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Vector norms: recap

Example. The Euclidean or `2-norm is ‖x‖2 =
(∑

i x2
i
)1/2

Example. Let p ≥ 1; `p-norm is ‖x‖p =
(∑

i |xi|p
)1/p

Exercise: Verify that ‖x‖p is indeed a norm.

Example. (`∞-norm): ‖x‖∞ = max1≤i≤n |xi|

Example. (Frobenius-norm): Let A ∈ Cm×n. The Frobenius
norm of A is ‖A‖F :=

√∑
ij |aij|2; that is, ‖A‖F =

√
Tr(A∗A).
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Important example: Distance function

Claim. Let Y be a convex set. Let x ∈ Rd be some point. The
distance of x to the set Y is defined as

dist(x,Y) := inf
y∈Y

‖x− y‖.

Proof. Observe that ‖x− y‖ is jointly convex in (x, y) (Why?).
Thus, the function dist(x,Y) is a convex function of x using
the partial minimization rule.
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Matrix Norms: induced norm

Let A ∈ Rm×n, and let ‖·‖ be any vector norm. We define an
induced matrix norm as

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖ .

Verify it is a norm

I Clearly, ‖A‖ = 0 iff A = 0 (definiteness)
I ‖αA‖ = |α| ‖A‖ (homogeneity)

I ‖A + B‖ = sup ‖(A+B)x‖
‖x‖ ≤ sup ‖Ax‖+‖Bx‖

‖x‖ ≤ ‖A‖ + ‖B‖.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 5



Matrix Norms: induced norm

Let A ∈ Rm×n, and let ‖·‖ be any vector norm. We define an
induced matrix norm as

‖A‖ := sup
‖x‖6=0

‖Ax‖
‖x‖ .

Verify it is a norm

I Clearly, ‖A‖ = 0 iff A = 0 (definiteness)
I ‖αA‖ = |α| ‖A‖ (homogeneity)

I ‖A + B‖ = sup ‖(A+B)x‖
‖x‖ ≤ sup ‖Ax‖+‖Bx‖

‖x‖ ≤ ‖A‖ + ‖B‖.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 5



Operator norm

Example. Let A be any matrix. Its operator norm is

‖A‖2 := sup
‖x‖2 6=0

‖Ax‖2

‖x‖2
.

It can be shown that ‖A‖2 = σmax(A), where σmax is the
largest singular value of A.

• Warning! Generally, largest eigenvalue not a norm!
• ‖A‖1 and ‖A‖∞—max-abs-column and max-abs-row sums.
• ‖A‖p generally NP-Hard to compute for p 6∈ {1, 2,∞}
• Schatten p-norm: `p-norm of vector of singular values.
• Exercise: Let σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 be singular values of a matrix

A ∈ Rm×n. Prove that
‖A‖(k) :=

∑k

i=1
σi(A),

is a norm; 1 ≤ k ≤ n.
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Support function and dual norms

Def. Support function: σC(x) = supz∈C zTx

Support function for the unit norm ball is called: dual norm.

Def. Let ‖·‖ be a norm on Rd. Its dual norm is

‖u‖∗ := sup{uTx | ‖x‖ ≤ 1} = σ‖x‖≤1(u).

Exercise: Verify that ‖u‖∗ is a norm.

Exercise: Let 1/p + 1/q = 1, where p, q ≥ 1. Show that ‖·‖q is
dual to ‖·‖p. In particular, the `2-norm is self-dual.

Exercise. Verify the generalized Hölder inequality uTx ≤ ‖u‖‖x‖∗
using the definition of dual norms.
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Support functions and Hausdorff distance?

Def. Let K,L ⊆ Rd be two sets. The Hausdorff distance be-
tween them is defined as

dH(K,L) := inf {λ ≥ 0 | K ⊆ L + λB(0, 1),L ⊆ K + λB(0, 1)} .

(See e.g., https://en.wikipedia.org/wiki/Hausdorff distance)

Lemma Let K,L be convex bodies in Rd. Then,

dH(K,L) = sup
‖u‖2≤1

|σK(u)− σL(u)|.

Explore. Support functions are important in the subject of
convex geometry; read up on them and explore a bit!
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Fenchel conjugates

Convex analysis analog of Fourier transforms:

Def. Fenchel conjugate: f ∗(y) := supx∈dom f 〈x, y〉 − f (x)

Observe: f ∗ is convex, even if f is not. If f differentiable, then
f ∗(∇f (x)) = 〈x, ∇f (x)〉 − f (x) (Fenchel-Legendre transform).

Fenchel-Young inequality: f ∗(u) + f (x) ≥ 〈u, x〉

Fenchel transforms satisfy the beautiful duality property:

Theorem. Let f be a closed convex function (i.e., epi f =
{(x, t) | f (x) ≤ t} is a closed convex set; equivalently, f is
lower semi-continuous). Then, f ∗∗ = f .

Exercise: Show that f ∗ = f ⇐⇒ f = 1
2‖ · ‖2

2.
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Fenchel conjugate – examples

Example. f (x) = ax + b; then,
f ∗(z) = sup

x
zx− (ax + b)

= ∞, if (z− a) 6= 0.

Thus, dom f ∗ = {a}, and f ∗(a) = −b.

Example. Let a ≥ 0, and set f (x) = −
√

a2 − x2 if |x| ≤ a, and
+∞ otherwise. Then, f ∗(z) = a

√
1 + z2.

Example. f (x) = 1
2 xTAx, where A � 0. Then, f ∗(z) = 1

2 zTA−1z.

Exercise: If f (x) = max(0, 1− x), then dom f ∗ is [−1, 0], and
within this domain, f ∗(z) = z.
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Fenchel conjugate of norms

Recall: Dual norm

‖u‖∗ := sup{uTx | ‖x‖ ≤ 1}.

Example. Let f (x) = ‖x‖. We have f ∗(z) = δ‖·‖∗≤1(z). Thus,
conjugate of a norm is the indicator of unit dual norm ball.

Proof.
I Consider two cases: (i) ‖z‖∗ > 1; (ii) ‖z‖∗ ≤ 1

I (i): by def. of dual norm there is a u s.t. ‖u‖ ≤ 1 and zTu > 1

I f ∗(z) = supx xTz− f (x). Rewrite x = αu, and let α→∞
I Then, zTx− ‖x‖ = αzTu− ‖αu‖ = α(zTu− ‖u‖);→∞
I Case (ii): Since zTx ≤ ‖x‖‖z‖∗, xTz− ‖x‖ ≤ ‖x‖(‖z‖∗ − 1) ≤ 0.

I x = 0 maximizes ‖x‖(‖z‖∗ − 1), hence f (z) = 0.

I Thus, f ∗(z) = +∞ if (i), and 0 if (ii), completing the proof.
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Fenchel conjugates – analogies?

I In Fourier analysis, we discover that convolution can be
described via the product of Fourier transforms.

I In convex analysis, the counterpart is infimal convolution

(f � g)(x) := inf
y∈X

f (y) + g(x− y),

where both f and g are (suitable) convex functions.
I Then, under appropriate hypotheses one has

(f � g)∗ = f ∗ + g∗, and (f + g)∗ = f ∗� g∗.

Challenge. Recall: f (x) = 1
2 xTAx (A � 0) then f ∗(z) = 1

2 zTA−1z. Let fi(x) :=
xTAix for Ai � 0 and 1 ≤ i ≤ n. Consider,

F(z) :=
∑

i

f ∗i (z)−
∑
i<j

(fi + fj)
∗(z) + · · ·+ (−1)n+1(f1 + · · ·+ fn)

∗(z).

Prove or disprove that F is convex.
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Fenchel conjugates are special?

Let Γ0(Rd) denote class of closed, convex functions on Rd. The
(Legendre)-Fenchel transform of f ∈ Γ0 is defined as

L : f 7→ sup
y
〈·, y〉 − f (y)

(so that (Lf )(x) = f ∗(x)).

Theorem. Let T be a transform that maps Γ0 → Γ0 and satifies: (i)
T (T f ) = f (closure); and (ii) f ≤ g =⇒ T f ≥ T g.
Then, T must “essentially” be the Fenchel transform. More pre-
cisely, there exists c ∈ R, v ∈ Rd and B ∈ GLn(R) such that

(T f )(x) = (Lf )(Bx + v) + 〈v, x〉+ c

Explore: Study other classes instead of Γ0(Rd) for which similar
theorems can be proved.
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Subdifferentials
DO: (Read S. Boyd’s EE364B notes)
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First order global underestimator

f(y)

y x

f(x)

f(y
) +
〈∇f(

y), x
− y〉

f (x) ≥ f (y) + 〈∇f (y), x− y〉
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First order global underestimator

y

f(y)

g1

g2
g3

f(y)
+ 〈g1,

x− y〉

f(x)

f (x) ≥ f (y) + 〈g, x− y〉
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Subgradients

y

f(y)

g1

g2
g3

f(y)
+ 〈g1,

x− y〉

f(x)

g1, g2, g3 are subgradients at y
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Subgradients – basic facts

I f is convex, differentiable: ∇f (y) the unique subgradient at y
I A vector g is a subgradient at a point y if and only if

f (y) + 〈g, x− y〉 is globally smaller than f (x).
I Often one subgradient costs approx as much as f (x)

I Determining all subgradients at a given point — difficult.
I Subgradient calculus: great achievement in convex analysis
I Without convexity, things become wild (e.g., chain rule fails!)
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Subgradients – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable
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Subgradients – example

f (x) := max(f1(x), f2(x)); both f1, f2 convex, differentiable

f1(x)

f2(x)

f(x)

y

? f1(x) > f2(x): unique subgradient of f is f ′1(x)

? f1(x) < f2(x): unique subgradient of f is f ′2(x)

? f1(y) = f2(y): subgradients, the segment [f ′1(y), f ′2(y)]
(imagine all supporting lines turning about point y)
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Subgradients and the Subdifferential (Set)

Def. A vector g ∈ Rn is called a subgradient at a point y, if
for all x ∈ dom f , it holds that

f (x) ≥ f (y) + 〈g, x− y〉

Def. The set of all subgradients at y denoted by ∂f (y). This
set is called subdifferential of f at y

If f is convex, ∂f (x) is nice:
♣ If x ∈ relative interior of dom f , then ∂f (x) nonempty
♣ If f differentiable at x, then ∂f (x) = {∇f (x)}
♣ If ∂f (x) = {g}, then f is differentiable and g = ∇f (x)
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Subdifferential – example

f (x) = |x|

∂f(x)

−1

+1

x

∂|x| =


−1 x < 0,
+1 x > 0,
[−1, 1] x = 0.
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More examples

Example. f (x) = ‖x‖2. Then,

∂f (x) :=

{
‖x‖−1

2 x x 6= 0,
{z | ‖z‖2 ≤ 1} x = 0.

Proof.
‖z‖2 ≥ ‖x‖2 + 〈g, z− x〉
‖z‖2 ≥ 〈g, z〉

=⇒ ‖g‖2 ≤ 1.
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Calculus rules
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Recall basic calculus

If f and k are differentiable, we know that
Addition: ∇(f + k)(x) = ∇f (x) +∇k(x)

Scaling: ∇(αf (x)) = α∇f (x)

Chain rule

If f : Rn → Rm, and k : Rm → Rp. Let h : Rn → Rp be the
composition h(x) = (k ◦ f )(x) = k(f (x)). Then,

Dh(x) = Dk(f (x))Df (x).

Example. If f : Rn → R and k : R→ R, then using the fact that
∇h(x) = [Dh(x)]T, we obtain

∇h(x) = k′(f (x))∇f (x).
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Subgradient calculus

♠ Finding one subgradient within ∂f (x)

♠ Determining entire subdifferential ∂f (x) at a point x
♠ Do we have the chain rule?
♠ Usually not easy!
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Subgradient calculus
∮

If f is differentiable, ∂f (x) = {∇f (x)}

∮
Scaling α > 0, ∂(αf )(x) = α∂f (x) = {αg | g ∈ ∂f (x)}∮
Addition∗: ∂(f + k)(x) = ∂f (x) + ∂k(x) (set addition)∮
Chain rule∗: Let A ∈ Rm×n, b ∈ Rm, f : Rm → R, and
h : Rn → R be given by h(x) = f (Ax + b). Then,

∂h(x) = AT∂f (Ax + b).∮
Chain rule∗: h(x) = f ◦ k, where k : X→ Y is diff.

∂h(x) = ∂f (k(x)) ◦Dk(x) = [Dk(x)]T∂f (k(x))∮
Max function∗: If f (x) := max1≤i≤m fi(x), then

∂f (x) = conv
⋃
{∂fi(x) | fi(x) = f (x)} ,

convex hull over subdifferentials of “active” functions at x∮
Conjugation: z ∈ ∂f (x) if and only if x ∈ ∂f ∗(z)
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h : Rn → R be given by h(x) = f (Ax + b). Then,

∂h(x) = AT∂f (Ax + b).∮
Chain rule∗: h(x) = f ◦ k, where k : X→ Y is diff.

∂h(x) = ∂f (k(x)) ◦Dk(x) = [Dk(x)]T∂f (k(x))

∮
Max function∗: If f (x) := max1≤i≤m fi(x), then

∂f (x) = conv
⋃
{∂fi(x) | fi(x) = f (x)} ,

convex hull over subdifferentials of “active” functions at x∮
Conjugation: z ∈ ∂f (x) if and only if x ∈ ∂f ∗(z)
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Failure of addition rule

It can happen that ∂(f1 + f2) 6= ∂f1 + ∂f2

Example. Define f1 and f2 by

f1(x) :=

{
−2
√

x if x ≥ 0,
+∞ if x < 0,

and f2(x) :=

{
+∞ if x > 0,
−2
√−x if x ≤ 0.

Then, f = f1 + f2 = 10, whereby ∂f (0) = R
But ∂f1(0) = ∂f2(0) = ∅.

However, ∂f1(x) + ∂f2(x) ⊂ ∂(f1 + f2)(x) always holds.

Exercise: Prove the above statement.
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Subdifferential: two examples

Example. f (x) = ‖x‖∞. Then,

∂f (0) = conv {±e1, . . . ,±en} ,

where ei is i-th canonical basis vector

To prove, notice that f (x) = max1≤i≤n
{
|eT

i x|
}

; apply max rule.

Example. Let f1, f2, . . . , fm be differentiable and convex. Let

f (x) := max(f1(x), . . . , fm(x))

∂f (x) = co {∇fi(x) | fi(x) = f (x)}
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Computing subgradients
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Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):

I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)

I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Subgradient for pointwise sup

f (x) := sup
y∈Y

h(x, y)

Getting ∂f (x) is complicated!

Simple way to obtain some g ∈ ∂f (x):
I Pick any y∗ for which h(x, y∗) = f (x)

I Pick any subgradient g ∈ ∂h(x, y∗)
I This g ∈ ∂f (x)

h(z, y∗) ≥ h(x, y∗) + gT(z− x)

h(z, y∗) ≥ f (x) + gT(z− x)

f (z) ≥ h(z, y∗) (because of sup)

f (z) ≥ f (x) + gT(z− x).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (2/18/21; Lecture 2) 29



Example

Suppose ai ∈ Rn and bi ∈ R. And

f (x) := max
1≤i≤n

(aT
i x + bi).

This f a max (in fact, over a finite number of terms)

I Suppose f (x) = aT
k x + bk for some index k

I Here f (x; y) = fk(x) = aT
k x + bk, and ∂fk(x) = {∇fk(x)}

I Hence, ak ∈ ∂f (x) works!
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Subgradient of expectation

Suppose f = Ef (x,u), where f is convex in x for each u (an r.v.)

f (x) :=

∫
f (x,u)p(u)du

I For each u choose any g(x,u) ∈ ∂xf (x,u)

I Then, g =
∫

g(x,u)p(u)du = Eg(x,u) ∈ ∂f (x)

Ref. D. P. Bertsekas, “Stochastic optimization problems with nondifferentiable cost
functionals.” JOTA v.12(2), 1973.
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Subgradient of composition

Suppose h : Rn → R cvx and increasing; each fi cvx

f (x) := h(f1(x), f2(x), . . . , fn(x)).

We can find a vector g ∈ ∂f (x) as follows:
I For i = 1 to n, compute gi ∈ ∂fi(x)

I Compute u ∈ ∂h(f1(x), . . . , fn(x))

I Set g = u1g1 + u2g2 + · · ·+ ungn; this g ∈ ∂f (x)

I Compare with∇f (x) = J∇h(x), where J matrix of∇fi(x)

Exercise: Verify g ∈ ∂f (x) by showing f (z) ≥ f (x) + g T(z− x)
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