Optimization for Machine Learning

Lecture 2: Conjugates, subdifferentials

6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

18 Feb, 2021

Some norms

(cont'd from last time)

Vector norms: recap

Example. The Euclidean or ℓ_{2}-norm is $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$
Example. Let $p \geq 1 ; \ell_{p}$-norm is $\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
Exercise: Verify that $\|x\|_{p}$ is indeed a norm.
Example. $\left(\ell_{\infty}\right.$-norm): $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$

Example. (Frobenius-norm): Let $A \in \mathbb{C}^{m \times n}$. The Frobenius norm of A is $\|A\|_{\mathrm{F}}:=\sqrt{\sum_{i j}\left|a_{i j}\right|^{2}}$; that is, $\|A\|_{\mathrm{F}}=\sqrt{\operatorname{Tr}\left(A^{*} A\right)}$.

Important example: Distance function

Claim. Let \mathcal{Y} be a convex set. Let $x \in \mathbb{R}^{d}$ be some point. The distance of x to the set \mathcal{Y} is defined as

$$
\operatorname{dist}(x, \mathcal{Y}):=\inf _{y \in \mathcal{Y}} \quad\|x-y\| .
$$

Proof. Observe that $\|x-y\|$ is jointly convex in (x, y) (Why?). Thus, the function $\operatorname{dist}(x, \mathcal{Y})$ is a convex function of x using the partial minimization rule.

Matrix Norms: induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$
\|A\|:=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|} .
$$

Matrix Norms: induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$
\|A\|:=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}
$$

Verify it is a norm
Clearly, $\|A\|=0$ iff $A=0$ (definiteness)

- $\|\alpha A\|=|\alpha|\|A\|$ (homogeneity)
$\|A+B\|=\sup \frac{\|(A+B) x\|}{\|x\|} \leq \sup \frac{\|A x\|+\|B x\|}{\|x\|} \leq\|A\|+\|B\|$.

Operator norm

Example. Let A be any matrix. Its operator norm is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

It can be shown that $\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

Operator norm

Example. Let A be any matrix. Its operator norm is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

It can be shown that $\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!

Operator norm

Example. Let A be any matrix. Its operator norm is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

It can be shown that $\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.

Operator norm

Example. Let A be any matrix. Its operator norm is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

It can be shown that $\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$

Operator norm

Example. Let A be any matrix. Its operator norm is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

It can be shown that $\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$
- Schatten p-norm: ℓ_{p}-norm of vector of singular values.

Operator norm

Example. Let A be any matrix. Its operator norm is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

It can be shown that $\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$
- Schatten p-norm: ℓ_{p}-norm of vector of singular values.
- Exercise: Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$
\|A\|_{(k)}:=\sum_{i=1}^{k} \sigma_{i}(A),
$$

is a norm; $1 \leq k \leq n$.

Support function and dual norms

Def. Support function: $\sigma_{C}(x)=\sup _{z \in C} z^{T} x$

Support function and dual norms

Def. Support function: $\sigma_{C}(x)=\sup _{z \in C} z^{T} x$

Support function for the unit norm ball is called: dual norm.
Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{d}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}=\sigma_{\|x\| \leq 1}(u) .
$$

Exercise: Verify that $\|u\|_{*}$ is a norm.

Support function and dual norms

Def. Support function: $\sigma_{C}(x)=\sup _{z \in C} z^{T} x$

Support function for the unit norm ball is called: dual norm.
Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{d}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}=\sigma_{\|x\| \leq 1}(u) .
$$

Exercise: Verify that $\|u\|_{*}$ is a norm.
Exercise: Let $1 / p+1 / q=1$, where $p, q \geq 1$. Show that $\|\cdot\|_{q}$ is dual to $\|\cdot\|_{p}$. In particular, the ℓ_{2}-norm is self-dual.

Exercise. Verify the generalized Hölder inequality $u^{T} x \leq\|u\|\|x\|_{*}$ using the definition of dual norms.

Support functions and Hausdorff distance ${ }^{\star}$

Def. Let $K, L \subseteq \mathbb{R}^{d}$ be two sets. The Hausdorff distance between them is defined as $d_{H}(K, L):=\inf \{\lambda \geq 0 \mid K \subseteq L+\lambda B(0,1), L \subseteq K+\lambda B(0,1)\}$. (See e.g., https://en.wikipedia.org/wiki/Hausdorff_distance)

Support functions and Hausdorff distance ${ }^{\star}$

Def. Let $K, L \subseteq \mathbb{R}^{d}$ be two sets. The Hausdorff distance between them is defined as

$$
d_{H}(K, L):=\inf \{\lambda \geq 0 \mid K \subseteq L+\lambda B(0,1), L \subseteq K+\lambda B(0,1)\}
$$

(See e.g., https://en.wikipedia.org/wiki/Hausdorff_distance)

Lemma Let K, L be convex bodies in \mathbb{R}^{d}. Then,

$$
d_{H}(K, L)=\sup _{\|u\|_{2} \leq 1}\left|\sigma_{K}(u)-\sigma_{L}(u)\right|
$$

Explore. Support functions are important in the subject of convex geometry; read up on them and explore a bit!

Fenchel conjugates

Convex analysis analog of Fourier transforms:

$$
\text { Def. Fenchel conjugate: } f^{*}(y):=\sup _{x \in \operatorname{dom} f}\langle x, y\rangle-f(x)
$$

Fenchel conjugates

Convex analysis analog of Fourier transforms:
Def. Fenchel conjugate: $f^{*}(y):=\sup _{x \in \operatorname{dom} f}\langle x, y\rangle-f(x)$
Observe: f^{*} is convex, even if f is not. If f differentiable, then $f^{*}(\nabla f(x))=\langle x, \nabla f(x)\rangle-f(x)$ (Fenchel-Legendre transform).

Fenchel conjugates

Convex analysis analog of Fourier transforms:

$$
\text { Def. Fenchel conjugate: } f^{*}(y):=\sup _{x \in \operatorname{dom} f}\langle x, y\rangle-f(x)
$$

Observe: f^{*} is convex, even if f is not. If f differentiable, then $f^{*}(\nabla f(x))=\langle x, \nabla f(x)\rangle-f(x)$ (Fenchel-Legendre transform).

Fenchel-Young inequality: $f^{*}(u)+f(x) \geq\langle u, x\rangle$

Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^{*}(y):=\sup _{x \in \operatorname{dom} f}\langle x, y\rangle-f(x)$

Observe: f^{*} is convex, even if f is not. If f differentiable, then $f^{*}(\nabla f(x))=\langle x, \nabla f(x)\rangle-f(x)$ (Fenchel-Legendre transform).

Fenchel-Young inequality: $f^{*}(u)+f(x) \geq\langle u, x\rangle$
Fenchel transforms satisfy the beautiful duality property:
Theorem. Let f be a closed convex function (i.e., epi $f=$ $\{(x, t) \mid f(x) \leq t\}$ is a closed convex set; equivalently, f is lower semi-continuous). Then, $f^{* *}=f$.

Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: $f^{*}(y):=\sup _{x \in \operatorname{dom} f}\langle x, y\rangle-f(x)$

Observe: f^{*} is convex, even if f is not. If f differentiable, then $f^{*}(\nabla f(x))=\langle x, \nabla f(x)\rangle-f(x)$ (Fenchel-Legendre transform).

Fenchel-Young inequality: $f^{*}(u)+f(x) \geq\langle u, x\rangle$
Fenchel transforms satisfy the beautiful duality property:
Theorem. Let f be a closed convex function (i.e., epi $f=$ $\{(x, t) \mid f(x) \leq t\}$ is a closed convex set; equivalently, f is lower semi-continuous). Then, $f^{* *}=f$.

Exercise: Show that $f^{*}=f \Longleftrightarrow f=\frac{1}{2}\|\cdot\|_{2}^{2}$.

Fenchel conjugate - examples

Example. $f(x)=a x+b$; then,

$$
f^{*}(z)=\sup _{x} z x-(a x+b)
$$

Fenchel conjugate - examples

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Fenchel conjugate - examples

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.

Fenchel conjugate - examples

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example. Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Fenchel conjugate - examples

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example. Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Example. $f(x)=\frac{1}{2} x^{T} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$.

Fenchel conjugate - examples

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example. Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Example. $f(x)=\frac{1}{2} x^{T} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$.
Exercise: If $f(x)=\max (0,1-x)$, then $\operatorname{dom} f^{*}$ is $[-1,0]$, and within this domain, $f^{*}(z)=z$.

Fenchel conjugate of norms

$$
\begin{gathered}
\text { Recall: Dual norm } \\
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\} .
\end{gathered}
$$

Fenchel conjugate of norms

Recall: Dual norm

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\delta_{\|\cdot\|_{*} \leq 1}(z)$. Thus, conjugate of a norm is the indicator of unit dual norm ball.

Fenchel conjugate of norms

Recall: Dual norm

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\delta_{\|\cdot\|_{*} \leq 1}(z)$. Thus, conjugate of a norm is the indicator of unit dual norm ball.

Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
(i): by def. of dual norm there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
$f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$
Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, \quad x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.

- $x=0$ maximizes $\|x\|\left(\|z\|_{*}-1\right)$, hence $f(z)=0$.

Thus, $f^{*}(z)=+\infty$ if (i), and 0 if (ii), completing the proof.

Fenchel conjugates - analogies ${ }^{\star}$

- In Fourier analysis, we discover that convolution can be described via the product of Fourier transforms.

Fenchel conjugates - analogies ${ }^{\star}$

- In Fourier analysis, we discover that convolution can be described via the product of Fourier transforms.
- In convex analysis, the counterpart is infimal convolution

$$
(f \square g)(x):=\inf _{y \in X} f(y)+g(x-y),
$$

where both f and g are (suitable) convex functions.

Fenchel conjugates - analogies ${ }^{\star}$

- In Fourier analysis, we discover that convolution can be described via the product of Fourier transforms.
- In convex analysis, the counterpart is infimal convolution

$$
(f \square g)(x):=\inf _{y \in X} f(y)+g(x-y),
$$

where both f and g are (suitable) convex functions.

- Then, under appropriate hypotheses one has

$$
(f \square g)^{*}=f^{*}+g^{*}, \quad \text { and } \quad(f+g)^{*}=f^{*} \square g^{*}
$$

Fenchel conjugates - analogies ${ }^{\star}$

- In Fourier analysis, we discover that convolution can be described via the product of Fourier transforms.
- In convex analysis, the counterpart is infimal convolution

$$
(f \square g)(x):=\inf _{y \in X} f(y)+g(x-y),
$$

where both f and g are (suitable) convex functions.

- Then, under appropriate hypotheses one has

$$
(f \square g)^{*}=f^{*}+g^{*}, \quad \text { and } \quad(f+g)^{*}=f^{*} \square g^{*} .
$$

[^0]
Fenchel conjugates are special ${ }^{\star}$

Let $\Gamma_{0}\left(\mathbb{R}^{d}\right)$ denote class of closed, convex functions on \mathbb{R}^{d}. The (Legendre)-Fenchel transform of $f \in \Gamma_{0}$ is defined as

$$
\mathcal{L}: f \mapsto \sup _{y}\langle\cdot, y\rangle-f(y)
$$

(so that $\left.(\mathcal{L} f)(x)=f^{*}(x)\right)$.

Fenchel conjugates are special ${ }^{\star}$

Let $\Gamma_{0}\left(\mathbb{R}^{d}\right)$ denote class of closed, convex functions on \mathbb{R}^{d}. The (Legendre)-Fenchel transform of $f \in \Gamma_{0}$ is defined as

$$
\mathcal{L}: f \mapsto \quad \sup _{y}\langle\cdot, y\rangle-f(y)
$$

(so that $\left.(\mathcal{L} f)(x)=f^{*}(x)\right)$.
Theorem. Let \mathcal{T} be a transform that maps $\Gamma_{0} \rightarrow \Gamma_{0}$ and satifies: (i)
$\mathcal{T}(\mathcal{T} f)=f$ (closure); and (ii) $f \leq g \Longrightarrow \mathcal{T} f \geq \mathcal{T} g$.
Then, \mathcal{T} must "essentially" be the Fenchel transform. More precisely, there exists $c \in \mathbb{R}, v \in \mathbb{R}^{d}$ and $B \in G L_{n}(\mathbb{R})$ such that

$$
(\mathcal{T} f)(x)=(\mathcal{L} f)(B x+v)+\langle v, x\rangle+c
$$

Explore: Study other classes instead of $\Gamma_{0}\left(\mathbb{R}^{d}\right)$ for which similar theorems can be proved.

Subdifferentials

DO: (Read S. Boyd's EE364B notes)

First order global underestimator

First order global underestimator

Subgradients

g_{1}, g_{2}, g_{3} are subgradients at y

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Often one subgradient costs approx as much as $f(x)$

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Often one subgradient costs approx as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus: great achievement in convex analysis

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Often one subgradient costs approx as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus: great achievement in convex analysis
- Without convexity, things become wild (e.g., chain rule fails!)

Subgradients - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

Subgradients - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

* $f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$

Subgradients - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$
$\star f_{1}(y)=f_{2}(y)$: subgradients, the segment $\left[f_{1}^{\prime}(y), f_{2}^{\prime}(y)\right]$ (imagine all supporting lines turning about point y)

Subgradients and the Subdifferential (Set)

Def. A vector $g \in \mathbb{R}^{n}$ is called a subgradient at a point y, if for all $x \in \operatorname{dom} f$, it holds that

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

Subgradients and the Subdifferential (Set)

Def. A vector $g \in \mathbb{R}^{n}$ is called a subgradient at a point y, if for all $x \in \operatorname{dom} f$, it holds that

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
$\&$ If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty

Subgradients and the Subdifferential (Set)

Def. A vector $g \in \mathbb{R}^{n}$ is called a subgradient at a point y, if for all $x \in \operatorname{dom} f$, it holds that

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\therefore If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\&. If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$

Subgradients and the Subdifferential (Set)

Def. A vector $g \in \mathbb{R}^{n}$ is called a subgradient at a point y, if for all $x \in \operatorname{dom} f$, it holds that

$$
f(x) \geq f(y)+\langle g, x-y\rangle
$$

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
\% If $\partial f(x)=\{g\}$, then f is differentiable and $g=\nabla f(x)$

Subdifferential - example

$$
f(x)=|x|
$$

Subdifferential - example

$$
f(x)=|x|
$$

Subdifferential - example

$$
f(x)=|x|
$$

$$
\partial|x|= \begin{cases}-1 & x<0 \\ +1 & x>0 \\ {[-1,1]} & x=0\end{cases}
$$

More examples

$$
\begin{aligned}
& \text { Example. } f(x)=\|x\|_{2} \text {. Then, } \\
& \qquad \partial f(x):= \begin{cases}\|x\|_{2}^{-1} x & x \neq 0 \\
\left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
\end{aligned}
$$

More examples

Example. $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}\|x\|_{2}^{-1} x & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
$$

Calculus rules

Recall basic calculus

If f and k are differentiable, we know that
■ Addition: $\nabla(f+k)(x)=\nabla f(x)+\nabla k(x)$
■ Scaling: $\nabla(\alpha f(x))=\alpha \nabla f(x)$

Recall basic calculus

If f and k are differentiable, we know that
■ Addition: $\nabla(f+k)(x)=\nabla f(x)+\nabla k(x)$
■ Scaling: $\nabla(\alpha f(x))=\alpha \nabla f(x)$

Chain rule

$$
\begin{aligned}
& \text { If } f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \text {, and } k: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p} \text {. Let } h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p} \text { be the } \\
& \text { composition } h(x)=(k \circ f)(x)=k(f(x)) \text {. Then, } \\
& \text { Dh(x)=Dk(f(x))Df(x).}
\end{aligned}
$$

Recall basic calculus

If f and k are differentiable, we know that
■ Addition: $\nabla(f+k)(x)=\nabla f(x)+\nabla k(x)$
■ Scaling: $\nabla(\alpha f(x))=\alpha \nabla f(x)$

Chain rule

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, and $k: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}$. Let $h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ be the composition $h(x)=(k \circ f)(x)=k(f(x))$. Then,

$$
D h(x)=\operatorname{Dk}(f(x)) D f(x)
$$

Example. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $k: \mathbb{R} \rightarrow \mathbb{R}$, then using the fact that $\nabla h(x)=[D h(x)]^{T}$, we obtain

$$
\nabla h(x)=k^{\prime}(f(x)) \nabla f(x)
$$

Subgradient calculus

© Finding one subgradient within $\partial f(x)$

Subgradient calculus

- Finding one subgradient within $\partial f(x)$
a Determining entire subdifferential $\partial f(x)$ at a point x

Subgradient calculus

© Finding one subgradient within $\partial f(x)$
A Determining entire subdifferential $\partial f(x)$ at a point x
${ }^{\infty}$ Do we have the chain rule?

Subgradient calculus

© Finding one subgradient within $\partial f(x)$
A Determining entire subdifferential $\partial f(x)$ at a point x

- Do we have the chain rule?
- Usually not easy!

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition*: $\partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition $^{*}: \partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition $^{*}: \partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition $^{*}: \partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x

Subgradient calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition $^{*}: \partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x
\oint Conjugation: $z \in \partial f(x)$ if and only if $x \in \partial f^{*}(z)$

Failure of addition rule

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Failure of addition rule

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example. Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array}\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0 .\end{cases}$
Then, $f=f_{1}+f_{2}=\mathbb{1}_{0}$, whereby $\partial f(0)=\mathbb{R}$
But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.

Failure of addition rule

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example. Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array}\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0 .\end{cases}$
Then, $f=f_{1}+f_{2}=\mathbb{1}_{0}$, whereby $\partial f(0)=\mathbb{R}$
But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.
However, $\partial f_{1}(x)+\partial f_{2}(x) \subset \partial\left(f_{1}+f_{2}\right)(x)$ always holds.
Exercise: Prove the above statement.

Subdifferential: two examples

$$
\begin{aligned}
& \text { Example. } f(x)=\|x\|_{\infty} \text {. Then, } \\
& \partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\},
\end{aligned}
$$

where e_{i} is i-th canonical basis vector

Subdifferential: two examples

Example. $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\},
$$

where e_{i} is i-th canonical basis vector
To prove, notice that $f(x)=\max _{1 \leq i \leq n}\left\{\left|e_{i}^{T} x\right|\right\}$; apply max rule.

Subdifferential: two examples

Example. $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\},
$$

where e_{i} is i-th canonical basis vector
To prove, notice that $f(x)=\max _{1 \leq i \leq n}\left\{\left|e_{i}^{T} x\right|\right\}$; apply max rule.
Example. Let $f_{1}, f_{2}, \ldots, f_{m}$ be differentiable and convex. Let

$$
\begin{aligned}
f(x) & :=\max \left(f_{1}(x), \ldots, f_{m}(x)\right) \\
\partial f(x) & =\operatorname{co}\left\{\nabla f_{i}(x) \mid f_{i}(x)=f(x)\right\}
\end{aligned}
$$

Computing subgradients

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
& h\left(z, y^{*}\right) \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
& h\left(z, y^{*}\right) \geq f(x)+g^{T}(z-x)
\end{aligned}
$$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $f(x ; y)=f_{k}(x)=a_{k}^{T} x+b_{k}$, and $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $f(x ; y)=f_{k}(x)=a_{k}^{T} x+b_{k}$, and $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$
- Hence, $a_{k} \in \partial f(x)$ works!

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$
- Then, $g=\int g(x, u) p(u) d u=\mathbf{E} g(x, u) \in \partial f(x)$

Ref. D. P. Bertsekas, "Stochastic optimization problems with nondifferentiable cost functionals." JOTA v.12(2), 1973.

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right) .
$$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

We can find a vector $g \in \partial f(x)$ as follows:

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$
- Compare with $\nabla f(x)=J \nabla h(x)$, where J matrix of $\nabla f_{i}(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and increasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

We can find a vector $g \in \partial f(x)$ as follows:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$
- Compare with $\nabla f(x)=J \nabla h(x)$, where J matrix of $\nabla f_{i}(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \geq f(x)+g^{T}(z-x)$

[^0]: Challenge. Recall: $f(x)=\frac{1}{2} x^{T} A x(A \succ 0)$ then $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$. Let $f_{i}(x):=$ $x^{T} A_{i} x$ for $A_{i} \succ 0$ and $1 \leq i \leq n$. Consider,

 $$
 F(z):=\sum_{i} f_{i}^{*}(z)-\sum_{i<j}\left(f_{i}+f_{j}\right)^{*}(z)+\cdots+(-1)^{n+1}\left(f_{1}+\cdots+f_{n}\right)^{*}(z) .
 $$

 Prove or disprove that F is convex.

