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Vector norms: recap

Example. The Euclidean or /,-norm is ||x|» = ( l-xl-z)l/2

Example. Let p > 1; £,-norm is || x[|, = (3, ’xi‘p)l/p

Exercise: Verify that ||x[|, is indeed a norm.

Example. ({oo-norm): ||x||oc = maxi<j<, |

Example. (Frobenius-norm): Let A € C"*". The Frobenius

norm of A is ||A|lg := |a;i|?; that is, ||A||g = /Tr(A*A).
i 17y
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Important example: Distance function

Claim. Let Y be a convex set. Let x € R? be some point. The
distance of x to the set ) is defined as

dist(x,)) := inf —yll.
ist(x. ) i= fnf x|

] | Proof. Observe that ||x — y|| is jointly convex in (x, y) (Why’)
i Thus, the function dist(x,)) is a convex function of x using
E the partial minimization rule.
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Matrix Norms: induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

A
)= sup 1221
||x[|5£0 [
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Matrix Norms: induced norm

Let A € R™*", and let ||-|| be any vector norm. We define an
induced matrix norm as

HAXH
\xH;ﬁO ]|

Al =

! Ver1fy it is a norm

:> Clearly, ||A|| = 0iff A = 0 (definiteness)

E» |aA|l = |a| [[A]] (homogeneity)

E» A+ B|| = sup ||(A|J;1|3|)x|| < sup ||Ax||||+||3x|| < |IA|l + |IB|I.

____________________________________________________
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Operator norm

Example. Let A be any matrix. Its operator norm is

[Ax]l2
|All2 :== sup .
Ixloo (%2
It can be shown that ||Allz = omax(A), where opmax is the

largest singular value of A.
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Operator norm

Example. Let A be any matrix. Its operator norm is

[Ax]l2
|All2 :== sup .
Ixloo (%2
It can be shown that ||Allz = omax(A), where opmax is the

largest singular value of A.

e Warning! Generally, largest eigenvalue not a norm!
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Operator norm

Example. Let A be any matrix. Its operator norm is

[Ax]l2
|All2 :== sup .
Ixloo (%2
It can be shown that ||Allz = Omax(A), where opax is the

largest singular value of A.

e Warning! Generally, largest eigenvalue not a norm!

e ||A]|; and ||A]|cc—max-abs-column and max-abs-row sums.
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Operator norm

Example. Let A be any matrix. Its operator norm is

[Ax]l2
|All2 :== sup .
Ixloo (%2
It can be shown that ||Allz = Omax(A), where opax is the

largest singular value of A.

e Warning! Generally, largest eigenvalue not a norm!
e ||A]|; and ||A]|cc—max-abs-column and max-abs-row sums.

e ||Al]; generally NP-Hard to compute for p ¢ {1,2, 0o}
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Operator norm

Example. Let A be any matrix. Its operator norm is

[Ax]l2
|All2 :== sup .
Ixloo (%2
It can be shown that ||Allz = Omax(A), where opax is the

largest singular value of A.

Warning! Generally, largest eigenvalue not a norm!

e ||A]|; and ||A]|cc—max-abs-column and max-abs-row sums.
e ||Al]; generally NP-Hard to compute for p ¢ {1,2, 0o}
e Schatten p-norm: £,-norm of vector of singular values.
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Operator norm

Example. Let A be any matrix. Its operator norm is

[Ax]l2
|All2 :== sup .
Ixloo (%2
It can be shown that ||Allz = Omax(A), where opax is the

largest singular value of A.

Warning! Generally, largest eigenvalue not a norm!

|All; and ||A||cc—max-abs-column and max-abs-row sums.

|Al|, generally NP-Hard to compute for p ¢ {1,2, 0o}

Schatten p-norm: {,-norm of vector of singular values.

Exercise: Let 01 > 02 > - -+ > 0,, > 0 be singular values of a matrix
A € R™", Prove that

k
lAll @y == Zi:l oi(A),
isanorm; 1 < k < n.
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Support function and dual norms

Def. Support function: oc(x) = sup,ccz'x
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Support function and dual norms

Def. Support function: oc(x) = sup,ccz’x

Support function for the unit norm ball is called: dual norm.

Def. Let ||| be a norm on R?. Its dual norm is

T
[l := sup{u”x | x| <1} = o<1 (w)-

Exercise: Verify that ||u||, is a norm.
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Support function and dual norms

Def. Support function: oc(x) = sup,ccz’x

Support function for the unit norm ball is called: dual norm.

Def. Let ||| be a norm on R?. Its dual norm is

T
[l := sup{u”x | x| <1} = o<1 (w)-

Exercise: Verify that ||u||, is a norm.

Exercise: Let 1/p +1/q = 1, where p,q > 1. Show that |[|-||; is
dual to [|-||,. In particular, the /,-norm is self-dual.

Exercise. Verify the generalized Holder inequality u”x < ||u||||x]|.
using the definition of dual norms.
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Support functions and Hausdorff distance*

Def. Let K,L C R? be two sets. The Hausdorff distance be-
tween them is defined as

dy(K,L) :=inf {A >0 | K C L+ AB(0,1),L C K + AB(0,1)}.

(See e.g., https:/fen.wikipedia.org/wiki/Hausdorff_distance)
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https://en.wikipedia.org/wiki/Hausdorff_distance

Support functions and Hausdorff distance*

Def. Let K,L C R? be two sets. The Hausdorff distance be-
tween them is defined as

dy(K,L) :=inf {A >0 | K C L+ AB(0,1),L C K + AB(0,1)}.

(See e.g., https:/fen.wikipedia.org/wiki/Hausdorff_distance)

Lemma Let K, L be convex bodies in R%. Then,

dn(K,L) = sup o) — oy ().

flufl2<1

Explore. Support functions are important in the subject of
convex geometry; read up on them and explore a bit!
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Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: f*(y) := supyegom f(x; ¥) — f(x)

-
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Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: f*(y) := supyegom f(x; ¥) — f(x)

Observe: f* is convex, even if f is not. If f differentiable, then
f*(Vf(x)) = (x, Vf(x)) — f(x) (Fenchel-Legendre transform).
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Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: f*(y) := supyegom f(x; ¥) — f(x)

Observe: f* is convex, even if f is not. If f differentiable, then
f*(Vf(x)) = (x, Vf(x)) — f(x) (Fenchel-Legendre transform).

‘ Fenchel-Young inequality: f*(u) + f(x) > (u, x)

-
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Fenchel conjugates

Convex analysis analog of Fourier transforms:

‘ Def. Fenchel conjugate: f*(y) := supyegom f(x; ¥) — f(x)

Observe: f* is convex, even if f is not. If f differentiable, then
f*(Vf(x)) = (x, Vf(x)) — f(x) (Fenchel-Legendre transform).

’ Fenchel-Young inequality: f*(u) + f(x) > (u, x) ‘

Fenchel transforms satisfy the beautiful duality property:

Theorem. Let f be a closed convex function (i.e., epi f =
{(x,t) | f(x) <t} is a closed convex set; equivalently, f is
lower semi-continuous). Then, f* =f .
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Fenchel conjugates

Convex analysis analog of Fourier transforms:

‘ Def. Fenchel conjugate: f*(y) := supyegom f(x; ¥) — f(x)

Observe: f* is convex, even if f is not. If f differentiable, then
f*(Vf(x)) = (x, Vf(x)) — f(x) (Fenchel-Legendre transform).

’ Fenchel-Young inequality: f*(u) + f(x) > (u, x) ‘

Fenchel transforms satisfy the beautiful duality property:

Theorem. Let f be a closed convex function (i.e., epi f =
{(x,t) | f(x) <t} is a closed convex set; equivalently, f is
lower semi-continuous). Then, f* =f .

Exercise: Show that f* = f < f = %H -3
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Fenchel conjugate — examples

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)
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Fenchel conjugate — examples

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)

= oo, if(z—a)#0.
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Fenchel conjugate — examples

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)

= oo, if(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) II|" 10



Fenchel conjugate — examples

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)
X

= oo, if(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.

Example. Leta > 0, and set f(x) = —va? — x2 if |x| < a, and
+o0 otherwise. Then, f*(z) = av'1 + z2.
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Fenchel conjugate — examples

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+Db)
= oo, if(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.

Example. Leta > 0, and set f(x) = —va? — x2 if |x| < a, and
+o0 otherwise. Then, f*(z) = av'1 + z2.

Example. f(x) = %xTAx, where A - 0. Then, f*(z) = %ZTA_lz.
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Fenchel conjugate — examples

Example. f(x) = ax + b; then,
f*(z) = supzx— (ax+b)
= oo, if(z—a)#0.

Thus, domf* = {a}, and f*(a) = —b.

Example. Leta > 0, and set f(x) = —va? — x2 if |x| < a, and
+o0 otherwise. Then, f*(z) = av'1 + z2.

Example. f(x) = %xTAx, where A - 0. Then, f*(z) = %ZTA_lz.

Exercise: If f(x) = max(0,1 — x), then dom f* is [-1, 0], and
within this domain, f*(z) = z.
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Fenchel conjugate of norms

Recall: Dual norm

T
[l s := sup{u”x | x| <1}
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Fenchel conjugate of norms

Recall: Dual norm

T
[l := sup{u’x | x| < 1}.

Example. Let f(x) = [|x[|. We have f*(z) = §).,<1(2). Thus,
conjugate of a norm is the indicator of unit dual norm ball.
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Fenchel conjugate of norms

Recall: Dual norm

T
[l := sup{u’x | x| < 1}.

Example. Let f(x) = [|x[|. We have f*(z) = §).,<1(2). Thus,
conjugate of a norm is the indicator of unit dual norm ball.

> Consider two cases: (i) ||z||« > 1; (i) ||z]|« < 1

'» (i): by def. of dual norm thereis a u s.t. ||u|| < landz'u > 1

> f*(z) = sup, x'z — f(x). Rewrite x = au, and let o« — oo

> Then, z'x — ||x|| = az"u — |Jau| = a(z"u — ||u||); = oo

> Case (i): Since 2"x < |lx]||l2]l-, ¥z — |lx]| < I|x(llz]l- — 1) < 0.
» x = 0 maximizes ||x||(]|z||« — 1), hence f(z) = 0.

> Thus, f*(z) = +oo if (i), and 0 if (ii), completing the proof.
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Fenchel conjugates — analogies*

» In Fourier analysis, we discover that convolution can be
described via the product of Fourier transforms.
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Fenchel conjugates — analogies*

» In Fourier analysis, we discover that convolution can be
described via the product of Fourier transforms.

» In convex analysis, the counterpart is infimal convolution
(fOg)(x) == inf f(y) +g(x—y),
yeX

where both f and g are (suitable) convex functions.
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Fenchel conjugates — analogies*

» In Fourier analysis, we discover that convolution can be
described via the product of Fourier transforms.

» In convex analysis, the counterpart is infimal convolution
(fOg)(x) := inf f(y) +g(x —y),
yeX

where both f and g are (suitable) convex functions.
» Then, under appropriate hypotheses one has

(fOg)" =f"+g", and (f+g) =f"0g"

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) Illll 12



Fenchel conjugates — analogies*

» In Fourier analysis, we discover that convolution can be
described via the product of Fourier transforms.

» In convex analysis, the counterpart is infimal convolution
(fOg)(x) := inf f(y) +g(x —y),
yeX

where both f and g are (suitable) convex functions.
» Then, under appropriate hypotheses one has

r---------------------=-=-=-=-=-=-"=-"=-"="=-~"=~"=-~"=~"=~"="~=~"=~"~"~*"~*"~*"~*" ~" =~ -~/ =~ - °-°-° 1
| Challenge. Recall: f(x) = 1x"Ax (A > 0) thenf*(z) = 1zTA7"z. Let fi(x) =
i xTAix for A; = 0 and 1 < i < n. Consider,

F@) =D @ =3 it/ @+ -+ (U (it )@

i<j

Prove or disprove that F is convex.



Fenchel conjugates are special*

Let T'g(R?) denote class of closed, convex functions on RY. The
(Legendre)-Fenchel transform of f € Iy is defined as

L:fr— sup 5y —fy)
(so that (Lf)(x) = f*(x)).
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Fenchel conjugates are special*

Let T'g(R?) denote class of closed, convex functions on RY. The
(Legendre)-Fenchel transform of f € Iy is defined as

L:fr— Sl;p<',y> —f(y)
(so that (Lf)(x) = f*(x)).

' Theorem. Let T be a transform that maps I'o — I'o and satifies: (i) |
. VT(Tf) =f (closure); and (ii) f < g = Tf >Tg. '
. + Then, T must “essentially” be the Fenchel transform. More pre-
' czsely, there exists c € R, v € R? and B € GL,(R) such that

| (TF)(x) = (LF)(Bx +0) + (v, x) + ¢

Explore: Study other classes instead of T'g(R?) for which similar
theorems can be proved.
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Subdifferentials

DO: (Read S. Boyd’s EE364B notes)
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First order global underestimator
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First order global underestimator
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Subgradients

g1, §2, &3 are subgradients at y
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Subgradients — basic facts

» f is convex, differentiable: Vf(y) the unique subgradient at y

» A vector g is a subgradient at a point y if and only if
f(y) + (g, x —y) is globally smaller than f(x).
» Often one subgradient costs approx as much as f(x)
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Subgradients — basic facts

» f is convex, differentiable: Vf(y) the unique subgradient at y

» A vector g is a subgradient at a point y if and only if
f(y) + (g, x — y) is globally smaller than f(x).

» Often one subgradient costs approx as much as f(x)
» Determining all subgradients at a given point — difficult.

» Subgradient calculus: great achievement in convex analysis
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Subgradients — basic facts

» f is convex, differentiable: Vf(y) the unique subgradient at y

» A vector g is a subgradient at a point y if and only if
f(y) + (g, x — y) is globally smaller than f(x).

» Often one subgradient costs approx as much as f(x)
» Determining all subgradients at a given point — difficult.
» Subgradient calculus: great achievement in convex analysis

» Without convexity, things become wild (e.g., chain rule fails!)
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Subgradients — example

‘ f(x) := max(f (x).f2(x)); both f1, f convex, differentiable

-
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Subgradients — example

| f(x) == max(f, (x), o(x)); both f1, fo conve, differentiable

fi(z)
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Subgradients — example

| f(x) == max(f, (x), o(x)); both f1, fo conve, differentiable

fi(z)

fQ(IIj
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Subgradients — example

| f(x) == max(f, (x), o(x)); both f1, fo conve, differentiable
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Subgradients — example

| f(x) == max(f, (x), o(x)); both f1, fo conve, differentiable
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Subgradients — example

| f(x) := max(fi(x), fo(x)); both fy, fy convex, differentiable

* f1(x) > fo(x): unique subgradient of f is f (x)
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Subgradients — example

| f(x) := max(fi(x), fo(x)); both fy, fy convex, differentiable

* f1(x) > fo(x): unique subgradient of f is f (x)
* f1(x) < fo(x): unique subgradient of f is f;(x)
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Subgradients — example

| f(x) := max(fi(x), fo(x)); both fy, fy convex, differentiable

* f1(x) > fa(x
* f1(x) < falx
* fi(y) = f2(y): subgradients, the segment [f{(y), f;(y)]

(imagine all supporting lines turning about point y)

unique subgradient of f is f{(x)

):
):

unique subgradient of f is f;(x)
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Subgradients and the Subdifferential (Set)

Def. A vector ¢ € R" is called a subgradient at a point y, if
for all x € domf, it holds that

fE) 2+ x—y

Def. The set of all subgradients at y denoted by 0f(y). This
set is called subdifferential of f aty

-
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Subgradients and the Subdifferential (Set)

Def. A vector ¢ € R" is called a subgradient at a point y, if
for all x € domf, it holds that

f) 2 fy) + (& x—y)

Def. The set of all subgradients at y denoted by 0f(y). This
set is called subdifferential of f at y

If f is convex, Of (x) is nice:
& If x € relative interior of domf, then 0f (x) nonempty
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Subgradients and the Subdifferential (Set)

Def. A vector ¢ € R" is called a subgradient at a point y, if
for all x € domf, it holds that

f) 2 fy) + (& x—y)

Def. The set of all subgradients at y denoted by 0f(y). This
set is called subdifferential of f at y

If f is convex, Of (x) is nice:
& If x € relative interior of domf, then 0f (x) nonempty
& If f differentiable at x, then 0f (x) = {Vf(x)}
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Subgradients and the Subdifferential (Set)

Def. A vector ¢ € R" is called a subgradient at a point y, if
for all x € domf, it holds that

f) 2 fy) + (& x—y)

Def. The set of all subgradients at y denoted by 0f(y). This
set is called subdifferential of f at y

If f is convex, Of (x) is nice:
& If x € relative interior of domf, then Jf (x) nonempty
& If f differentiable at x, then 0f (x) = {Vf(x)}
& If Of (x) = {g}, then f is differentiable and ¢ = Vf(x)
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Subdifferential — example

f(x) = Ix|
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Subdifferential — example

f(x) = Ix|

A0f(x)

+1

\J

-
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Subdifferential — example

| F(x) = x|

A0f(x)

\J

A
+1
—1
-1 x <0,
x| =< +1 x>0,
[-1,1] x=0.
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More examples

Example. f(x) = ||x||2. Then,

B A Pyt x #0,
T = {{z el <1} x=o0.

-
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More examples

Example. f(x) = ||x||2. Then,

_ Sy x#0,
Fe): {{z\nznzsu x=0.

feeiieeeieeee__Proof. L ,
lzlz = llxll2+ (8, z—x)
: lzlz = (8 2) :
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Suvrit Sra (suvrit@mit.edu)

Calculus rules

6.881 Optimization for Machine Learning (2/18/21; Lecture 2)




Recall basic calculus

If f and k are differentiable, we know that
m Addition: V(f + k)(x) = Vf(x) + Vk(x)
m Scaling: V(of (x)) = aVf(x)
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Recall basic calculus

If f and k are differentiable, we know that
m Addition: V(f + k)(x) = Vf(x) + Vk(x)
m Scaling: V(of (x)) = aVf(x)

Chain rule

Iff: R" - R", and k : R’” — RP. Leth : R" — R? be the
composition h(x) = (ko f)(x) = k(f(x)). Then,

Dh(x) = Dk(f(«) f<x>.
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Recall basic calculus

If f and k are differentiable, we know that
m Addition: V(f + k)(x) = Vf(x) + Vk(x)
m Scaling: V(af (x)) = aVf(x)

Chain rule

Iff: R" - R", and k : R’” — RP. Leth : R" — R? be the
composition h(x) = (ko f)(x) = k(f(x)). Then,

Dh(x) = Dk(f(«) f<x>.

Example. If f : R" — Rand k : R — R, then using the fact that
Vh(x) = [Dh(x)]", we obtain

Vh(x) = K'(f(x)) Vf (%)-
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Subgradient calculus

& Finding one subgradient within 0f (x)
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Subgradient calculus

& Finding one subgradient within 0f (x)
& Determining entire subdifferential df (x) at a point x
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Subgradient calculus

& Finding one subgradient within 0f (x)
& Determining entire subdifferential df (x) at a point x

& Do we have the chain rule?
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Subgradient calculus

& Finding one subgradient within 0f (x)

& Determining entire subdifferential df (x) at a point x
& Do we have the chain rule?

& Usually not easy!
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}

-
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}
¢ Scaling a > 0, d(of ) (x) = adf (x) = {ag | g € Of (x)}
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}

§ Scaling a > 0, d(af ) (x) = adf (x) = {ag | g € Of (x)}
$ Addition*: 9(f + k)(x) = 9f (x) + Ok(x) (set addition)
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}

§ Scaling a > 0, d(af ) (x) = adf (x) = {ag | g € Of (x)}

$ Addition*: 9(f + k)(x) = 9f (x) + Ok(x) (set addition)

¢ Chain rule*: Let A € R™", b € R",f : R" — R, and
h : R" — R be given by h(x) = f(Ax + b). Then,

Oh(x) = ATOf (Ax +b).
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}

§ Scaling a > 0, d(af ) (x) = adf (x) = {ag | g € Of (x)}

$ Addition*: 9(f + k)(x) = 9f (x) + Ok(x) (set addition)

¢ Chain rule*: Let A € R™", b € R",f : R" — R, and
h : R" — R be given by h(x) = f(Ax + b). Then,

Oh(x) = ATOf (Ax +b).
¢ Chain rule*: h(x) = f ok, where k : X — Y is diff.
Oh(x) = Of (k(x)) o Dk(x) = [Dk(x)]" 9f (k(x))
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}

§ Scaling a > 0, d(af ) (x) = adf (x) = {ag | g € Of (x)}

$ Addition*: 9(f + k)(x) = 9f (x) + Ok(x) (set addition)

¢ Chain rule*: Let A € R™", b € R",f : R" — R, and
h : R" — R be given by h(x) = f(Ax + b). Then,

Oh(x) = ATOf (Ax +b).
¢ Chain rule*: hi(x) = f o k, where k : X — Y is diff.
Oh(x) = Of (k(x)) o Dk(x) = [Dk(x)]" f (k(x))
¢ Max function*: If f(x) := maxj<j<y, fi(x), then
Of (x) = conv | J{9fi(x) | fix) = f(2)},

convex hull over subdifferentials of “active” functions at x
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Subgradient calculus

¢ 1f f is differentiable, of (x) = {Vf(x)}

§ Scaling a > 0, d(af ) (x) = adf (x) = {ag | g € Of (x)}

$ Addition*: 9(f + k)(x) = 9f (x) + Ok(x) (set addition)

¢ Chain rule*: Let A € R™", b € R",f : R" — R, and
h : R" — R be given by h(x) = f(Ax + b). Then,

Oh(x) = ATOf (Ax +b).
¢ Chain rule*: hi(x) = f o k, where k : X — Y is diff.
Oh(x) = Of (k(x)) o Dk(x) = [Dk(x)]" f (k(x))
¢ Max function*: If f(x) := maxj<j<y, fi(x), then
Of (x) = conv | J{9fi(x) | fix) = f(2)},

convex hull over subdifferentials of “active” functions at x
¢ Conjugation: z € 9f (x) if and only if x € If*(z)
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Frarirlgrewqf agldition rule

It can happen that O(f; + f2) # 0f1 + Of

-
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Failure of addition rule

It can happen that O(f; + f2) # 0f1 + Of

Example. Define f; and f, by

—2y/x ifx>0 +00 ifx>0
= -7 d = i
%) {+oo ifx <o, M4 LW {—zﬁ—x if x <0l

Then, f = fi + f» = 19, whereby 0f(0) =R
But 9f1(0) = 9f2(0) = 0.
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Failure of addition rule

It can happen that O(f; + f2) # 0f1 + Of

Example. Define f; and f, by
—2y/x ifx>0 +00 ifx>0

= -7 d = i

%) {+oo ifx <o, M4 LW {—zﬁ—x if x <0l

Then, f = f1 + f> = 1o, whereby 9f(0) =R
But 9f1(0) = 9f2(0) = 0.

’ However, 0f;(x) + 0f2(x) C 9(f1 + f2)(x) always holds.

Exercise: Prove the above statement.
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Subdifferential: two examples

Example. f(x) = [|x||oc. Then,

0f (0) = conv {=eq, ..., +e,},

where ¢; is i-th canonical basis vector

-
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Subdifferential: two examples

Example. f(x) = [|x||oc. Then,

0f (0) = conv {=eq, ..., +e,},

where ¢; is i-th canonical basis vector

To prove, notice that f(x) = maxj<i<y {|e] x| }; apply max rule.
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Subdifferential: two examples

Example. f(x) = [|x||oc. Then,
0f (0) = conv {=eq, ..., +e,},

where ¢; is i-th canonical basis vector

To prove, notice that f(x) = maxj<i<y {|e] x| }; apply max rule.

Example. Letf,f, ..., fn be differentiable and convex. Let

0f (x) = co {Vfi(x) [ filx) = f(%)}
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Computing subgradients

-
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!

Simple way to obtain some g € 0f (x):
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!

Simple way to obtain some g € 9f(x):
» Pick any y* for which h(x,y*) = f(x)
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!

Simple way to obtain some g € 9f(x):
» Pick any y* for which h(x,y*) = f(x)
» Pick any subgradient g € oh(x,y*)
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!

Simple way to obtain some g € 9f(x):
» Pick any y* for which h(x,y*) = f(x)
» Pick any subgradient g € oh(x,y*)

» This g € 0f (x)
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!

Simple way to obtain some g € 9f(x):
» Pick any y* for which h(x,y*) = f(x)
» Pick any subgradient g € oh(x,y*)
» This g € 0f (x)

=
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Subgradient for pointwise sup

f(x) :==sup h(x,y)
yey

Getting Of (x) is complicated!

Simple way to obtain some g € 9f(x):
» Pick any y* for which h(x,y*) = f(x)
» Pick any subgradient g € oh(x,y*)
» This g € 0f (x)

5 hiz,y*) > h(x,y*) +¢"(z —x) |
| hzy*) > f(x)+g(z—x) :
E f(z) > h(z,y") (because of sup) E
: fz) > flx)+g"(z—x) :
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Example

Suppose a; € R" and b; € R. And

fx) = max (a/x + by).

This f a max (in fact, over a finite number of terms)
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Example

Suppose a; € R" and b; € R. And

fx):= max (alx +b;).

This f a max (in fact, over a finite number of terms)

» Suppose f(x) = al x + by for some index k
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Example

Suppose a; € R" and b; € R. And

fx):= max (alx +b;).

This f a max (in fact, over a finite number of terms)

» Suppose f(x) = al x + by for some index k
» Heref(x;y) = fr(x) = a,{x + by, and Of(x) = {Vf(x)}
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Example

Suppose a; € R" and b; € R. And

fx):= max (alx +b;).

This f a max (in fact, over a finite number of terms)

» Suppose f(x) = al x + by for some index k

> Heref(x;y) = fi(x) = afx + by, and Ofi(x) = {Vfi(x)}
» Hence, a; € 0f (x) works!
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Subgradient of expectation

Suppose f = Ef (x,u), where f is convex in x for each u (an r.v.)

flx) = / Fx, wyp(uydu
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Subgradient of expectation

Suppose f = Ef (x,u), where f is convex in x for each u (an r.v.)

£ = [ Flxwpluds

» For each u choose any g(x,u) € 0yf (x,u)
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Subgradient of expectation

Suppose f = Ef (x,u), where f is convex in x for each u (an r.v.)

£ = [ Flxwpluds

» For each u choose any g(x,u) € 0yf (x,u)
» Then, g = [ g(x,u)p(u)du = Eg(x,u) € 9f(x)

Ref. D. P. Bertsekas, “Stochastic optimization problems with nondifferentiable cost
functionals.” JOTA v.12(2), 1973.
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Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

fx) = h(fi(x),f2(x), - fu(2))-

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) II|" 32



Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

fx) = h(fi(x),f2(x), - fu(2))-

We can find a vector ¢ € Jf(x) as follows:
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Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

f(x) = h(fi(x),2(x), - fu(X))-

We can find a vector ¢ € Jf(x) as follows:
» Fori=1ton, compute g; € Jfi(x)
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Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

f(x) = h(fi(x),2(x), - fu(X))-

We can find a vector ¢ € Jf(x) as follows:
» Fori=1ton, compute g; € Jfi(x)
» Compute u € Oh(fi(x),...,fu(x))
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Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

f(x) = h(fi(x),2(x), - fu(X))-

We can find a vector ¢ € Jf(x) as follows:
» Fori=1ton, compute g; € Jfi(x)
» Compute u € Oh(fi(x),...,fu(x))
> Set ¢ =u1Q1 + uage + - -+ + uugn; this g € 9f (x)
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Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

f(x) = h(fi(x),2(x), - fu(X))-

We can find a vector ¢ € Jf(x) as follows:
» Fori=1ton, compute g; € Jfi(x)
» Compute u € Oh(fi(x),...,fu(x))
> Set ¢ =u1Q1 + uage + - -+ + uugn; this g € 9f (x)
» Compare with Vf(x) = JVh(x), where | matrix of Vf;(x)
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Subgradient of composition

Suppose h : R" — R cvx and increasing; each f; cvx

f(x) = h(fi(x),2(x), - fu(X))-

We can find a vector ¢ € Jf(x) as follows:
» Fori=1ton, compute g; € Jfi(x)
» Compute u € Oh(fi(x),...,fu(x))
> Set ¢ =u1Q1 + uage + - -+ + uugn; this g € 9f (x)
» Compare with Vf(x) = JVh(x), where | matrix of Vf;(x)

Exercise: Verify ¢ € 0f (x) by showing f(z) > f(x) + ¢ Tz —x)
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