Optimization for Machine Learning

Lecture 19: Optimization for Neural networks

6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

May 04, 2021

https://darel13712.github.io/ml/optimizers.html

6.881 Optimization for Machine Learning Suvrit Sra (suvrit@mit.edu)

https://darel13712.github.io/ml/optimizers.html

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (5/04/2

Some Aspects of NN Optimization

- Backprop SGD
- Mini-batches
- Initialization
- Batchnorm
- Gradient clipping
- Adaptive methods
- Momentum
- Layerwise params
- ...and more!

Some Aspects of NN Optimization

- Backprop SGD
- Mini-batches
- Initialization
- Batchnorm
- Gradient clipping
- Adaptive methods
- Momentum
- Layerwise params
- ...and more!

All while keeping validation / test error performance in mind

$$\min_{\theta} R_N(\theta) := \frac{1}{N} \sum_{i=1}^N \ell(y_i, F(x_i; \theta))$$

$$\ell(y, z) = \max(0, 1 - yz)$$

$$\ell(y, z) = \frac{1}{2}(y - z)^2$$
label
network output

$$\begin{split} \min_{\theta} \ R_N(\theta) &:= \frac{1}{N} \sum_{i=1}^N \ell(y_i, F(x_i; \theta)) \\ \ell(y, z) &= \max(0, 1 - yz) \\ \ell(y, z) &= \frac{1}{2}(y - z)^2 \end{split} \quad \text{network output} \end{split}$$

$$\begin{split} \min_{\theta} \ R_N(\theta) &:= \frac{1}{N} \sum_{i=1}^N \ell(y_i, F(x_i; \theta)) \\ \ell(y, z) &= \max(0, 1 - yz) \\ \ell(y, z) &= \frac{1}{2}(y - z)^2 \end{split} \quad \text{network output} \end{split}$$

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Ilya Sutskever¹ James Martens George Dahl **Geoffrey Hinton**

ILYASU@GOOGLE.COM JMARTENS@CS.TORONTO.EDU GDAHL@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Ilya Sutskever¹ James Martens George Dahl Geoffrey Hinton ILYASU@GOOGLE.COM JMARTENS@CS.TORONTO.EDU GDAHL@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU

Example: Don't initialize all weights to be the same — why?

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Ilya Sutskever¹ James Martens George Dahl Geoffrey Hinton

ILYASU@GOOGLE.COM JMARTENS@CS.TORONTO.EDU GDAHL@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU

Example: Don't initialize all weights to be the same — why?

Random: Initialize randomly, e.g., via the Gaussian $N(0, \sigma^2)$, where std σ depends on the number of neurons in a given layer. Symmetry breaking.

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Ilya Sutskever¹ James Martens George Dahl Geoffrey Hinton

ILYASU@GOOGLE.COM JMARTENS@CS.TORONTO.EDU GDAHL@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU

Example: Don't initialize all weights to be the same — why?

Random: Initialize randomly, e.g., via the Gaussian $N(0, \sigma^2)$, where std σ depends on the number of neurons in a given layer. Symmetry breaking.

Why? roughly ensure that random input to a unit does *not depend* on the number of inputs it gets. *For ReLUs current recommendation:* use $\sigma^2 = 2/n$

Properly initializing a NN important. NN loss is highly nonconvex; optimizing it to attain a "good" solution hard, requires careful tuning.

On the importance of initialization and momentum in deep learning

Ilya Sutskever¹ James Martens George Dahl Geoffrey Hinton

ILYASU@GOOGLE.COM JMARTENS@CS.TORONTO.EDU GDAHL@CS.TORONTO.EDU HINTON@CS.TORONTO.EDU

Example: Don't initialize all weights to be the same — why?

Random: Initialize randomly, e.g., via the Gaussian $N(0, \sigma^2)$, where std σ depends on the number of neurons in a given layer. Symmetry breaking.

Why? roughly ensure that random input to a unit does *not depend* on the number of inputs it gets. *For ReLUs current recommendation:* use $\sigma^2 = 2/n$

See also: <u>http://cs231n.github.io/neural-networks-2/</u> for additional practical notes

1. Impact of initialization

22-layer ReLU net: good init converges faster

1. Impact of initialization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015.

1. Impact of initialization

*Figures show the beginning of training

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification". ICCV 2015.

Ultimately, coming up with good initializations is hard, worthy of deeper investigation

2 What about the step-size η , aka "learning rate"?

Often the most pesky parameter; tuning well can have big impact NN toolkits use so-called "step-size Schedulers"

Often the most pesky parameter; tuning well can have big impact NN toolkits use so-called "step-size Schedulers"

NN toolkits use so-called "step-size Schedulers"

A Second look at Exponential and Cosine Step Sizes: Simplicity, Convergence, and Performance

Xiaoyu Li, Zhenxun Zhuang, Francesco Orabona

Algorithm 1 LARS

Input: $x_1 \in \mathbb{R}^d$, learning rate $\{\eta_t\}_{t=1}^T$, parameter $0 < \beta_1 < 1$, scaling function $\phi, \epsilon > 0$ Set $m_0 = 0$ for t = 1 to T do Draw b samples S_t from \mathbb{P} Compute $g_t = \frac{1}{|\mathcal{S}_t|} \sum_{s_t \in \mathcal{S}_t} \nabla \ell(x_t, s_t)$ $m_{t} = \beta_{1}m_{t-1} + (1 - \beta_{1})(g_{t} + \lambda x_{t})$ $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(\|x_t^{(i)}\|)}{\|m_t^{(i)}\|} m_t^{(i)} \text{ for all } i \in [h]$ end for

Algorithm 1 LARS

Input: $x_1 \in \mathbb{R}^d$, learning rate $\{\eta_t\}_{t=1}^T$, parameter $0 < \beta_1 < 1$, scaling function $\phi, \epsilon > 0$ Set $m_0 = 0$ for t = 1 to T do Draw b samples S_t from \mathbb{P} Compute $g_t = \frac{1}{|\mathcal{S}_t|} \sum_{s_t \in \mathcal{S}_t} \nabla \ell(x_t, s_t)$ $m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1})(g_{t} + \lambda x_{t})$ $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(\|x_t^{(i)}\|)}{\|m_t^{(i)}\|} m_t^{(i)} \text{ for all } i \in [h]$ end for

Algorithm 1 LARS

Input: $x_1 \in \mathbb{R}^d$, learning rate $\{\eta_t\}_{t=1}^T$, parameter $0 < \beta_1 < 1$, scaling function $\phi, \epsilon > 0$ Set $m_0 = 0$ for t = 1 to T do Draw b samples S_t from \mathbb{P} Compute $g_t = \frac{1}{|S_t|} \sum_{s_t \in S_t} \nabla \ell(x_t, s_t)$ $m_{t} = \beta_{1} m_{t-1} + (1 - \beta_{1})(g_{t} + \lambda x_{t})$ $x_{t+1}^{(i)} = x_t^{(i)} - \eta_t \frac{\phi(\|x_t^{(i)}\|)}{\|m_t^{(i)}\|} m_t^{(i)} \text{ for all } i \in [h]$ end for

3. Computing gradients

Key computational task: compute a stochastic gradient

3. Computing gradients

Key computational task: compute a stochastic gradient

 w_{ij}

 $1 \le i \le m$ (hidden units) $1 \le j \le p$ (input features)

3. Computing gradients

Key computational task: compute a stochastic gradient

 w_{ij}

 $1 \le i \le m$ (hidden units) $1 \le j \le p$ (input features)

$$z_i = \sum_{j=1}^p w_{ij} x_j + b_i$$
$$f(z_i) = \max(0, z_i)$$
$$z = \sum_{i=1}^m w_i f(z_i) + b$$
$$f(z) = F(x; \theta) = z$$

 $\ell(y,z) = \max(0,1-yz)$

input to ith hidden unit output of ith hidden unit input to output unit

network output

Aim: compute $\partial \ell / \partial \theta$

Computing gradients: backpropagation

$z_i = \sum_{j=1}^p w_{ij} x_j + b_i$
$f(z_i) = \max(0, z_i)$
$z = \sum_{i=1}^{m} w_i f(z_i) + b$
$f(z) = F(x; \theta) = z$

input to ith hidden unit

output of ith hidden unit

input to output unit

network output

 $\ell(y,z) = \max(0,1-yz)$

Computing gradients: backpropagation

$z_i = \sum_{j=1}^p w_{ij} x_j + b_i$
$f(z_i) = \max(0, z_i)$
$z = \sum_{i=1}^{m} w_i f(z_i) + b$
$f(z) = F(x; \theta) = z$

input to ith hidden unit output of ith hidden unit

input to output unit

network output

 $\ell(y, z) = \max(0, 1 - yz)$

Observe that a change to w_{ij} changes z_i , which changes $f(z_i)$, which

```
eventually changes z and thus the loss \ell.
```

Computing gradients: backpropagation

$z_i = \sum_{j=1}^p w_{ij} x_j + b_i$
$f(z_i) = \max(0, z_i)$
$z = \sum_{i=1}^{m} w_i f(z_i) + b$
$f(z) = F(x; \theta) = z$

input to ith hidden unit output of ith hidden unit

input to output unit

network output

 $\ell(y,z) = \max(0,1-yz)$

Observe that a change to w_{ij} changes z_i , which changes $f(z_i)$, which eventually changes z and thus the loss ℓ .

Chain-rule of calculus

$$\frac{\partial \ell(y,z)}{\partial w_{ij}} = \left[\frac{\partial z_i}{\partial w_{ij}}\right] \left[\frac{\partial f(z_i)}{\partial z_i}\right] \left[\frac{\partial z}{\partial f(z_i)}\right] \frac{\partial \ell}{\partial z}$$
$$= [x_j] [z_i > 0] [w_i] \left[\begin{array}{c} -y, & \text{if } \ell(y,z) > 0\\ 0, & \text{otherwise.} \end{array}\right]$$

Challenge: How to apply the chain rule in a deep network?

Challenge: How to apply the chain rule in a deep network?

- * A change to a weight w_{ij} at the first hidden layer will impact all subsequent layers.
- * To apply the chain-rule, must aggregate contribution from each unit to final output
- * We must **cover all paths** by which information can flow from first layer to last!
- * This is where backpropagation enters the game

Challenge: How to apply the chain rule in a deep network?

- * A change to a weight w_{ij} at the first hidden layer will impact all subsequent layers.
- * To apply the chain-rule, must aggregate contribution from each unit to final output
- * We must **cover all paths** by which information can flow from first layer to last!
- This is where backpropagation enters the game

► A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Challenge: How to apply the chain rule in a deep network?

- * A change to a weight w_{ij} at the first hidden layer will impact all subsequent layers.
- * To apply the chain-rule, must aggregate contribution from each unit to final output
- * We must **cover all paths** by which information can flow from first layer to last!
- * This is where backpropagation enters the game

► A simple, brilliant idea dating back to 1960s, and early 70s. Rediscovered multiple time; popularized greatly after 1986 paper of Rumelhart, Hinton, Williams

Key insight: Trade space for time (dynamic programming).

Thus, keep track of how a change to the input of one layer impacts its output, and **use extra storage to save this** (*change=derivative*).

Automatic differentiation

Forward mode AD Backward mode AD (Backprop a special case) Automatic Differentiation in Machine Learning: a Survey

Atılım Güneş Baydin Department of Engineering Science University of Oxford Oxford OX1 3PJ, United Kingdom	GUNES@ROBOTS.OX.AC.UK
Barak A. Pearlmutter Department of Computer Science National University of Ireland Maynooth Maynooth, Co. Kildare, Ireland	BARAK@PEARLMUTTER.NET
Alexey Andreyevich Radul Department of Brain and Cognitive Sciences Massachusetts Institute of Technology Cambridge, MA 02139, United States	AXCH@MIT.EDU
Jeffrey Mark Siskind	QOBI@PURDUE.EDU

Optimal Jacobian Accumulation: NP-Complete

All NN toolkits use autodiff libraries

AD: Generate algorithm for efficient evaluation of derivatives

Numerous tutorials and notes online; well-developed area in PL and numerics

$$\delta^{l} = \frac{\partial \ell}{\partial z^{l}} = \text{Diag}[f'(z^{l})]W^{l+1}\delta^{l+1}.$$

$$\delta^{l} = \text{Diag}[f'(z^{l})]W^{l+1}\text{Diag}[f'(z^{l+1})]W^{l+2}\cdots W^{L}\delta^{L}$$

Observations

$$\delta^{l} = \frac{\partial \ell}{\partial z^{l}} = \text{Diag}[f'(z^{l})]W^{l+1}\delta^{l+1}.$$

$$\delta^{l} = \text{Diag}[f'(z^{l})]W^{l+1}\text{Diag}[f'(z^{l+1})]W^{l+2}\cdots W^{L}\delta^{L}$$

Observations

Multiplication of a chain of matrices in backprop

$$\delta^{l} = \frac{\partial \ell}{\partial z^{l}} = \text{Diag}[f'(z^{l})]W^{l+1}\delta^{l+1}.$$

$$\delta^{l} = \text{Diag}[f'(z^{l})]W^{l+1}\text{Diag}[f'(z^{l+1})]W^{l+2}\cdots W^{L}\delta^{L}$$

Observations

- Multiplication of a chain of matrices in backprop
- If several of these matrices are "small" (i.e., norms < 1), when we multiply them, the gradient will decrease exponentially fast and tend to *vanish* (hurting learning in lower layers much more)

$$\delta^{l} = \frac{\partial \ell}{\partial z^{l}} = \text{Diag}[f'(z^{l})]W^{l+1}\delta^{l+1}.$$

$$\delta^{l} = \text{Diag}[f'(z^{l})]W^{l+1}\text{Diag}[f'(z^{l+1})]W^{l+2}\cdots W^{L}\delta^{L}$$

Observations

Multiplication of a chain of matrices in backprop

 \cap

- If several of these matrices are "small" (i.e., norms < 1), when we multiply them, the gradient will decrease exponentially fast and tend to *vanish* (hurting learning in lower layers much more)
- Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients are unstable.

$$\delta^{l} = \frac{\partial \ell}{\partial z^{l}} = \text{Diag}[f'(z^{l})]W^{l+1}\delta^{l+1}.$$

$$\delta^{l} = \text{Diag}[f'(z^{l})]W^{l+1}\text{Diag}[f'(z^{l+1})]W^{l+2}\cdots W^{L}\delta^{L}$$

Observations

Multiplication of a chain of matrices in backprop

 \cap

- If several of these matrices are "small" (i.e., norms < 1), when we multiply them, the gradient will decrease exponentially fast and tend to *vanish* (hurting learning in lower layers much more)
- Conversely, if several matrices have large norm, the gradient will tend to explode. In both cases, the gradients are unstable.
- Coping with unstable gradients poses several challenges, and must be dealt with to achieve good results.

Regularization (numerous ways, implicit and explicit)

- Regularization (numerous ways, implicit and explicit)
- ReLU activations

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)
- Gradient clipping, normalized gradients

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)
- Gradient clipping, normalized gradients
- Numerous other ideas (architecture specific)

- Regularization (numerous ways, implicit and explicit)
- ReLU activations
- Memory (in RNNS)
- Weight normalization and batch normalization (somewhat)
- Gradient clipping, normalized gradients
- Numerous other ideas (architecture specific)
- Residual Networks (Resnets)

Regularization

$+\lambda \|\theta\|^2$

definitely use it; but many other ways too!

Regularization

$+ \lambda \|\theta\|^2$

definitely use it; but many other ways too!

NN folks call this: "*weight decay*," though to be pedantic, some reserve the term "weight decay" for the part subtracted from weights θ when updating them (e.g., ADAMW optimizer)

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- ▶ To hinder fitting to noise we must avoid overdoing co-adaptation

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- ▶ To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

Randomly turn off units, say with probability 1/2, when training!

figure from the [dropout] paper

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

- Randomly turn off units, say with probability 1/2, when training!
 - ▶ For each data point, we **randomly** set the output of each hidden unit to zero.

figure from the [dropout] paper

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

25

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

- Randomly turn off units, say with probability 1/2, when training!
 - ▶ For each data point, we **randomly** set the output of each hidden unit to zero.
 - > The neurons turned off are randomly chosen anew for each training data point

figure from the [dropout] paper

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

- Randomly turn off units, say with probability 1/2, when training!
 - ▶ For each data point, we **randomly** set the output of each hidden unit to zero.
 - > The neurons turned off are randomly chosen anew for each training data point
 - Accounted for during backprop (how?).

figure from the [dropout] paper

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Motivation

- When fitting to the nitty-gritty of the input, including noise hidden units must rely on each other to co-adapt and have complementary coverage of the data space.
- To hinder fitting to noise we must avoid overdoing co-adaptation

Dropout (additional stochasticity in the loss function)

- Randomly turn off units, say with probability 1/2, when training!
 - ▶ For each data point, we **randomly** set the output of each hidden unit to zero.
 - > The neurons turned off are randomly chosen anew for each training data point
 - Accounted for during backprop (how?).
 - For units turned off for that round, input weights and activations not updated; unit effectively dropped out for that particular training sample. This additional stochasticity helps in regularization. Explore: other ways of adding stochasticity to NN training

figure from the [dropout] paper

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly

$$x = (x^1, \dots, x^p)$$
 $\hat{x}^k = rac{x^k - \mathbb{E}[x^k]}{\sqrt{\operatorname{Var}[x^k]}}$
(features at a layer)

Observation: Known that training converges faster if inputs "whitened", i.e., linearly transformed to have mean zero, unit variance, and decorrelated.

Idea 0: Activations of one layer, inputs to another. If we do similar whitening of the inputs of each layer might help towards improving training.

Full whitening involves inverting large matrices, a no-go

Idea 1: Normalize features individually, not jointly

$$x = (x^1, \dots, x^p)$$
 $\hat{x}^k = rac{x^k - \mathbb{E}[x^k]}{\sqrt{\operatorname{Var}[x^k]}}$ (features at a layer)

Expectation and Variance computed over training data set (LeCun98— this speeds up training)

Idea 1: Normalize features individually, not jointly

$$x = (x^1, \dots, x^p) \qquad \hat{x}^k = \frac{x^k - \mathbb{E}[x^k]}{\sqrt{\mathrm{Var}[x^k]}}$$
 (features at a layer)

Idea 1: Normalize features individually, not jointly

$$x = (x^1, \dots, x^p)$$

(features at a layer)

\hat{x}^k	$^{k} =$	$x^k - \mathbb{E}[x^k]$
J		$\sqrt{\operatorname{Var}[x^k]}$

Idea 1: Normalize features individually, not jointly

$$x = (x^1, \dots, x^p)$$

(features at a layer)

$$\hat{x}^k = \frac{x^k - \mathbb{E}[x^k]}{\sqrt{\operatorname{Var}[x^k]}}$$

Idea 1: mini-batch normalization

Idea 1: Normalize features individually, not jointly

$$x = (x^1, \dots, x^p)$$

(features at a layer)

$$\hat{x}^k = \frac{x^k - \mathbb{E}[x^k]}{\sqrt{\operatorname{Var}[x^k]}}$$

Expectation and Variance computed over training data set (LeCun98— this speeds up training)

Idea 1: mini-batch normalization

BN transform applied to activation *x* over a mini-batch

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

figure: [loffe, Szegedy, 2015]

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

figure: [loffe, Szegedy, 2015]

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{P}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu)

Idea 2: Restore representation power" / Undo damage by learning γ and β

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\hat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{P}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \hat{x}_i + \beta \equiv BN_{\gamma,\beta}(x_i)$ // scale and shift

figure: [loffe, Szegedy, 2015]

Suvrit Sra (suvrit@mit.edu)

Intuition: Allow the transformation to represent the identity (this idea recurs)

figure: [loffe, Szegedy, 2015]

28

Intuition: Allow the transformation to represent the identity (this idea recurs)

Exercise: Derive backprop rules to figure out how to update scale γ and shift β

figure: [loffe, Szegedy, 2015]

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

(several other speedups enabled, and used for this plot)

figure: [loffe, Szegedy, 2015]

- ✓ BN layer can be added to many networks (e.g., CNNs, Resnets, etc.)
 - Current Challenge: BN for RNNs; also, is BN truly necessary?
- BN enables higher learning rates: backprop through a BN layer is unaffected by the scale of its parameters, BN(Wx)=BN((aW)x)
- BN has a regularizing effect (Dropout can even be dropped out)
- Challenge: Formally understand and explain BN

Figure 2: Single crop validation accuracy of Inception and its batch-normalized variants, vs. the number of training steps.

(several other speedups enabled, and used for this plot)

figure: [loffe, Szegedy, 2015]

Residual Networks (Resnets)

Residual Networks (Resnets)

$$x \mapsto h_L \circ h_{L-1} \circ \dots \circ h_1(x)$$
$$h_i(z) := z + \sigma(W_i z + b_i)$$
$$\operatorname{Id} + \sigma(.)$$

Note: Without the Identity map (Id), we are back to the usual model

30

Why resnets?

Why resnets?

Making network deeper does not necessarily work better Limits on what initialization and batch normalization give us

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Explore: Try residual wrt other distinguished (i.e., not Id) mappings

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

CIFAR-10

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(5/04/21 Lecture 19)

- ► Bartlett et al, 2018. Optimization properties of deep residual networks.
- ► Hardt, Ma 2017. Global optimality of deep linear resnets $y=(I+W_L)(I+W_{L-1})...(I+W_l)x$

- Bartlett et al, 2018. Optimization properties of deep residual networks.
- ► Hardt, Ma 2017. Global optimality of deep linear resnets $y=(I+W_L)(I+W_{L-1})...(I+W_l)x$
- Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).

Bartlett et al, 2018. Optimization properties of deep residual networks.

► Hardt, Ma 2017. Global optimality of deep linear resnets $y=(I+W_L)(I+W_{L-1})...(I+W_l)x$

Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).

Shamir, 2018. Considers $x \mapsto w^T(x + VF_{\theta}(x))$ and shows that every local optimum of this Resnet (with final purely linear layer) is "better than" a simple linear model. Presents some conditions under which one can prove that adding the *Id* map does not hurt performance.

Bartlett et al, 2018. Optimization properties of deep residual networks.

► Hardt, Ma 2017. Global optimality of deep linear resnets $y=(I+W_L)(I+W_{L-1})...(I+W_l)x$

Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).

Shamir, 2018. Considers $x \mapsto w^T(x + VF_{\theta}(x))$ and shows that every local optimum of this Resnet (with final purely linear layer) is "better than" a simple linear model. Presents some conditions under which one can prove that adding the *Id* map does not hurt performance.

► Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models (provides a "deep" version of Shamir's result above, result leaves open problems.

Bartlett et al, 2018. Optimization properties of deep residual networks.

► Hardt, Ma 2017. Global optimality of deep linear resnets $y=(I+W_L)(I+W_{L-1})...(I+W_l)x$

Lin, Jegelka, 2018. ResNet with one-neuron hidden layers is a Universal Approximator (deep Resnet with one neuron per hidden layer and ReLU activation).

Shamir, 2018. Considers $x \mapsto w^T(x + VF_{\theta}(x))$ and shows that every local optimum of this Resnet (with final purely linear layer) is "better than" a simple linear model. Presents some conditions under which one can prove that adding the *Id* map does not hurt performance.

► Yun, Sra, Jadbabaie, 2019. Deep ResNet can be provably better than linear models (provides a "deep" version of Shamir's result above, result leaves open problems.

Allen-Zhu, Li, 2019. "What can ResNet learn efficiently, Going beyond Kernels?"

