Optimization for Machine Learning

Lecture 21: Interior Point Methods – Intro 6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

11 May, 2021

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable
- ▶ Newton method: $x_{k+1} \leftarrow x_k [f''(x_k)]^{-1}f'(x_k)$

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable
- ▶ Newton method: $x_{k+1} \leftarrow x_k [f''(x_k)]^{-1}f'(x_k)$

Explore. Complexity analysis of Newton's method.

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable
- ▶ Newton method: $x_{k+1} \leftarrow x_k [f''(x_k)]^{-1}f'(x_k)$

Explore. Complexity analysis of Newton's method.

▶ Newton's method for a *constrained* convex problem:

$$\min f(x)
s.t. f_i(x) \le 0, Ax = b.$$

- ▶ Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable
- ▶ Newton method: $x_{k+1} \leftarrow x_k [f''(x_k)]^{-1}f'(x_k)$

Explore. Complexity analysis of Newton's method.

▶ Newton's method for a *constrained* convex problem:

$$\min f(x)$$
s.t. $f_i(x) \le 0$, $Ax = b$.

► Interior Point Methods build on the Newton method to tackle above convex optimization problem

Exercise: How'd you solve above prob using Newton?

Preliminaries

(handling constraints)

(5/11/21; Lecture 21)

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

▶ \mathcal{X} \subset \mathbb{R}^n , closed, convex set with nonempty interior

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- ▶ \mathcal{X} \subset \mathbb{R}^n , closed, convex set with nonempty interior
- ▶ Equip X with an **internal penalty** or **barrier** function F

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- ▶ $\mathcal{X} \subset \mathbb{R}^n$, closed, convex set with nonempty interior
- \blacktriangleright Equip \mathcal{X} with an internal penalty or barrier function F
- ▶ *F* is smooth, strictly convex on int(X);

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- $ightharpoonup \mathcal{X} \subset \mathbb{R}^n$, closed, convex set with nonempty interior
- \blacktriangleright Equip \mathcal{X} with an internal penalty or barrier function F
- ▶ *F* is smooth, strictly convex on $int(\mathcal{X})$; $F(x_k) \to +\infty$ for every sequence $\{x_k\} \subset int(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- $ightharpoonup \mathcal{X} \subset \mathbb{R}^n$, closed, convex set with nonempty interior
- ▶ Equip \mathcal{X} with an internal penalty or barrier function F
- ▶ *F* is smooth, strictly convex on $int(\mathcal{X})$; $F(x_k) \to +\infty$ for every sequence $\{x_k\} \subset int(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- ▶ **Barrier family** of objective functions

$$F_t(x) := tf_0(x) + F(x),$$

where t > 0 is the **penalty** parameter.

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- $\triangleright \mathcal{X} \subset \mathbb{R}^n$, closed, convex set with nonempty interior
- \blacktriangleright Equip \mathcal{X} with an internal penalty or barrier function F
- ▶ *F* is smooth, strictly convex on int(\mathcal{X}); $F(x_k) \to +\infty$ for every sequence $\{x_k\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- ► **Barrier family** of objective functions

$$F_t(x) := tf_0(x) + F(x),$$

where t > 0 is the **penalty** parameter.

▶ Say \mathcal{X} is bounded, then every $F_t(x)$ attains its minimum in $int(\mathcal{X})$; call this $x^*(t)$ (unique since F(x) is strictly convex)

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- $\triangleright \mathcal{X} \subset \mathbb{R}^n$, closed, convex set with nonempty interior
- \blacktriangleright Equip \mathcal{X} with an internal penalty or barrier function F
- ▶ *F* is smooth, strictly convex on int(\mathcal{X}); $F(x_k) \to +\infty$ for every sequence $\{x_k\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- ► **Barrier family** of objective functions

$$F_t(x) := tf_0(x) + F(x),$$

where t > 0 is the **penalty** parameter.

- ▶ Say \mathcal{X} is bounded, then every $F_t(x)$ attains its minimum in $int(\mathcal{X})$; call this $x^*(t)$ (unique since F(x) is strictly convex)
- ▶ Let central path be $\{x^*(t) \mid t \ge 0\}$;

$$\min \left\{ f(x) \mid x \in \mathcal{X} \right\}$$

- ▶ \mathcal{X} \subset \mathbb{R}^n , closed, convex set with nonempty interior
- ▶ Equip \mathcal{X} with an **internal penalty** or **barrier** function F
- ▶ *F* is smooth, strictly convex on int(\mathcal{X}); $F(x_k) \to +\infty$ for every sequence $\{x_k\} \subset \operatorname{int}(\mathcal{X})$ that converges to a point $\bar{x} \in \partial X$
- ▶ **Barrier family** of objective functions

$$F_t(x) := tf_0(x) + F(x),$$

where t > 0 is the **penalty** parameter.

- ▶ Say \mathcal{X} is bounded, then every $F_t(x)$ attains its minimum in int(\mathcal{X}); call this $x^*(t)$ (unique since F(x) is strictly convex)
- ▶ Let **central path** be $\{x^*(t) \mid t \ge 0\}$; as $t \to \infty$, central path converges to solution of original problem.

- **1** Suppose t_k > 0; some x_k ∈ int(\mathcal{X}) s.t. x_k "close" to $x^*(t_k)$
- Repeat until "done":
 - 1 Replace penalty t_k by a larger value t_{k+1}
 - 2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_k until a point x_{k+1} "close" to $x^*(t_{k+1})$ is found
 - 3 New pair (t_{k+1}, x_{k+1}) is close to the "path"

- **1** Suppose $t_k > 0$; some $x_k \in \text{int}(X)$ s.t. x_k "close" to $x^*(t_k)$
- Repeat until "done":
 - 1 Replace penalty t_k by a larger value t_{k+1}
 - 2 Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_k until a point x_{k+1} "close" to $x^*(t_{k+1})$ is found
 - 3 New pair (t_{k+1}, x_{k+1}) is close to the "path"

Fairly old idea (e.g., Frisch, 1955)

- 1 Suppose $t_k > 0$; some $x_k \in \text{int}(\mathcal{X})$ s.t. x_k "close" to $x^*(t_k)$
- 2 Repeat until "done":
 - 1 Replace penalty t_k by a larger value t_{k+1}
 - Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_k until a point x_{k+1} "close" to $x^*(t_{k+1})$ is found
 - 3 New pair (t_{k+1}, x_{k+1}) is close to the "path"

Fairly old idea (e.g., Frisch, 1955)

 \blacktriangleright Any unconstrained method to solve for x_{k+1}

(5/11/21; Lecture 21)

- 1 Suppose $t_k > 0$; some $x_k \in \text{int}(\mathcal{X})$ s.t. x_k "close" to $x^*(t_k)$
- 2 Repeat until "done":
 - 1 Replace penalty t_k by a larger value t_{k+1}
 - Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_k until a point x_{k+1} "close" to $x^*(t_{k+1})$ is found
 - 3 New pair (t_{k+1}, x_{k+1}) is close to the "path"

Fairly old idea (e.g., Frisch, 1955)

- \blacktriangleright Any unconstrained method to solve for x_{k+1}
- ▶ What is complexity of such a scheme?

(5/11/21; Lecture 21)

- 1 Suppose $t_k > 0$; some $x_k \in \text{int}(\mathcal{X})$ s.t. x_k "close" to $x^*(t_k)$
- 2 Repeat until "done":
 - 1 Replace penalty t_k by a larger value t_{k+1}
 - Run some method to minimize $F_{t_{k+1}}$ "warm-starting" at x_k until a point x_{k+1} "close" to $x^*(t_{k+1})$ is found
 - 3 New pair (t_{k+1}, x_{k+1}) is close to the "path"

Fairly old idea (e.g., Frisch, 1955)

- \blacktriangleright Any unconstrained method to solve for x_{k+1}
- ▶ What is complexity of such a scheme?
- \blacktriangleright Numerical problems when t_k becomes large; breakdown?
- ► Standard theory of unconstrained minimization predicts slowdown as t_k becomes larger ...

♠ Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming

- ♠ Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
- ♠ In particular, for linear-programming with feasible set

$$\mathcal{X} = \left\{ x \mid a_i^T x \le b_i, 1 \le i \le m \right\},\,$$

- ♠ Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
- ♠ In particular, for linear-programming with feasible set

$$\mathcal{X} = \left\{ x \mid a_i^T x \le b_i, 1 \le i \le m \right\},\,$$

they used the logarithmic barrier

$$F(x) := -\sum_{i} \log(b_i - a_i^T x).$$

- ♠ Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
- ▲ In particular, for linear-programming with feasible set

$$\mathcal{X} = \left\{ x \mid a_i^T x \le b_i, 1 \le i \le m \right\},\,$$

they used the logarithmic barrier

$$F(x) := -\sum_{i} \log(b_i - a_i^T x).$$

 \spadesuit And with this F(x), they showed path-following based on Newton's method can be made polynomial time.

Breakthrough result, though *ad-hoc* analysis of NM

- ♠ Renegar (1988) and Gonzaga (1989) introduced improved path-following methods for linear programming
- In particular, for linear-programming with feasible set

$$\mathcal{X} = \left\{ x \mid a_i^T x \le b_i, 1 \le i \le m \right\},\,$$

they used the logarithmic barrier

$$F(x) := -\sum_{i} \log(b_i - a_i^T x).$$

 \spadesuit And with this F(x), they showed path-following based on Newton's method can be made **polynomial time**.

Breakthrough result, though ad-hoc analysis of NM

Shortly thereafter, Nesterov realized what intrinsic properties of the log-barrier made it work!

Newton method – affine invariance

▶ Consider f(x) and $\phi(y) = f(Ay)$, where A is invertible

Newton method – affine invariance

▶ Consider f(x) and $\phi(y) = f(Ay)$, where A is invertible

Lemma Let $\{x_k\}$ be generated by Newton method for f:

$$x_{k+1} = x_k - [f''(x_k)]^{-1}f'(x_k) \quad k \ge 0.$$

Let $\{y_k\}$ be seq. generated by NM for ϕ :

$$y_{k+1} = y_k - [\phi''(y_k)]^{-1} \phi'(y_k),$$

with $Ay_0 = x_0$. Then, $Ay_k = x_k$ for all $k \ge 0$.

Newton method – affine invariance

▶ Consider f(x) and $\phi(y) = f(Ay)$, where A is invertible

Lemma Let $\{x_k\}$ be generated by Newton method for f:

$$x_{k+1} = x_k - [f''(x_k)]^{-1}f'(x_k) \quad k \ge 0.$$

Let $\{y_k\}$ be seq. generated by NM for ϕ :

$$y_{k+1} = y_k - [\phi''(y_k)]^{-1} \phi'(y_k),$$

with $Ay_0 = x_0$. Then, $Ay_k = x_k$ for all $k \ge 0$.

Newton method remains same—strong contrast to gradient method! Stopping condition:

$$\langle [f''(x_k)]^{-1}f'(x_k), f'(x_k)\rangle < \epsilon$$

independent of choice of basis A!

(5/11/21; Lecture 21)

Assumptions

- Lipschitz Hessian: $\|\nabla^2 f(x) \nabla^2 f(y)\| \le M\|x y\|$
- Local strong convexity: There exists a local minimum x^* with

$$\nabla^2 f(x^*) \succeq \mu I, \qquad \mu > 0.$$

• Locality: Starting point x_0 "close enough" to x^*

Theorem. Suppose x_0 satisfies

$$||x_0 - x^*|| < r := \frac{2\mu}{3M}.$$

Then, $||x_k - x^*|| < r$, $\forall k$ and the NM converges quadratically

$$||x_{k+1} - x^*|| \le \frac{M||x_k - x^*||^2}{2(\mu - M||x_k - x^*||)}$$

What's wrong / missing?

What's wrong / missing?

- ▶ Convergence analysis depends on μ , and M
- ► These quantities are **not basis independent!**

What's wrong / missing?

- ▶ Convergence analysis depends on μ , and M
- ► These quantities are **not basis independent!**
- ▶ Mismatch between geometry and analysis

For Key condition used was $||f''(x) - f''(y)|| \le M||x - y||$

From Key condition used was $||f''(x) - f''(y)|| \le M||x - y||$

Third derivative in direction $u \in \mathbb{R}^n$ is

$$f'''(x)[u] = \lim_{\alpha \to 0} \frac{f''(x + \alpha u) - f''(x)}{\alpha}$$

Key condition used was $||f''(x) - f''(y)|| \le M||x - y||$

Third derivative in direction $u \in \mathbb{R}^n$ is

$$f'''(x)[u] = \lim_{\alpha \to 0} \frac{f''(x + \alpha u) - f''(x)}{\alpha}$$

Lipschitz Hessian equivalent (prove!) to

$$||f'''(x)[u]|| \le M||u||$$

(5/11/21; Lecture 21)

Key condition used was $||f''(x) - f''(y)|| \le M||x - y||$

Third derivative in direction $u \in \mathbb{R}^n$ is

$$f'''(x)[u] = \lim_{\alpha \to 0} \frac{f''(x + \alpha u) - f''(x)}{\alpha}$$

Lipschitz Hessian equivalent (prove!) to

$$||f'''(x)[u]|| \le M||u||$$

Thus, at $x \in \text{dom } f$, and any $u, v \in \mathbb{R}^n$ we have

$$\langle f'''(x)[u]v, v\rangle \leq M||u|| ||v||^2$$

Using
$$x \leftarrow Ay$$
, $u' \leftarrow Au$, $v' \leftarrow Av$, $\phi(y) = f(Ay)$
$$\langle f'''(x)[u]v, v \rangle = \langle \phi'''(x)[u']v', v' \rangle$$

Using
$$x \leftarrow Ay$$
, $u' \leftarrow Au$, $v' \leftarrow Av$, $\phi(y) = f(Ay)$
$$\langle f'''(x)[u]v, v \rangle = \langle \phi'''(x)[u']v', v' \rangle$$

Thus, in the inequality $\langle f'''(x)[u]v, v \rangle \leq M||u|| ||v||^2$, lhs is affine invariant, but rhs is not

Using
$$x \leftarrow Ay$$
, $u' \leftarrow Au$, $v' \leftarrow Av$, $\phi(y) = f(Ay)$

$$\langle f'''(x)[u]v, v \rangle = \langle \phi'''(x)[u']v', v' \rangle$$

- Thus, in the inequality $\langle f'''(x)[u]v, v \rangle \leq M||u|| ||v||^2$, lhs is affine invariant, but rhs is not
- What can be a quick fix? Observation, use local norms on rhs

$$||u||_{f''(x)} := \langle f''(x)u, u \rangle^{1/2} = \sqrt{u^T f''(x)u}$$

Using
$$x \leftarrow Ay$$
, $u' \leftarrow Au$, $v' \leftarrow Av$, $\phi(y) = f(Ay)$

$$\langle f'''(x)[u]v, v\rangle = \langle \phi'''(x)[u']v', v'\rangle$$

- Thus, in the inequality $\langle f'''(x)[u]v, v \rangle \leq M||u|| ||v||^2$, lhs is affine invariant, but rhs is not
- What can be a quick fix? Observation, use local norms on rhs

$$||u||_{f''(x)} := \langle f''(x)u, u \rangle^{1/2} = \sqrt{u^T f''(x)u}$$

Then, we immediately have

$$||A^{-1}u||_{f''(Ax)} = ||u||_{f''(x)}$$

Using
$$x \leftarrow Ay$$
, $u' \leftarrow Au$, $v' \leftarrow Av$, $\phi(y) = f(Ay)$

$$\langle f'''(x)[u]v, v\rangle = \langle \phi'''(x)[u']v', v'\rangle$$

- Thus, in the inequality $\langle f'''(x)[u]v, v \rangle \leq M||u|| ||v||^2$, lhs is affine invariant, but rhs is not
- What can be a quick fix? Observation, use local norms on rhs

$$||u||_{f''(x)} := \langle f''(x)u, u \rangle^{1/2} = \sqrt{u^T f''(x)u}$$

Then, we immediately have

$$||A^{-1}u||_{f''(Ax)} = ||u||_{f''(x)}$$

This brings us to the idea of self-concordance

(5/11/21; Lecture 21)

Suvrit Sra (suvrit@mit.edu)

• Let $f \in C^3(\text{dom } f)$ be a closed, convex with open domain

- Let $f \in C^3(\text{dom } f)$ be a closed, convex with **open** domain
- Fix $x \in \text{dom } f$ and a direction vector $u \in \mathbb{R}^n$

- Let $f \in C^3(\text{dom } f)$ be a closed, convex with **open** domain
- Fix $x \in \text{dom } f$ and a direction vector $u \in \mathbb{R}^n$
- Denote restriction to line $\phi(x;t) := f(x + tu)$

Derivatives

$$Df(x)[u] = \phi'(x;t) = \langle f'(x), u \rangle$$

$$D^{2}f(x)[u, u] = \phi''(x;t) = \langle f''(x)u, u \rangle = ||u||_{f''(x)}^{2}$$

$$D^{3}f(x)[u, u, u] = \phi'''(x;t) = \langle D^{3}f(x)[u]u, u \rangle$$

- Let $f \in C^3(\text{dom } f)$ be a closed, convex with open domain
- Fix $x \in \text{dom } f$ and a direction vector $u \in \mathbb{R}^n$
- Denote restriction to line $\phi(x;t) := f(x + tu)$

Derivatives

$$Df(x)[u] = \phi'(x;t) = \langle f'(x), u \rangle$$

$$D^{2}f(x)[u, u] = \phi''(x;t) = \langle f''(x)u, u \rangle = ||u||_{f''(x)}^{2}$$

$$D^{3}f(x)[u, u, u] = \phi'''(x;t) = \langle D^{3}f(x)[u]u, u \rangle$$

Note: Third derivative: symmetric trilinear operator, so it operates on $[u_1, u_2, u_3]$ to yield a trilinear symmetric form.

$$D^{p}f(x)[u_{1},\ldots,u_{p}] = \frac{\partial^{p}}{\partial t_{1}\cdots\partial t_{p}}\bigg|_{t_{1}=\cdots=t_{p}=0} f(x+t_{1}u_{1}+\cdots+t_{p}u_{p})$$

Self-concordant functions and barriers

Def. (Self-concordant). Let \mathcal{X} be a closed convex set. A function $f: \operatorname{int}(\mathcal{X}) \to \mathbb{R}$ called self-concordant (SC) on \mathcal{X} if

For
$$f \in C^3(\mathcal{X})$$
 with $f(x_k) \to +\infty$ if $x_k \to \bar{x} \in \partial \mathcal{X}$

$$|D^3 f(x)[u, u, u]| \le 2 \left(D^2 f(x)[u, u] \right)^{3/2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^n$$

Self-concordant functions and barriers

Def. (Self-concordant). Let \mathcal{X} be a closed convex set. A function $f: \text{int}(\mathcal{X}) \to \mathbb{R}$ called **self-concordant** (SC) on \mathcal{X} if

For
$$f \in C^3(\mathcal{X})$$
 with $f(x_k) \to +\infty$ if $x_k \to \bar{x} \in \partial \mathcal{X}$

 \mathbf{F} f satisfies the **SC** inequality

$$|D^3 f(x)[u, u, u]| \le 2 \left(D^2 f(x)[u, u]\right)^{3/2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^n$$

Def. Given a real $\vartheta \geq 1$, F is called a ϑ -self-concordant barrier (SCB) for \mathcal{X} if F is SC and

$$|DF(x)[u]| \le \vartheta^{1/2} \left(D^2 f(x)[u,u] \right)^{1/2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^n.$$

Self-concordant functions and barriers

Def. (Self-concordant). Let \mathcal{X} be a closed convex set. A function $f: \operatorname{int}(\mathcal{X}) \to \mathbb{R}$ called self-concordant (SC) on \mathcal{X} if

For
$$f \in C^3(\mathcal{X})$$
 with $f(x_k) \to +\infty$ if $x_k \to \bar{x} \in \partial \mathcal{X}$

f satisfies the SC inequality

$$|D^3 f(x)[u, u, u]| \le 2 \left(D^2 f(x)[u, u]\right)^{3/2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^n$$

Def. Given a real $\vartheta \ge 1$, F is called a ϑ -self-concordant barrier (SCB) for \mathcal{X} if F is SC and

$$|DF(x)[u]| \le \vartheta^{1/2} \left(D^2 f(x)[u,u] \right)^{1/2}, \quad \forall x \in \operatorname{int}(\mathcal{X}), u \in \mathbb{R}^n.$$

- \blacktriangleright Exponents 3/2 and 1/2 crucial—ensure both sides have same degree of homogeneity in u (for affine invariance)
- ► Factor 2 can be scaled by scaling f; equiv. to D^2f Lipschitz with constant 2 in norm $\|\cdot\|_{f''(x)}$

Examples of SC functions

Example.
$$f(x) = -\log x : \mathbb{R}_{++} \to \mathbb{R}$$
 is a 1-SCB for \mathbb{R}_+

Proof: $f''(x) = x^{-2}$, $f'''(x) = -2x^{-3}$; directly verifies.

Examples of SC functions

Example.
$$f(x) = -\log x : \mathbb{R}_{++} \to \mathbb{R}$$
 is a 1-SCB for \mathbb{R}_+

Proof: $f''(x) = x^{-2}$, $f'''(x) = -2x^{-3}$; directly verifies.

- ► Linear functions are SC; f'''(x) = 0
- ► Convex quadratic functions; f'''(x) = 0
- ► Log-barrier for $\phi(x) = a + \langle b, x \rangle \frac{1}{2}x^T Ax$; $f(x) = -\log \phi(x)$ Show: $|D^3 f(x)[u, u, u]| = |2\omega_1^3 + 3\omega_1\omega_2|$, where $\omega_1 = Df(x)[u]$, $\omega_2 = \frac{1}{\phi(x)}u^T Au$; also show that $D^2 f(x)[u, u] = \omega_1^2 + \omega_2$.

Examples of SC functions

Example.
$$f(x) = -\log x : \mathbb{R}_{++} \to \mathbb{R}$$
 is a 1-SCB for \mathbb{R}_+

Proof: $f''(x) = x^{-2}$, $f'''(x) = -2x^{-3}$; directly verifies.

- ► Linear functions are SC; f'''(x) = 0
- ► Convex quadratic functions; f'''(x) = 0
- ► Log-barrier for $\phi(x) = a + \langle b, x \rangle \frac{1}{2}x^T Ax$; $f(x) = -\log \phi(x)$ Show: $|D^3 f(x)[u, u, u]| = |2\omega_1^3 + 3\omega_1\omega_2|$, where $\omega_1 = Df(x)[u]$, $\omega_2 = \frac{1}{\phi(x)}u^T Au$; also show that $D^2 f(x)[u, u] = \omega_1^2 + \omega_2$.

Lemma Function f SC iff for any $x \in \text{int}(\mathcal{X})$, $u_1, u_2, u_3 \in \mathbb{R}^n$

$$|D^3 f(x)[u_1, u_2, u_3]| \le 2||u_1||_{f''(x)}||u_2||_{f''(x)}||u_3||_{f''(x)}$$

Proof: Essentially generalized Cauchy-Schwarz (challenge!).

Optimization using SC

Key quantities

- ▶ Let f(x) be SC, and that f''(x) > 0 within dom f
- ▶ *not asking* for usual *L*-smoothness, strong cvx
- ▶ simplified notation for the local norms at *x*

$$||u||_x := \langle f''(x)u, u \rangle^{1/2}$$

 $||v||_x^* = \langle [f''(x)]^{-1}v, v \rangle^{1/2}$

Key quantities

- ▶ Let f(x) be SC, and that f''(x) > 0 within dom f
- ▶ *not asking* for usual *L*-smoothness, strong cvx
- ▶ simplified notation for the local norms at *x*

$$||u||_x := \langle f''(x)u, u \rangle^{1/2}$$

 $||v||_x^* = \langle [f''(x)]^{-1}v, v \rangle^{1/2}$

▶ Let us use these to state three crucial observations

Three key facts (locally structure)

At any point $x \in \text{dom} f = \text{int}(\mathcal{X})$, there is an *ellipsoid*

$$W(x) := \{ y \in \mathbb{R}^n \mid ||y - x||_x \le 1 \} \subset \text{dom } f.$$

Three key facts (locally structure)

At any point $x \in \text{dom} f = \text{int}(\mathcal{X})$, there is an *ellipsoid*

$$W(x) := \{ y \in \mathbb{R}^n \mid ||y - x||_x \le 1 \} \subset \text{dom } f.$$

Within this Dinkin ellipsoid, *f* is almost quadratic

$$r := ||u||_x < 1 \implies (1 - r)^2 f''(x) \le f''(x + u) \le \frac{1}{(1 - r)^2} f''(x)$$

Three key facts (locally structure)

At any point $x \in \text{dom } f = \text{int}(\mathcal{X})$, there is an *ellipsoid*

$$W(x) := \{ y \in \mathbb{R}^n \mid ||y - x||_x \le 1 \} \subset \text{dom} f.$$

Within this Dinkin ellipsoid, f is almost quadratic

$$r := ||u||_x < 1 \implies (1 - r)^2 f''(x) \le f''(x + u) \le \frac{1}{(1 - r)^2} f''(x)$$

Moreover, linear upper and lower bounds on f:

$$f(x) + \langle f'(x), u \rangle + \rho(-r) \le f(x+u) \le f(x) + \langle f'(x), u \rangle + \rho(r),$$

where $\rho(r) := -\log(1-r) - s = s^2/2 + s^3/3 + \cdots$

Proof: See Chap. 4 of Nesterov (2004).

Setting up Newton's Method: Newton Decrement

Newton decrement

$$\lambda_f(x) := \langle [f''(x)]^{-1} f'(x), f'(x) \rangle^{1/2}.$$

Observe: $\lambda_f(x) = ||f'(x)||_x^*$ (local, dual-norm of gradient).

$$\lambda_f(x) = \max_u \left\{ Df(x)[u] \mid D^2f(x)[u,u] \le 1 \right\}$$

 \blacktriangleright $\lambda_f(x)$ vanishes at (unique, if any) minimizer x_f^* of f on dom f

Setting up Newton's Method: Newton Decrement

Newton decrement

$$\lambda_f(x) := \langle [f''(x)]^{-1} f'(x), f'(x) \rangle^{1/2}.$$

Observe: $\lambda_f(x) = ||f'(x)||_x^*$ (local, dual-norm of gradient).

$$\lambda_f(x) = \max_u \left\{ Df(x)[u] \mid D^2f(x)[u,u] \le 1 \right\}$$

▶ $\lambda_f(x)$ vanishes at (unique, if any) minimizer x_f^* of f on dom f

Theorem. If $\lambda_f(x) < 1$ for some $x \in \text{dom } f$. Then, $\min f(x)$ s.t., $x \in \text{dom } f$, has a unique optimal solution.

Newton Method: Guaranteed Descent

- 1 Select $x_0 \in \text{dom } f$
- 2 For $k \ge 0$: $x_{k+1} = x_k \frac{1}{1 + \lambda_f(x_k)} [f''(x_k)]^{-1} f'(x_k)$

Newton Method: Guaranteed Descent

- 1 Select $x_0 \in \text{dom } f$
- 2 For $k \ge 0$: $x_{k+1} = x_k \frac{1}{1 + \lambda_f(x_k)} [f''(x_k)]^{-1} f'(x_k)$

Theorem. The iterates of the damped NM satisfy ($k \ge 0$):

$$f(x_{k+1}) \le f(x_k) - \rho(-\lambda_f(x_k)).$$

Newton Method: Guaranteed Descent

- **1** Select x_0 ∈ dom f
- 2 For $k \ge 0$: $x_{k+1} = x_k \frac{1}{1 + \lambda_f(x_k)} [f''(x_k)]^{-1} f'(x_k)$

Theorem. The iterates of the damped NM satisfy ($k \ge 0$):

$$f(x_{k+1}) \le f(x_k) - \rho(-\lambda_f(x_k)).$$

Proof: Denote $\lambda = \lambda_f(x_k)$. Also, set $\omega(t) := \rho(-t)$. Then, $\|x_{k+1} - x_k\|_x = \frac{\lambda}{1+\lambda} = \omega'(\lambda)$. Thus, using one of the key facts

$$f(x_{k+1}) \leq f(x_k) + \langle f'(x_k), x_{k+1} - x_k \rangle + \omega^*(\|x_{k+1} - x_k\|_x)$$

$$= f(x_k) - \frac{\lambda^2}{1+\lambda} + \omega^*(\omega'(\lambda))$$

$$= f(x_k) - \lambda\omega'(\lambda) + \omega^*(\omega'(\lambda)) = f(x_k) - \omega(\lambda).$$

▶ At each step, f(x) decreases by at least $\omega(\lambda)$

Using Damped Newton

- Globally convegent; iteration complexity can be derived.
- Though, better to start with DN (when $\lambda_f(x_k) \geq \beta$, $\beta \in$ (0, 0.3819...), where $f(x_{k+1}) \le f(x_k) - \omega(\beta)$, which runs for

$$N pprox rac{1}{\omega(eta)[f(x_0) - f(x_f^*)]}$$
 iterations.

• After that $\lambda_f(x_k) \leq \beta$, and we apply standard NM which converges quadratically.

SC Barriers

 \blacktriangleright class of ϑ -SCB smaller than general SC.

 \blacktriangleright class of ϑ -SCB smaller than general SC. Standard convex problem

$$\min c^T x \quad x \in \mathcal{X},$$

where \mathcal{X} is a compact set for which $\operatorname{dom} F \equiv \mathcal{X}$.

 \blacktriangleright class of ϑ -SCB smaller than general SC. Standard convex problem

$$\min \quad c^T x \quad x \in \mathcal{X},$$

where \mathcal{X} is a compact set for which $\operatorname{dom} F \equiv \mathcal{X}$.

► Recall path-following scheme

$$x^*(t) = \underset{x \in \text{dom } F}{\operatorname{argmin}} \quad tc^T x + F(x), \quad t \ge 0.$$

 \blacktriangleright Any point of the central path (set $\{x^*(t)\}\)$) satisfies

$$tc + F'(x^*(t)) = 0.$$

 \blacktriangleright class of ϑ -SCB smaller than general SC. Standard convex problem

$$\min \quad c^T x \quad x \in \mathcal{X},$$

where \mathcal{X} is a compact set for which $\operatorname{dom} F \equiv \mathcal{X}$.

► Recall path-following scheme

$$x^*(t) = \underset{x \in \text{dom } F}{\operatorname{argmin}} \quad tc^T x + F(x), \quad t \ge 0.$$

▶ Any point of the central path (set $\{x^*(t)\}$) satisfies

$$tc + F'(x^*(t)) = 0.$$

▶ Aim is to iteratively find points close to central path

Minimization using SCBs

Approximate solution: A point *x* for which

$$\lambda_{F_t}(x) := \|F'_t(x)\|_x^* = \|tc + F'(x)\|_x^* \le \beta,$$

where β is the "centering parameter"

Minimization using SCBs

Approximate solution: A point x for which

$$\lambda_{F_t}(x) := \|F'_t(x)\|_x^* = \|tc + F'(x)\|_x^* \le \beta,$$

where β is the "centering parameter"

Theorem. For any t > 0, we have

$$c^T x^*(t) - c^T x^* \le \frac{\vartheta}{t}.$$

If a point x is an approximate solution (close to $x^*(t)$), then

$$c^T x - c^T x^* \le \frac{1}{t} \left(\vartheta + \frac{\beta(\beta + \sqrt{\vartheta})}{1 - \beta} \right).$$

I Set $t_0 = 0$. Choose accuracy $\epsilon > 0$ and $x_0 \in \text{dom } F$ such that

$$||F'(x_0)||_{x_0}^* \le \beta$$

1 Set $t_0 = 0$. Choose accuracy $\epsilon > 0$ and $x_0 \in \text{dom } F$ such that

$$||F'(x_0)||_{x_0}^* \le \beta$$

2 At *k*-th iteration, set

$$t_{k+1} = t_k + \frac{\gamma}{\|c\|_{x_k}^*}, \quad \gamma = \frac{\sqrt{\beta}}{1 - \sqrt{\beta}} - \beta,$$

 $x_{k+1} = x_k - [F''(x_k)]^{-1}(t_{k+1}c + F'(x_k))$

1 Set $t_0 = 0$. Choose accuracy $\epsilon > 0$ and $x_0 \in \text{dom } F$ such that

$$||F'(x_0)||_{x_0}^* \le \beta$$

2 At *k*-th iteration, set

$$t_{k+1} = t_k + \frac{\gamma}{\|c\|_{x_k}^*}, \quad \gamma = \frac{\sqrt{\beta}}{1 - \sqrt{\beta}} - \beta,$$

$$x_{k+1} = x_k - [F''(x_k)]^{-1} (t_{k+1}c + F'(x_k))$$

Stop the process if

$$\epsilon t_k \ge \vartheta + \frac{\beta(\beta + \sqrt{\vartheta})}{1 - \beta}$$

1 Set $t_0 = 0$. Choose accuracy $\epsilon > 0$ and $x_0 \in \text{dom } F$ such that

$$||F'(x_0)||_{x_0}^* \le \beta$$

2 At *k*-th iteration, set

$$t_{k+1} = t_k + \frac{\gamma}{\|c\|_{x_k}^*}, \quad \gamma = \frac{\sqrt{\beta}}{1 - \sqrt{\beta}} - \beta,$$

$$x_{k+1} = x_k - [F''(x_k)]^{-1} (t_{k+1}c + F'(x_k))$$

3 Stop the process if

$$\epsilon t_k \ge \vartheta + \frac{\beta(\beta + \sqrt{\vartheta})}{1 - \beta}$$

Theorem. Above scheme yields $c^T x_N - c^T x^* < \epsilon$ after no more than *N* steps, where

$$N \leq O\left(\sqrt{\vartheta}\log\frac{\vartheta\|c\|_{x^*}^*}{\epsilon}\right).$$

SC Barriers

Recall, *F* is ϑ -SCB if $F''(x) \succeq \frac{1}{4}F'(x)F'(x)^T$.

Exercise: Verify that $f(x) = \langle a, x \rangle + b$ with dom $f = \mathbb{R}^n$ is not an SCB. Similarly, convex quadratics are also not SCBs.

Exercise: Let $\phi(x) = b + \langle a, x \rangle - \frac{1}{2}x^T Ax$ be concave. Verify that $F(x) = -\log \phi(x)$ with dom $F = \{x \in \mathbb{R}^n \mid \phi(x) > 0\}$ is 1-SCB.

Exercise: $-\log \det X$ barrier for PSD cone

Theorem. If F_1 , F_2 are ϑ_i -SCB, then $F = F_1 + F_2$ is ϑ -SCB for $\operatorname{dom} F = \operatorname{dom} F_1 \cap \operatorname{dom} F_2 \text{ with } \vartheta = \vartheta_1 + \vartheta_2.$

Impt: The param ϑ is invariant to affine transformations.

Can apply IPM only if we have SCBs for constraints / epigraphs of costs

Much More

We've just scratched the surface!

Much More

We've just scratched the surface!

- ▶ Much more to interior point methods.
- ► See references and also read: Ch. 9,10,11 of BV for high-level overview.

Read: Universal barriers, entropic barriers, SCB and differential geometry, SCB and optimal transport, . . .

Much More

We've just scratched the surface!

- ▶ Much more to interior point methods.
- ▶ See references and also read: Ch. 9,10,11 of BV for high-level overview.

Read: Universal barriers, entropic barriers, SCB and differential geometry, SCB and optimal transport, ...

References

- Nemirovski, Todd. Interior-point methods for optimization. (2008)
- Nesterov. *Introductory lectures on convex optimization* (2004).
- Nesterov, Nemirovski. Interior-Point Polynomial Algorithms in Convex Programming (1994).

