Optimization for Machine Learning

Lecture 20: Optimization for Neural networks — II

6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

May 06, 2021

Some Aspects of NN Optimization

- Backprop SGD
- Mini-batches
- Initialization
- Batchnorm
- Gradient clipping
- Adaptive methods
- Momentum
- Layerwise params
- ...and more!

Some Aspects of NN Optimization

- Backprop SGD
- **Mini-batches**
- Initialization
- **Batchnorm**
- **Gradient clipping**
- **Adaptive methods**
- Momentum
- Layerwise params
- ...and more!

All while keeping validation / test error performance in mind

Clipping, Adaptivity, Momentum Saddle Points, etc.,...

Gradient Clipping

("hack" for dealing with gradient explosion)

Gradient Clipping

("hack" for dealing with gradient explosion)

• Clipped GD can converge arbitrarily faster than fixed-step GD (for differentiable but non C_L^1 functions)

Clipped GD

$$x_{k+1} = x_k - \min\left(\eta, \frac{a\eta}{\|\nabla f(x_k)\|}\right) \nabla f(x_k)$$

Clipped GD $x_{k+1} = x_k - \min\left(\eta, \frac{a\eta}{\|\nabla f(x_k)\|}\right) \nabla f(x_k) \qquad \qquad x_{k+1} = x_k - \frac{\eta}{\|\nabla f(x_k)\| + b} \nabla f(x_k)$

Normalized GD

Clipped GD

$$x_{k+1} = x_k - \min\left(\eta, \frac{a\eta}{\|\nabla f(x_k)\|}\right) \nabla f(x_k)$$

Normalized GD
 $x_{k+1} = x_k - \frac{\eta}{\|\nabla f(x_k)\| + b} \nabla f(x_k)$

Exercise: Show that clipped GD ~ NGD up to a const factor in step size

Clipped GD

$$x_{k+1} = x_k - \min\left(\eta, \frac{a\eta}{\|\nabla f(x_k)\|}\right) \nabla f(x_k)$$

Normalized GD
 $x_{k+1} = x_k - \frac{\eta}{\|\nabla f(x_k)\| + b} \nabla f(x_k)$

Exercise: Show that clipped GD ~ NGD up to a const factor in step size

Clipping helps (and is used more widely) in more **nonsmooth-like** and noisy regimes such as language modeling.

Clipped GD

$$x_{k+1} = x_k - \min\left(\eta, \frac{a\eta}{\|\nabla f(x_k)\|}\right) \nabla f(x_k)$$

Normalized GD
 $x_{k+1} = x_k - \frac{\eta}{\|\nabla f(x_k)\| + b} \nabla f(x_k)$

Exercise: Show that clipped GD ~ NGD up to a const factor in step size

Clipping helps (and is used more widely) in more **nonsmooth-like** and noisy regimes such as language modeling.

WHY GRADIENT CLIPPING ACCELERATES TRAINING: A THEORETICAL JUSTIFICATION FOR ADAPTIVITY

Jingzhao Zhang, Tianxing He, Suvrit Sra & Ali Jadbabaie Massachusetts Institute of Technology

L-smoothness

$\|\nabla^2 f(x)\| \le L$

L-smoothness $\|\nabla^2 f(x)\| \leq L$

(L,M)-smoothness $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$

Relaxed to once differentiable

L-smoothness

$$\|\nabla^2 f(x)\| \le L$$

$$\limsup_{\delta \to \vec{0}} \frac{\|\nabla f(x) - \nabla f(x+\delta)\|}{\|\delta\|} \le L_1 \|\nabla f(x)\| + L_0.$$

(L,M)-smoothness $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$

Relaxed to once differentiable

L-smoothness

$$\|\nabla^2 f(x)\| \le L$$

$$\limsup_{\delta \to \vec{0}} \frac{\|\nabla f(x) - \nabla f(x+\delta)\|}{\|\delta\|} \le L_1 \|\nabla f(x)\| + L_0.$$

(L,M)-smoothness $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$

Relaxed to once differentiable

L-smoothness

$$|\nabla^2 f(x)|| \le L$$

$$\limsup_{\delta \to \vec{0}} \frac{\|\nabla f(x) - \nabla f(x+\delta)\|}{\|\delta\|} \le L_1 \|\nabla f(x)\| + L_0.$$

(L,M)-smoothness $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$

Example: Consider a univariate polynomial of degree ≥ 3

Relaxed to once differentiable

L-smoothness

$$\nabla^2 f(x) \| \le L$$

 $\limsup_{\delta \to \vec{0}} \frac{\|\nabla f(x) - \nabla f(x+\delta)\|}{\|\delta\|} \le L_1 \|\nabla f(x)\| + L_0.$

(L,M)-smoothness $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$

Example: Consider a univariate polynomial of degree ≥ 3

Theorem (informal). GD can be arbitrarily slow to converge to a stationary point for functions satisfying (L_0, L_1) -smoothness, whereas Clipped GD converges as $O(1/\epsilon^2)$

Relaxed to once differentiable

L-smoothness

$$\nabla^2 f(x) \| \le L$$

 $\limsup_{\delta \to \vec{0}} \frac{\|\nabla f(x) - \nabla f(x+\delta)\|}{\|\delta\|} \le L_1 \|\nabla f(x)\| + L_0.$

(L,M)-smoothness $\|\nabla^2 f(x)\| \le L_0 + L_1 \|\nabla f(x)\|$

Example: Consider a univariate polynomial of degree ≥ 3

Theorem (informal). GD can be arbitrarily slow to converge to a stationary point for functions satisfying (L_0, L_1) -smoothness, whereas Clipped GD converges as $O(1/\epsilon^2)$

Exercise: Analyze convergence of all other methods under (L_0, L_1) -smoothness for which we previously assumed L-smoothness.

Clipped GD converges at "usual" speed

Theorem 3. Let \mathcal{F} denote the class of functions that satisfy Assumptions 1, 2, and 3 in set \mathcal{S} defined in (3). Recall f^* is a global lower bound for function value. With $\eta_c = \frac{1}{10L_0}$, $\gamma = \min\{\frac{1}{\eta_c}, \frac{1}{10L_1\eta_c}\}$, we can prove that the iteration complexity of clipped GD (Algorithm 5) is upper bounded by

$$\frac{20L_0(f(x_0) - f^*)}{\epsilon^2} + \frac{20\max\{1, L_1^2\}(f(x_0) - f^*)}{L_0}$$

GD can be arbitrarily slower

Theorem 4. Let \mathcal{F} be the class of objectives satisfying Assumptions 1, 2, 3, and 4 with fixed constants $L_0 \ge 1$, $L_1 \ge 1$, M > 1. The iteration complexity for the fixed-step gradient descent algorithms parameterized by step size h is at least

$$\frac{L_1 M(f(x_0) - f^* - 5\epsilon/8)}{8\epsilon^2 (\log M + 1)}$$

Explore: Lower bound for SGD (afaik unknown in this setting)

Suvrit Sra (suvrit@mit.edu)6.881 Optimization for Machine Learning(5/06/21 Lecture 20)

Momentum, Adaptivity

(Adam, Adam-like methods)

Gradient Descent with Momentum

$$m_t = \beta m_{t-1} + \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - \eta m_t$$

https://distill.pub/2017/momentum/

Gradient Descent with Momentum

$$m_t = \beta m_{t-1} + \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - \eta m_t$$

https://distill.pub/2017/momentum/

Suvrit Sra (suvrit@mit.edu)6.881 Optimization for Machine Learning(5/06/21 Lecture 20)

Gradient Descent with Momentum

$$m_t = \beta m_{t-1} + \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - \eta m_t$$

- * handle ill-conditioning
- * accelerated convg.(eg, convex quadratics)
- * works well in practice
- still subject of research
 esp due to great success in
 deep learning

https://distill.pub/2017/momentum/

Gradient Descent with Momentum

$$m_t = \beta m_{t-1} + \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - \eta m_t$$

1

Unroll gradient descent

$$\theta_{t+1} = \theta_0 - \eta \sum_{i=1}^{\tau} \nabla f(\theta_i)$$

- handle ill-conditioning *
- * accelerated convg. (eg, convex quadratics)
- * works well in practice
- still subject of research esp due to great success in deep learning

https://distill.pub/2017/momentum/

Gradient Descent with Momentum

$$m_t = \beta m_{t-1} + \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - \eta m_t$$

L

Unroll gradient descent

$$\theta_{t+1} = \theta_0 - \eta \sum_{i=1}^{l} \nabla f(\theta_i)$$

- * handle ill-conditioning
- * accelerated convg.(eg, convex quadratics)
- * works well in practice
- still subject of research
 esp due to great success in
 deep learning

Unroll GD with momentum

$$\theta_{t+1} = \theta_0 - \eta \sum_{i=1}^t \frac{1 - \beta^{t+1-i}}{\beta - 1} \nabla f(\theta_i)$$

https://distill.pub/2017/momentum/

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Gradient Descent with Momentum

$$m_t = \beta m_{t-1} + \nabla f(\theta_t)$$
$$\theta_{t+1} = \theta_t - \eta m_t$$

L

Unroll gradient descent

$$\theta_{t+1} = \theta_0 - \eta \sum_{i=1}^{l} \nabla f(\theta_i)$$

- * handle ill-conditioning
- * accelerated convg.(eg, convex quadratics)
- * works well in practice
- still subject of research
 esp due to great success in
 deep learning

Unroll GD with momentum

$$\theta_{t+1} = \theta_0 - \eta \sum_{i=1}^t \frac{1 - \beta^{t+1-i}}{\beta - 1} \nabla f(\theta_i)$$

https://distill.pub/2017/momentum/

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Scaled Gradient Method

$$\theta_{t+1} = \theta_t - G_t^{-1/2} \nabla f(x_t)$$

Scaled Gradient Method

$$\theta_{t+1} = \theta_t - G_t^{-1/2} \nabla f(x_t)$$

Adagrad

$$G_t = \sum_{i=1}^t g_i g_i^T$$

(typically just *Diag(G_t)* used)

Scaled Gradient Method

$$\theta_{t+1} = \theta_t - G_t^{-1/2} \nabla f(x_t)$$

 $G_t = \sum_{i=1}^t g_i g_i^T$

Adagrad

Adagrad originally proposed to benefit from sparse data, an assumption not true for neural network training in general. **Con:** Can shrink learning rate too fast.

(typically just $Diag(G_t)$ used)

Scaled Gradient Method

$$\theta_{t+1} = \theta_t - G_t^{-1/2} \nabla f(x_t)$$

Adagrad

Adagrad originally proposed to benefit from sparse data, an assumption not true for neural network training in general. **Con:** Can shrink learning rate too fast.

 $G_t = \sum_{i=1}^{t} g_i g_i^T$ (typically just $Diag(G_t)$ used)

Scaled Gradient Method

$$\theta_{t+1} = \theta_t - G_t^{-1/2} \nabla f(x_t)$$

Adagrad originally proposed to benefit from sparse data, an assumption not true for neural network training in general. **Con:** Can shrink learning rate too fast.

 $G_t = \sum_{i=1}^{t} g_i g_i^T$ (typically just $Diag(G_t)$ used)

Idea: Exponential moving averages
$$\beta \in (0,1)$$

 $G_t = (1 - \beta) \sum_{i=1}^t \beta^{t-i} g_i g_i^T$

(analogous to what momentum is doing for gradients...)

ADAM

ADAM

Adam's name comes from: Adaptive Moment Estimation

ADAM

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} m_t$$

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

 $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$

$$\theta_{t+1} = \theta_t - (G_t^{1/2} + \epsilon I)^{-1} m_t$$

$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} m_t$$

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$$
$$v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

$$\theta_{t+1} = \theta_t - (G_t^{1/2} + \epsilon I)^{-1} m_t$$
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} m_t$$

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

$$\begin{split} m_t &= \beta_1 m_{t-1} + (1 - \beta_1) g_t \\ v_t &= \beta_2 v_{t-1} + (1 - \beta_2) g_t^2 \end{split} \qquad \qquad \theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} m_t \\ \theta_{t+1} &= \theta_t - \frac{\eta}{\sqrt{v_t} + \epsilon} m_t \\ m_t &\leftarrow \frac{m_t}{1 - \beta_1^t} \qquad v_t \leftarrow \frac{v_t}{1 - \beta_2^t} \end{split}$$

ΔΠΔΜ

Adam's name comes from: Adaptive Moment Estimation

- 1. Use exponential moving averages to estimate gradients (aka momentum)
- 2. Use exponential moving averages to estimate $Diag(G_k)$

From the ADAM paper: <u>https://arxiv.org/abs/1412.6980</u>

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning

Algorithm 2 LAMB https://arxiv.org/abs/1904.00962

Input: $x_1 \in \mathbb{R}^d$, learning rate $\{\eta_t\}_{t=1}^T$, parameters $0 < \beta_1, \beta_2 < 1$, scaling function $\phi, \epsilon > 0$ Set $m_0 = 0, v_0 = 0$ for t = 1 to T do Draw b samples S_t from \mathbb{P} . Compute $g_t = \frac{1}{|S_t|} \sum_{s_t \in S_t} \nabla \ell(x_t, s_t).$ $m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t$ $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$ $m_t = m_t / (1 - \beta_1^t)$ $v_t = v_t / (1 - \beta_2^t)$ Compute ratio $r_t = \frac{m_t}{\sqrt{v_t} + \epsilon}$ $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(\|x_t^{(i)}\|)}{\|r_t^{(i)} + \lambda x_t^{(i)}\|} (r_t^{(i)} + \lambda x_t^{(i)})$ end for

Algorithm 2 LAMB https://arxiv.org/abs/1904.00962

Input:
$$x_1 \in \mathbb{R}^d$$
, learning rate $\{\eta_t\}_{t=1}^T$, parameters
 $0 < \beta_1, \beta_2 < 1$, scaling function $\phi, \epsilon > 0$
Set $m_0 = 0, v_0 = 0$
for $t = 1$ to T do
Draw b samples S_t from \mathbb{P} .
Compute $g_t = \frac{1}{|S_t|} \sum_{s_t \in S_t} \nabla \ell(x_t, s_t)$.
 $\overline{m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t}$
 $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$
 $m_t = m_t / (1 - \beta_1^t)$
 $v_t = v_t / (1 - \beta_2^t)$
Compute ratio $r_t = \frac{m_t}{\sqrt{v_t + \epsilon}}$
 $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(||x_t^{(i)}||)}{||r_t^{(i)} + \lambda x_t^{(i)}||} (r_t^{(i)} + \lambda x_t^{(i)})$
end for

Suvrit Sra (suvrit@mit.edu)6.881 Optimization for Machine Learning(5/06/21 Lecture 20)

Algorithm 2 LAMB https://arxiv.org/abs/1904.00962

Input:
$$x_1 \in \mathbb{R}^d$$
, learning rate $\{\eta_t\}_{t=1}^T$, parameters
 $0 < \beta_1, \beta_2 < 1$, scaling function $\phi, \epsilon > 0$
Set $m_0 = 0, v_0 = 0$
for $t = 1$ to T do
Draw b samples S_t from \mathbb{P} .
Compute $g_t = \frac{1}{|S_t|} \sum_{s_t \in S_t} \nabla \ell(x_t, s_t)$.
 $\overline{m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t}$
 $v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2}$
 $m_t = m_t / (1 - \beta_1^t)$
 $v_t = v_t / (1 - \beta_2^t)$
Compute ratio $r_t = \frac{m_t}{\sqrt{v_t + \epsilon}}$
 $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(||x_t^{(i)}||)}{||r_t^{(i)} + \lambda x_t^{(i)}||} (r_t^{(i)} + \lambda x_t^{(i)})$
end for

BERT pretraining (Wikipedia+Books data)

BERT pretraining (Wikipedia+Books data)

15

BERT pretraining (Wikipedia+Books data)

The heavy-tailed noise could explain why ADAM works better than SGD?

	Strongly Convex Function		Non-Convex Function		
	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	
SGD	N/A	$\mathcal{O}(k^{-1})$	N/A	$\mathcal{O}(k^{-\frac{1}{4}})$	
GClip	$\mathcal{O}(k^{rac{-(lpha-1)}{lpha}})$	$\mathcal{O}(k^{-1})$	$\mathcal{O}(k^{rac{-(lpha-1)}{3lpha-2}})$	$\mathcal{O}(k^{-\frac{1}{4}})$	
LowerBound	$\Omega(k^{\frac{-(\alpha-1)}{lpha}})$	$\Omega(k^{-1})$	$\Omega(k^{\frac{-(\alpha-1)}{3\alpha-2}})$	$\Omega(k^{-\frac{1}{4}})$	

Error bounds (*f*-*f*^{*} for cvx; $\|\nabla f\|$ for noncvx).

	Strongly Convex Function		Non-Convex Function		
	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	
SGD	N/A	$\mathcal{O}(k^{-1})$	N/A	$\mathcal{O}(k^{-\frac{1}{4}})$	
GClip	$\mathcal{O}(k^{rac{-(lpha-1)}{lpha}})$	$\mathcal{O}(k^{-1})$	$\mathcal{O}(k^{rac{-(lpha-1)}{3lpha-2}})$	$\mathcal{O}(k^{-\frac{1}{4}})$	
LowerBound	$\Omega(k^{\frac{-(\alpha-1)}{lpha}})$	$\Omega(k^{-1})$	$\Omega(k^{\frac{-(\alpha-1)}{3\alpha-2}})$	$\Omega(k^{-\frac{1}{4}})$	

Error bounds (*f*-*f*^{*} for cvx; $\|\nabla f\|$ for noncvx).

 $x_{k+1} = x_k - \eta_k \min\{\frac{\tau_k}{\|g_k\|}, 1\}g_k, \ \tau_k \in \mathbb{R}_{\geq 0}$

	Strongly Convex Function		Non-Convex Function		
	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	
SGD	N/A	$\mathcal{O}(k^{-1})$	N/A	$\mathcal{O}(k^{-\frac{1}{4}})$	
GClip	$\mathcal{O}(k^{rac{-(lpha-1)}{lpha}})$	$\mathcal{O}(k^{-1})$	$\mathcal{O}(k^{rac{-(lpha-1)}{3lpha-2}})$	$\mathcal{O}(k^{-\frac{1}{4}})$	
LowerBound	$\Omega(k^{\frac{-(\alpha-1)}{\alpha}})$	$\Omega(k^{-1})$	$\Omega(k^{\frac{-(\alpha-1)}{3\alpha-2}})$	$\Omega(k^{-\frac{1}{4}})$	

Error bounds (*f*-*f*^{*} for cvx; $\|\nabla f\|$ for noncvx).

 $x_{k+1} = x_k - \eta_k \min\{\frac{\tau_k}{\|g_k\|}, 1\} g_k, \ \tau_k \in \mathbb{R}_{\ge 0} \qquad x_{k+1} = x_k - \eta_k \min\{\frac{\tau_k}{|g_k|}, 1\} g_k, \ \tau_k \in \mathbb{R}_{\ge 0}^d$

	Strongly Convex Function		Non-Convex Function		
	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	Heavy-tailed noise $(\alpha \in (1, 2))$	Standard noise $(\alpha \ge 2)$	
SGD	N/A	$\mathcal{O}(k^{-1})$	N/A	$\mathcal{O}(k^{-\frac{1}{4}})$	
GClip	$\mathcal{O}(k^{rac{-(lpha-1)}{lpha}})$	$\mathcal{O}(k^{-1})$	$\mathcal{O}(k^{rac{-(lpha-1)}{3lpha-2}})$	$\mathcal{O}(k^{-\frac{1}{4}})$	
LowerBound	$\Omega(k^{\frac{-(\alpha-1)}{\alpha}})$	$\Omega(k^{-1})$	$\Omega(k^{\frac{-(\alpha-1)}{3\alpha-2}})$	$\Omega(k^{-rac{1}{4}})$	

Error bounds (*f*-*f*^{*} for cvx; $\|\nabla f\|$ for noncvx).

$$x_{k+1} = x_k - \eta_k \min\{\frac{\tau_k}{\|g_k\|}, 1\} g_k, \ \tau_k \in \mathbb{R}_{\ge 0} \qquad x_{k+1} = x_k - \eta_k \min\{\frac{\tau_k}{|g_k|}, 1\} g_k, \ \tau_k \in \mathbb{R}_{\ge 0}^d$$

Check out the details and experiments in

Why are Adaptive Methods Good for Attention Models?

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi, Sanjiv Kumar, Suvrit Sra

	Strongly Convex Function		Non-Convex Function		
-	Heav $(\alpha \in$	y-tailed nois $(1,2)$)	the Standard noise $(\alpha \ge 2)$	Heavy-tailed noi $(\alpha \in (1, 2))$	se Standard noise $(\alpha \ge 2)$
SGD	N/.		/ -1		$\mathcal{O}(k^{-\frac{1}{4}})$
GClip	0(Algorith	m 1 ACClip		$\mathcal{O}(k^{-\frac{1}{4}})$
LowerBound	$\Omega($	1: x, m	$_k \leftarrow x_0, 0$		$\Omega(k^{-\frac{1}{4}})$
		2: for <i>k</i>	$t = 1, \cdot, T$ do		
		3: <i>n</i>	$m_k \leftarrow \beta_1 m_{k-1} + $	$-(1-\beta_1)g_k$	
		4: $ au$	$\beta_k^{\alpha} \leftarrow \beta_2 \tau_{k-1}^{\alpha} + 0$	$(1-\beta_2) g_k ^{\alpha}$	
$x_{k+1} = x_k - \eta_k$ r	$\min_{i \in \mathcal{N}} \{i \in \mathcal{N}_{i}\}$	5: \hat{g}	$\tau_k \leftarrow \min\left\{\frac{\tau_k}{ m_k +1}\right\}$	$(\overline{r_{\epsilon}}, 1\}m_k$	$\left\{\frac{\tau_k}{ g_k }, 1\right\}g_k, \ \tau_k \in \mathbb{R}$
		6: <i>x</i>	$x_k \leftarrow x_{k-1} - \eta_k$	\hat{g}_{k}	
Check out the d	etai	7: end f	forreturn x_K , w	here random v	
Why are Adap	tive I	Methods G	ood for Attentior	n Models?	
Jingzhao Zhang, <mark>Sa</mark> i	Praneetł	n Karimireddy, A	Andreas Veit, Seungyeon k	Kim, Sashank J Reddi, Sa	anjiv Kumar, Suvrit Sra

Escaping Saddle Points

Suvrit Sra (suvrit@mit.edu)6.881 Optimization for Machine Learning(5/06/21 Lecture 20)

At a stationary point $\nabla f(x) = 0$

At a stationary point $\nabla f(x) = 0$

Local minimum: $\nabla^2 f(x) > 0$

At a stationary point $\nabla f(x) = 0$

Local minimum: $\nabla^2 f(x) > 0$

Local minimum: $\nabla^2 f(x) \prec 0$

At a stationary point $\nabla f(x) = 0$

Local minimum: $\nabla^2 f(x) > 0$

Local minimum: $\nabla^2 f(x) \prec 0$

Almost always stationary point can have an *indefinite* Hessian

At a stationary point $\nabla f(x) = 0$

Local minimum: $\nabla^2 f(x) > 0$

Local minimum: $\nabla^2 f(x) \prec 0$

Almost always stationary point can have an *indefinite* Hessian

18

Empirically saddle-points have been touted as "major concern"

At a stationary point $\nabla f(x) = 0$

Local minimum: $\nabla^2 f(x) > 0$

Local minimum: $\nabla^2 f(x) \prec 0$

Almost always stationary point can have an *indefinite* Hessian

Empirically saddle-points have been touted as "major concern"

Explore: Should we worry about saddle points in deep learning? Why?

First-order methods almost always avoid strict saddle points

Jason D. Lee¹ · Ioannis Panageas² · Georgios Piliouras³ · Max Simchowitz⁴ · Michael I. Jordan⁴ · Benjamin Recht⁴

First-order methods almost always avoid strict saddle points

Jason D. Lee¹ · Ioannis Panageas² · Georgios Piliouras³ · Max Simchowitz⁴ · Michael I. Jordan⁴ · Benjamin Recht⁴

Assumption 1: f is C^2 and L-smooth (i.e., C_L^1) **Assumption 2:** only strict saddles, i.e., $\lambda_{\min}(\nabla^2 f(x_s)) < 0$ for stationary x_s

First-order methods almost always avoid strict saddle points

Jason D. Lee¹ · Ioannis Panageas² · Georgios Piliouras³ · Max Simchowitz⁴ · Michael I. Jordan⁴ · Benjamin Recht⁴

Assumption 1: f is C^2 and L-smooth (i.e., C_L^1) **Assumption 2:** only strict saddles, i.e., $\lambda_{\min}(\nabla^2 f(x_s)) < 0$ for stationary x_s

 $\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$

First-order methods almost always avoid strict saddle points

Jason D. Lee¹ · Ioannis Panageas² · Georgios Piliouras³ · Max Simchowitz⁴ · Michael I. Jordan⁴ · Benjamin Recht⁴

Assumption 1: f is C^2 and L-smooth (i.e., C_L^1) **Assumption 2:** only strict saddles, i.e., $\lambda_{\min}(\nabla^2 f(x_s)) < 0$ for stationary x_s

$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

Theorem (informal). Let θ_0 be initialized randomly. Then with $\eta < 1/L$, under Assumptions 1, 2, GD avoids converging to saddle points.

First-order methods almost always avoid strict saddle points

Jason D. Lee¹ · Ioannis Panageas² · Georgios Piliouras³ · Max Simchowitz⁴ · Michael I. Jordan⁴ · Benjamin Recht⁴

Assumption 1: f is C^2 and L-smooth (i.e., C_L^1) **Assumption 2:** only strict saddles, i.e., $\lambda_{\min}(\nabla^2 f(x_s)) < 0$ for stationary x_s

$$\theta_{t+1} = \theta_t - \eta \nabla f(\theta_t)$$

Theorem (informal). Let θ_0 be initialized randomly. Then with $\eta < 1/L$, under Assumptions 1, 2, GD avoids converging to saddle points.

Key idea: show that GD *eventually* escapes any saddle point, by showing that the set of "stable strict saddles" is of measure 0. "Stable" in the sense of: an attracting equilibrium point for a dynamical system.

Escaping saddle points

What about a non-asymptotic result?

Escaping saddle points

What about a non-asymptotic result?

Does randomly initialized GD escape saddle points in polynomial time?

Escaping saddle points

What about a non-asymptotic result?

Does randomly initialized GD escape saddle points in polynomial time?

Escaping saddle points

What about a non-asymptotic result?

Does randomly initialized GD escape saddle points in polynomial time?

Gradient Descent Can Take Exponential Time to Escape Saddle Points

Simon S. Du Carnegie Mellon University ssdu@cs.cmu.edu

Jason D. Lee University of Southern California jasonlee@marshall.usc.edu

> Barnabás Póczos Carnegie Mellon University bapoczos@cs.cmu.edu

Chi Jin University of California, Berkeley chijin@berkeley.edu

Michael I. Jordan University of California, Berkeley jordan@cs.berkeley.edu

Aarti Singh Carnegie Mellon University aartisingh@cmu.edu

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Key idea: Run perturbed gradient descent

Key idea: Run perturbed gradient descent

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \qquad \xi_t \sim \text{Unif}(\mathbb{B}(r))$$

Suvrit Sra (suvrit@mit.edu)6.881 Optimization for Machine Learning(5/06/21 Lecture 20)

Key idea: Run perturbed gradient descent

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \qquad \xi_t \sim \text{Unif}(\mathbb{B}(r))$$

Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly sampled from $[-1,1]^d$. There exists a function f defined on \mathbb{R}^d that is B-bounded, ℓ -gradient Lipschitz and ρ -Hessian Lipschitz with parameters B, ℓ, ρ at most poly(d) such that:

- *1. with probability one, gradient descent with step size* $\eta \leq 1/\ell$ *will be* $\Omega(1)$ *distance away from any local minima for any* $T \leq e^{\Omega(d)}$.
- 2. for any $\epsilon > 0$, with probability $1 e^{-d}$, perturbed gradient descent (Algorithm 1) will find a point x such that $||x x^*||_2 \le \epsilon$ for some local minimum x^* in $poly(d, \frac{1}{\epsilon})$ iterations.

Key idea: Run perturbed gradient descent

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \qquad \xi_t \sim \text{Unif}(\mathbb{B}(r))$$

Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly sampled from $[-1,1]^d$. There exists a function f defined on \mathbb{R}^d that is B-bounded, ℓ -gradient Lipschitz and ρ -Hessian Lipschitz with parameters B, ℓ, ρ at most poly(d) such that:

- 1. with probability one, gradient descent with step size $\eta \leq 1/\ell$ will be $\Omega(1)$ distance away from any local minima for any $T \leq e^{\Omega(d)}$.
- 2. for any $\epsilon > 0$, with probability $1 e^{-d}$, perturbed gradient descent (Algorithm 1) will find a point x such that $||x x^*||_2 \le \epsilon$ for some local minimum x^* in $poly(d, \frac{1}{\epsilon})$ iterations.

Key idea: Run perturbed gradient descent

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \quad \xi_t \sim \text{Unif}(\mathbb{B}(r))$$

Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly sampled from $[-1,1]^d$. There exists a function f defined on \mathbb{R}^d that is B-bounded, ℓ -gradient Lipschitz and ρ -Hessian Lipschitz with parameters B, ℓ, ρ at most $\operatorname{poly}(d)$ such that:

- 1. with probability one, gradient descent with step size $\eta \leq 1/\ell$ will be $\Omega(1)$ distance away from any local minima for any $T \leq e^{\Omega(d)}$.
- 2. for any $\epsilon > 0$, with probability $1 e^{-d}$, perturbed gradient descent (Algorithm 1) will find a point x such that $||x x^*||_2 \le \epsilon$ for some local minimum x^* in $poly(d, \frac{1}{\epsilon})$ iterations.

Key idea: Run perturbed gradient descent

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \quad \xi_t \sim \text{Unif}(\mathbb{B}(r))$$

Theorem 4.1 (Uniform initialization over a unit cube). Suppose the initialization point is uniformly sampled from $[-1,1]^d$. There exists a function f defined on \mathbb{R}^d that is B-bounded, ℓ -gradient Lipschitz and ρ -Hessian Lipschitz with parameters B, ℓ, ρ at most poly(d) such that:

- 1. with probability one, gradient descent with step size $\eta \leq 1/\ell$ will be $\Omega(1)$ distance away from any local minima for any $T \leq e^{\Omega(d)}$.
- 2. for any $\epsilon > 0$, with probability $1 e^{-d}$, perturbed gradient descent (Algorithm 1) will find a point x such that $||x x^*||_2 \le \epsilon$ for some local minimum x^* in $poly(d, \frac{1}{\epsilon})$ iterations.

Question: Can this be improved?

Assumption: Lipschitz Hessian $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \rho \|x - y\|$

22

Assumption: Lipschitz Hessian $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \rho \|x - y\|$

Defn: ϵ -second order stationarity: $\|\nabla f(x)\| \leq \epsilon$, $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho\epsilon}$

Assumption: Lipschitz Hessian $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \rho \|x - y\|$

Defn: ϵ -second order stationarity: $\|\nabla f(x)\| \leq \epsilon$, $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho\epsilon}$

Perturbed GD

 $\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \quad \xi_t \sim \mathcal{N}(0, \frac{r^2}{d}\boldsymbol{I})$

Assumption: Lipschitz Hessian $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \rho \|x - y\|$

Defn: ϵ -second order stationarity: $\|\nabla f(x)\| \leq \epsilon$, $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho\epsilon}$

Perturbed GD

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \quad \xi_t \sim \mathcal{N}(0, \frac{r^2}{d}\boldsymbol{I})$$

Theorem 13. Let the function $f(\cdot)$ satisfy Assumption A. Then, for any $\epsilon, \delta > 0$, the PGD algorithm (Algorithm 1), with parameters $\eta = \tilde{\Theta}(1/\ell)$ and $r = \tilde{\Theta}(\epsilon)$, will visit an ϵ -second-order stationary point at least once in the following number of iterations, with probability at least $1 - \delta$:

$$\tilde{\mathcal{O}}\left(\frac{\ell(f(\mathbf{x}_0) - f^{\star})}{\epsilon^2}\right), \qquad \qquad \ell = L \quad (\text{i.e.}, f \in C^1_{\ell})$$

where $\tilde{\mathcal{O}}$ and $\tilde{\Theta}$ hide polylogarithmic factors in $d, \ell, \rho, 1/\epsilon, 1/\delta$ and $\Delta_f := f(\mathbf{x}_0) - f^*$.

Assumption: Lipschitz Hessian $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \rho \|x - y\|$

Defn: ϵ -second order stationarity: $\|\nabla f(x)\| \leq \epsilon$, $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho\epsilon}$

Perturbed GD

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \quad \xi_t \sim \mathcal{N}(0, \frac{r^2}{d}\boldsymbol{I})$$

Theorem 13. Let the function $f(\cdot)$ satisfy Assumption A. Then, for any $\epsilon, \delta > 0$, the PGD algorithm (Algorithm 1), with parameters $\eta = \tilde{\Theta}(1/\ell)$ and $r = \tilde{\Theta}(\epsilon)$, will visit an ϵ -second-order stationary point at least once in the following number of iterations, with probability at least $1 - \delta$:

$$\tilde{\mathcal{O}}\left(\frac{\ell(f(\mathbf{x}_0) - f^{\star})}{\epsilon^2}\right),\qquad\qquad \ell = L \quad (\text{i.e.}, f \in C^1_{\ell})$$

where $\tilde{\mathcal{O}}$ and $\tilde{\Theta}$ hide polylogarithmic factors in $d, \ell, \rho, 1/\epsilon, 1/\delta$ and $\Delta_f := f(\mathbf{x}_0) - f^*$.

Assumption: Lipschitz Hessian $\|\nabla^2 f(x) - \nabla^2 f(y)\| \le \rho \|x - y\|$

Defn: ϵ -second order stationarity: $\|\nabla f(x)\| \leq \epsilon$, $\lambda_{\min}(\nabla^2 f(x)) \geq -\sqrt{\rho\epsilon}$

Perturbed GD

$$\theta_{t+1} = \theta_t - \eta [\nabla f(\theta_t) + \xi_t], \quad \xi_t \sim \mathcal{N}(0, \frac{r^2}{d}\boldsymbol{I})$$

Theorem 13. Let the function $f(\cdot)$ satisfy Assumption A. Then, for any $\epsilon, \delta > 0$, the PGD algorithm (Algorithm 1), with parameters $\eta = \tilde{\Theta}(1/\ell)$ and $r = \tilde{\Theta}(\epsilon)$, will visit an ϵ -second-order stationary point at least once in the following number of iterations, with probability at least $1 - \delta$:

$$\tilde{\mathcal{O}}\left(\frac{\ell(f(\mathbf{x}_0) - f^{\star})}{\epsilon^2}\right), \qquad \qquad \ell = L \quad (\text{i.e.}, f \in C^1_{\ell})$$

where $\tilde{\mathcal{O}}$ and $\tilde{\Theta}$ hide polylogarithmic factors in $d, \ell, \rho, 1/\epsilon, 1/\delta$ and $\Delta_f := f(\mathbf{x}_0) - f^*$.

Reference: Jin, Netrapalli, Ge, Kakade, Jordan. "On Nonconvex Optimization for Machine Learning: Gradients, Stochasticity, and Saddle Points". arXiv:1902.04811

Assuming stochastic gradients are also Lipschitz, and assuming sub-gaussian tails for the stochastic noise, a related result is also shown by the same authors to hold for Perturbed SGD (i.e., $O(e^{-4})$ iterations)

Assuming stochastic gradients are also Lipschitz, and assuming sub-gaussian tails for the stochastic noise, a related result is also shown by the same authors to hold for Perturbed SGD (i.e., $O(e^{-4})$ iterations)

Without the Lipschitz assumption, the authors show that PSGD finds an ϵ -2nd order stationary point in $O(d\epsilon^{-4})$ iterations (extra 'd' factor)

Assuming stochastic gradients are also Lipschitz, and assuming sub-gaussian tails for the stochastic noise, a related result is also shown by the same authors to hold for Perturbed SGD (i.e., $O(e^{-4})$ iterations)

Without the Lipschitz assumption, the authors show that PSGD finds an ϵ -2nd order stationary point in $O(d\epsilon^{-4})$ iterations (extra 'd' factor)

Recommended reading:

A variety of other related results exist for 2nd order stationary points:

• Using 2nd order information to escape stationary points faster $(O(e^{-1.5}))$ for non-stochastic settings (trust regions, cubic regularization), or $O(e^{-1.75})$ using Hessian-vector products only

- Using 2nd order information to escape stationary points faster $(O(e^{-1.5}))$ for non-stochastic settings (trust regions, cubic regularization), or $O(e^{-1.75})$ using Hessian-vector products only
- Normalized GD escapes saddle points too: requires perturbation

- Using 2nd order information to escape stationary points faster $(O(e^{-1.5}))$ for non-stochastic settings (trust regions, cubic regularization), or $O(e^{-1.75})$ using Hessian-vector products only
- Normalized GD escapes saddle points too: requires perturbation
- Momentum based methods with perturbation escape faster than PGD

- Using 2nd order information to escape stationary points faster $(O(e^{-1.5}))$ for non-stochastic settings (trust regions, cubic regularization), or $O(e^{-1.75})$ using Hessian-vector products only
- Normalized GD escapes saddle points too: requires perturbation
- Momentum based methods with perturbation escape faster than PGD
- Stochastic methods using Hessian-vector oracle: $O(e^{-3.5})$

- Using 2nd order information to escape stationary points faster $(O(e^{-1.5}))$ for non-stochastic settings (trust regions, cubic regularization), or $O(e^{-1.75})$ using Hessian-vector products only
- Normalized GD escapes saddle points too: requires perturbation
- Momentum based methods with perturbation escape faster than PGD
- Stochastic methods using Hessian-vector oracle: $O(e^{-3.5})$
- SPIDER (variance reduced SGD) yields $O(\epsilon^{-3})$

- Using 2nd order information to escape stationary points faster $(O(e^{-1.5}))$ for non-stochastic settings (trust regions, cubic regularization), or $O(e^{-1.75})$ using Hessian-vector products only
- Normalized GD escapes saddle points too: requires perturbation
- Momentum based methods with perturbation escape faster than PGD
- Stochastic methods using Hessian-vector oracle: $O(e^{-3.5})$
- SPIDER (variance reduced SGD) yields $O(\epsilon^{-3})$
- SGD with averaging and some tricks $O(e^{-3.5})$

Escaping Saddle Points with Adaptive Gradient Methods

Matthew Staib* MIT EECS mstaib@mit.edu Sashank Reddi Google Research, New York sashank@google.com

Sanjiv Kumar Google Research, New York sanjivk@google.com Satyen Kale Google Research, New York satyenkale@google.com

Suvrit Sra MIT EECS suvrit@mit.edu ADAM-like methods can escape saddle points faster than SGD

Escaping Saddle Points with Adaptive Gradient Methods

Matthew Staib* MIT EECS mstaib@mit.edu Sashank Reddi Google Research, New York sashank@google.com

Sanjiv Kumar Google Research, New York sanjivk@google.com Satyen Kale Google Research, New York satyenkale@google.com

Suvrit Sra MIT EECS suvrit@mit.edu ADAM-like methods can escape saddle points faster than SGD

However, iteration bound of the type $O(d^4 e^{-5})$ for escaping saddles. SGD has a similar rate, but the "constants" for ADAM-like method can be much better.

Escaping Saddle Points with Adaptive Gradient Methods

Matthew Staib* MIT EECS mstaib@mit.edu Sashank Reddi Google Research, New York sashank@google.com

Sanjiv Kumar Google Research, New York sanjivk@google.com Satyen Kale Google Research, New York satyenkale@google.com

Suvrit Sra MIT EECS suvrit@mit.edu ADAM-like methods can escape saddle points faster than SGD

However, iteration bound of the type $O(d^4 e^{-5})$ for escaping saddles. SGD has a similar rate, but the "constants" for ADAM-like method can be much better.

Key question: Can SGD/ADAM escape fast without perturbation?

Escaping Saddle Points with Adaptive Gradient Methods

Matthew Staib* MIT EECS mstaib@mit.edu Sashank Reddi Google Research, New York sashank@google.com

Sanjiv Kumar Google Research, New York sanjivk@google.com Satyen Kale Google Research, New York satyenkale@google.com

Suvrit Sra MIT EECS suvrit@mit.edu ADAM-like methods can escape saddle points faster than SGD

However, iteration bound of the type $O(d^4 e^{-5})$ for escaping saddles. SGD has a similar rate, but the "constants" for ADAM-like method can be much better.

Key question: Can SGD/ADAM escape fast without perturbation?

Sharp Analysis for Nonconvex SGD Escaping from Saddle Points

Cong Fang * Zhouchen Lin † Tong Zhang ‡

Escaping Saddle Points with Adaptive Gradient Methods

Matthew Staib* MIT EECS mstaib@mit.edu Sashank Reddi Google Research, New York sashank@google.com

Sanjiv Kumar Google Research, New York sanjivk@google.com Satyen Kale Google Research, New York satyenkale@google.com

Suvrit Sra MIT EECS suvrit@mit.edu ADAM-like methods can escape saddle points faster than SGD

However, iteration bound of the type $O(d^4 e^{-5})$ for escaping saddles. SGD has a similar rate, but the "constants" for ADAM-like method can be much better.

Key question: Can SGD/ADAM escape fast without perturbation?

Sharp Analysis for Nonconvex SGD Escaping from Saddle Points

Cong Fang * Zl

Zhouchen Lin † Tong Zhang ‡

This paper claims so, but by assuming "dispersive noise" on SGD. Clean results missing!

Suvrit Sra (suvrit@mit.edu)6.881 Optimization for Machine Learning(5/06/21 Lecture 20)

