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Some Aspects of NN Optimization
Backprop ➠ SGD 
Mini-batches 
Initialization 
Batchnorm 
Gradient clipping 
Adaptive methods 
Momentum 
Layerwise params 
…and more!
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Some Aspects of NN Optimization
Backprop ➠ SGD 
Mini-batches 
Initialization 
Batchnorm 
Gradient clipping 
Adaptive methods 
Momentum 
Layerwise params 
…and more!

All while keeping 
validation / test error 
performance in mind
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Clipping, Adaptivity, Momentum 
Saddle Points, etc.,…

mailto:suvrit@mit.edu?subject=


Suvrit Sra (suvrit@mit.edu)                            6.881 Optimization for Machine Learning (5/06/21 Lecture 20) 4

Gradient Clipping
(“hack” for dealing with gradient explosion)
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Gradient Clipping
(“hack” for dealing with gradient explosion)

• Clipped GD can converge arbitrarily faster than fixed-step GD 
   (for differentiable but non  functions)C1

L
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Clipped GD and Normalized GD
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Clipped GD and Normalized GD

xk+1 = xk − min (η,
aη

∥∇f(xk)∥ )∇f(xk)

Clipped GD
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Clipped GD and Normalized GD

xk+1 = xk − min (η,
aη

∥∇f(xk)∥ )∇f(xk)

Clipped GD Normalized GD

xk+1 = xk −
η

∥∇f(xk)∥ + b
∇f(xk)
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Exercise: Show that clipped GD ~ NGD up to a const factor in step size
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Exercise: Show that clipped GD ~ NGD up to a const factor in step size

Clipping helps (and is used more widely) in more nonsmooth-like and 
noisy regimes such as language modeling.
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Published as a conference paper at ICLR 2020

WHY GRADIENT CLIPPING ACCELERATES TRAINING:
A THEORETICAL JUSTIFICATION FOR ADAPTIVITY

Jingzhao Zhang, Tianxing He, Suvrit Sra & Ali Jadbabaie

Massachusetts Institute of Technology
Cambridge, MA 02139, USA
{jzhzhang, tianxing, suvrit, jadbabai}@mit.edu

ABSTRACT

We provide a theoretical explanation for the effectiveness of gradient clipping in
training deep neural networks. The key ingredient is a new smoothness condition
derived from practical neural network training examples. We observe that gradient
smoothness, a concept central to the analysis of first-order optimization algorithms
that is often assumed to be a constant, demonstrates significant variability along
the training trajectory of deep neural networks. Further, this smoothness posi-
tively correlates with the gradient norm, and contrary to standard assumptions in
the literature, it can grow with the norm of the gradient. These empirical observa-
tions limit the applicability of existing theoretical analyses of algorithms that rely
on a fixed bound on smoothness. These observations motivate us to introduce a
novel relaxation of gradient smoothness that is weaker than the commonly used
Lipschitz smoothness assumption. Under the new condition, we prove that two
popular methods, namely, gradient clipping and normalized gradient, converge
arbitrarily faster than gradient descent with fixed stepsize. We further explain why
such adaptively scaled gradient methods can accelerate empirical convergence and
verify our results empirically in popular neural network training settings.

1 INTRODUCTION

We study optimization algorithms for neural network training and aim to resolve the mystery of
why adaptive methods converge fast. Specifically, we study gradient-based methods for minimizing
a differentiable nonconvex function f : Rd

! R, where f(x) can potentially be stochastic, i.e.,
f(x) = E⇠[F (x, ⇠)]. Such choices of f cover a wide range of problems in machine learning, and
their study motivates a vast body of current optimization literature.

A widely used (and canonical) approach for minimizing f is the (stochastic) gradient descent (GD)
algorithm. Despite its simple form, GD often achieves superior empirical (Wilson et al., 2017)
performances and theoretical (Carmon et al., 2017) guarantees. However, in many tasks such as
reinforcement learning and natural language processing (NLP), adaptive gradient methods (e.g.,
Adagrad (Duchi et al., 2011), ADAM (Kingma and Ba, 2014), and RMSProp (Tieleman and Hinton,
2012)) outperform SGD. Despite their superior empirical performance, our understanding of the fast
convergence of adaptive methods is limited. Previous analysis has shown that adaptive methods are
more robust to variation in hyper-parameters (Ward et al., 2018) and adapt to sparse gradients (Duchi
et al., 2011) (a more detailed literature review is in Appendix A). However, in practice, the gradient
updates are dense, and even after extensively tuning the SGD hyperparameters, it still converges
much slower than adaptive methods in NLP tasks.

We analyze the convergence of clipped gradient descent and provide an explanation for its fast con-
vergence. Even though gradient clipping is a standard practice in tasks such as language models (e.g.
Merity et al., 2018; Gehring et al., 2017; Peters et al., 2018), it lacks a firm theoretical grounding.
Goodfellow et al. (2016); Pascanu et al. (2013; 2012) discuss the gradient explosion problem in re-
current models and consider clipping as an intuitive work around. We formalize this intuition and
prove that clipped GD can converge arbitrarily faster than fixed-step gradient descent. This result is
shown to hold under a novel smoothness condition that is strictly weaker than the standard Lipschitz-
gradient assumption pervasive in the literature. Hence our analysis captures many functions that are
not globally Lipschitz smooth. Importantly, the proposed smoothness condition is derived on the

1
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Clipped GD

kr2f(x)k  L
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Clipped GD

Example: Consider a univariate polynomial of degree ≥ 3
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Clipped GD

Example: Consider a univariate polynomial of degree ≥ 3

Theorem (informal). GD can be arbitrarily slow to converge to a 
stationary point for functions satisfying smoothness, 
whereas Clipped GD converges as 

(L0, L1)−
O(1/ϵ2)
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Exercise: Analyze convergence of all other methods under -smoothness 
for which we previously assumed L-smoothness.

(L0, L1)

Relaxed to once differentiable
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Clipped GD
Clipped GD converges at “usual” speed

GD can be arbitrarily slower

Explore: Lower bound for SGD (afaik unknown in this setting)
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Momentum, Adaptivity
(Adam, Adam-like methods)
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Momentum

https://distill.pub/2017/momentum/

Gradient Descent with Momentum

mt = �mt�1 +rf(✓t)

✓t+1 = ✓t � ⌘mt
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handle ill-conditioning

accelerated convg. 
(eg, convex quadratics)

works well in practice

still subject of research 
esp due to great success in 
deep learning
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Unroll gradient descent

handle ill-conditioning

accelerated convg. 
(eg, convex quadratics)

works well in practice

still subject of research 
esp due to great success in 
deep learning
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Unroll GD with momentum

handle ill-conditioning

accelerated convg. 
(eg, convex quadratics)

works well in practice

still subject of research 
esp due to great success in 
deep learning
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Adaptive gradients
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Adaptive gradients
Scaled Gradient Method

θt+1 = θt − G−1/2
t ∇f(xt)
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Adaptive gradients
Scaled Gradient Method

θt+1 = θt − G−1/2
t ∇f(xt)

Adagrad Gt = ∑
t

i=1
gigT

i (typically just Diag(Gt) used)
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t
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Adagrad originally proposed to benefit from sparse data, an assumption not true 
for neural network training in general. Con: Can shrink learning rate too fast.
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Scaled Gradient Method

θt+1 = θt − G−1/2
t ∇f(xt)

Adagrad Gt = ∑
t

i=1
gigT

i (typically just Diag(Gt) used)

Adagrad originally proposed to benefit from sparse data, an assumption not true 
for neural network training in general. Con: Can shrink learning rate too fast.

Idea: Exponential moving averages

Gt = (1 − β)∑
t

i=1
βt−igigT

i

(analogous to what momentum is doing for gradients…)

β ∈ (0,1)
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ADAM
Adam’s name comes from: Adaptive Moment Estimation
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1. Use exponential moving averages to estimate gradients (aka momentum)

2. Use exponential moving averages to estimate Diag(Gk)
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Algorithm 1 LARS

Input: x1 2 Rd, learning rate {⌘t}Tt=1, parameter
0 < �1 < 1, scaling function �, ✏ > 0
Set m0 = 0
for t = 1 to T do

Draw b samples St from P
Compute gt = 1

|St|
P

st2St
r`(xt, st)

mt = �1mt�1 + (1� �1)(gt + �xt)

x(i)
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t � ⌘t
�(kx(i)

t k)
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t k
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t for all i 2 [h]

end for

Algorithm 2 LAMB

Input: x1 2 Rd, learning rate {⌘t}Tt=1, parameters
0 < �1,�2 < 1, scaling function �, ✏ > 0
Set m0 = 0, v0 = 0
for t = 1 to T do
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vt+✏
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(i)
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(r(i)t + �x(i)
t )

end for

3.2 LAMB ALGORITHM

The second instantiation of the general strategy is obtained by using ADAM as the base algorithm A.
ADAM optimizer is popular in deep learning community and has shown to have good performance
for training state-of-the-art language models like BERT. Unlike LARS, the adaptivity of LAMB is
two-fold: (i) per dimension normalization with respect to the square root of the second moment used
in ADAM and (ii) layerwise normalization obtained due to layerwise adaptivity. The pseudocode for
LAMB is provided in Algorithm 2. When �1 = 0 and �2 = 0, the algorithm reduces to be Sign SGD
where the learning rate is scaled by square root of the layer dimension (Bernstein et al., 2018).

The following result provides convergence rate for LAMB in general nonconvex settings. Similar to
the previous case, we focus on the setting where �1 = 0 and � = 0. As before, our analysis extends
to the general case; however, the calculations become messy.

Theorem 3. Let ⌘t = ⌘ =
q

2(f(x1)�f(x⇤))
↵2

ukLk1T
for all t 2 [T ], b = T , di = d/h for all i 2 [h], and

↵l  �(v)  ↵u for all v > 0 where ↵l,↵u > 0. Then for xt generated using LAMB (Algorithm 2),

we have the following bounds:

1. When �2 = 0, we have
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#!
,

where x
⇤

is an optimal solution to the problem in equation 1 and xa is an iterate uniformly randomly

chosen from {x1, · · · , xT }.

Discussion on convergence rates. We first start our discussion with the comparison of convergence
rate of LARS with that of SGD (Theorem 1). The convergence rates of LARS and SGD differ in
two ways: (1) the convergence criterion is (E[

Ph
i=1 krifk])2 as opposed to E[krfk2] in SGD and

(2) the dependence on L and � in the convergence rate. Briefly, the convergence rate of LARS is
better than SGD when the gradient is denser than curvature and stochasticity. This convergence rate
comparison is similar in spirit to the one obtained in (Bernstein et al., 2018). Assuming that the
convergence criterion in Theorem 1 and Theorem 2 is of similar order (which happens when gradients
are fairly dense), convergence rate of LARS and LAMB depend on Lavg instead of L1 and are thus,
significantly better than that of SGD. A more quantitative comparison is provided in Section C of
the Appendix. The comparison of LAMB (with �2 = 0) with SGD is along similar lines. We obtain
slightly worse rates for the case where �2 > 0; although, we believe that its behavior should be better
than the case �2 = 0. We leave this investigation to future work.
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Resnet50 on Imagenet

BERT pretraining (Wikipedia+Books data)
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Resnet50 on Imagenet

BERT pretraining (Wikipedia+Books data)

The heavy-tailed noise could explain why ADAM works better than SGD?
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Convergence rates under heavy-tailed noise

Error bounds (f-f* for cvx;  for noncvx).∥∇f∥
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Abstract
We establish that first-order methods avoid strict saddle points for almost all initializa-
tions. Our results apply to a wide variety of first-order methods, including (manifold)
gradient descent, block coordinate descent, mirror descent and variants thereof. The
connecting thread is that such algorithms can be studied from a dynamical systems
perspective in which appropriate instantiations of the Stable Manifold Theorem allow
for a global stability analysis. Thus, neither access to second-order derivative informa-
tion nor randomness beyond initialization is necessary to provably avoid strict saddle
points.
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1 Introduction

Saddle points have long been regarded as a major obstacle for machine learning
methodology that require optimizing a non-convex objective [21,43]. It is well under-
stood that in many applications of interest, the number of saddle points significantly
outnumber the number of local minima, which is especially problematic when the

This paper extends upon the special case of gradient descent dynamics developed in the conference
proceedings of the authors [32,42].
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Theorem (informal). Let  be initialized randomly. Then with , under 
Assumptions 1, 2, GD avoids converging to saddle points.

θ0 η < 1/L
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Theorem (informal). Let  be initialized randomly. Then with , under 
Assumptions 1, 2, GD avoids converging to saddle points.

θ0 η < 1/L

Key idea: show that GD eventually escapes any saddle point, by showing that 
the set of “stable strict saddles” is of measure 0. “Stable” in the sense of: an 
attracting equilibrium point for a dynamical system.
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Abstract

Although gradient descent (GD) almost always escapes saddle points asymptot-
ically [Lee et al., 2016], this paper shows that even with fairly natural random
initialization schemes and non-pathological functions, GD can be significantly
slowed down by saddle points, taking exponential time to escape. On the other
hand, gradient descent with perturbations [Ge et al., 2015, Jin et al., 2017] is not
slowed down by saddle points—it can find an approximate local minimizer in
polynomial time. This result implies that GD is inherently slower than perturbed
GD, and justifies the importance of adding perturbations for efficient non-convex
optimization. While our focus is theoretical, we also present experiments that
illustrate our theoretical findings.

1 Introduction

Gradient Descent (GD) and its myriad variants provide the core optimization methodology in machine
learning problems. Given a function f(x), the basic GD method can be written as:

x(t+1) � x(t) ⇥ �⇤f
�
x(t)

⇥
, (1)

where � is a step size, assumed fixed in the current paper. While precise characterizations of the
rate of convergence GD are available for convex problems, there is far less understanding of GD
for non-convex problems. Indeed, for general non-convex problems, GD is only known to find a
stationary point (i.e., a point where the gradient equals zero) in polynomial time [Nesterov, 2013].

A stationary point can be a local minimizer, saddle point, or local maximizer. In recent years, there
has been an increasing focus on conditions under which it is possible to escape saddle points (more
specifically, strict saddle points as in Definition 2.4) and converge to a local minimizer. Moreover,
stronger statements can be made when the following two key properties hold: 1) all local minima
are global minima, and 2) all saddle points are strict. These properties hold for a variety of machine
learning problems, including tensor decomposition [Ge et al., 2015], dictionary learning [Sun et al.,
2017], phase retrieval [Sun et al., 2016], matrix sensing [Bhojanapalli et al., 2016, Park et al., 2017],
matrix completion [Ge et al., 2016, 2017], and matrix factorization [Li et al., 2016]. For these

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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4 Main Result

In the previous section we have shown that gradient descent takes exponential time to escape saddle
points under “un-natural" initialization schemes. Is it possible for the same statement to hold even
under “natural” initialization schemes and non-pathological functions? The following theorem
confirms this:
Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly
sampled from [⇥1, 1]d. There exists a function f defined on Rd that is B-bounded, ⇤-gradient
Lipschitz and ⌅-Hessian Lipschitz with parameters B, ⇤, ⌅ at most poly(d) such that:

1. with probability one, gradient descent with step size � ⌥ 1/⇤ will be �(1) distance away
from any local minima for any T ⌥ e

�(d).

2. for any ⌥ > 0, with probability 1⇥ e
⌅d, perturbed gradient descent (Algorithm 1) will find

a point x such that ⌅x⇥ x
⇥⌅2 ⌥ ⌥ for some local minimum x

⇥ in poly(d, 1
⇤ ) iterations.

Remark: As will be apparent in the next section, in the example we constructed, there are 2d

symmetric local minima at locations (±c . . . ,±c), where c is some constant. The saddle points are
of the form (±c, . . . ,±c, 0, . . . , 0). Both algorithms will travel across d neighborhoods of saddle
points before reaching a local minimum. For GD, the number of iterations to escape the i-th saddle
point increases as ⌦i (⌦ is a multiplicative factor larger than 1), and thus GD requires exponential
time to escape d saddle points. On the other hand, PGD takes about the same number of iterations
to escape each saddle point, and so escapes the d saddle points in polynomial time. Notice that
B, ⇤, ⌅ = O(poly(d)), so this does not contradict Theorem 2.7.

We also note that in our construction, the local minimizers are outside the initialization region. We
note this is common especially for unconstrained optimization problems, where the initialization
is usually uniform on a rectangle or isotropic Gaussian. Due to isoperimetry, the initialization
concentrates in a thin shell, but frequently the final point obtained by the optimization algorithm is
not in this shell.

It turns out in our construction, the only second-order stationary points in the path are the final local
minima. Therefore, we can also strengthen Theorem 4.1 to provide a negative result for approximating
⌥-second-order stationary points as well.
Corollary 4.2. Under the same initialization as in Theorem 4.1, there exists a function f satisfying
the requirements of Theorem 4.1 such that for some ⌥ = 1/poly(d), with probability one, gradient
descent with step size � ⌥ 1/⇤ will not visit any ⌥-second-order stationary point in T ⌥ e

�(d).

The corresponding positive result that PGD to find ⌥-second-order stationary point in polynomial
time immediately follows from Theorem 2.7.

The next result shows that gradient descent does not fail due to the special choice of initializing
uniformly in [⇥1, 1]d. For a large class of initialization distributions �, we can generalize Theorem
4.1 to show that gradient descent with random initialization � requires exponential time, and perturbed
gradient only requires polynomial time.
Corollary 4.3. Let B�(z, R) = {z}+ [⇥R,R]d be the ⇤� ball of radius R centered at z. Then for
any initialization distribution � that satisfies �(B�(z, R))  1⇥  for any  > 0, the conclusion of
Theorem 4.1 holds with probability at least 1⇥  .

That is, as long as most of the mass of the initialization distribution � lies in some ⇤� ball, a
similar conclusion to that of Theorem 4.1 holds with high probability. This result applies to random
Gaussian initialization, � = N (0,↵2I), with mean 0 and covariance ↵2I, where �(B�(0,↵ log d))  
1⇥ 1/poly(d).

4.1 Proof Sketch

In this section we present a sketch of the proof of Theorem 4.1. The full proof is presented in the
Appendix. Since the polynomial-time guarantee for PGD is straightforward to derive from Jin et al.
[2017], we focus on showing that GD needs an exponential number of steps. We rely on the following
key observation.
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Lipschitz and ⌅-Hessian Lipschitz with parameters B, ⇤, ⌅ at most poly(d) such that:

1. with probability one, gradient descent with step size � ⌥ 1/⇤ will be �(1) distance away
from any local minima for any T ⌥ e

�(d).

2. for any ⌥ > 0, with probability 1⇥ e
⌅d, perturbed gradient descent (Algorithm 1) will find

a point x such that ⌅x⇥ x
⇥⌅2 ⌥ ⌥ for some local minimum x

⇥ in poly(d, 1
⇤ ) iterations.

Remark: As will be apparent in the next section, in the example we constructed, there are 2d

symmetric local minima at locations (±c . . . ,±c), where c is some constant. The saddle points are
of the form (±c, . . . ,±c, 0, . . . , 0). Both algorithms will travel across d neighborhoods of saddle
points before reaching a local minimum. For GD, the number of iterations to escape the i-th saddle
point increases as ⌦i (⌦ is a multiplicative factor larger than 1), and thus GD requires exponential
time to escape d saddle points. On the other hand, PGD takes about the same number of iterations
to escape each saddle point, and so escapes the d saddle points in polynomial time. Notice that
B, ⇤, ⌅ = O(poly(d)), so this does not contradict Theorem 2.7.

We also note that in our construction, the local minimizers are outside the initialization region. We
note this is common especially for unconstrained optimization problems, where the initialization
is usually uniform on a rectangle or isotropic Gaussian. Due to isoperimetry, the initialization
concentrates in a thin shell, but frequently the final point obtained by the optimization algorithm is
not in this shell.

It turns out in our construction, the only second-order stationary points in the path are the final local
minima. Therefore, we can also strengthen Theorem 4.1 to provide a negative result for approximating
⌥-second-order stationary points as well.
Corollary 4.2. Under the same initialization as in Theorem 4.1, there exists a function f satisfying
the requirements of Theorem 4.1 such that for some ⌥ = 1/poly(d), with probability one, gradient
descent with step size � ⌥ 1/⇤ will not visit any ⌥-second-order stationary point in T ⌥ e

�(d).

The corresponding positive result that PGD to find ⌥-second-order stationary point in polynomial
time immediately follows from Theorem 2.7.

The next result shows that gradient descent does not fail due to the special choice of initializing
uniformly in [⇥1, 1]d. For a large class of initialization distributions �, we can generalize Theorem
4.1 to show that gradient descent with random initialization � requires exponential time, and perturbed
gradient only requires polynomial time.
Corollary 4.3. Let B�(z, R) = {z}+ [⇥R,R]d be the ⇤� ball of radius R centered at z. Then for
any initialization distribution � that satisfies �(B�(z, R))  1⇥  for any  > 0, the conclusion of
Theorem 4.1 holds with probability at least 1⇥  .

That is, as long as most of the mass of the initialization distribution � lies in some ⇤� ball, a
similar conclusion to that of Theorem 4.1 holds with high probability. This result applies to random
Gaussian initialization, � = N (0,↵2I), with mean 0 and covariance ↵2I, where �(B�(0,↵ log d))  
1⇥ 1/poly(d).

4.1 Proof Sketch

In this section we present a sketch of the proof of Theorem 4.1. The full proof is presented in the
Appendix. Since the polynomial-time guarantee for PGD is straightforward to derive from Jin et al.
[2017], we focus on showing that GD needs an exponential number of steps. We rely on the following
key observation.

6

Key idea: Run perturbed gradient descent

✓t+1 = ✓t � ⌘[rf(✓t) + ⇠t], ⇠t ⇠ Unif(B(r))
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How to avoid exponential time?

4 Main Result

In the previous section we have shown that gradient descent takes exponential time to escape saddle
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confirms this:
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�(d).
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⌅d, perturbed gradient descent (Algorithm 1) will find

a point x such that ⌅x⇥ x
⇥⌅2 ⌥ ⌥ for some local minimum x

⇥ in poly(d, 1
⇤ ) iterations.
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to escape each saddle point, and so escapes the d saddle points in polynomial time. Notice that
B, ⇤, ⌅ = O(poly(d)), so this does not contradict Theorem 2.7.

We also note that in our construction, the local minimizers are outside the initialization region. We
note this is common especially for unconstrained optimization problems, where the initialization
is usually uniform on a rectangle or isotropic Gaussian. Due to isoperimetry, the initialization
concentrates in a thin shell, but frequently the final point obtained by the optimization algorithm is
not in this shell.

It turns out in our construction, the only second-order stationary points in the path are the final local
minima. Therefore, we can also strengthen Theorem 4.1 to provide a negative result for approximating
⌥-second-order stationary points as well.
Corollary 4.2. Under the same initialization as in Theorem 4.1, there exists a function f satisfying
the requirements of Theorem 4.1 such that for some ⌥ = 1/poly(d), with probability one, gradient
descent with step size � ⌥ 1/⇤ will not visit any ⌥-second-order stationary point in T ⌥ e

�(d).

The corresponding positive result that PGD to find ⌥-second-order stationary point in polynomial
time immediately follows from Theorem 2.7.

The next result shows that gradient descent does not fail due to the special choice of initializing
uniformly in [⇥1, 1]d. For a large class of initialization distributions �, we can generalize Theorem
4.1 to show that gradient descent with random initialization � requires exponential time, and perturbed
gradient only requires polynomial time.
Corollary 4.3. Let B�(z, R) = {z}+ [⇥R,R]d be the ⇤� ball of radius R centered at z. Then for
any initialization distribution � that satisfies �(B�(z, R))  1⇥  for any  > 0, the conclusion of
Theorem 4.1 holds with probability at least 1⇥  .

That is, as long as most of the mass of the initialization distribution � lies in some ⇤� ball, a
similar conclusion to that of Theorem 4.1 holds with high probability. This result applies to random
Gaussian initialization, � = N (0,↵2I), with mean 0 and covariance ↵2I, where �(B�(0,↵ log d))  
1⇥ 1/poly(d).

4.1 Proof Sketch

In this section we present a sketch of the proof of Theorem 4.1. The full proof is presented in the
Appendix. Since the polynomial-time guarantee for PGD is straightforward to derive from Jin et al.
[2017], we focus on showing that GD needs an exponential number of steps. We rely on the following
key observation.

6

Key idea: Run perturbed gradient descent

Question: Can this be improved?

✓t+1 = ✓t � ⌘[rf(✓t) + ⇠t], ⇠t ⇠ Unif(B(r))
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Perturbed GD

Algorithm 1 Perturbed Gradient Descent (PGD)

Input: x0, step size η, perturbation radius r.

for t = 0, 1, . . . , do

xt+1 ← xt − η(∇f(xt) + ξt), ξt ∼ N (0, (r2/d)I)

with covariance (r2/d)I so that E‖ξt‖2 = r2. We note that Algorithm 1 is different from that studied in

Jin et al. [2017a], where perturbation was added only when certain conditions hold.

We now show that if we pick r = Θ̃(ε) in Algorithm 1, PGD will find an ε-second-order stationary point

in a number of iterations that has only a polylogarithmic dependence on dimension.

Theorem 13. Let the function f(·) satisfy Assumption A. Then, for any ε, δ > 0, the PGD algorithm

(Algorithm 1), with parameters η = Θ̃(1/%) and r = Θ̃(ε), will visit an ε−second-order stationary point at

least once in the following number of iterations, with probability at least 1− δ:

Õ
(
%(f(x0)− f!)

ε2

)

,

where Õ and Θ̃ hide polylogarithmic factors in d, %, ρ, 1/ε, 1/δ and ∆f := f(x0)− f!.

Remark 14. If we wish to output an ε-second-order stationary point, it suffices to run PGD for double the

number of iterations in Theorem 13. A simple change to the proof shows that half of the iterates will be

ε-second-order stationary points in this case, so that if we output an iterate uniformly at random, with at

least a constant probability it will be an ε-second-order stationary point.

Remark 15. We have chosen the distribution of the perturbations to be Gaussian in Algorithm 1 for sim-

plicity. This choice is not necessary. The key properties needed for the perturbation distributions are (a)

that the tail of the distribution is sufficiently light such that an appropriate concentration inequality holds,

and (b) the variance in every direction is bounded below.

Comparing Theorem 13 to the classical result in Theorem 5, our result shows that PGD finds second-

order stationary points in almost the same time as GD finds first-order stationary points, up to only logarith-

mic factors. Therefore, strict saddle points are computationally benign for first-order gradient methods.

Comparing to Theorem 5, we see that Theorem 13 makes an additional smoothness assumption. This

assumption is essential in separating strict saddle points from second-order stationary points.

4.2 Stochastic setting

In the stochastic approximation setting, exact gradients ∇f(·) are no longer available, and the algorithms

only have access to unbiased stochastic gradients: g(·; θ) such that ∇f(x) = Eθ∼D [g(x; θ)].
In machine learning, the stochastic gradient g is often obtained as an exact gradient of a smooth function:

g(·; θ) = ∇f(·; θ). We formalize this assumption.

Assumption C. For any θ ∈ supp(D), g(·; θ) is %̃-Lipschitz:

‖g(x1; θ)− g(x2; θ)‖ ≤ %̃‖x1 − x2‖ ∀ x1,x2.

In the special case where g(·; θ) = ∇f(·; θ) for some twice-differentiable function f(·; θ), Assumption

C ensures that the spectral norm of Hessian of function f(·; θ) is bounded by %̃ for all θ. Therefore, the

10

` = L (i.e., f 2 C1
` )
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Õ
(
%(f(x0)− f!)

ε2

)

,
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Perturbed GD

Reference: Jin, Netrapalli, Ge, Kakade, Jordan. “On Nonconvex Optimization for 
Machine Learning: Gradients, Stochasticity, and Saddle Points”. arXiv:1902.04811

Algorithm 1 Perturbed Gradient Descent (PGD)

Input: x0, step size η, perturbation radius r.

for t = 0, 1, . . . , do
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Assuming stochastic gradients are also Lipschitz, and assuming sub-gaussian 
tails for the stochastic noise, a related result is also shown by the same 
authors to hold for Perturbed SGD (i.e.,  iterations)O(ϵ−4)
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Perturbed SGD
Assuming stochastic gradients are also Lipschitz, and assuming sub-gaussian 
tails for the stochastic noise, a related result is also shown by the same 
authors to hold for Perturbed SGD (i.e.,  iterations)O(ϵ−4)

Without the Lipschitz assumption, the authors show that PSGD finds an -2nd 
order stationary point in  iterations (extra ‘d’ factor)

ϵ
O(dϵ−4)
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Abstract

Gradient descent (GD) and stochastic gradient descent (SGD) are the workhorses of large-scale ma-
chine learning. While classical theory focused on analyzing the performance of these methods in convex

optimization problems, the most notable successes in machine learning have involved nonconvex opti-
mization, and a gap has arisen between theory and practice. Indeed, traditional analyses of GD and SGD
show that both algorithms converge to stationary points efficiently. But these analyses do not take into
account the possibility of converging to saddle points. More recent theory has shown that GD and SGD
can avoid saddle points, but the dependence on dimension in these analyses is polynomial. For modern
machine learning, where the dimension can be in the millions, such dependence would be catastrophic.
We analyze perturbed versions of GD and SGD and show that they are truly efficient—their dimension
dependence is only polylogarithmic. Indeed, these algorithms converge to second-order stationary points
in essentially the same time as they take to converge to classical first-order stationary points.

1 Introduction

One of the principal discoveries in machine learning in recent years is an empirical one—that simple algo-

rithms often suffice to solve difficult real-world learning problems. Machine learning algorithms generally

arise via formulations as optimization problems, and, despite a massive classical toolbox of sophisticated

optimization algorithms and a major modern effort to further develop that toolbox, the simplest algorithms—

gradient descent, which dates to the 1840s [Cauchy, 1847] and stochastic gradient descent, which dates to

the 1950s [Robbins and Monro, 1951]—reign supreme in machine learning.

This empirical discovery is appealing in many ways. First, at the scale of modern machine learning

applications—often involving many millions of data points and millions of parameters—complex algorithms

A preliminary version of this paper, with a subset of the results that are presented here, was presented at ICML 2017 and

appeared in the proceedings as Jin et al. [2017a].

1
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Other methods
A variety of other related results exist for 2nd order stationary points:

• Using 2nd order information to escape stationary points faster 
( ) for non-stochastic settings (trust regions, cubic 
regularization), or  using Hessian-vector products only
O(ϵ−1.5)

O(ϵ−1.75)
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• Normalized GD escapes saddle points too: requires perturbation
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Abstract

Adaptive methods such as Adam and RMSProp are widely used in deep learning but are
not well understood. In this paper, we seek a crisp, clean and precise characterization of their
behavior in nonconvex settings. To this end, we first provide a novel view of adaptive methods
as preconditioned SGD, where the preconditioner is estimated in an online manner. By studying
the preconditioner on its own, we elucidate its purpose: it rescales the stochastic gradient noise
to be isotropic near stationary points, which helps escape saddle points. Furthermore, we show
that adaptive methods can e�ciently estimate the aforementioned preconditioner. By gluing
together these two components, we provide the first (to our knowledge) second-order convergence
result for any adaptive method. The key insight from our analysis is that, compared to SGD,
adaptive methods escape saddle points faster, and can converge faster overall to second-order
stationary points.

1 Introduction

Stochastic first-order methods are the algorithms of choice for training deep networks, or more
generally optimization problems of the form argminx Ez[f(x, z)]. While vanilla stochastic gradient
descent (SGD) is still the most popular such algorithm, there has been much recent interest in
adaptive methods that adaptively change learning rates for each parameter. This is a very old idea,
e.g. [Jacobs, 1988]; modern variants such as Adagrad [Duchi et al., 2011; McMahan and Streeter,
2010] Adam [Kingma and Ba, 2014] and RMSProp [Tieleman and Hinton, 2012] are widely used in
deep learning due to their good empirical performance.

Adagrad uses the square root of the sum of the outer product of the past gradients to achieve
adaptivity. In particular, at time step t, Adagrad updates the parameters in the following manner:

xt+1 = xt � G�1/2
t gt,

where gt is a noisy stochastic gradient at xt and Gt =
Pt

i=1 gigTi . More often, a diagonal version of
Adagrad is used due to practical considerations, which e↵ectively yields a per parameter learning
rate. In the convex setting, Adagrad achieves provably good performance, especially when the gra-
dients are sparse. Although Adagrad works well in sparse convex settings, its performance appears

⇤Based on work performed at Google Research, New York.

1

ar
X

iv
:1

90
1.

09
14

9v
2 

 [c
s.L

G
]  

3 
Fe

b 
20

20

ADAM-like methods 
can escape saddle points 
faster than SGD

mailto:suvrit@mit.edu?subject=


Suvrit Sra (suvrit@mit.edu)                            6.881 Optimization for Machine Learning (5/06/21 Lecture 20) 25

Other methods
Escaping Saddle Points with Adaptive Gradient Methods

Matthew Staib⇤

MIT EECS
mstaib@mit.edu

Sashank Reddi
Google Research, New York

sashank@google.com

Satyen Kale
Google Research, New York

satyenkale@google.com

Sanjiv Kumar
Google Research, New York

sanjivk@google.com

Suvrit Sra
MIT EECS

suvrit@mit.edu

Abstract

Adaptive methods such as Adam and RMSProp are widely used in deep learning but are
not well understood. In this paper, we seek a crisp, clean and precise characterization of their
behavior in nonconvex settings. To this end, we first provide a novel view of adaptive methods
as preconditioned SGD, where the preconditioner is estimated in an online manner. By studying
the preconditioner on its own, we elucidate its purpose: it rescales the stochastic gradient noise
to be isotropic near stationary points, which helps escape saddle points. Furthermore, we show
that adaptive methods can e�ciently estimate the aforementioned preconditioner. By gluing
together these two components, we provide the first (to our knowledge) second-order convergence
result for any adaptive method. The key insight from our analysis is that, compared to SGD,
adaptive methods escape saddle points faster, and can converge faster overall to second-order
stationary points.

1 Introduction

Stochastic first-order methods are the algorithms of choice for training deep networks, or more
generally optimization problems of the form argminx Ez[f(x, z)]. While vanilla stochastic gradient
descent (SGD) is still the most popular such algorithm, there has been much recent interest in
adaptive methods that adaptively change learning rates for each parameter. This is a very old idea,
e.g. [Jacobs, 1988]; modern variants such as Adagrad [Duchi et al., 2011; McMahan and Streeter,
2010] Adam [Kingma and Ba, 2014] and RMSProp [Tieleman and Hinton, 2012] are widely used in
deep learning due to their good empirical performance.

Adagrad uses the square root of the sum of the outer product of the past gradients to achieve
adaptivity. In particular, at time step t, Adagrad updates the parameters in the following manner:

xt+1 = xt � G�1/2
t gt,

where gt is a noisy stochastic gradient at xt and Gt =
Pt

i=1 gigTi . More often, a diagonal version of
Adagrad is used due to practical considerations, which e↵ectively yields a per parameter learning
rate. In the convex setting, Adagrad achieves provably good performance, especially when the gra-
dients are sparse. Although Adagrad works well in sparse convex settings, its performance appears

⇤Based on work performed at Google Research, New York.

1

ar
X

iv
:1

90
1.

09
14

9v
2 

 [c
s.L

G
]  

3 
Fe

b 
20

20

ADAM-like methods 
can escape saddle points 
faster than SGD

However, iteration bound of the type  for escaping saddles. SGD has a 
similar rate, but the “constants” for ADAM-like method can be much better.

O(d4ϵ−5)

mailto:suvrit@mit.edu?subject=


Suvrit Sra (suvrit@mit.edu)                            6.881 Optimization for Machine Learning (5/06/21 Lecture 20) 25

Other methods

Key question: Can SGD/ADAM escape fast without perturbation?
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Abstract

In this paper, we give a sharp analysis1 for Stochastic Gradient Descent (SGD) and prove that
SGD is able to e�ciently escape from saddle points and find an (✏,O(✏0.5))-approximate second-
order stationary point in Õ(✏�3.5) stochastic gradient computations for generic nonconvex opti-
mization problems, when the objective function satisfies gradient-Lipschitz, Hessian-Lipschitz,
and dispersive noise assumptions. This result subverts the classical belief that SGD requires at
least O(✏�4) stochastic gradient computations for obtaining an (✏,O(✏0.5))-approximate second-
order stationary point. Such SGD rate matches, up to a polylogarithmic factor of problem-
dependent parameters, the rate of most accelerated nonconvex stochastic optimization algo-
rithms that adopt additional techniques, such as Nesterov’s momentum acceleration, negative
curvature search, as well as quadratic and cubic regularization tricks. Our novel analysis gives
new insights into nonconvex SGD and can be potentially generalized to a broad class of stochas-
tic optimization algorithms.

1 Introduction

Nonconvex stochastic optimization is crucial in machine learning and have attracted tremen-

dous attentions and unprecedented popularity. Lots of modern tasks that include low-rank matrix

factorization/completion and principal component analysis (Candès & Recht, 2009; Jolli↵e, 2011),

dictionary learning (Sun et al., 2017), Gaussian mixture models (Reynolds et al., 2000), as well as

notably deep neural networks (Hinton & Salakhutdinov, 2006) are formulated as nonconvex stochas-

tic optimization problems. In this paper, we concentrate on finding an approximate solution to the

following minimization problem:

minimize
x2Rd

f(x) ⌘ E⇣⇠D [F (x; ⇣)] . (1.1)

Here, F (x; ⇣) denotes a family of stochastic functions indexed by some random variable ⇣ that

obeys some prescribed distribution D, and we consider the general case where f(x) and F (x; ⇣)

⇤email: fangcong@pku.edu.cn
†email: zlin@pku.edu.cn
‡email: tongzhang@tongzhang-ml.org
1“Sharp analysis” does not mean that our result is the tightest. It means an improved analysis.
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This paper claims so, but by 
assuming “dispersive noise” 
on SGD. Clean results missing!
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