
Optimization for Machine Learning

Lecture 13: EM, CCCP, and friends

6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

06 Apr, 2021

Motivation
(example task)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 2

Nonnegative matrix factorization

We want a low-rank approximation A ≈ BC

SVD yields dense B and C
B and C contain negative entries, even if A ≥ 0

NMF imposes B ≥ 0, C ≥ 0

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 3

Nonnegative matrix factorization

We want a low-rank approximation A ≈ BC

SVD yields dense B and C
B and C contain negative entries, even if A ≥ 0

NMF imposes B ≥ 0, C ≥ 0

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 3

Nonnegative matrix factorization

We want a low-rank approximation A ≈ BC

SVD yields dense B and C
B and C contain negative entries, even if A ≥ 0

NMF imposes B ≥ 0, C ≥ 0

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 3

Algorithms

A ≈ BC s.t. B,C ≥ 0

Least-squares NMF

min 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

KL-Divergence NMF

min
∑

ij
aij log

(BC)ij

aij
− aij + (BC)ij s.t. B,C ≥ 0.

♣ NP-Hard (Vavasis 2007) – no surprise
♣ Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A

has a special “separable” structure, then actually globally
optimal NMF is approximately solvable. More recent
progress too

We’ll look at simple (local) methods

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 4

Algorithms

A ≈ BC s.t. B,C ≥ 0

Least-squares NMF

min 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

KL-Divergence NMF

min
∑

ij
aij log

(BC)ij

aij
− aij + (BC)ij s.t. B,C ≥ 0.

♣ NP-Hard (Vavasis 2007) – no surprise
♣ Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A

has a special “separable” structure, then actually globally
optimal NMF is approximately solvable. More recent
progress too

We’ll look at simple (local) methods

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 4

Algorithms

A ≈ BC s.t. B,C ≥ 0

Least-squares NMF

min 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

KL-Divergence NMF

min
∑

ij
aij log

(BC)ij

aij
− aij + (BC)ij s.t. B,C ≥ 0.

♣ NP-Hard (Vavasis 2007) – no surprise

♣ Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A
has a special “separable” structure, then actually globally
optimal NMF is approximately solvable. More recent
progress too

We’ll look at simple (local) methods

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 4

Algorithms

A ≈ BC s.t. B,C ≥ 0

Least-squares NMF

min 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

KL-Divergence NMF

min
∑

ij
aij log

(BC)ij

aij
− aij + (BC)ij s.t. B,C ≥ 0.

♣ NP-Hard (Vavasis 2007) – no surprise
♣ Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A

has a special “separable” structure, then actually globally
optimal NMF is approximately solvable. More recent
progress too

We’ll look at simple (local) methods

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 4

Algorithms

A ≈ BC s.t. B,C ≥ 0

Least-squares NMF

min 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

KL-Divergence NMF

min
∑

ij
aij log

(BC)ij

aij
− aij + (BC)ij s.t. B,C ≥ 0.

♣ NP-Hard (Vavasis 2007) – no surprise
♣ Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A

has a special “separable” structure, then actually globally
optimal NMF is approximately solvable. More recent
progress too

We’ll look at simple (local) methods

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 4

Background on NMF Algorithms

Hack: Compute TSVD; “zero-out” negative entries
Alternating minimization (AM)
Majorize-Minimize based (MM)
Global optimization (not covered)
“Online” algorithms (not covered)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 5

AltMin / AltDesc

min F(B,C)

Alternating Descent
1 Initialize B0, k← 0

2 Compute Ck+1 s.t. F(A,BkCk+1) ≤ F(A,BkCk)

3 Compute Bk+1 s.t. F(A,Bk+1Ck+1) ≤ F(A,BkCk+1)

4 k← k + 1, and repeat until stopping criteria met.

(Observe:) F(Bk+1,Ck+1) ≤ F(Bk,Ck+1) ≤ F(Bk,Ck)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 6

AltMin / AltDesc

min F(B,C)

Alternating Descent
1 Initialize B0, k← 0
2 Compute Ck+1 s.t. F(A,BkCk+1) ≤ F(A,BkCk)

3 Compute Bk+1 s.t. F(A,Bk+1Ck+1) ≤ F(A,BkCk+1)

4 k← k + 1, and repeat until stopping criteria met.

(Observe:) F(Bk+1,Ck+1) ≤ F(Bk,Ck+1) ≤ F(Bk,Ck)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 6

AltMin / AltDesc

min F(B,C)

Alternating Descent
1 Initialize B0, k← 0
2 Compute Ck+1 s.t. F(A,BkCk+1) ≤ F(A,BkCk)

3 Compute Bk+1 s.t. F(A,Bk+1Ck+1) ≤ F(A,BkCk+1)

4 k← k + 1, and repeat until stopping criteria met.

(Observe:) F(Bk+1,Ck+1) ≤ F(Bk,Ck+1) ≤ F(Bk,Ck)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 6

AltMin / AltDesc

min F(B,C)

Alternating Descent
1 Initialize B0, k← 0
2 Compute Ck+1 s.t. F(A,BkCk+1) ≤ F(A,BkCk)

3 Compute Bk+1 s.t. F(A,Bk+1Ck+1) ≤ F(A,BkCk+1)

4 k← k + 1, and repeat until stopping criteria met.

(Observe:) F(Bk+1,Ck+1) ≤ F(Bk,Ck+1) ≤ F(Bk,Ck)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 6

AltMin for NMF: naive version

Alternating Least Squares (ALS)

C = argmin
C

‖A− BkC‖2
F;

Ck+1 ← max(0,C)

B = argmin
B

‖A− BCk+1‖2
F; Bk+1 ← max(0,B)

‖A− Bk+1Ck+1‖2
F ≤ ‖A− BkCk+1‖2

F ≤ ‖A− BkCk‖2
F

descent can fail to hold!

x∗

xuc

(xuc)
+

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 7

AltMin for NMF: naive version

Alternating Least Squares (ALS)

C = argmin
C

‖A− BkC‖2
F; Ck+1 ← max(0,C)

B = argmin
B

‖A− BCk+1‖2
F; Bk+1 ← max(0,B)

‖A− Bk+1Ck+1‖2
F ≤ ‖A− BkCk+1‖2

F ≤ ‖A− BkCk‖2
F

descent can fail to hold!

x∗

xuc

(xuc)
+

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 7

AltMin for NMF: naive version

Alternating Least Squares (ALS)

C = argmin
C

‖A− BkC‖2
F; Ck+1 ← max(0,C)

B = argmin
B

‖A− BCk+1‖2
F; Bk+1 ← max(0,B)

‖A− Bk+1Ck+1‖2
F ≤ ‖A− BkCk+1‖2

F ≤ ‖A− BkCk‖2
F

descent can fail to hold!

x∗

xuc

(xuc)
+

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 7

AltMin for NMF: naive version

Alternating Least Squares (ALS)

C = argmin
C

‖A− BkC‖2
F; Ck+1 ← max(0,C)

B = argmin
B

‖A− BCk+1‖2
F; Bk+1 ← max(0,B)

ALS is fast, simple, often effective, but ...

‖A− Bk+1Ck+1‖2
F ≤ ‖A− BkCk+1‖2

F ≤ ‖A− BkCk‖2
F

descent can fail to hold!

x∗

xuc

(xuc)
+

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 7

AltMin for NMF: naive version

Alternating Least Squares (ALS)

C = argmin
C

‖A− BkC‖2
F; Ck+1 ← max(0,C)

B = argmin
B

‖A− BCk+1‖2
F; Bk+1 ← max(0,B)

ALS is fast, simple, often effective, but ...

‖A− Bk+1Ck+1‖2
F ≤ ‖A− BkCk+1‖2

F ≤ ‖A− BkCk‖2
F

descent can fail to hold!

x∗

xuc

(xuc)
+

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 7

AltMin for NMF: naive version

Alternating Least Squares (ALS)

C = argmin
C

‖A− BkC‖2
F; Ck+1 ← max(0,C)

B = argmin
B

‖A− BCk+1‖2
F; Bk+1 ← max(0,B)

ALS is fast, simple, often effective, but ...

‖A− Bk+1Ck+1‖2
F ≤ ‖A− BkCk+1‖2

F ≤ ‖A− BkCk‖2
F

descent can fail to hold!

x∗

xuc

(xuc)
+

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 7

NMF AltMin: correct way

Use alternating nonnegative least-squares

Ck+1 = argmin
C

‖A− BkC‖2
F s.t. C ≥ 0

Bk+1 = argmin
B

‖A− BCk+1‖2
F s.t. B ≥ 0

Advantages: Guaranteed descent. Theory of two-block BCD
guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS

Explore. Faster methods; e.g., an SGD-style method for NMF?

Ref. Mairal, Bach, Ponce, Sapiro. Online Learning for Matrix Factorization and
Sparse Coding. JMLR 11(2):19–60, 2010.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 8

NMF AltMin: correct way

Use alternating nonnegative least-squares

Ck+1 = argmin
C

‖A− BkC‖2
F s.t. C ≥ 0

Bk+1 = argmin
B

‖A− BCk+1‖2
F s.t. B ≥ 0

Advantages: Guaranteed descent. Theory of two-block BCD
guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS

Explore. Faster methods; e.g., an SGD-style method for NMF?

Ref. Mairal, Bach, Ponce, Sapiro. Online Learning for Matrix Factorization and
Sparse Coding. JMLR 11(2):19–60, 2010.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 8

NMF AltMin: correct way

Use alternating nonnegative least-squares

Ck+1 = argmin
C

‖A− BkC‖2
F s.t. C ≥ 0

Bk+1 = argmin
B

‖A− BCk+1‖2
F s.t. B ≥ 0

Advantages: Guaranteed descent. Theory of two-block BCD
guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS

Explore. Faster methods; e.g., an SGD-style method for NMF?

Ref. Mairal, Bach, Ponce, Sapiro. Online Learning for Matrix Factorization and
Sparse Coding. JMLR 11(2):19–60, 2010.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 8

NMF AltMin: correct way

Use alternating nonnegative least-squares

Ck+1 = argmin
C

‖A− BkC‖2
F s.t. C ≥ 0

Bk+1 = argmin
B

‖A− BCk+1‖2
F s.t. B ≥ 0

Advantages: Guaranteed descent. Theory of two-block BCD
guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS

Explore. Faster methods; e.g., an SGD-style method for NMF?

Ref. Mairal, Bach, Ponce, Sapiro. Online Learning for Matrix Factorization and
Sparse Coding. JMLR 11(2):19–60, 2010.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 8

Just Descend
(EM, CCCP, MM methods!)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 9

Revisiting NMF

Consider F(B,C) = 1
2‖A− BC‖2

F: convex separately in B and C

We use F(C) to denote function restricted to C.
Aim: Find Ck+1 such that F(Bk,Ck+1) ≤ F(Bk,Ck)

Since F(C) separable (over cols of C), we just illustrate

min
c≥0

f (c) = 1
2‖a− Bc‖2

2

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over f !

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 10

Revisiting NMF

Consider F(B,C) = 1
2‖A− BC‖2

F: convex separately in B and C

We use F(C) to denote function restricted to C.

Aim: Find Ck+1 such that F(Bk,Ck+1) ≤ F(Bk,Ck)

Since F(C) separable (over cols of C), we just illustrate

min
c≥0

f (c) = 1
2‖a− Bc‖2

2

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over f !

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 10

Revisiting NMF

Consider F(B,C) = 1
2‖A− BC‖2

F: convex separately in B and C

We use F(C) to denote function restricted to C.
Aim: Find Ck+1 such that F(Bk,Ck+1) ≤ F(Bk,Ck)

Since F(C) separable (over cols of C), we just illustrate

min
c≥0

f (c) = 1
2‖a− Bc‖2

2

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over f !

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 10

Revisiting NMF

Consider F(B,C) = 1
2‖A− BC‖2

F: convex separately in B and C

We use F(C) to denote function restricted to C.
Aim: Find Ck+1 such that F(Bk,Ck+1) ≤ F(Bk,Ck)

Since F(C) separable (over cols of C), we just illustrate

min
c≥0

f (c) = 1
2‖a− Bc‖2

2

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over f !

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 10

Revisiting NMF

Consider F(B,C) = 1
2‖A− BC‖2

F: convex separately in B and C

We use F(C) to denote function restricted to C.
Aim: Find Ck+1 such that F(Bk,Ck+1) ≤ F(Bk,Ck)

Since F(C) separable (over cols of C), we just illustrate

min
c≥0

f (c) = 1
2‖a− Bc‖2

2

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over f !

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 10

The Majorize-Minimize (MM) idea

cct ct+1 ct+k

F (c)

G(ct; c̃)

G(ct+k; c̃)

(Majorize: get upper bound; Minorize: minimize this bound)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 11

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)

def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Descent technique

minc≥0 f (c) = 1
2‖a− Bc‖2

2

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc≥0 g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct, ct)

def
= f (ct).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 12

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c

+ 1
2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g for f (c) = ‖a− Bc‖2

We exploit that h(x) = 1
2 x2 is a convex function

h
(∑

i λixi
)
≤∑i λih(xi), where λi ≥ 0,

∑
i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aibT
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
bijcj
)2

= 1
2

∑
i
a2

i − 2aibT
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aibT
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

=: g(c, c̃), where λij are convex coeffts

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 13

Constructing g(c, c̃)

f (c) = 1
2‖a− Bc‖2

2

g(c, c̃) = 1
2‖a‖2

2 −
∑

i
aibT

i c + 1
2

∑
ij
λij
(
bijcj/λij

)2
.

Only remains to pick λij as functions of c̃

λij =
bijc̃j∑
k bikc̃k

=
bijc̃j

bT
i c̃

Exercise: Verify that g(c, c) = f (c);

Exercise: Let f (c) =
∑

i ai log(ai/(Bc)i) − ai + (Bc)i. Derive an
auxiliary function g(c, c̃) for this f (c).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 14

Constructing g(c, c̃)

f (c) = 1
2‖a− Bc‖2

2

g(c, c̃) = 1
2‖a‖2

2 −
∑

i
aibT

i c + 1
2

∑
ij
λij
(
bijcj/λij

)2
.

Only remains to pick λij as functions of c̃

λij =
bijc̃j∑
k bikc̃k

=
bijc̃j

bT
i c̃

Exercise: Verify that g(c, c) = f (c);

Exercise: Let f (c) =
∑

i ai log(ai/(Bc)i) − ai + (Bc)i. Derive an
auxiliary function g(c, c̃) for this f (c).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 14

Constructing g(c, c̃)

f (c) = 1
2‖a− Bc‖2

2

g(c, c̃) = 1
2‖a‖2

2 −
∑

i
aibT

i c + 1
2

∑
ij
λij
(
bijcj/λij

)2
.

Only remains to pick λij as functions of c̃

λij =
bijc̃j∑
k bikc̃k

=
bijc̃j

bT
i c̃

Exercise: Verify that g(c, c) = f (c);

Exercise: Let f (c) =
∑

i ai log(ai/(Bc)i) − ai + (Bc)i. Derive an
auxiliary function g(c, c̃) for this f (c).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 14

Reapting the benefits of g

Key step

g(c, c̃) = 1
2‖a‖2

2 −
∑

i
aibT

i c + 1
2

∑
ij
λij
(
bijcj/λij

)2

ct+1 = argmin
c≥0

g(c, ct)

Exercise: Solve ∂g(c, ct)/∂cp = 0 to obtain closed form

cp = ct
p

[BTa]p

[BTBct]p

This yields the famous “multiplicative update” algorithm of
Lee/Seung (1999) – the paper that popularized NMF.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 15

Reapting the benefits of g

Key step

g(c, c̃) = 1
2‖a‖2

2 −
∑

i
aibT

i c + 1
2

∑
ij
λij
(
bijcj/λij

)2

ct+1 = argmin
c≥0

g(c, ct)

Exercise: Solve ∂g(c, ct)/∂cp = 0 to obtain closed form

cp = ct
p

[BTa]p

[BTBct]p

This yields the famous “multiplicative update” algorithm of
Lee/Seung (1999) – the paper that popularized NMF.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 15

Reapting the benefits of g

Key step

g(c, c̃) = 1
2‖a‖2

2 −
∑

i
aibT

i c + 1
2

∑
ij
λij
(
bijcj/λij

)2

ct+1 = argmin
c≥0

g(c, ct)

Exercise: Solve ∂g(c, ct)/∂cp = 0 to obtain closed form

cp = ct
p

[BTa]p

[BTBct]p

This yields the famous “multiplicative update” algorithm of
Lee/Seung (1999) – the paper that popularized NMF.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 15

Broader view of what we just did

We exploited convexity of x2

Our technique one instance of more general
Majorization-Minimization (MM) idea
Gradient-descent also an MM algorithm (Why?)
Hint: Assume L-smooth function, and then argue

Exercise: View few other optim methods via MM lens

Explore: Various other ways of doing MM!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 16

Broader view of what we just did

We exploited convexity of x2

Our technique one instance of more general
Majorization-Minimization (MM) idea

Gradient-descent also an MM algorithm (Why?)
Hint: Assume L-smooth function, and then argue

Exercise: View few other optim methods via MM lens

Explore: Various other ways of doing MM!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 16

Broader view of what we just did

We exploited convexity of x2

Our technique one instance of more general
Majorization-Minimization (MM) idea
Gradient-descent also an MM algorithm (Why?)
Hint: Assume L-smooth function, and then argue

Exercise: View few other optim methods via MM lens

Explore: Various other ways of doing MM!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 16

Broader view of what we just did

We exploited convexity of x2

Our technique one instance of more general
Majorization-Minimization (MM) idea
Gradient-descent also an MM algorithm (Why?)
Hint: Assume L-smooth function, and then argue

Exercise: View few other optim methods via MM lens

Explore: Various other ways of doing MM!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 16

Some key MM methods

Expectation Maximization (EM) algorithm exploits
convexity of − log x
Convex-Concave Procedure (CCCP)
Variational Methods
Explore: More broadly, d.c. programming

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 17

Example: Variational Methods

Examples

− log x = min
λ
λx− log λ− 1

|w| = min
λ≥0

1
2

w2

λ
+ 1

2λ.

See also: Francis Bach’s blog, Posts Jul 1 & Aug 5, 2019.
Blei, Kucukelbir, McAuliffe. Variational Inference: A Review for Statisticians

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 18

https://francisbach.com/page/3/
https://arxiv.org/pdf/1601.00670.pdf

Example: Variational Methods

Examples

− log x = min
λ
λx− log λ− 1

|w| = min
λ≥0

1
2

w2

λ
+ 1

2λ.

See also: Francis Bach’s blog, Posts Jul 1 & Aug 5, 2019.
Blei, Kucukelbir, McAuliffe. Variational Inference: A Review for Statisticians

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 18

https://francisbach.com/page/3/
https://arxiv.org/pdf/1601.00670.pdf

Example: Variational Methods

Examples

− log x = min
λ
λx− log λ− 1

|w| = min
λ≥0

1
2

w2

λ
+ 1

2λ.

See also: Francis Bach’s blog, Posts Jul 1 & Aug 5, 2019.
Blei, Kucukelbir, McAuliffe. Variational Inference: A Review for Statisticians

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 18

https://francisbach.com/page/3/
https://arxiv.org/pdf/1601.00670.pdf

The EM algorithm

Assume p(x) =
∑K

j=1 πjp(x; θj) is a mixture density.

`(X ; Θ) :=
∑n

i=1
log
(∑K

j=1
πjp(xi; θj)

)
.

Use concavity of log t to compute lower-bound

`(X ; Θ) ≥
∑

ij
βij log

(
πjp(xi; θj)/βij

)
.

E-Step: Optimize over βij, to set them to posterior probabilities:

βij :=
πjp(xi; θj)∑
l πlp(xi; θl)

.

M-Step: optimize the bound over Θ, using above β values

Exercise: Derive a “stochastic” version of EM.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 19

The EM algorithm

Assume p(x) =
∑K

j=1 πjp(x; θj) is a mixture density.

`(X ; Θ) :=
∑n

i=1
log
(∑K

j=1
πjp(xi; θj)

)
.

Use concavity of log t to compute lower-bound

`(X ; Θ) ≥
∑

ij
βij log

(
πjp(xi; θj)/βij

)
.

E-Step: Optimize over βij, to set them to posterior probabilities:

βij :=
πjp(xi; θj)∑
l πlp(xi; θl)

.

M-Step: optimize the bound over Θ, using above β values

Exercise: Derive a “stochastic” version of EM.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 19

The EM algorithm

Assume p(x) =
∑K

j=1 πjp(x; θj) is a mixture density.

`(X ; Θ) :=
∑n

i=1
log
(∑K

j=1
πjp(xi; θj)

)
.

Use concavity of log t to compute lower-bound

`(X ; Θ) ≥
∑

ij
βij log

(
πjp(xi; θj)/βij

)
.

E-Step: Optimize over βij, to set them to posterior probabilities:

βij :=
πjp(xi; θj)∑
l πlp(xi; θl)

.

M-Step: optimize the bound over Θ, using above β values

Exercise: Derive a “stochastic” version of EM.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 19

The EM algorithm

Assume p(x) =
∑K

j=1 πjp(x; θj) is a mixture density.

`(X ; Θ) :=
∑n

i=1
log
(∑K

j=1
πjp(xi; θj)

)
.

Use concavity of log t to compute lower-bound

`(X ; Θ) ≥
∑

ij
βij log

(
πjp(xi; θj)/βij

)
.

E-Step: Optimize over βij, to set them to posterior probabilities:

βij :=
πjp(xi; θj)∑
l πlp(xi; θl)

.

M-Step: optimize the bound over Θ, using above β values

Exercise: Derive a “stochastic” version of EM.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 19

The EM algorithm

Assume p(x) =
∑K

j=1 πjp(x; θj) is a mixture density.

`(X ; Θ) :=
∑n

i=1
log
(∑K

j=1
πjp(xi; θj)

)
.

Use concavity of log t to compute lower-bound

`(X ; Θ) ≥
∑

ij
βij log

(
πjp(xi; θj)/βij

)
.

E-Step: Optimize over βij, to set them to posterior probabilities:

βij :=
πjp(xi; θj)∑
l πlp(xi; θl)

.

M-Step: optimize the bound over Θ, using above β values

Exercise: Derive a “stochastic” version of EM.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 19

The EM algorithm

Assume p(x) =
∑K

j=1 πjp(x; θj) is a mixture density.

`(X ; Θ) :=
∑n

i=1
log
(∑K

j=1
πjp(xi; θj)

)
.

Use concavity of log t to compute lower-bound

`(X ; Θ) ≥
∑

ij
βij log

(
πjp(xi; θj)/βij

)
.

E-Step: Optimize over βij, to set them to posterior probabilities:

βij :=
πjp(xi; θj)∑
l πlp(xi; θl)

.

M-Step: optimize the bound over Θ, using above β values

Exercise: Derive a “stochastic” version of EM.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 19

Convex-Concave Procedure

minx F(x) := f (x)− h(x), where f , h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming.
They have many nice properties, including: set of dc functions is a vector
space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method
h(x) ≥ h(y) + 〈∇h(y), x− y〉. Thus,

F(x) ≤ f (x)− h(y)− 〈∇h(y), x− y〉 =: G(x, y)

Observe: F(x) = G(x, x) and F(x) ≤ G(x, y). CCCP algo is
xk+1 = argmin

x
G(x, xk)

∇f (xk+1) = ∇h(xk)

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 20

Convex-Concave Procedure

minx F(x) := f (x)− h(x), where f , h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming.
They have many nice properties, including: set of dc functions is a vector
space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method
h(x) ≥ h(y) + 〈∇h(y), x− y〉. Thus,

F(x) ≤ f (x)− h(y)− 〈∇h(y), x− y〉 =: G(x, y)

Observe: F(x) = G(x, x) and F(x) ≤ G(x, y). CCCP algo is
xk+1 = argmin

x
G(x, xk)

∇f (xk+1) = ∇h(xk)

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 20

Convex-Concave Procedure

minx F(x) := f (x)− h(x), where f , h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming.
They have many nice properties, including: set of dc functions is a vector
space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method
h(x) ≥ h(y) + 〈∇h(y), x− y〉. Thus,

F(x) ≤ f (x)− h(y)− 〈∇h(y), x− y〉 =: G(x, y)

Observe: F(x) = G(x, x) and F(x) ≤ G(x, y). CCCP algo is
xk+1 = argmin

x
G(x, xk)

∇f (xk+1) = ∇h(xk)

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 20

Convex-Concave Procedure

minx F(x) := f (x)− h(x), where f , h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming.
They have many nice properties, including: set of dc functions is a vector
space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method
h(x) ≥ h(y) + 〈∇h(y), x− y〉. Thus,

F(x) ≤ f (x)− h(y)− 〈∇h(y), x− y〉 =: G(x, y)

Observe: F(x) = G(x, x) and F(x) ≤ G(x, y). CCCP algo is
xk+1 = argmin

x
G(x, xk)

∇f (xk+1) = ∇h(xk)

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 20

Convex-Concave Procedure

minx F(x) := f (x)− h(x), where f , h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming.
They have many nice properties, including: set of dc functions is a vector
space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method
h(x) ≥ h(y) + 〈∇h(y), x− y〉. Thus,

F(x) ≤ f (x)− h(y)− 〈∇h(y), x− y〉 =: G(x, y)

Observe: F(x) = G(x, x) and F(x) ≤ G(x, y). CCCP algo is
xk+1 = argmin

x
G(x, xk)

∇f (xk+1) = ∇h(xk)

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 20

Convex-Concave Procedure

minx F(x) := f (x)− h(x), where f , h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming.
They have many nice properties, including: set of dc functions is a vector
space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method
h(x) ≥ h(y) + 〈∇h(y), x− y〉. Thus,

F(x) ≤ f (x)− h(y)− 〈∇h(y), x− y〉 =: G(x, y)

Observe: F(x) = G(x, x) and F(x) ≤ G(x, y). CCCP algo is
xk+1 = argmin

x
G(x, xk)

∇f (xk+1) = ∇h(xk)

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 20

Example 1 – Sinkhorn’s method

Theorem. (Sinkhorn, 1964). Let A be a strictly positive ma-
trix. There exists a unique doubly stochasic matrix M = EAD,
where E and D are strictly positive diagonal matrices. More-
over, the iterative procedure of alternatingly normalizing the
rows and columns of A to sum to 1 converges to M.

Theorem. (Yuille, Rangarajan, 2002). Sinkhorn’s algo-
rithms is CCCP with cost function: φ(r) = −∑i log ri +∑

i log
(∑

j rjAij
)

where {ri} are the diagonal elements of E and

the diagonal elements of D are given by
(∑

j rjAij

)−1
.

Exercise: Verify the above claim.

Explore CCCP applied to the so-called operator scaling problem

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 21

Example 1 – Sinkhorn’s method

Theorem. (Sinkhorn, 1964). Let A be a strictly positive ma-
trix. There exists a unique doubly stochasic matrix M = EAD,
where E and D are strictly positive diagonal matrices. More-
over, the iterative procedure of alternatingly normalizing the
rows and columns of A to sum to 1 converges to M.

Theorem. (Yuille, Rangarajan, 2002). Sinkhorn’s algo-
rithms is CCCP with cost function: φ(r) = −∑i log ri +∑

i log
(∑

j rjAij
)

where {ri} are the diagonal elements of E and

the diagonal elements of D are given by
(∑

j rjAij

)−1
.

Exercise: Verify the above claim.

Explore CCCP applied to the so-called operator scaling problem

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 21

Example 2 – Learning DPP Kernels

max
L�0

φ(L) :=
1
n

∑n

i=1
log det(U∗

i LUi)− log det(I + L)

MLE for learning DPP kernel L; Ui: compression matrices

∇φ(L) = 0 :
∑n

i=1
Ui(U∗

i LUi)
−1U∗

i − n(I + L)−1 = 0

Now a simple but crucial trick: write

∆ := 1
n

∑
i
Ui(U∗

i LUi)
−1U∗

i − (I + L)−1

∆ + L−1 = L−1 (∇φ(L) = 0).

Fixed-point iteration of Mariet-Sra (2015)

Lk+1 ← Lk + Lk∆kLk

Remarkably, this generates monotonic ↑ sequence {φ(Lk)}k≥1.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 22

Example 2 – Learning DPP Kernels

max
L�0

φ(L) :=
1
n

∑n

i=1
log det(U∗

i LUi)− log det(I + L)

MLE for learning DPP kernel L; Ui: compression matrices

∇φ(L) = 0 :
∑n

i=1
Ui(U∗

i LUi)
−1U∗

i − n(I + L)−1 = 0

Now a simple but crucial trick: write

∆ := 1
n

∑
i
Ui(U∗

i LUi)
−1U∗

i − (I + L)−1

∆ + L−1 = L−1 (∇φ(L) = 0).

Fixed-point iteration of Mariet-Sra (2015)

Lk+1 ← Lk + Lk∆kLk

Remarkably, this generates monotonic ↑ sequence {φ(Lk)}k≥1.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 22

Example 2 – Learning DPP Kernels

max
L�0

φ(L) :=
1
n

∑n

i=1
log det(U∗

i LUi)− log det(I + L)

MLE for learning DPP kernel L; Ui: compression matrices

∇φ(L) = 0 :
∑n

i=1
Ui(U∗

i LUi)
−1U∗

i − n(I + L)−1 = 0

Now a simple but crucial trick: write

∆ := 1
n

∑
i
Ui(U∗

i LUi)
−1U∗

i − (I + L)−1

∆ + L−1 = L−1 (∇φ(L) = 0).

Fixed-point iteration of Mariet-Sra (2015)

Lk+1 ← Lk + Lk∆kLk

Remarkably, this generates monotonic ↑ sequence {φ(Lk)}k≥1.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 22

Example 2 – Learning DPP Kernels

max
L�0

φ(L) :=
1
n

∑n

i=1
log det(U∗

i LUi)− log det(I + L)

MLE for learning DPP kernel L; Ui: compression matrices

∇φ(L) = 0 :
∑n

i=1
Ui(U∗

i LUi)
−1U∗

i − n(I + L)−1 = 0

Now a simple but crucial trick: write

∆ := 1
n

∑
i
Ui(U∗

i LUi)
−1U∗

i − (I + L)−1

∆ + L−1 = L−1 (∇φ(L) = 0).

Fixed-point iteration of Mariet-Sra (2015)

Lk+1 ← Lk + Lk∆kLk

Remarkably, this generates monotonic ↑ sequence {φ(Lk)}k≥1.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 22

Example 2 – Learning DPP Kernels

max
L�0

φ(L) :=
1
n

∑n

i=1
log det(U∗

i LUi)− log det(I + L)

MLE for learning DPP kernel L; Ui: compression matrices

∇φ(L) = 0 :
∑n

i=1
Ui(U∗

i LUi)
−1U∗

i − n(I + L)−1 = 0

Now a simple but crucial trick: write

∆ := 1
n

∑
i
Ui(U∗

i LUi)
−1U∗

i − (I + L)−1

∆ + L−1 = L−1 (∇φ(L) = 0).

Fixed-point iteration of Mariet-Sra (2015)

Lk+1 ← Lk + Lk∆kLk

Remarkably, this generates monotonic ↑ sequence {φ(Lk)}k≥1.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 22

Example 2 – Learning DPP Kernels

max
L�0

φ(L) :=
1
n

∑n

i=1
log det(U∗

i LUi)− log det(I + L)

MLE for learning DPP kernel L; Ui: compression matrices

∇φ(L) = 0 :
∑n

i=1
Ui(U∗

i LUi)
−1U∗

i − n(I + L)−1 = 0

Now a simple but crucial trick: write

∆ := 1
n

∑
i
Ui(U∗

i LUi)
−1U∗

i − (I + L)−1

∆ + L−1 = L−1 (∇φ(L) = 0).

Fixed-point iteration of Mariet-Sra (2015)

Lk+1 ← Lk + Lk∆kLk

Remarkably, this generates monotonic ↑ sequence {φ(Lk)}k≥1.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 22

Demystifying the iteration

Key idea: Write ψ(S) = φ(L−1). Then

ψ(S) = 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S−1)

= 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S) + log det(S)

= f (S) + h(S),

where h is concave and f is convex. Now invoke CCCP
(remember we are maximizing). �

Conjecture. For every “step-size” α ∈ (0, γ), the iteration
Lk+1 = Lk + αLk∆kLk generates monotonic φ(Lk) values.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 23

Demystifying the iteration

Key idea: Write ψ(S) = φ(L−1). Then

ψ(S) = 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S−1)

= 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S) + log det(S)

= f (S) + h(S),

where h is concave and f is convex. Now invoke CCCP
(remember we are maximizing). �

Conjecture. For every “step-size” α ∈ (0, γ), the iteration
Lk+1 = Lk + αLk∆kLk generates monotonic φ(Lk) values.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 23

Demystifying the iteration

Key idea: Write ψ(S) = φ(L−1). Then

ψ(S) = 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S−1)

= 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S) + log det(S)

= f (S) + h(S),

where h is concave and f is convex. Now invoke CCCP
(remember we are maximizing). �

Conjecture. For every “step-size” α ∈ (0, γ), the iteration
Lk+1 = Lk + αLk∆kLk generates monotonic φ(Lk) values.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 23

Demystifying the iteration

Key idea: Write ψ(S) = φ(L−1). Then

ψ(S) = 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S−1)

= 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S) + log det(S)

= f (S) + h(S),

where h is concave and f is convex.

Now invoke CCCP
(remember we are maximizing). �

Conjecture. For every “step-size” α ∈ (0, γ), the iteration
Lk+1 = Lk + αLk∆kLk generates monotonic φ(Lk) values.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 23

Demystifying the iteration

Key idea: Write ψ(S) = φ(L−1). Then

ψ(S) = 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S−1)

= 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S) + log det(S)

= f (S) + h(S),

where h is concave and f is convex. Now invoke CCCP
(remember we are maximizing). �

Conjecture. For every “step-size” α ∈ (0, γ), the iteration
Lk+1 = Lk + αLk∆kLk generates monotonic φ(Lk) values.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 23

Demystifying the iteration

Key idea: Write ψ(S) = φ(L−1). Then

ψ(S) = 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S−1)

= 1
n

∑
i

log det(U∗
i S−1Ui)− log det(I + S) + log det(S)

= f (S) + h(S),

where h is concave and f is convex. Now invoke CCCP
(remember we are maximizing). �

Conjecture. For every “step-size” α ∈ (0, γ), the iteration
Lk+1 = Lk + αLk∆kLk generates monotonic φ(Lk) values.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 23

DC Programming
f (x)− g(x)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 24

DC programming

Example: The k-th largest singular value: σk(X) = ‖X‖k − ‖X‖k−1. This
shows that σk(·) is locally Lipschitz (d.c. functions are known to be LL),
which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Explore: DC programming theory, algos, applications.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 25

DC programming

Example: The k-th largest singular value: σk(X) = ‖X‖k − ‖X‖k−1. This
shows that σk(·) is locally Lipschitz (d.c. functions are known to be LL),
which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Explore: DC programming theory, algos, applications.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 25

DC programming

Example: The k-th largest singular value: σk(X) = ‖X‖k − ‖X‖k−1. This
shows that σk(·) is locally Lipschitz (d.c. functions are known to be LL),
which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Explore: DC programming theory, algos, applications.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 25

DC programming

Example: The k-th largest singular value: σk(X) = ‖X‖k − ‖X‖k−1. This
shows that σk(·) is locally Lipschitz (d.c. functions are known to be LL),
which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Explore: DC programming theory, algos, applications.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 25

DC programming

Example: The k-th largest singular value: σk(X) = ‖X‖k − ‖X‖k−1. This
shows that σk(·) is locally Lipschitz (d.c. functions are known to be LL),
which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Explore: DC programming theory, algos, applications.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 25

Amusement

I(p) :=
√

p
∫ ∞

0

∣∣∣∣sin x
x

∣∣∣∣p dx

Is I(p) = f (p)− h(p) for convex f , h for p ≥ 1?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/06/21; Lecture 13) 26

