Optimization for Machine Learning

Lecture 2: Conjugates, subdifferentials 6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

18 Feb, 2021

Some norms

(cont'd from last time)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Vector norms: recap

Example. The Euclidean or ℓ_2 -norm is $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example. Let $p \ge 1$; ℓ_p -norm is $||x||_p = (\sum_i |x_i|^p)^{1/p}$

Exercise: Verify that $||x||_p$ is indeed a norm.

Example. (ℓ_{∞} -norm): $\|x\|_{\infty} = \max_{1 \le i \le n} |x_i|$

Example. (Frobenius-norm): Let $A \in \mathbb{C}^{m \times n}$. The **Frobenius** norm of A is $||A||_{\mathrm{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$; that is, $||A||_{\mathrm{F}} = \sqrt{\mathrm{Tr}(A^*A)}$.

Important example: Distance function

Claim. Let \mathcal{Y} be a convex set. Let $x \in \mathbb{R}^d$ be some point. The distance of *x* to the set \mathcal{Y} is defined as

$$\operatorname{dist}(x,\mathcal{Y}) := \inf_{y\in\mathcal{Y}} \|x-y\|.$$

Proof. Observe that ||x - y|| is jointly convex in (x, y) (**Why?**). Thus, the function dist (x, \mathcal{Y}) is a convex function of x using the partial minimization rule.

Matrix Norms: induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an *induced matrix norm* as

$$\|A\| := \sup_{\|x\| \neq 0} \frac{\|Ax\|}{\|x\|}.$$

Matrix Norms: induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an *induced matrix norm* as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}.$$

Example. Let *A* be any matrix. Its **operator norm** is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

It can be shown that $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of *A*.

Example. Let *A* be any matrix. Its **operator norm** is $\|A\|_{2} := \sup_{\|x\|_{2} \neq 0} \frac{\|Ax\|_{2}}{\|x\|_{2}}.$ It can be shown that $\|A\|_{2} = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of *A*.

• Warning! Generally, largest eigenvalue not a norm!

6.881 Optimization for Machine Learning

Example. Let *A* be any matrix. Its **operator norm** is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

It can be shown that $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of *A*.

- Warning! Generally, largest eigenvalue not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.

Example. Let *A* be any matrix. Its **operator norm** is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

It can be shown that $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of *A*.

- Warning! Generally, largest eigenvalue not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$

Example. Let *A* be any matrix. Its **operator norm** is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}$$

It can be shown that $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of *A*.

- Warning! Generally, largest eigenvalue not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- *Schatten p-norm:* ℓ_p -norm of vector of singular values.

Example. Let *A* be any matrix. Its **operator norm** is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}$$

It can be shown that $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of *A*.

- Warning! Generally, largest eigenvalue not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- *Schatten p-norm:* ℓ_p -norm of vector of singular values.
- **Exercise:** Let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$||A||_{(k)} := \sum_{i=1}^{k} \sigma_i(A),$$

is a norm; $1 \le k \le n$.

Suvrit Sra (suvrit@mit.edu)

Support function and dual norms

Def. Support function: $\sigma_C(x) = \sup_{z \in C} z^T x$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Support function and dual norms

Def. Support function: $\sigma_C(x) = \sup_{z \in C} z^T x$

Support function for the unit norm ball is called: *dual norm*.

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^d . Its **dual norm** is

$$||u||_* := \sup\{u^T x \mid ||x|| \le 1\} = \sigma_{||x|| \le 1}(u).$$

Exercise: Verify that $||u||_*$ is a norm.

Support function and dual norms

Def. Support function: $\sigma_C(x) = \sup_{z \in C} z^T x$

Support function for the unit norm ball is called: *dual norm*.

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^d . Its **dual norm** is

$$||u||_* := \sup\{u^T x \mid ||x|| \le 1\} = \sigma_{||x|| \le 1}(u).$$

Exercise: Verify that $||u||_*$ is a norm.

Exercise: Let 1/p + 1/q = 1, where $p, q \ge 1$. Show that $\|\cdot\|_q$ is dual to $\|\cdot\|_p$. In particular, the ℓ_2 -norm is self-dual.

Exercise. Verify the generalized *Hölder inequality* $u^T x \le ||u|| ||x||_*$ using the definition of dual norms.

Suvrit Sra (suvrit@mit.edu)

Support functions and Hausdorff distance*

Def. Let $K, L \subseteq \mathbb{R}^d$ be two sets. The **Hausdorff distance** between them is defined as

 $d_H(K,L) := \inf \left\{ \lambda \ge 0 \mid K \subseteq L + \lambda B(0,1), L \subseteq K + \lambda B(0,1) \right\}.$

(See e.g., https://en.wikipedia.org/wiki/Hausdorff_distance)

Support functions and Hausdorff distance*

Def. Let $K, L \subseteq \mathbb{R}^d$ be two sets. The **Hausdorff distance** between them is defined as

 $d_H(K,L) := \inf \left\{ \lambda \ge 0 \mid K \subseteq L + \lambda B(0,1), L \subseteq K + \lambda B(0,1) \right\}.$

(See e.g., https://en.wikipedia.org/wiki/Hausdorff_distance)

Lemma Let *K*, *L* be convex bodies in \mathbb{R}^d . Then, $d_H(K,L) = \sup_{\|u\|_2 \le 1} |\sigma_K(u) - \sigma_L(u)|.$

Explore. Support functions are important in the subject of *convex geometry;* read up on them and explore a bit!

Suvrit Sra (suvrit@mit.edu)

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^*(y) := \sup_{x \in \text{dom } f} \langle x, y \rangle - f(x)$

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^*(y) := \sup_{x \in \text{dom } f} \langle x, y \rangle - f(x)$

Observe: f^* is convex, even if f is not. If f differentiable, then $f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x)$ (Fenchel-Legendre transform).

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^*(y) := \sup_{x \in \text{dom } f} \langle x, y \rangle - f(x)$

Observe: f^* is convex, even if f is not. If f differentiable, then $f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x)$ (Fenchel-Legendre transform).

Fenchel-Young inequality: $f^*(u) + f(x) \ge \langle u, x \rangle$

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^*(y) := \sup_{x \in \text{dom } f} \langle x, y \rangle - f(x)$

Observe: f^* is convex, even if f is not. If f differentiable, then $f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x)$ (Fenchel-Legendre transform).

Fenchel-Young inequality: $f^*(u) + f(x) \ge \langle u, x \rangle$

Fenchel transforms satisfy the beautiful *duality* property:

Theorem. Let *f* be a closed convex function (i.e., epi $f = \{(x,t) | f(x) \le t\}$ is a closed convex set; equivalently, *f* is lower semi-continuous). Then, $f^{**} = f$.

Suvrit Sra (suvrit@mit.edu)

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^*(y) := \sup_{x \in \text{dom } f} \langle x, y \rangle - f(x)$

Observe: f^* is convex, even if f is not. If f differentiable, then $f^*(\nabla f(x)) = \langle x, \nabla f(x) \rangle - f(x)$ (Fenchel-Legendre transform).

Fenchel-Young inequality: $f^*(u) + f(x) \ge \langle u, x \rangle$

Fenchel transforms satisfy the beautiful *duality* property:

Theorem. Let *f* be a closed convex function (i.e., epi $f = \{(x,t) | f(x) \le t\}$ is a closed convex set; equivalently, *f* is lower semi-continuous). Then, $f^{**} = f$.

Exercise: Show that $f^* = f \iff f = \frac{1}{2} \| \cdot \|_2^2$.

Suvrit Sra (suvrit@mit.edu)

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_x zx - (ax + b)$

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_x zx - (ax + b)$
 $= \infty$, if $(z - a) \neq 0$.

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_{x} zx - (ax + b)$
 $= \infty$, if $(z - a) \neq 0$.
Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

6.881 Optimization for Machine Learning

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_x zx - (ax + b)$
 $= \infty, \quad \text{if } (z - a) \neq 0.$
Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example. Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_x zx - (ax + b)$
 $= \infty$, if $(z - a) \neq 0$.
Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example. Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example. $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_{x} zx - (ax + b)$
 $= \infty$, if $(z - a) \neq 0$.
Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example. Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example. $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Exercise: If $f(x) = \max(0, 1 - x)$, then dom f^* is [-1, 0], and within this domain, $f^*(z) = z$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Fenchel conjugate of norms

Recall: Dual norm $\|u\|_* := \sup\{u^T x \mid \|x\| \le 1\}.$

Fenchel conjugate of norms

Recall: Dual norm $||u||_* := \sup\{u^T x \mid ||x|| \le 1\}.$

Example. Let f(x) = ||x||. We have $f^*(z) = \delta_{\|\cdot\|_* \le 1}(z)$. Thus, conjugate of a norm is the *indicator of unit dual norm ball*.

6.881 Optimization for Machine Learning

Fenchel conjugate of norms

Recall: Dual norm $\|u\|_* := \sup\{u^T x \mid \|x\| \le 1\}.$

Example. Let f(x) = ||x||. We have $f^*(z) = \delta_{\|\cdot\|_* \le 1}(z)$. Thus, conjugate of a norm is the *indicator of unit dual norm ball*.

Proof.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► (i): by def. of dual norm there is a *u* s.t. $||u|| \le 1$ and $z^T u > 1$

•
$$f^*(z) = \sup_x x^T z - f(x)$$
. Rewrite $x = \alpha u$, and let $\alpha \to \infty$

- Then, $z^T x \|x\| = \alpha z^T u \|\alpha u\| = \alpha (z^T u \|u\|); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.
- x = 0 maximizes $||x|| (||z||_* 1)$, hence f(z) = 0.
- Thus, $f^*(z) = +\infty$ if (i), and 0 if (ii), completing the proof.

Suvrit Sra (suvrit@mit.edu)

▶ In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.

- ▶ In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.
- ▶ In convex analysis, the counterpart is *infimal convolution*

$$(f \Box g)(x) := \inf_{y \in X} f(y) + g(x - y),$$

where both f and g are (suitable) convex functions.

- ▶ In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.
- ▶ In convex analysis, the counterpart is *infimal convolution*

$$(f \Box g)(x) := \inf_{y \in X} f(y) + g(x - y),$$

where both f and g are (suitable) convex functions.

▶ Then, under appropriate hypotheses one has

$$(f \Box g)^* = f^* + g^*$$
, and $(f + g)^* = f^* \Box g^*$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

- ▶ In Fourier analysis, we discover that *convolution* can be described via the product of Fourier transforms.
- ▶ In convex analysis, the counterpart is *infimal convolution*

$$(f \Box g)(x) := \inf_{y \in X} f(y) + g(x - y),$$

where both f and g are (suitable) convex functions.

Then, under appropriate hypotheses one has

$$(f \Box g)^* = f^* + g^*$$
, and $(f + g)^* = f^* \Box g^*$.

Challenge. Recall: $f(x) = \frac{1}{2}x^T A x$ ($A \succ 0$) then $f^*(z) = \frac{1}{2}z^T A^{-1}z$. Let $f_i(x) := x^T A_i x$ for $A_i \succ 0$ and $1 \le i \le n$. Consider,

$$F(z) := \sum_{i} f_i^*(z) - \sum_{i < j} (f_i + f_j)^*(z) + \dots + (-1)^{n+1} (f_1 + \dots + f_n)^*(z).$$

Prove or disprove that *F* **is convex.**

Suvrit Sra (suvrit@mit.edu)

Fenchel conjugates are special*

Let $\Gamma_0(\mathbb{R}^d)$ denote class of closed, convex functions on \mathbb{R}^d . The (Legendre)-Fenchel transform of $f \in \Gamma_0$ is defined as

$$\mathcal{L}: f \mapsto \sup_{y} \langle \cdot, y \rangle - f(y)$$
(so that $(\mathcal{L}f)(x) = f^*(x)$).

Fenchel conjugates are special*

Let $\Gamma_0(\mathbb{R}^d)$ denote class of closed, convex functions on \mathbb{R}^d . The (Legendre)-Fenchel transform of $f \in \Gamma_0$ is defined as

$$\mathcal{L}: f \mapsto \sup_{y} \langle \cdot, y \rangle - f(y)$$

(so that $(\mathcal{L}f)(x) = f^*(x)$).

Theorem. Let \mathcal{T} be a transform that maps $\Gamma_0 \to \Gamma_0$ and satifies: (i) $\mathcal{T}(\mathcal{T}f) = f$ (closure); and (ii) $f \leq g \implies \mathcal{T}f \geq \mathcal{T}g$. Then, \mathcal{T} must "essentially" be the Fenchel transform. More precisely, there exists $c \in \mathbb{R}$, $v \in \mathbb{R}^d$ and $B \in GL_n(\mathbb{R})$ such that

$$(\mathcal{T}f)(x) = (\mathcal{L}f)(Bx+v) + \langle v, x \rangle + c$$

Explore: Study other classes instead of $\Gamma_0(\mathbb{R}^d)$ for which similar theorems can be proved.

Suvrit Sra (suvrit@mit.edu)

Subdifferentials

DO: (Read S. Boyd's EE364B notes)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

First order global underestimator

Suvrit Sra (suvrit@mit.edu)

First order global underestimator

$f(x) \ge f(y) + \langle g, x - y \rangle$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Plii

Subgradients

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Plii

Subgradients – basic facts

- ▶ *f* is convex, differentiable: $\nabla f(y)$ the *unique* subgradient at *y*
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is *globally* smaller than f(x).
- Often *one* subgradient costs approx as much as f(x)

Subgradients – basic facts

- ► *f* is convex, differentiable: $\nabla f(y)$ the *unique* subgradient at *y*
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is *globally* smaller than f(x).
- Often *one* subgradient costs approx as much as f(x)
- ► Determining **all** subgradients at a given point difficult.
- ► Subgradient calculus: great achievement in convex analysis

Subgradients – basic facts

- ► *f* is convex, differentiable: $\nabla f(y)$ the *unique* subgradient at *y*
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is *globally* smaller than f(x).
- Often *one* subgradient costs approx as much as f(x)
- ► Determining **all** subgradients at a given point difficult.
- ► Subgradient calculus: great achievement in convex analysis
- ► Without convexity, things become wild (e.g., chain rule fails!)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

6.881 Optimization for Machine Learning

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$ * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$ * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$ * $f_1(y) = f_2(y)$: subgradients, the segment $[f'_1(y), f'_2(y)]$ (imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Def. A vector $g \in \mathbb{R}^n$ is called a **subgradient** at a point *y*, if for all $x \in \text{dom} f$, it holds that

 $f(x) \ge f(y) + \langle g, x - y \rangle$

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

6.881 Optimization for Machine Learning

Def. A vector $g \in \mathbb{R}^n$ is called a **subgradient** at a point *y*, if for all $x \in \text{dom} f$, it holds that

 $f(x) \ge f(y) + \langle g, x - y \rangle$

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

If *f* is convex, $\partial f(x)$ is nice:

♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty

Def. A vector $g \in \mathbb{R}^n$ is called a **subgradient** at a point *y*, if for all $x \in \text{dom} f$, it holds that

 $f(x) \ge f(y) + \langle g, x - y \rangle$

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

If *f* is convex, $\partial f(x)$ is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = \{\nabla f(x)\}$

Def. A vector $g \in \mathbb{R}^n$ is called a **subgradient** at a point *y*, if for all $x \in \text{dom} f$, it holds that

 $f(x) \ge f(y) + \langle g, x - y \rangle$

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

If *f* is convex, $\partial f(x)$ is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = {\nabla f(x)}$
- ♣ If $\partial f(x) = \{g\}$, then *f* is differentiable and $g = \nabla f(x)$

Suvrit Sra (suvrit@mit.edu)

Subdifferential – example

$$f(x) = |x|$$

Suvrit Sra (suvrit@mit.edu)

Subdifferential – example

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Subdifferential – example

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

More examples

Example.
$$f(x) = ||x||_2$$
. Then,
 $\partial f(x) := \begin{cases} ||x||_2^{-1}x & x \neq 0, \\ \{z \mid ||z||_2 \le 1\} & x = 0. \end{cases}$

6.881 Optimization for Machine Learning

More examples

Example.
$$f(x) = ||x||_2$$
. Then,
 $\partial f(x) := \begin{cases} ||x||_2^{-1}x & x \neq 0, \\ \{z \mid ||z||_2 \le 1\} & x = 0. \end{cases}$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Plit

Calculus rules

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Recall basic calculus

If f and k are differentiable, we know that

Addition: $\nabla(f + k)(x) = \nabla f(x) + \nabla k(x)$

Scaling:
$$\nabla(\alpha f(x)) = \alpha \nabla f(x)$$

Recall basic calculus

If f and k are differentiable, we know that

- **Addition**: $\nabla(f + k)(x) = \nabla f(x) + \nabla k(x)$
- **Scaling**: $\nabla(\alpha f(x)) = \alpha \nabla f(x)$

Chain rule

If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $k : \mathbb{R}^m \to \mathbb{R}^p$. Let $h : \mathbb{R}^n \to \mathbb{R}^p$ be the composition $h(x) = (k \circ f)(x) = k(f(x))$. Then, Dh(x) = Dk(f(x))Df(x).

Recall basic calculus

If f and k are differentiable, we know that

- **Addition**: $\nabla(f + k)(x) = \nabla f(x) + \nabla k(x)$
- **Scaling**: $\nabla(\alpha f(x)) = \alpha \nabla f(x)$

Chain rule

If $f : \mathbb{R}^n \to \mathbb{R}^m$, and $k : \mathbb{R}^m \to \mathbb{R}^p$. Let $h : \mathbb{R}^n \to \mathbb{R}^p$ be the composition $h(x) = (k \circ f)(x) = k(f(x))$. Then, Dh(x) = Dk(f(x))Df(x).

Example. If $f : \mathbb{R}^n \to \mathbb{R}$ and $k : \mathbb{R} \to \mathbb{R}$, then using the fact that $\nabla h(x) = [Dh(x)]^T$, we obtain

$$\nabla h(x) = k'(f(x))\nabla f(x).$$

Suvrit Sra (suvrit@mit.edu)

Finding one subgradient within $\partial f(x)$

- Finding one subgradient within $\partial f(x)$
- ♠ Determining entire subdifferential $\partial f(x)$ at a point *x*

- Finding one subgradient within $\partial f(x)$
- ♠ Determining entire subdifferential $\partial f(x)$ at a point *x*
- ♠ Do we have the chain rule?

- Finding one subgradient within $\partial f(x)$
- ♠ Determining entire subdifferential $\partial f(x)$ at a point *x*
- ♠ Do we have the chain rule?
- ♦ Usually not easy!

$\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$

Suvrit Sra (suvrit@mit.edu)

∮ If *f* is differentiable, ∂*f*(*x*) = {∇*f*(*x*)}
∮ Scaling α > 0, ∂(α*f*)(*x*) = α∂*f*(*x*) = {α*g* | *g* ∈ ∂*f*(*x*)}

- $\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$
- $\oint \text{ Scaling } \alpha > 0, \, \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \}$
- ∮ **Addition*:** $\partial(f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)

∮ If *f* is differentiable,
$$\partial f(x) = \{\nabla f(x)\}$$

∮ Scaling $\alpha > 0$, $\partial(\alpha f)(x) = \alpha \partial f(x) = \{\alpha g \mid g \in \partial f(x)\}$

∮ Addition*: $\partial(f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)

∮ Chain rule*: Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $f : \mathbb{R}^m \to \mathbb{R}$, and

 $h : \mathbb{R}^n \to \mathbb{R}$ be given by $h(x) = f(Ax + b)$. Then,

 $\partial h(x) = A^T \partial f(Ax + b)$.

∮ Chain rule*: $h(x) = f \circ k$, where $k : X \to Y$ is diff.

• Chain rule*:
$$h(x) = f \circ k$$
, where $k : X \to Y$ is diff.

$$\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$$

Suvrit Sra (suvrit@mit.edu)

∮ **Chain rule*:** $h(x) = f \circ k$, where $k : X \to Y$ is diff. $\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$

 $\oint \text{ Max function}^*: \text{ If } f(x) := \max_{1 \le i \le m} f_i(x), \text{ then} \\ \partial f(x) = \text{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$

convex hull over subdifferentials of "active" functions at x

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

∮ **Chain rule*:** $h(x) = f \circ k$, where $k : X \to Y$ is diff. $\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$

 $\oint \text{ Max function}^*: \text{ If } f(x) := \max_{1 \le i \le m} f_i(x), \text{ then} \\ \partial f(x) = \text{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$

convex hull over subdifferentials of "active" functions at $x \\ \oint$ **Conjugation:** $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Hii

Failure of addition rule

It can happen that $\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$

Failure of addition rule

It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example. Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = f_1 + f_2 = \mathbb{1}_0$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

6.881 Optimization for Machine Learning

Failure of addition rule

It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example. Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = f_1 + f_2 = \mathbb{1}_0$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

However, $\partial f_1(x) + \partial f_2(x) \subset \partial (f_1 + f_2)(x)$ always holds.

Exercise: Prove the above statement.

Suvrit Sra (suvrit@mit.edu)

Subdifferential: two examples

Example. $f(x) = ||x||_{\infty}$. Then, $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\},$ where e_i is *i*-th canonical basis vector

Subdifferential: two examples

Example. $f(x) = ||x||_{\infty}$. Then, $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\},$ where e_i is *i*-th canonical basis vector

To prove, notice that $f(x) = \max_{1 \le i \le n} \{|e_i^T x|\}$; apply max rule.

Subdifferential: two examples

Example. $f(x) = ||x||_{\infty}$. Then,

$$\partial f(0) = \operatorname{conv} \{\pm e_1, \ldots, \pm e_n\},\$$

where e_i is *i*-th canonical basis vector

To prove, notice that $f(x) = \max_{1 \le i \le n} \{|e_i^T x|\}$; apply max rule.

Example. Let f_1, f_2, \dots, f_m be differentiable and convex. Let $f(x) := \max(f_1(x), \dots, f_m(x))$ $\partial f(x) = \operatorname{co} \{ \nabla f_i(x) \mid f_i(x) = f(x) \}$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Computing subgradients

Suvrit Sra (suvrit@mit.edu)

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

6.881 Optimization for Machine Learning

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

► Pick any y^* for which $h(x, y^*) = f(x)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- Pick any subgradient $g \in \partial h(x, y^*)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$
- ▶ This $g \in \partial f(x)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$

▶ This $g \in \partial f(x)$

 $h(z, y^*) \geq h(x, y^*) + g^T(z - x)$ $h(z, y^*) \geq f(x) + g^T(z - x)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting $\partial f(x)$ is complicated!

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$

• This
$$g \in \partial f(x)$$

$$h(z, y^*) \geq h(x, y^*) + g^T(z - x)$$

$$h(z, y^*) \geq f(x) + g^T(z - x)$$

$$f(z) \geq h(z, y^*) \quad \text{(because of sup)}$$

$$f(z) \geq f(x) + g^T(z - x).$$

Suvrit Sra (suvrit@mit.edu)

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

• Suppose $f(x) = a_k^T x + b_k$ for some index k

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

- Suppose $f(x) = a_k^T x + b_k$ for some index k
- Here $f(x; y) = f_k(x) = a_k^T x + b_k$, and $\partial f_k(x) = \{\nabla f_k(x)\}$

Suppose $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$. And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

- Suppose $f(x) = a_k^T x + b_k$ for some index k
- Here $f(x; y) = f_k(x) = a_k^T x + b_k$, and $\partial f_k(x) = \{\nabla f_k(x)\}$
- ▶ Hence, $a_k \in \partial f(x)$ works!

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where *f* is convex in *x* for each *u* (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

▶ For each *u* choose any $g(x, u) \in \partial_x f(x, u)$

Subgradient of expectation

Suppose $f = \mathbf{E}f(x, u)$, where *f* is convex in *x* for each *u* (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

- For each *u* choose any $g(x, u) \in \partial_x f(x, u)$
- Then, $g = \int g(x, u)p(u)du = \mathbf{E}g(x, u) \in \partial f(x)$

Ref. D. P. Bertsekas, "Stochastic optimization problems with nondifferentiable cost functionals." JOTA v.12(2), 1973.

Suvrit Sra (suvrit@mit.edu)

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$

• Set
$$g = u_1g_1 + u_2g_2 + \dots + u_ng_n$$
; this $g \in \partial f(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set $g = u_1g_1 + u_2g_2 + \cdots + u_ng_n$; this $g \in \partial f(x)$
- Compare with $\nabla f(x) = J \nabla h(x)$, where *J* matrix of $\nabla f_i(x)$

Suppose $h : \mathbb{R}^n \to \mathbb{R}$ cvx and increasing; each f_i cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

We can find a vector $g \in \partial f(x)$ as follows:

- ▶ For i = 1 to n, compute $g_i \in \partial f_i(x)$
- Compute $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set $g = u_1g_1 + u_2g_2 + \dots + u_ng_n$; this $g \in \partial f(x)$
- Compare with $\nabla f(x) = J \nabla h(x)$, where *J* matrix of $\nabla f_i(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \ge f(x) + g^T(z - x)$

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning