Optimization for Machine Learning

Lecture 19: Optimization for Neural networks

6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

May 04, 2021

https://darel13712.github.io/ml/optimizers.html

Some of the optimizers used! Not all!

Some Aspects of NN Optimization

- Backprop $\operatorname{ln+4}$ SGD
- Mini-batches
- Initialization
- Batchnorm
- Gradient clipping
- Adaptive methods
- Momentum
- Layerwise params
- ... and more!

Some Aspects of NN Optimization

- Backprop III SGD
- Mini-batches
- Initialization
- Batchnorm
- Gradient clipping
- Adaptive methods
- Momentum
- Layerwise params
... and more!
All while keeping validation / test error performance in mind

SGD: Neural network training

$$
\begin{aligned}
& \min _{\theta} R_{N}(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, F\left(x_{i} ; \theta\right)\right) \\
& \ell(y, z)=\max (0,1-y z) \quad \text { label } \\
& \ell(y, z)=\frac{1}{2}(y-z)^{2} \quad \text { network output }
\end{aligned}
$$

SGD: Neural network training

$$
\begin{aligned}
& \quad \min _{\theta} R_{N}(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, F\left(x_{i} ; \theta\right)\right) \\
& \ell(y, z)=\max (0,1-y z) \\
& \ell(y, z)=\frac{1}{2}(y-z)^{2} \\
& \text { SGD } \quad \theta \leftarrow \theta-\eta \frac{\partial \ell(y, F(x ; \theta))}{\partial \theta}
\end{aligned}
$$

SGD: Neural network training

$$
\begin{aligned}
& \min _{\theta} R_{N}(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, F\left(x_{i} ; \theta\right)\right) \\
& \ell(y, z)=\max (0,1-y z) \\
& \ell(y, z)=\frac{1}{2}(y-z)^{2} \\
& \text { SGD } \\
& \qquad \theta \leftarrow \theta-\eta \frac{\partial \ell(y, F(x ; \theta))}{\partial \theta}
\end{aligned}
$$

SGD: Neural network training

$$
\begin{aligned}
& \min _{\theta} R_{N}(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, F\left(x_{i} ; \theta\right)\right) \\
& \ell(y, z)=\max (0,1-y z) \\
& \ell(y, z)=\frac{1}{2}(y-z)^{2}
\end{aligned}
$$

SGD

$$
\theta \leftarrow \theta-\eta \frac{\partial \ell(y, F(x ; \theta))}{\partial \theta}
$$

2 What about the step-size η, aka "learning rate"?

SGD: Neural network training

$$
\begin{aligned}
& \min _{\theta} R_{N}(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, F\left(x_{i} ; \theta\right)\right) \\
& \ell(y, z)=\max (0,1-y z) \\
& \ell(y, z)=\frac{1}{2}(y-z)^{2} \\
& \text { SGD } \\
& \quad \theta \leftarrow \theta-\eta \frac{\partial \ell(y, F(x ; \theta))}{\partial \theta}
\end{aligned}
$$

SGD: Neural network training

$$
\begin{aligned}
& \quad \min _{\theta} R_{N}(\theta):=\frac{1}{N} \sum_{i=1}^{N} \ell\left(y_{i}, F\left(x_{i} ; \theta\right)\right) \\
& \ell(y, z)=\max (0,1-y z) \\
& \ell(y, z)=\frac{1}{2}(y-z)^{2} \\
& \text { SGD } \\
& \theta \leftarrow \theta-n \frac{\partial \ell(y, F(x ; \theta))}{\partial \theta}
\end{aligned}
$$

Iterative method. How to select θ_{0} ?

1. Initialization

On the importance of initialization and momentum in deep learning

1. Initialization

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Example: Don't initialize all weights to be the same - why?

1. Initialization

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Example: Don't initialize all weights to be the same - why?
Random: Initialize randomly, e.g., via the Gaussian $N\left(0, \sigma^{2}\right)$, where std σ depends on the number of neurons in a given layer. Symmetry breaking.

1. Initialization

Properly initializing a NN important.
NN loss is highly nonconvex;
optimizing it to attain a "good"
solution hard, requires careful tuning.

Example: Don't initialize all weights to be the same - why?
Random: Initialize randomly, e.g., via the Gaussian $N\left(0, \sigma^{2}\right)$, where std σ depends on the number of neurons in a given layer. Symmetry breaking.

Why? roughly ensure that random input to a unit does not depend on the number of inputs it gets. For ReLUs current recommendation: use $\sigma^{2}=2 / n$

1. Initialization

Properly initializing a NN important.
NN loss is highly nonconvex;
optimizing it to attain a "good"
solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Example: Don't initialize all weights to be the same - why?
Random: Initialize randomly, e.g., via the Gaussian $N\left(0, \sigma^{2}\right)$, where std σ depends on the number of neurons in a given layer. Symmetry breaking.

Why? roughly ensure that random input to a unit does not depend on the number of inputs it gets. For ReLUs current recommendation: use $\sigma^{2}=2 / n$

See also: http://cs231n.github.io/neural-networks-2/ for additional practical notes

1. Impact of initialization

22-layer ReLU net: good init converges faster

1. Impact of initialization

22-layer ReLU net: good init converges faster

30-layer ReLU net: good init is able to converge

*Figures show the beginning of training

[^0]
1. Impact of initialization

22-layer ReLU net: good init converges faster

30-layer ReLU net: good init is able to converge

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoqing Ren, \& Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015.

Ultimately, coming up with good initializations is hard, worthy of deeper investigation

What about the step-size η, aka "learning rate"?

2. Step size tuning

Decaying

Adaptive

Architecture Sensitive

Others!

Often the most pesky parameter; tuning well can have big impact NN toolkits use so-called "step-size Schedulers"

2. Step size tuning

Decaying

Adaptive

Architecture Sensitive

Others!

Often the most pesky parameter; tuning well can have big impact NN toolkits use so-called "step-size Schedulers"

2. Step size tuning

Decaying

Adaptive

Architecture Sensitive

Others!

Often the most pesky parameter; tuning well can have big impact NN toolkits use so-called "step-size Schedulers"

2. Step size tuning

Decaying

Adaptive

Architecture Sensitive

Others!

Often the most pesky parameter; tuning well can have big impact NN toolkits use so-called "step-size Schedulers"

```
A Second look at Exponential and Cosine Step Sizes: Simplicity, Convergence, and Performance
```

Xiaoyu Li, Zhenxun Zhuang, Francesco Orabona

Layerwise Adaptive Rate Scaling: popular for large batch training

Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: $x_{1} \in \mathbb{R}^{d}$, learning rate $\left\{\eta_{t}\right\}_{t=1}^{T}$, parameter $0<\beta_{1}<1$, scaling function $\phi, \epsilon>0$
Set $m_{0}=0$
for $t=1$ to T do
Draw b samples S_{t} from \mathbb{P}
Compute $g_{t}=\frac{1}{\left|\mathcal{S}_{t}\right|} \sum_{s_{t} \in \mathcal{S}_{t}} \nabla \ell\left(x_{t}, s_{t}\right)$ $m_{t}=\beta_{1} m_{t-1}+\left(1-\beta_{1}\right)\left(g_{t}+\lambda x_{t}\right)$
$x_{t+1}^{(i)}=x_{t}^{(i)}-\eta_{t} \frac{\phi\left(\left\|x_{t}^{(i)}\right\|\right)}{\left\|m_{t}^{(i)}\right\|} m_{t}^{(i)}$ for all $i \in[h]$
end for

Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: $x_{1} \in \mathbb{R}^{d}$, learning rate $\left\{\eta_{t}\right\}_{t=1}^{T}$, parameter $0<\beta_{1}<1$, scaling function $\phi, \epsilon>0$
Set $m_{0}=0$
for $t=1$ to T do
Draw b samples S_{t} from \mathbb{P}
Compute $g_{t}=\frac{1}{\left|\mathcal{S}_{t}\right|} \sum_{s_{t} \in \mathcal{S}_{t}} \nabla \ell\left(x_{t}, s_{t}\right)$ $m_{t}=\beta_{1} m_{t-1}+\left(1-\beta_{1}\right)\left(g_{t}+\lambda x_{t}\right)$
$x_{t+1}^{(i)}=x_{t}^{(i)}-\eta_{t} \frac{\phi\left(\left\|x_{t}^{(i)}\right\|\right)}{\left\|m_{t}^{(i)}\right\|} m_{t}^{(i)}$ for all $i \in[h]$
end for

Layerwise Adaptive Rate Scaling: popular for large batch training

Algorithm 1 LARS

Input: $x_{1} \in \mathbb{R}^{d}$, learning rate $\left\{\eta_{t}\right\}_{t=1}^{T}$, parameter $0<\beta_{1}<1$, scaling function $\phi, \epsilon>0$
Set $m_{0}=0$
for $t=1$ to T do
Draw b samples S_{t} from \mathbb{P}
Compute $g_{t}=\frac{1}{\left|\mathcal{S}_{t}\right|} \sum_{s_{t} \in \mathcal{S}_{t}} \nabla \ell\left(x_{t}, s_{t}\right)$

end for

How to compute a stochastic gradient?

3. Computing gradients

Key computational task: compute a stochastic gradient

3. Computing gradients

Key computational task: compute a stochastic gradient

$\begin{array}{ll}w_{i j} & \begin{array}{l}1 \leq \mathrm{i} \leq \mathrm{m} \text { (hidden units) } \\ 1 \leq \mathrm{j} \leq \mathrm{p} \text { (input features) }\end{array}\end{array}$

3. Computing gradients

Key computational task: compute a stochastic gradient

$$
\begin{array}{ll}
w_{i j} & 1 \leq \mathrm{i} \leq \mathrm{m} \text { (hidden units) } \\
1 \leq \mathrm{j} \leq \mathrm{p} \text { (input features) }
\end{array}
$$

$$
\begin{aligned}
z_{i} & =\sum_{j=1}^{p} w_{i j} x_{j}+b_{i} \\
f\left(z_{i}\right) & =\max \left(0, z_{i}\right) \\
z & =\sum_{i=1}^{m} w_{i} f\left(z_{i}\right)+b \\
f(z) & =F(x ; \theta)=z
\end{aligned}
$$

input to $\mathrm{i}^{\text {th }}$ hidden unit output of i th hidden unit input to output unit network output

$$
\ell(y, z)=\max (0,1-y z)
$$

Aim: compute $\partial \ell / \partial \theta$

Computing gradients: backpropagation

$$
\begin{aligned}
z_{i} & =\sum_{j=1}^{p} w_{i j} x_{j}+b_{i} & & \text { input to ith hidden unit } \\
f\left(z_{i}\right) & =\max \left(0, z_{i}\right) & & \text { output of ith hidden unit } \\
z & =\sum_{i=1}^{m} w_{i} f\left(z_{i}\right)+b & & \text { input to output unit } \\
f(z) & =F(x ; \theta)=z & & \text { network output }
\end{aligned}
$$

Computing gradients: backpropagation

$$
\begin{aligned}
z_{i} & =\sum_{j=1}^{p} w_{i j} x_{j}+b_{i} & & \text { input to ith hidden unit } \\
f\left(z_{i}\right) & =\max \left(0, z_{i}\right) & & \text { output of } i^{\text {th }} \text { hidden unit } \\
z & =\sum_{i=1}^{m} w_{i} f\left(z_{i}\right)+b & & \text { input to output unit }
\end{aligned} \quad \ell(y, z)=\max (0,1-y z)
$$

Observe that a change to $w_{i j}$ changes z_{i}, which changes $f\left(z_{i}\right)$, which eventually changes z and thus the loss ℓ.

Computing gradients: backpropagation

$$
\begin{array}{rlrlrl}
z_{i} & =\sum_{j=1}^{p} w_{i j} x_{j}+b_{i} & & \text { input to ith hidden unit } & \\
f\left(z_{i}\right) & =\max \left(0, z_{i}\right) & & \text { output of } i^{\text {th }} \text { hidden unit } & \\
z & =\sum_{i=1}^{m} w_{i} f\left(z_{i}\right)+b & & \text { input to output unit } & \ell(y, z)=\max (0,1-y z) \\
f(z) & =F(x ; \theta)=z & & \text { network output } & &
\end{array}
$$

Observe that a change to $w_{i j}$ changes z_{i}, which changes $f\left(z_{i}\right)$, which eventually changes z and thus the loss ℓ.

Chain-rule of calculus

$$
\begin{aligned}
\frac{\partial \ell(y, z)}{\partial w_{i j}} & =\left[\frac{\partial z_{i}}{\partial w_{i j}}\right]\left[\frac{\partial f\left(z_{i}\right)}{\partial z_{i}}\right]\left[\frac{\partial z}{\partial f\left(z_{i}\right)}\right] \frac{\partial \ell}{\partial z} \\
& =\left[x_{j}\right] \llbracket z_{i}>0 \rrbracket\left[w_{i}\right]\left[\begin{array}{cc}
-y, & \text { if } \ell(y, z)>0, \\
0, & \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Backpropagation

Challenge: How to apply the chain rule in a deep network?

Backpropagation

Challenge: How to apply the chain rule in a deep network?

* A change to a weight $w_{i j}$ at the first hidden layer will impact all subsequent layers.
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!
* This is where backpropagation enters the game

Backpropagation

Challenge: How to apply the chain rule in a deep network?

* A change to a weight $w_{i j}$ at the first hidden layer will impact all subsequent layers.
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!
* This is where backpropagation enters the game
- A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Backpropagation

Challenge: How to apply the chain rule in a deep network?

* A change to a weight $w_{i j}$ at the first hidden layer will impact all subsequent layers.
* To apply the chain-rule, must aggregate contribution from each unit to final output
* We must cover all paths by which information can flow from first layer to last!
* This is where backpropagation enters the game
- A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Key insight: Trade space for time (dynamic programming).

Thus, keep track of how a change to the input of one layer impacts its output, and use extra storage to save this (change=derivative).

Automatic differentiation

Forward mode AD
Backward mode AD
(Backprop a special case)
Automatic Differentiation in Machine Learning: a Survey

Atılım Günes Baydin
Department of Engineering Science
University of Oxford
Oxford OX1 3PJ, United Kingdom
Barak A. Pearlmutter
Department of Computer Science
National University of Ireland Maynooth
Maynooth, Co. Kildare, Ireland
Alexey Andreyevich Radul
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology
Cambridge, MA 02139, United States
Jeffrey Mark Siskind

Optimal Jacobian Accumulation: NP-Complete

All NN toolkits use autodiff libraries

AD: Generate algorithm for efficient evaluation of derivatives

Numerous tutorials and notes online; well-developed area in PL and numerics

In reality: BN, momentum,clipping,adaptivity and many other ideas!

Key motivation: unstable gradients

$$
\begin{gathered}
\delta^{l}=\frac{\partial l}{\partial z^{l}}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \delta^{l+1} \\
\delta^{l}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \operatorname{Diag}\left[f^{\prime}\left(z^{l+1}\right)\right] W^{l+2} \cdots W^{L} \delta^{L}
\end{gathered}
$$

Observations

Key motivation: unstable gradients

$$
\begin{gathered}
\delta^{l}=\frac{\partial \ell}{\partial z^{l}}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \delta^{l+1} \\
\delta^{l}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \operatorname{Diag}\left[f^{\prime}\left(z^{l+1}\right)\right] W^{l+2} \cdots W^{L} \delta^{L}
\end{gathered}
$$

Observations

- Multiplication of a chain of matrices in backprop

Key motivation: unstable gradients

$$
\begin{gathered}
\delta^{l}=\frac{\partial \ell}{\partial z^{l}}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \delta^{l+1} . \\
\delta^{l}=\overparen{\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \operatorname{Diag}\left[f^{\prime}\left(z^{l+1}\right)\right] W^{l+2} \cdots W^{L} \delta^{L}}
\end{gathered}
$$

Observations

- Multiplication of a chain of matrices in backprop
- If several of these matrices are "small" (i.e., norms <1), when we multiply them, the gradient will decrease exponentially fast and tend to vanish (hurting learning in lower layers much more)

Key motivation: unstable gradients

$$
\begin{gathered}
\delta^{l}=\frac{\partial l}{\partial z^{l}}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \delta^{l+1} . \\
\delta^{l}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \operatorname{Diag}\left[f^{\prime}\left(z^{l+1}\right)\right] W^{l+2} \cdots W^{L} \delta^{L}
\end{gathered}
$$

Observations

- Multiplication of a chain of matrices in backprop
" If several of these matrices are "small" (i.e., norms <1), when we multiply them, the gradient will decrease exponentially fast and tend to vanish (hurting learning in lower layers much more)
- Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients are unstable.

Key motivation: unstable gradients

$$
\begin{gathered}
\delta^{l}=\frac{\partial \ell}{\partial z^{l}}=\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \delta^{l+1} . \\
\delta^{l}=\stackrel{\operatorname{Diag}\left[f^{\prime}\left(z^{l}\right)\right] W^{l+1} \operatorname{Diag}\left[f^{\prime}\left(z^{l+1}\right)\right] W^{l+2} \cdots W^{L} \delta^{L}}{ }
\end{gathered}
$$

Observations

- Multiplication of a chain of matrices in backprop
" If several of these matrices are "small" (i.e., norms <1), when we multiply them, the gradient will decrease exponentially fast and tend to vanish (hurting learning in lower layers much more)
- Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients are unstable.
- Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.
- Regularization (numerous ways, implicit and explicit)

Partial remedies for unstable gradients

= Regularization (numerous ways, implicit and explicit)

- ReLU activations

Partial remedies for unstable gradients

= Regularization (numerous ways, implicit and explicit)

- ReLU activations
- Memory (in RNNS)

Partial remedies for unstable gradients

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)

Partial remedies for unstable gradients

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)
- Gradient clipping, normalized gradients

Partial remedies for unstable gradients

= Regularization (numerous ways, implicit and explicit)

- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)
- Gradient clipping, normalized gradients
= Numerous other ideas (architecture specific)

Partial remedies for unstable gradients

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)
- Gradient clipping, normalized gradients
- Numerous other ideas (architecture specific)
- Residual Networks (Resnets)

Regularization

definitely use it; but many other ways too!

Regularization

$+\lambda\|\theta\|^{2}$

definitely use it; but many other ways too!
NN folks call this: "weight decay," though to be pedantic, some reserve the term "weight decay" for the part subtracted from weights θ when updating them (e.g., ADAMW optimizer)

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)
-Randomly turn off units, say with probability $1 / 2$, when training!

(a) Standard Neural Net

(b) After applying dropout.

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)
-Randomly turn off units, say with probability $1 / 2$, when training!

- For each data point, we randomly set the output of each hidden unit to zero.

(a) Standard Neural Net

(b) After applying dropout.

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

-Randomly turn off units, say with probability $1 / 2$, when training!

- For each data point, we randomly set the output of each hidden unit to zero.
- The neurons turned off are randomly chosen anew for each training data point

(a) Standard Neural Net

(b) After applying dropout.

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

-Randomly turn off units, say with probability $1 / 2$, when training!

- For each data point, we randomly set the output of each hidden unit to zero.
- The neurons turned off are randomly chosen anew for each training data point
- Accounted for during backprop (how?).

(a) Standard Neural Net

(b) After applying dropout.

Regularizing with Dropout

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

-Randomly turn off units, say with probability $1 / 2$, when training!

- For each data point, we randomly set the output of each hidden unit to zero.
- The neurons turned off are randomly chosen anew for each training data point
- Accounted for during backprop (how?).
- For units turned off for that round, input weights and activations not updated; unit effectively dropped out for that particular training sample. This additional stochasticity helps in regularization. Explore: other ways of adding stochasticity to NN training

(a) Standard Neural Net

(b) After applying dropout.

Batch Normalization

Batch Normalization

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Batch Normalization

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Batch Normalization

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Batch Normalization

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly
$x=\left(x^{1}, \ldots, x^{p}\right)$
(features at a layer)

$$
\hat{x}^{k}=\frac{x^{k}-\mathbb{E}\left[x^{k}\right]}{\sqrt{\operatorname{Var}\left[x^{k}\right]}}
$$

Batch Normalization

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly
$\begin{gathered}x=\left(x^{1}, \ldots, x^{p}\right) \\ \text { (features at a layer) }\end{gathered} \quad \hat{x}^{k}=\frac{x^{k}-\mathbb{E}\left[x^{k}\right]}{\sqrt{\operatorname{Var}\left[x^{k}\right]}}$

Batch Normalization

Batch Normalization

Idea 1: Normalize features individually, not jointly
$\begin{aligned} & x=\left(x^{1}, \ldots, x^{p}\right) \\ & \text { (features at a layer) }\end{aligned} \quad \hat{x}^{k}=\frac{x^{k}-\mathbb{E}\left[x^{k}\right]}{\sqrt{\operatorname{Var}\left[x^{k}\right]}}$

Batch Normalization

Idea 1: Normalize features individually, not jointly

$$
\begin{aligned}
& x=\left(x^{1}, \ldots, x^{p}\right) \\
& \text { (features at a layer) }
\end{aligned} \quad \hat{x}^{k}=\frac{x^{k}-\mathbb{E}\left[x^{k}\right]}{\sqrt{\operatorname{Var}\left[x^{k}\right]}}
$$

Expectation and Variance computed over training data set (LeCun98- this speeds up training)

Batch Normalization

Idea 1: Normalize features individually, not jointly

$$
\begin{aligned}
& x=\left(x^{1}, \ldots, x^{p}\right) \\
& \text { (features at a layer) }
\end{aligned} \quad \hat{x}^{k}=\frac{x^{k}-\mathbb{E}\left[x^{k}\right]}{\sqrt{\operatorname{Var}\left[x^{k}\right]}}
$$

Expectation and Variance computed over training data set (LeCun98 - this speeds up training)

Idea 1: mini-batch normalization

Batch Normalization

Idea 1: Normalize features individually, not jointly

$$
\begin{aligned}
& x=\left(x^{1}, \ldots, x^{p}\right) \\
& \text { (features at a layer) }
\end{aligned} \quad \hat{x}^{k}=\frac{x^{k}-\mathbb{E}\left[x^{k}\right]}{\sqrt{\operatorname{Var}\left[x^{k}\right]}}
$$

Idea 1: mini-batch normalization

BN transform applied to activation x over a mini-batch
元

Expectation and

 Variance computed over training data set (LeCun98- this speeds up training)Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Batch Normalization

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\operatorname{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Batch Normalization

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{2}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Batch Normalization

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$;
Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{array}{rlr}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i} & \text { // mini-batch mean } \\
\sigma_{\mathcal{B}}^{2} & \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} & \text { // mini-batch variance } \\
\widehat{x}_{i} & \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{2}^{2}+\epsilon}} & \text { // normalize } \\
y_{i} & \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \operatorname{BN}_{\gamma, \beta}\left(x_{i}\right) & \text { // scale and shift }
\end{array}
$$

Batch Normalization

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{aligned}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}
\end{aligned} \text { // mini-batch mean }
$$

Intuition: Allow the transformation to represent the identity (this idea recurs)

Batch Normalization

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)\right\}$

$$
\begin{aligned}
\mu_{\mathcal{B}} & \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}
\end{aligned} \text { // mini-batch mean }
$$

Intuition: Allow the transformation to represent the identity (this idea recurs)
Exercise: Derive backprop rules to figure out how to update scale γ and shift β

Batch Normalization

(several other speedups enabled, and used for this plot)

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Batch Normalization

\checkmark BN layer can be added to many networks (e.g., CNNs, Resnets, etc.)

- Current Challenge: BN for RNNs; also, is BN truly necessary?
\checkmark BN enables higher learning rates: backprop through a BN layer is unaffected by the scale of its parameters, $\mathrm{BN}(\mathrm{Wx})=\mathrm{BN}((\mathrm{aW}) \mathrm{x})$
\checkmark BN has a regularizing effect (Dropout can even be dropped out)
\checkmark Challenge: Formally understand and explain BN

(several other speedups enabled, and used for this plot)

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

Residual Networks (Resnets)

Residual Networks (Resnets)

$$
\begin{aligned}
& x \mapsto h_{L} \circ h_{L-1} \circ \cdots \circ h_{1}(x) \\
& h_{i}(z):=z+\sigma\left(W_{i} z+b_{i}\right) \\
& \operatorname{ld}+\sigma(.)
\end{aligned}
$$

Note: Without the Identity map (Id), we are back to the usual model

Why resnets?

CIFAR-10

Why resnets?

CIFAR-10

Making network deeper does not necessarily work better
Limits on what initialization and batch normalization give us

Key idea: Identity maps

Aim: Learn map $\mathrm{H}(\mathrm{x})$.
Approach: Hope the deep net fits $\mathrm{H}(\mathrm{x})$

Key idea: Identity maps

Aim: Learn map $H(x)=F(x)+x$
Approach: Hope the deep net fits $F(x)$

Key idea: Identity maps

Key idea: Identity maps

$$
\begin{aligned}
x & \mapsto h_{L} \circ h_{L-1} \circ \cdots \circ h_{1}(x) \\
h_{i}(z) & :=z+\sigma\left(W_{i} z+b_{i}\right)
\end{aligned}
$$

Aim: Learn map $H(x)=F(x)+x$
Approach: Hope the deep net fits $F(x)$
$F(x)$ is a residual mapping wrt identity

If identity were optimal easy to fit by setting weights=0

By adding Id, increasing depth should not hurt performance...

Key idea: Identity maps

$$
\begin{aligned}
x & \mapsto h_{L} \circ h_{L-1} \circ \cdots \circ h_{1}(x) \\
h_{i}(z) & :=z+\sigma\left(W_{i} z+b_{i}\right)
\end{aligned}
$$

A residual block $\quad F(x)$

Aim: Learn map $H(x)=F(x)+x$
Approach: Hope the deep net fits $F(x)$
$F(x)$ is a residual mapping wrt identity

If identity were optimal easy to fit by setting weights=0

By adding Id, increasing depth should not hurt performance...

Explore: Try residual wrt other distinguished (i.e., not Id) mappings

CIFAR-10

56-layer
 44-layer 32-layer 20-layer

solid:test/val dashed:train

CIFAR-10 ResNets

Kaiming He, Xiangyu Zhang, Shaoqing Ren, \& Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Recent theory on ResNets

- Bartlett et al, 2018. Optimization properties of deep residual networks.
- Hardt, Ma 2017. Global optimality of deep linear resnets $y=\left(I+W_{L}\right)\left(I+W_{L-1}\right) \ldots\left(I+W_{I}\right) x$

Recent theory on ResNets

- Bartlett et al, 2018. Optimization properties of deep residual networks.
- Hardt, Ma 2017. Global optimality of deep linear resnets $y=\left(I+W_{L}\right)\left(I+W_{L-1}\right) \ldots\left(I+W_{I}\right) x$
- Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).

Recent theory on ResNets

- Bartlett et al, 2018. Optimization properties of deep residual networks.
- Hardt, Ma 2017. Global optimality of deep linear resnets $y=\left(I+W_{L}\right)\left(I+W_{L-1}\right) \ldots\left(I+W_{I}\right) x$
- Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).
- Shamir, 2018. Considers $x \mapsto w^{T}\left(x+V F_{\theta}(x)\right)$ and shows that every local optimum of this Resnet (with final purely linear layer) is "better than" a simple linear model. Presents some conditions under which one can prove that adding the Id map does not hurt performance.

Recent theory on ResNets

- Bartlett et al, 2018. Optimization properties of deep residual networks.
- Hardt, Ma 2017. Global optimality of deep linear resnets $y=\left(I+W_{L}\right)\left(I+W_{L-1}\right) \ldots\left(I+W_{I}\right) x$
- Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).
- Shamir, 2018. Considers $x \mapsto w^{T}\left(x+V F_{\theta}(x)\right)$ and shows that every local optimum of this Resnet (with final purely linear layer) is "better than" a simple linear model. Presents some conditions under which one can prove that adding the Id map does not hurt performance.
- Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models (provides a "deep" version of Shamir's result above, result leaves open problems.

Recent theory on ResNets

- Bartlett et al, 2018. Optimization properties of deep residual networks.
- Hardt, Ma 2017. Global optimality of deep linear resnets $y=\left(I+W_{L}\right)\left(I+W_{L-I}\right) \ldots\left(I+W_{I}\right) x$
- Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).
- Shamir, 2018. Considers $x \mapsto w^{T}\left(x+V F_{\theta}(x)\right)$ and shows that every local optimum of this Resnet (with final purely linear layer) is "better than" a simple linear model. Presents some conditions under which one can prove that adding the Id map does not hurt performance.
- Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models (provides a "deep" version of Shamir's result above, result leaves open problems.
- Allen-Zhu, Li, 2019. "What can ResNet learn efficiently, Going beyond Kernels?"

[^0]: Kaiming He, Xiangyu Zhang, Shaoqing Ren, \& Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015.

