\rangle=\max _{y \in D} \min _{x \in C}\langle A x, y\rangle .
$$

## von Neumann minmax theorem*

(Simplified.) Let $A$ be linear, $C, D$ be compact convex sets.

$$
\min _{x \in C} \max _{y \in D}\langle A x, y\rangle=\max _{y \in D} \min _{x \in C}\langle A x, y\rangle .
$$

von Neumann proved this via fixed-point theory. By considering the Fenchel problem

$$
\min _{x} \mathbb{1}_{C}(x)+\mathbb{1}_{D}^{*}(A x),
$$

we can conclude the theorem (some work required).

