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Background and Motivation

» Letf:R" — Rbe twice continuously differentiable
» Newton method: x; 1 < xx — [ (xx)] 2 (xx)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 2



Background and Motivation

» Letf:R" — Rbe twice continuously differentiable
» Newton method: x; 1 < xx — [ (xx)] 2 (xx)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 2



Background and Motivation

» Letf:R" — Rbe twice continuously differentiable
» Newton method: x; 1 < xx — [ (xx)] 2 (xx)

» Newton’s method for a constrained convex problem:

min  f(x)
fi(x) <0, Ax=0b.
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Background and Motivation

» Letf:R" — Rbe twice continuously differentiable
» Newton method: x; 1 < xx — [ (xx)] 2 (xx)

» Newton’s method for a constrained convex problem:
min  f(x)
fi(x) <0, Ax=b.

» Interior Point Methods build on the Newton method to
tackle above convex optimization problem
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Barrier functions for constraints

min {f(x) | x € X'}

.
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior

"
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 4



Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior

» Equip & with an internal penalty or barrier function F
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior
» Equip & with an internal penalty or barrier function F
» Fissmooth, strictly convex on int(X’);
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior
» Equip & with an internal penalty or barrier function F

» Fis smooth, strictly convex on int(X'); F(xx) — +oo for every
sequence {x;} C int(X) that converges to a point X € 0X
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior
» Equip & with an internal penalty or barrier function F

» Fis smooth, strictly convex on int(X'); F(xx) — +oo for every
sequence {x;} C int(X) that converges to a point X € 0X

» Barrier family of objective functions
Fi(x) == tfo(x) + F(x),

where t > 0 is the penalty parameter.
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior
» Equip & with an internal penalty or barrier function F

» Fis smooth, strictly convex on int(X'); F(xx) — +oo for every
sequence {x;} C int(X) that converges to a point X € 0X

» Barrier family of objective functions
Fi(x) == tfo(x) + F(x),

where t > 0 is the penalty parameter.

» Say X is bounded, then every F;(x) attains its minimum in
int(X'); call this x*(¢) (unique since F(x) is strictly convex)
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior

v

Equip X with an internal penalty or barrier function F

» Fis smooth, strictly convex on int(X'); F(xx) — +oo for every
sequence {x;} C int(X) that converges to a point X € 0X

» Barrier family of objective functions
Fi(x) == tfo(x) + F(x),

where t > 0 is the penalty parameter.

» Say X is bounded, then every F;(x) attains its minimum in
int(X'); call this x*(¢) (unique since F(x) is strictly convex)

» Let central path be {x*(t) | t > 0};
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Barrier functions for constraints

min {f(x) | x € X'}

» X C R", closed, convex set with nonempty interior

v

Equip X with an internal penalty or barrier function F

» Fis smooth, strictly convex on int(X'); F(xx) — +oo for every
sequence {x;} C int(X) that converges to a point X € 0X

» Barrier family of objective functions
Fi(x) == tfo(x) + F(x),

where t > 0 is the penalty parameter.
» Say X is bounded, then every F;(x) attains its minimum in
int(X'); call this x*(¢) (unique since F(x) is strictly convex)
» Let central path be {x*(t) | t > 0}; as t — oo, central path
converges to solution of original problem.
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Path-following algorithm

Suppose t; > 0; some x; € int(X) s.t. x; “close” to x*(tx)
Repeat until “done”:
Replace penalty t by a larger value t;
Run some method to minimize F;,_, “warm-starting” at
X, until a point x4 “close” to x*(tx41) is found
New pair (#11,Xk+1) is close to the “path”
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Path-following algorithm

Suppose t; > 0; some x; € int(X) s.t. x; “close” to x*(tx)
Repeat until “done”:
Replace penalty t by a larger value t;
Run some method to minimize F;,_, “warm-starting” at
X, until a point x4 “close” to x*(tx41) is found
New pair (#11,Xk+1) is close to the “path”

Fairly old idea (e.g., Frisch, 1955)
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Path-following algorithm

Suppose t; > 0; some x; € int(X) s.t. x; “close” to x*(tx)
Repeat until “done”:
Replace penalty t by a larger value t;
Run some method to minimize F;,_, “warm-starting” at
X, until a point x4 “close” to x*(tx41) is found
New pair (#11,Xk+1) is close to the “path”

Fairly old idea (e.g., Frisch, 1955)

» Any unconstrained method to solve for x; 4
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Path-following algorithm

Suppose t; > 0; some x; € int(X) s.t. x; “close” to x*(tx)
Repeat until “done”:
Replace penalty t by a larger value t;
Run some method to minimize F;,_, “warm-starting” at
X, until a point x4 “close” to x*(tx41) is found
New pair (#11,Xk+1) is close to the “path”

Fairly old idea (e.g., Frisch, 1955)

» Any unconstrained method to solve for x; 4

» What is complexity of such a scheme?
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Path-following algorithm

Suppose t; > 0; some xi € int(X) s.t. x; “close” to x* () |
Repeat until “done”: E
Replace penalty t by a larger value t; :

Run some method to minimize F;,_, “warm-starting” at |

X, until a point x4 “close” to x*(tx41) is found :

New pair (#11,Xk+1) is close to the “path” :

Fairly old idea (e.g., Frisch, 1955)

» Any unconstrained method to solve for x; 4
» What is complexity of such a scheme?
» Numerical problems when t; becomes large; breakdown?

» Standard theory of unconstrained minimization predicts
slowdown as t; becomes larger ...
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What barriers?

& Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming
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What barriers?

& Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

& In particular, for linear-programming with feasible set

X:{x\a?xgbi,lgigm},
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What barriers?

& Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

& In particular, for linear-programming with feasible set
X:{x\a?xgbi,lgigm},
they used the logarithmic barrier

F(x) := — Zi log(b; — al'x).
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What barriers?

& Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

& In particular, for linear-programming with feasible set
X:{x\a?xgbi,lgigm},

they used the logarithmic barrier

—> " log(b; —al x).
1
# And with this F(x), they showed path-following based on
Newton’s method can be made polynomial time.
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What barriers?

& Renegar (1988) and Gonzaga (1989) introduced improved
path-following methods for linear programming

& In particular, for linear-programming with feasible set
X:{x\a?xgbi,lgigm},
they used the logarithmic barrier
- Zi log(b; — al'x).

# And with this F(x), they showed path-following based on
Newton’s method can be made polynomial time.

@ Shortly thereafter, Nesterov realized what intrinsic prop- :
' erties of the log-barrier made it work! !
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Newton method - affine invariance

» Consider f(x) and ¢(y) = f(Ay), where A is invertible
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Newton method - affine invariance

» Consider f(x) and ¢(y) = f(Ay), where A is invertible

Lemma Let {x;} be generated by Newton method for f:
Yep1 = X — [f"(x)] 7 () k>0
Let {yx} be seq. generated by NM for ¢:

Vir1 = Vi — 16" ()] ' ¢ (),
with Ay = xo. Then, Ay = x for all k > 0.
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Newton method - affine invariance

» Consider f(x) and ¢(y) = f(Ay), where A is invertible

Lemma Let {x;} be generated by Newton method for f:
Yep1 = X — [f"(x)] 7 () k>0
Let {y;} be seq. generated by NM for ¢:

Vir1 = Vi — 16" ()] ' ¢ (),
with Ay = xo. Then, Ay = x for all k > 0.

' Newton method remains same—strong contrast to gradient | !
 method! Stopping condition:

| (" (<)) 7F (), £/ () < e

independent of choice of basis A!
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Newton method - local convergence

Assumptions
e Lipschitz Hessian: | V2f(x) — V2f(y)|| < M||x —y||

e Local strong convexity: There exists a local minimum x* with
V() = pul, >0

e Locality: Starting point xo “close enough” to x*

Theorem. Suppose xy satisfies
21

3M’
Then, ||x; — x*|| < r, Vk and the NM converges quadratically

lxo — x| < 7:=

M2 — x*||?
= Mljxe —x*|))

X1 — X5 <
s = ') < 57
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Newton method - local convergence

What's wrong / missing?
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Newton method - local convergence

What’s wrong / missing?

» Convergence analysis depends on y, and M

» These quantities are not basis independent!
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Newton method - local convergence

What’s wrong / missing?

» Convergence analysis depends on y, and M
» These quantities are not basis independent!

» Mismatch between geometry and analysis

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 9



What's missing

I¥" Key condition used was [|f”(x) — f"(y)|| < M||x —y|
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What's missing

I¥" Key condition used was [|f”(x) — f"(y)|| < M||x —y|

2" Third derivative in direction u € R" is

f”/(X)[M] — lim fl/(x + au) _f//(x)

a—0 (%
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What's missing

I¥" Key condition used was [|f”(x) — f"(y)|| < M||x —y|

2" Third derivative in direction u € R" is

f/l/(x> [u] — lim fl/(x + Od/l) _f//(x)

a—0 (%

I¥" Lipschitz Hessian equivalent (prove!) to

" (Ol < Miu|
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What's missing

I¥" Key condition used was [|f”(x) — f"(y)|| < M||x —y|

2" Third derivative in direction u € R" is

f/l/(x> [u] — lim fl/<x + au) _f//(x)

a—0 (%

1" Lipschitz Hessian equivalent (prove!) to
U™ )]l < M]Jull
%" Thus, at x € domf, and any u,v € R" we have

(f" () [ulo, v) < Mu|[o||?
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What's missing

5" Using x < Ay, ' + Au, v’ + Av, ¢(y) = f(Ay)

(" () ulo, 0) = (" ()]0, o)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 11



What's missing

I Using x < Ay, u' < Au, v’ <+ Av, ¢(y) = f(Ay)
(" (x)[u]o, v) = (¢" (O[], )

%" Thus, in the inequality (f"(x)[u]v, v) < M||u|||v||?, lhs is
affine invariant, but rhs is not
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What's missing

I Using x < Ay, u' < Au, v’ <+ Av, ¢(y) = f(Ay)
(" (x)[u]o, v) = (¢" (O[], )

%" Thus, in the inequality (f"(x)[u]v, v) < M||u|||v||?, lhs is
affine invariant, but rhs is not

I¥" What can be a quick fix? Observation, use local norms on rhs

[y = (F" (x)u, )2 =\ JuTf" (x)u
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What's missing

I Using x < Ay, u' < Au, v’ <+ Av, ¢(y) = f(Ay)
(" (x)[u]o, v) = (¢" (O[], )

%" Thus, in the inequality (f"(x)[u]v, v) < M||u|||v||?, lhs is
affine invariant, but rhs is not

I¥" What can be a quick fix? Observation, use local norms on rhs

gy = (F" (), )/ = \JuTf" (x)u
Then, we immediately have

A" | awy = llutllpr )
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What's missing

I Using x < Ay, u' < Au, v’ <+ Av, ¢(y) = f(Ay)
(" (x)[u]o, v) = (¢" (O[], )

%" Thus, in the inequality (f"(x)[u]v, v) < M||u|||v||?, lhs is
affine invariant, but rhs is not

I¥" What can be a quick fix? Observation, use local norms on rhs
ey = (F" (e)u, )% =\ JuTf" (pu
Then, we immediately have
A" | awy = llutllpr )

15" This brings us to the idea of self-concordance
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Self-concordant functions

e Letf € C?(domf) be a closed, convex with open domain
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Self-concordant functions

e Letf € C?(domf) be a closed, convex with open domain

e Fix x € domf and a direction vector u € R"

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 12



Self-concordant functions

e Letf € C?(domf) be a closed, convex with open domain
e Fix x € domf and a direction vector u € R"
e Denote restriction to line ¢(x; t) := f(x + tu)
Derivatives
Df(x)[u] = ¢/(x;t) = {f'(x), w)
D (x)[u,u) = ¢" (x; 1) = {f" (x)ut, ) = |[ul|F s
D (x)[u, u,u) = ¢ (x; £)= (Df (x)[u]u, u)
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Self-concordant functions

e Letf € C?(domf) be a closed, convex with open domain
e Fix x € domf and a direction vector u € R"
e Denote restriction to line ¢(x; t) := f(x + tu)
Derivatives
Df(x)[u] = ¢/(x;t) = {f'(x), w)
Df(x)[u, u] = ¢" (x; 1) = {f"(x)u, u) = ullf
D (x)[u, u,u) = ¢ (x; £)= (Df (x)[u]u, u)

Note: Third derivative: symmetric trilinear operator, so it
operates on [u1, U2, u3] to yield a trilinear symmetric form.

flx+tiuy + -+ tpuy)

P
Dpf(X)[l/ll,, . 'a“p] = a
=tp=0

fr-- Oy, .
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Self-concordant functions and barriers

Def. (Self-concordant). Let X be a closed convex set. A func-
tion f : int(X) — R called self-concordant (SC) on X’ if

IF" f € C3(X) with f(xx) — +ooif xp — X € 0X
IE” f satisfies the SC inequality
D3 (x)[u, u, )| < 2 (DX (2)[u,u])*?, Vi € int(X),u € R”
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Self-concordant functions and barriers

Def. (Self-concordant). Let X be a closed convex set. A func-
tion f : int(X) — R called self-concordant (SC) on X’ if

IF" f € C3(X) with f(xx) — +ooif xp — X € 0X
IE” f satisfies the SC inequality
D3 (x)[u, u, )| < 2 (DX (2)[u,u])*?, Vi € int(X),u € R”

Def. Given areal ¥ > 1, F is called a 1-self-concordant bar-
rier (SCB) for X if F is SC and

IDE(x)[u]| < 0Y/2 (D*f(x)[u,u])"/?,  ¥x € int(X),u € R™,
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Self-concordant functions and barriers

Def. (Self-concordant). Let X be a closed convex set. A func-
tion f : int(X) — R called self-concordant (SC) on X’ if

IF" f € C3(X) with f(xx) — +ooif xp — X € 0X
IE” f satisfies the SC inequality
D3 (x)[u, u, )| < 2 (DX (2)[u,u])*?, Vi € int(X),u € R”

Def. Given areal ¥ > 1, F is called a 1-self-concordant bar-
rier (SCB) for X if F is SC and

IDE(x)[u]| < 0Y/2 (D*f(x)[u,u])"/?,  ¥x € int(X),u € R™,

» Exponents 3/2 and 1/2 crucial—ensure both sides have
same degree of homogeneity in u (for affine invariance)

» Factor 2 can be scaled by scaling f; equiv. to D*f
Lipschitz with constant 2 in norm ||- || ()
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Examples of SC functions

‘ Example. f(x) = —logx : R4+ — Ris a 1-SCB for R
Proof: f"(x) = x72, f"(x) = —2x~3; directly verifies.

"
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Examples of SC functions

’ Example. f(x) = —logx : R4+ — Risa 1-SCB for R
Proof: f"(x) = x72, f"" (x) = —2x~3; directly verifies.

» Linear functions are SC; f"/(x) = 0

» Convex quadratic functions; f"'(x) =0

» Log-barrier for ¢(x) = a+ (b, x) — 3xTAx; f(x) = —log ¢(x)
Show: |D3f (x)[u, u,u]| = [2w} + 3wiwz|, where wy = Df (x)[u],
wp = 5" Au; also show that Df () [u, u] = wf + w,.
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Examples of SC functions

’ Example. f(x) = —logx : R4+ — Risa 1-SCB for R
Proof: f"(x) = x72, f"" (x) = —2x~3; directly verifies.
» Linear functions are SC; f"/(x) = 0

» Convex quadratic functions; f"'(x) =0
» Log-barrier for ¢(x) = a+ (b, x) — 3xTAx; f(x) = —log ¢(x)

Show: |D3f (x)[u, u, u]| = |2w3 + 3wiwy|, where wy = Df (x)[u],
1
wp = 5" Au; also show that Df () [u, u] = wf + w,.

Lemma Function f SC iff for any x € int(X'), u1, up, uz € R"
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Optimization using SC

"
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Key quantities

» Letf(x) be SC, and that f”(x) > 0 within dom f
» not asking for usual L-smoothness, strong cvx
» simplified notation for the local norms at x

lulle = (" ()u, )1/
[olly = ([F"(x )] v, v>1/2
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Key quantities

» Letf(x) be SC, and that f”(x) > 0 within dom f
» not asking for usual L-smoothness, strong cvx
» simplified notation for the local norms at x

lulle = (" ()u, )1/
[olly = ([F"(x )] v, v>1/2

» Let us use these to state three crucial observations
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Three key facts (locally structure)

I¥" At any point x € domf = int(X), there is an ellipsoid

W(x) == {y € R" | |y — xlls < 1} C domf.
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Three key facts (locally structure)

I¥" At any point x € domf = int(X), there is an ellipsoid
W(x) := {y € R" | lly — xllx < 1} C domf.
I¥" Within this Dinkin ellipsoid, f is almost quadratic

r=ull,<1 =

(1= P10 < x+1) 2 ")
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Three key facts (locally structure)

I¥" At any point x € domf = int(X), there is an ellipsoid
W) = {y € R" | ly — x| < 1} C domf.
I¥" Within this Dinkin ellipsoid, f is almost quadratic

r=ull,<1 =
(1= P10 < x+1) 2 ")
I¥" Moreover, linear upper and lower bounds on f:
fQ) +(F(x), w) + p(=7) < flx+u) <fx) +{f'(x p(r),

wherep( )= —log(1—7)—s=6%/2483/3+---

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/11/21; Lecture 21) II|" 17



Setting up Newton’s Method: Newton Decrement

Newton decrement

| Observe: A¢(x) = [|f'(x)||¥ (local, dual-norm of gradient).

____________________________________________________

» \¢(x) vanishes at (unique, if any) minimizer x; of f on dom f
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Setting up Newton’s Method: Newton Decrement

Newton decrement

____________________________________________________

» \¢(x) vanishes at (unique, if any) minimizer x; of f on dom f

Theorem. If A¢(x) < 1 for some x € domf. Then, min f(x) s.t.,
x € domf, has a unique optimal solution.
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Newton Method: Guaranteed Descent

Select xp € dom f
Fork > 0t Xip1 = Xk — gy [ ()]~ ()

"
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Newton Method: Guaranteed Descent

Select xp € dom f
Fork > 0t Xip1 = Xk — gy [ ()]~ ()

Theorem. The iterates of the damped NM satisfy (k > 0):
frga) < f(x) — p(=Ap(x))-
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Newton Method: Guaranteed Descent

Select xp € dom f
Fork > 0: xpq = x — H;W[f”(xk)]‘lf’(xk)

Theorem. The iterates of the damped NM satisfy (k > 0):
frg1) < f(xx) — p(=Ar(xx))-

' Proof: Denote A = A¢(xx). Also, set w(t) := p(—t).

Then, ||xk+1 — Xk||x = 1_%\ = w'(A). Thus, using one of the key facts
fla) < ) + (' (), Xer = x) + w" (131 — xellx)
2
1+A

= fl) = A’ (V) +w" (W' (V) =f(x) — w(X).

» At each step, f(x) decreases by at least w(\)

| = S~ o (W )
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Using Damped Newton

e Globally convegent; iteration complexity can be derived.
e Though, better to start with DN (when M (x;) > 8, 8 €
(0,0.3819...)), where f(x311) < f(xx) — w(B), which runs for

1 ) .
N =~ iterations.

w(B)If (x0) — f(xf)]

e After that \¢(xx) < 3, and we apply standard NM which con-
verges quadratically.
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SC Barriers

"
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Minimization using SC Barriers

» class of 1-SCB smaller than general SC.
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Minimization using SC Barriers

» class of 1-SCB smaller than general SC.
Standard convex problem

min clx x€ X,

where X is a compact set for which dom F = X
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Minimization using SC Barriers

» class of ¥-SCB smaller than general SC.
Standard convex problem
min ¢x xeXx ,

where X is a compact set for which dom F = X
» Recall path-following scheme

x*(t) = argmin  tc'x +F(x), t>0.
xedom F

» Any point of the central path (set {x*(t)}) satisfies

tc+ F'(x*(t)) = 0.
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Minimization using SC Barriers

» class of ¥-SCB smaller than general SC.
Standard convex problem

min clx x€ X,

where X is a compact set for which dom F = X
» Recall path-following scheme

x*(t) = argmin  tc'x +F(x), t>0.
xedom F

» Any point of the central path (set {x*(t)}) satisfies
tc+ F'(x*(t)) = 0.

» Aim is to iteratively find points close to central path
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Minimization using SCBs

Approximate solution: A point x for which
AR (%) o= [Fy(x)|x = it + F(x)]x < B,

where §3 is the “centering parameter”
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Minimization using SCBs

Approximate solution: A point x for which
Ar (%) = [F(x)llx = llte + F(x)II; < B,

where §3 is the “centering parameter”

Theorem. For any ¢t > 0, we have
Tt (t) — cTx* < 2.

If a point x is an approximate solution (close to x*(t)), then

T, Tox_ 1 B(B+ V1)
c'x—c'x §t<19+1_5).
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Path-following algorithm

Set tyg = 0. Choose accuracy € > 0 and xp € dom F such that

IF'(x0) I3, < 8
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Path-following algorithm

Set tg = 0. Choose accuracy € > 0 and xp € dom F such that
IF'(x0) I3, < B

LA VB
lelly, 1-VB

X1 = X — [F"(x0)] " (beac + F(x))

At k-th iteration, set

_/Ba

fe1 = b+
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Path-following algorithm

Set tg = 0. Choose accuracy € > 0 and xp € dom F such that
IF'(x0) I3, < B
LA VB
llellz,” 1-V3
X1 = X — [F"(x0)] " (beac + F(x))

Stop the process if

At k-th iteration, set

_/Ba

fe1 = b+

etk2ﬂ+w

1-5
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Path-following algorithm

Set tyg = 0. Choose accuracy € > 0 and xp € dom F such that

I (x0) 3, < B
At k-th iteration, set

LA VB
lellz,” 1-pB
Xep1 = X — [F"(x0)] (Begre + F'(x))

Stop the process if

_/Ba

tk+1 =

BB+ V1)

>
ety > U+ 1-3

Theorem. Above scheme yields c’xy —cTx* < € after no more
than N steps, where

N<O <flo ﬁHCHX*)
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SC Barriers

Recall, F is 9-SCB if F”(x) = $F'(x)F'(x)T.

+ an SCB. Slmﬂarly, convex quadrat1cs are also not SCBS

E Exercise: Let ¢(x) = b+ (a, x) — 2xT Ax be concave. Verify that E
i F(x) = —log ¢(x) withdomF = {x € R" | ¢(x) > 0} is 1-SCB. |

E Exercise: — logdet X barrier for PSD cone

Theorem. If Fq, F, are 9,-SCB, then F = F; + F, is 9-SCB for
dom F = dom F; Ndom F5 with 9 = 91 + 9,.

Impt: The param ¥ is invariant to affine transformations.



Much More

We've just scratched the surface!

"
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Much More

We’ve just scratched the surface!

» Much more to interior point methods.

» See references and also read: Ch. 9,10,11 of BV for
high-level overview.

' Read: Universal barriers, entropic barriers, SCB and differen- |
tlal geometry, SCB and optimal transport, . |
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Much More

We’ve just scratched the surface!

» Much more to interior point methods.

» See references and also read: Ch. 9,10,11 of BV for
high-level overview.

' Read: Universal barriers, entropic barriers, SCB and differen- |
tlal geometry, SCB and optimal transport, . |
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