Optimization for Machine Learning

Lecture 13: EM, CCCP, and friends 6.881: MIT

Suvrit Sra Massachusetts Institute of Technology

06 Apr, 2021

Motivation

(example task)

Suvrit Sra (suvrit@mit.edu)

Nonnegative matrix factorization

We want a low-rank approximation $A \approx BC$

Nonnegative matrix factorization

We want a low-rank approximation $A \approx BC$

- SVD yields dense *B* and *C*
- *B* and *C* contain negative entries, even if $A \ge 0$

Nonnegative matrix factorization

We want a low-rank approximation $A \approx BC$

- SVD yields dense *B* and *C*
- *B* and *C* contain negative entries, even if $A \ge 0$

NMF imposes $B \ge 0, C \ge 0$

$A \approx BC$ s.t. $B, C \ge 0$

Least-squares NMF min $\frac{1}{2} ||A - BC||_{F}^{2}$ s.t. $B, C \ge 0$.

4

$A \approx BC$ s.t. $B, C \ge 0$

Least-squares NMF min $\frac{1}{2} ||A - BC||_{\mathrm{F}}^2$ s.t. $B, C \ge 0$. KL-Divergence NMF min $\sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij}$ s.t. $B, C \ge 0$.

$A \approx BC$ s.t. $B, C \ge 0$

 $\begin{aligned} & \text{Least-squares NMF} \\ & \min \quad \frac{1}{2} \|A - BC\|_{\text{F}}^2 \quad \text{s.t. } B, C \geq 0. \\ & \text{KL-Divergence NMF} \\ & \min \quad \sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij} \quad \text{s.t. } B, C \geq 0. \end{aligned}$

NP-Hard (Vavasis 2007) – no surprise

$A \approx BC$ s.t. $B, C \ge 0$

Least-squares NMF

min $\frac{1}{2} \|A - BC\|_{\mathrm{F}}^2$ s.t. $B, C \ge 0$.

KL-Divergence NMF

min
$$\sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij}$$
 s.t. $B, C \ge 0$.

- NP-Hard (Vavasis 2007) no surprise
- Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A has a special "separable" structure, then actually globally optimal NMF is approximately solvable. More recent progress too

$A \approx BC$ s.t. $B, C \ge 0$

Least-squares NMF

 $\min \quad \frac{1}{2} \|A - BC\|_{\mathrm{F}}^2 \quad \text{s.t. } B, C \geq 0.$

KL-Divergence NMF

min $\sum_{ij} a_{ij} \log \frac{(BC)_{ij}}{a_{ij}} - a_{ij} + (BC)_{ij}$ s.t. $B, C \ge 0$.

- NP-Hard (Vavasis 2007) no surprise
- Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A has a special "separable" structure, then actually globally optimal NMF is approximately solvable. More recent progress too

We'll look at simple (local) methods

Background on NMF Algorithms

- Hack: Compute TSVD; "zero-out" negative entries
- Alternating minimization (AM)
- Majorize-Minimize based (MM)
- Global optimization (not covered)
- "Online" algorithms (not covered)

Alternating Descent 1 Initialize $B^0, k \leftarrow 0$ 2 Compute C^{k+1} s.t. $F(A, B^k C^{k+1}) \leq F(A, B^k C^k)$ 3 Compute B^{k+1} s.t. $F(A, B^{k+1}C^{k+1}) \le F(A, B^kC^{k+1})$ 4 $k \leftarrow k + 1$, and repeat until stopping criteria met.

min
$$F(B, C)$$

Alternating Descent

1 Initialize B^0 , $k \leftarrow 0$

- 2 Compute C^{k+1} s.t. $F(A, B^k C^{k+1}) \le F(A, B^k C^k)$
- **3** Compute B^{k+1} s.t. $F(A, B^{k+1}C^{k+1}) \le F(A, B^kC^{k+1})$
- **4** $k \leftarrow k + 1$, and repeat until stopping criteria met.

(Observe:) $F(B^{k+1}, C^{k+1}) \le F(B^k, C^{k+1}) \le F(B^k, C^k)$

Suvrit Sra (suvrit@mit.edu)

Alternating Least Squares (ALS)

$$C = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathrm{F}}^2;$$

7

Alternating Least Squares (ALS)

 $C = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_F^2; \qquad \qquad C^{k+1} \leftarrow \max(0, C)$

Alternating Least Squares (ALS)

$$C = \underset{C}{\operatorname{argmin}} \|A - B^{k}C\|_{F}^{2}; \qquad C^{k+1} \leftarrow \max(0, C)$$
$$B = \underset{B}{\operatorname{argmin}} \|A - BC^{k+1}\|_{F}^{2}; \qquad B^{k+1} \leftarrow \max(0, B)$$

7

Alternating Least Squares (ALS)

$$C = \underset{C}{\operatorname{argmin}} \quad \|A - B^{k}C\|_{F}^{2}; \qquad C^{k+1} \leftarrow \max(0, C)$$
$$B = \underset{B}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{F}^{2}; \qquad B^{k+1} \leftarrow \max(0, B)$$

ALS is fast, simple, often effective, but ...

Alternating Least Squares (ALS)

$$C = \underset{C}{\operatorname{argmin}} \|A - B^{k}C\|_{F}^{2}; \qquad C^{k+1} \leftarrow \max(0, C)$$
$$B = \underset{B}{\operatorname{argmin}} \|A - BC^{k+1}\|_{F}^{2}; \qquad B^{k+1} \leftarrow \max(0, B)$$

ALS is fast, simple, often effective, but ...

$$\|A - B^{k+1}C^{k+1}\|_{\rm F}^2 \le \|A - B^kC^{k+1}\|_{\rm F}^2 \le \|A - B^kC^k\|_{\rm F}^2$$

7

Alternating Least Squares (ALS)

$$C = \underset{C}{\operatorname{argmin}} \|A - B^{k}C\|_{F}^{2}; \qquad C^{k+1} \leftarrow \max(0, C)$$
$$B = \underset{B}{\operatorname{argmin}} \|A - BC^{k+1}\|_{F}^{2}; \qquad B^{k+1} \leftarrow \max(0, B)$$

ALS is fast, simple, often effective, but ...

$$\|A - B^{k+1}C^{k+1}\|_{\rm F}^2 \le \|A - B^kC^{k+1}\|_{\rm F}^2 \le \|A - B^kC^k\|_{\rm F}^2$$

descent can fail to hold!

6.881 Optimization for Machine Learning

Шï

Use alternating nonnegative least-squares

$$C^{k+1} = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad C \ge 0$$
$$B^{k+1} = \underset{B}{\operatorname{argmin}} \quad \|A - B C^{k+1}\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad B \ge 0$$

Use alternating nonnegative least-squares

$$C^{k+1} = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad C \ge 0$$
$$B^{k+1} = \underset{B}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad B \ge 0$$

Advantages: Guaranteed descent. Theory of two-block BCD guarantees convergence to a *stationary point*.

Disadvantages: more complex; slower than ALS

Use alternating nonnegative least-squares

$$C^{k+1} = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad C \ge 0$$
$$B^{k+1} = \underset{B}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad B \ge 0$$

Advantages: Guaranteed descent. Theory of two-block BCD guarantees convergence to a *stationary point*.

Disadvantages: more complex; slower than ALS

Explore. Faster methods; e.g., an SGD-style method for NMF?

Use alternating nonnegative least-squares

$$C^{k+1} = \underset{C}{\operatorname{argmin}} \quad \|A - B^k C\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad C \ge 0$$
$$B^{k+1} = \underset{B}{\operatorname{argmin}} \quad \|A - BC^{k+1}\|_{\mathrm{F}}^2 \quad \text{s.t.} \quad B \ge 0$$

Advantages: Guaranteed descent. Theory of two-block BCD guarantees convergence to a *stationary point*.

Disadvantages: more complex; slower than ALS

Explore. Faster methods; e.g., an SGD-style method for NMF?

Ref. Mairal, Bach, Ponce, Sapiro. *Online Learning for Matrix Factorization and Sparse Coding*. JMLR 11(2):19–60, 2010.

Suvrit Sra (suvrit@mit.edu)

Just Descend

(EM, CCCP, MM methods!)

Suvrit Sra (suvrit@mit.edu)

Consider $F(B, C) = \frac{1}{2} ||A - BC||_F^2$: convex separately in *B* and *C*

Suvrit Sra (suvrit@mit.edu)

Consider $F(B, C) = \frac{1}{2} ||A - BC||_F^2$: convex separately in *B* and *C* We use F(C) to denote function restricted to *C*.

Consider $F(B, C) = \frac{1}{2} ||A - BC||_F^2$: convex separately in *B* and *C* We use F(C) to denote function restricted to *C*. **Aim:** Find C_{k+1} such that $F(B_k, C_{k+1}) \le F(B_k, C_k)$

Consider $F(B, C) = \frac{1}{2} ||A - BC||_F^2$: convex separately in *B* and *C* We use F(C) to denote function restricted to *C*. **Aim:** Find C_{k+1} such that $F(B_k, C_{k+1}) \le F(B_k, C_k)$

Since F(C) *separable* (over cols of C), we just illustrate

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} \|a - Bc\|_2^2$$

Remark. This is the well-known NNLS problem.

Consider $F(B, C) = \frac{1}{2} ||A - BC||_F^2$: convex separately in *B* and *C* We use F(C) to denote function restricted to *C*. **Aim:** Find C_{k+1} such that $F(B_k, C_{k+1}) \le F(B_k, C_k)$

Since F(C) *separable* (over cols of C), we just illustrate

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} \|a - Bc\|_2^2$$

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over *f*!

Suvrit Sra (suvrit@mit.edu)

The Majorize-Minimize (MM) idea

(Majorize: get upper bound; Minorize: minimize this bound)

Suvrit Sra (suvrit@mit.edu)

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c),$$
 for all $c,$
 $g(c,\tilde{c}) \ge f(c),$ for all $c,\tilde{c}.$

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c), \quad \text{for all} \quad c, \\ g(c,\tilde{c}) \ge f(c), \quad \text{for all} \quad c,\tilde{c}.$$

2 Compute $c^{t+1} = \operatorname{argmin}_{c \ge 0} g(c, c^t)$

Suvrit Sra (suvrit@mit.edu)

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c), \quad \text{for all} \quad c, \\ g(c,\tilde{c}) \ge f(c), \quad \text{for all} \quad c,\tilde{c}.$$

Compute c^{t+1} = argmin_{c≥0} g(c, c^t)
 Then we have descent

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c), \quad \text{for all} \quad c, \\ g(c,\tilde{c}) \ge f(c), \quad \text{for all} \quad c,\tilde{c}.$$

2 Compute $c^{t+1} = \operatorname{argmin}_{c \ge 0} g(c, c^t)$ 3 Then we have descent

$$f(c^{t+1})$$

Suvrit Sra (suvrit@mit.edu)

Descent technique

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c), \quad \text{for all} \quad c, \\ g(c,\tilde{c}) \ge f(c), \quad \text{for all} \quad c,\tilde{c}.$$

Compute c^{t+1} = argmin_{c≥0} g(c, c^t)
 Then we have descent

$$f(c^{t+1}) \stackrel{\text{def}}{\leq} g(c^{t+1}, c^t)$$

Suvrit Sra (suvrit@mit.edu)

Descent technique

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c), \quad \text{for all} \quad c, \\ g(c,\tilde{c}) \ge f(c), \quad \text{for all} \quad c,\tilde{c}.$$

Compute c^{t+1} = argmin_{c≥0} g(c, c^t)
 Then we have descent

$$f(c^{t+1}) \stackrel{\text{def}}{\leq} g(c^{t+1}, c^t) \stackrel{\text{argmin}}{\leq} g(c^t, c^t)$$

Suvrit Sra (suvrit@mit.edu)

Descent technique

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} ||a - Bc||_2^2$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$g(c,c) = f(c),$$
 for all $c,$
 $g(c,\tilde{c}) \ge f(c),$ for all $c,\tilde{c}.$

2 Compute $c^{t+1} = \operatorname{argmin}_{c \ge 0} g(c, c^t)$ 3 Then we have descent

$$f(c^{t+1}) \stackrel{\text{def}}{\leq} g(c^{t+1}, c^t) \stackrel{\text{argmin}}{\leq} g(c^t, c^t) \stackrel{\text{def}}{=} f(c^t).$$

Suvrit Sra (suvrit@mit.edu)

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i)$, where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_i - b_i^T c)^2 =$$

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_i \lambda_i x_i) \leq \sum_i \lambda_i h(x_i)$, where $\lambda_i \geq 0$, $\sum_i \lambda_i = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_i - b_i^T c)^2 = \frac{1}{2} \sum_{i} a_i^2 - 2a_i b_i^T c + (b_i^T c)^2$$

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T}c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + (b_{i}^{T}c)^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij}c_{j})^{2}$$

Suvrit Sra (suvrit@mit.edu)

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$\begin{split} f(c) &= \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T}c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + (b_{i}^{T}c)^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij}c_{j})^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c \end{split}$$

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T}c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + (b_{i}^{T}c)^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij}c_{j})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij}b_{ij}c_{j}/\lambda_{ij})^{2}$$

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(c) = \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T}c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + (b_{i}^{T}c)^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij}c_{j})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij}b_{ij}c_{j}/\lambda_{ij})^{2}$$
$$\stackrel{\text{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij}c_{j}/\lambda_{ij})^{2}$$

Suvrit Sra (suvrit@mit.edu)

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$\begin{split} f(c) &= \frac{1}{2} \sum_{i} (a_{i} - b_{i}^{T}c)^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + (b_{i}^{T}c)^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij}c_{j})^{2} \\ &= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij}b_{ij}c_{j}/\lambda_{ij})^{2} \\ &\stackrel{\text{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i}b_{i}^{T}c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij}c_{j}/\lambda_{ij})^{2} \\ &=: g(c, \tilde{c}), \quad \text{where} \quad \lambda_{ij} \quad \text{are convex coeffts} \end{split}$$

Suvrit Sra (suvrit@mit.edu)

Constructing $g(c, \tilde{c})$

$$f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c, \tilde{c}) = \frac{1}{2} ||a||_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2.$$

Only remains to **pick** λ_{ij} as functions of \tilde{c}

Suvrit Sra (suvrit@mit.edu)

Constructing $g(c, \tilde{c})$

$$f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c, \tilde{c}) = \frac{1}{2} ||a||_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2.$$

Only remains to **pick** λ_{ij} as functions of \tilde{c}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{b_i^T\tilde{c}}$$

Suvrit Sra (suvrit@mit.edu)

Constructing $g(c, \tilde{c})$

$$f(c) = \frac{1}{2} ||a - Bc||_2^2$$

$$g(c, \tilde{c}) = \frac{1}{2} ||a||_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2.$$

Only remains to **pick** λ_{ij} as functions of \tilde{c}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{b_i^T\tilde{c}}$$

Exercise: Verify that g(c,c) = f(c); **Exercise:** Let $f(c) = \sum_{i} a_i \log(a_i/(Bc)_i) - a_i + (Bc)_i$. Derive an auxiliary function $g(c, \tilde{c})$ for this f(c).

Suvrit Sra (suvrit@mit.edu)

Reapting the benefits of *g*

$\begin{aligned} & \textbf{Key step} \\ g(c, \tilde{c}) &= \frac{1}{2} \|a\|_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2 \\ c^{t+1} &= \operatorname*{argmin}_{c \geq 0} g(c, c^t) \end{aligned}$

Reapting the benefits of *g*

$\begin{aligned} & \textbf{Key step} \\ g(c, \tilde{c}) &= \frac{1}{2} \|a\|_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2 \\ c^{t+1} &= \operatorname*{argmin}_{c \geq 0} g(c, c^t) \end{aligned}$

Exercise: Solve $\partial g(c, c^t) / \partial c_p = 0$ to obtain *closed form*

$$c_p = c_p^t \frac{[B^T a]_p}{[B^T B c^t]_p}$$

Suvrit Sra (suvrit@mit.edu)

Reapting the benefits of *g*

$$\begin{aligned} & \mathbf{Key \ step} \\ g(c, \tilde{c}) &= \frac{1}{2} \|a\|_2^2 - \sum_i a_i b_i^T c + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2 \\ c^{t+1} &= \operatorname*{argmin}_{c \ge 0} g(c, c^t) \end{aligned}$$

Exercise: Solve $\partial g(c, c^t) / \partial c_p = 0$ to obtain *closed form*

$$c_p = c_p^t \frac{[B^T a]_p}{[B^T B c^t]_p}$$

This yields the famous "multiplicative update" algorithm of Lee/Seung (1999) – the paper that popularized NMF.

Suvrit Sra (suvrit@mit.edu)

• We exploited convexity of x^2

- We exploited convexity of x^2
- Our technique one instance of more general *Majorization-Minimization* (MM) idea

- We exploited convexity of x^2
- Our technique one instance of more general *Majorization-Minimization* (MM) idea
- Gradient-descent also an MM algorithm (Why?) *Hint:* Assume L-smooth function, and then argue

- We exploited convexity of x^2
- Our technique one instance of more general *Majorization-Minimization* (MM) idea
- Gradient-descent also an MM algorithm (Why?) *Hint:* Assume L-smooth function, and then argue

Exercise: View few other optim methods via MM lens

Explore: Various other ways of doing MM!

Some key MM methods

- Expectation Maximization (EM) algorithm exploits convexity of - log x
- Convex-Concave Procedure (CCCP)
- Variational Methods
- **Explore:** More broadly, *d.c. programming*

Example: Variational Methods

Examples

$$-\log x = \min_{\lambda} \lambda x - \log \lambda - 1$$
$$|w| = \min_{\lambda \ge 0} \frac{1}{2} \frac{w^2}{\lambda} + \frac{1}{2} \lambda.$$

Suvrit Sra (suvrit@mit.edu)

Example: Variational Methods

Examples $-\log x = \min_{\lambda} \lambda x - \log \lambda - 1$ $|w| = \min_{\lambda \ge 0} \frac{1}{2} \frac{w^2}{\lambda} + \frac{1}{2} \lambda.$

An Introduction to Variational Methods for Graphical Models

MICHAEL I. JORDAN jordan@es.berkeley.edu
Department of Electrical Engineering and Computer Sciences and Department of Statistics.
University of California. Berkeley, CA 94720, USA
ZOUBIN GHAHRAMANI zoubin@gatsby.ucl.ac.uk
Gatsby Computational Neuroscience Unit, University College London WCIN 3AR, UK
TOMMI S. JAAKKOLA tommi@ai.mit.edu
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA
LAWRENCE K. SAUL Isaul@research.att.edu

LAWRENCE K. SAUL AT&T Labs-Research, Florham Park, NJ 07932, USA

Suvrit Sra (suvrit@mit.edu)

Example: Variational Methods

Examples $-\log x = \min_{\lambda} \lambda x - \log \lambda - 1$ $|w| = \min_{\lambda \ge 0} \frac{1}{2} \frac{w^2}{\lambda} + \frac{1}{2} \lambda.$

An Introduction to Variational Methods for Graphical Models

MICHAEL I. JORDAN jordan@cs.berkeley.edu Department of Electrical Engineering and Computer Sciences and Department of Statistics, University of California, Berkeley, CA 94720, USA

ZOUBIN GHAHRAMANI zoubin@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, University College London WCIN 3AR, UK

TOMMI S. JAAKKOLA Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA tommi@ai.mit.edu

lsaul@research.att.edu

LAWRENCE K. SAUL AT&T Labs-Research, Florham Park, NJ 07932, USA

See also: Francis Bach's blog, Posts Jul 1 & Aug 5, 2019. Blei, Kucukelbir, McAuliffe. Variational Inference: A Review for Statisticians

Suvrit Sra (suvrit@mit.edu)

Assume $p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$ is a mixture density.

Suvrit Sra (suvrit@mit.edu)

Assume $p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$ is a mixture density. $\ell(\mathcal{X}; \Theta) := \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_j p(x_i; \theta_j) \right).$

Assume
$$p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$$
 is a mixture density.
 $\ell(\mathcal{X}; \Theta) := \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_j p(x_i; \theta_j) \right).$

Use concavity of $\log t$ to compute lower-bound

$$\ell(\mathcal{X};\Theta) \geq \sum_{ij} \beta_{ij} \log \left(\pi_j p(x_i;\theta_j) / \beta_{ij} \right).$$

Assume
$$p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$$
 is a mixture density.
 $\ell(\mathcal{X}; \Theta) := \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_j p(x_i; \theta_j) \right).$

Use concavity of $\log t$ to compute lower-bound

$$\ell(\mathcal{X};\Theta) \ge \sum_{ij} \beta_{ij} \log \left(\pi_j p(x_i;\theta_j) / \beta_{ij} \right).$$

E-Step: Optimize over β_{ij} , to set them to *posterior* probabilities: $\beta_{ij} := \frac{\pi_j p(x_i; \theta_j)}{\sum_l \pi_l p(x_i; \theta_l)}.$

Suvrit Sra (suvrit@mit.edu)

Assume
$$p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$$
 is a mixture density.
 $\ell(\mathcal{X}; \Theta) := \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_j p(x_i; \theta_j) \right).$

Use concavity of $\log t$ to compute lower-bound

$$\ell(\mathcal{X}; \Theta) \ge \sum_{ij} \beta_{ij} \log \left(\pi_j p(x_i; \theta_j) / \beta_{ij} \right).$$

E-Step: Optimize over β_{ij} , to set them to *posterior* probabilities: $\beta_{ij} := \frac{\pi_j p(x_i; \theta_j)}{\sum_l \pi_l p(x_i; \theta_l)}.$

M-Step: optimize the bound over Θ , using above β values

Suvrit Sra (suvrit@mit.edu)

Assume
$$p(x) = \sum_{j=1}^{K} \pi_j p(x; \theta_j)$$
 is a mixture density.
 $\ell(\mathcal{X}; \Theta) := \sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_j p(x_i; \theta_j) \right).$

Use concavity of $\log t$ to compute lower-bound

$$\ell(\mathcal{X};\Theta) \ge \sum_{ij} \beta_{ij} \log \left(\pi_j p(x_i;\theta_j) / \beta_{ij} \right).$$

E-Step: Optimize over β_{ij} , to set them to *posterior* probabilities: $\beta_{ij} := \frac{\pi_j p(x_i; \theta_j)}{\sum_l \pi_l p(x_i; \theta_l)}.$

M-Step: optimize the bound over $\Theta,$ using above β values

Exercise: Derive a "stochastic" version of EM.

Suvrit Sra (suvrit@mit.edu)

 $\min_x F(x) := f(x) - h(x)$, where f, h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

20

 $\min_x F(x) := f(x) - h(x)$, where f, h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc. **CCCP is an MM method**

 $h(x) \ge h(y) + \langle \nabla h(y), x - y \rangle$. Thus,

 $\min_x F(x) := f(x) - h(x)$, where f, h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc. **CCCP is an MM method** $h(x) \ge h(y) + \langle \nabla h(y), x - y \rangle$. Thus, $F(x) < f(x) - h(y) - \langle \nabla h(y), x - y \rangle =: G(x, y)$

 $\min_x F(x) := f(x) - h(x)$, where f, h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc. **CCCP is an MM method**

 $h(x) \ge h(y) + \langle \nabla h(y), x - y \rangle.$ Thus, $F(x) \le f(x) - h(y) - \langle \nabla h(y), x - y \rangle =: G(x, y)$

Observe: F(x) = G(x, x) and $F(x) \le G(x, y)$. CCCP algo is $x_{k+1} = \underset{x}{\operatorname{argmin}} G(x, x_k)$ $\nabla f(x_{k+1}) = \nabla h(x_k)$

Suvrit Sra (suvrit@mit.edu)

 $\min_x F(x) := f(x) - h(x)$, where f, h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc. **CCCP is an MM method**

 $h(x) \ge h(y) + \langle \nabla h(y), x - y \rangle. \text{ Thus,}$ $F(x) \le f(x) - h(y) - \langle \nabla h(y), x - y \rangle =: G(x, y)$

Observe: F(x) = G(x, x) and $F(x) \le G(x, y)$. CCCP algo is $x_{k+1} = \underset{x}{\operatorname{argmin}} G(x, x_k)$ $\nabla f(x_{k+1}) = \nabla h(x_k)$

Exercise: Show that the EM algorithm is a special case of CCCP.

Suvrit Sra (suvrit@mit.edu)

Convex-Concave Procedure

 $\min_x F(x) := f(x) - h(x)$, where f, h are both convex.

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc. **CCCP is an MM method**

 $h(x) \ge h(y) + \langle \nabla h(y), x - y \rangle. \text{ Thus,}$ $F(x) \le f(x) - h(y) - \langle \nabla h(y), x - y \rangle =: G(x, y)$

Observe: F(x) = G(x, x) and $F(x) \le G(x, y)$. CCCP algo is $x_{k+1} = \underset{x}{\operatorname{argmin}} G(x, x_k)$ $\nabla f(x_{k+1}) = \nabla h(x_k)$

Exercise: Show that the EM algorithm is a special case of CCCP.

CCCP often quite useful: always try as a baseline!

Example 1 – Sinkhorn's method

Theorem. (Sinkhorn, 1964). Let *A* be a strictly positive matrix. There exists a unique doubly stochasic matrix M = EAD, where *E* and *D* are strictly positive diagonal matrices. Moreover, the iterative procedure of alternatingly normalizing the rows and columns of *A* to sum to 1 converges to *M*.

Example 1 – Sinkhorn's method

Theorem. (Sinkhorn, 1964). Let *A* be a strictly positive matrix. There exists a unique doubly stochasic matrix M = EAD, where *E* and *D* are strictly positive diagonal matrices. Moreover, the iterative procedure of alternatingly normalizing the rows and columns of *A* to sum to 1 converges to *M*.

Theorem. (Yuille, Rangarajan, 2002). Sinkhorn's algorithms is CCCP with cost function: $\phi(r) = -\sum_i \log r_i + \sum_i \log(\sum_j r_j A_{ij})$ where $\{r_i\}$ are the diagonal elements of *E* and the diagonal elements of *D* are given by $(\sum_j r_j A_{ij})^{-1}$.

Exercise: Verify the above claim.

Explore CCCP applied to the so-called *operator scaling problem*

Suvrit Sra (suvrit@mit.edu)

$$\max_{L \succ 0} \phi(L) := \frac{1}{n} \sum_{i=1}^{n} \log \det(U_i^* L U_i) - \log \det(I + L)$$

MLE for learning DPP kernel L; U_i : compression matrices

$$\max_{L \succ 0} \phi(L) := \frac{1}{n} \sum_{i=1}^{n} \log \det(U_i^* L U_i) - \log \det(I + L)$$

MLE for learning DPP kernel L; U_i : compression matrices

$$\nabla \phi(L) = 0: \quad \sum_{i=1}^{n} U_i (U_i^* L U_i)^{-1} U_i^* - n(I+L)^{-1} = 0$$

$$\max_{L \succ 0} \phi(L) := \frac{1}{n} \sum_{i=1}^{n} \log \det(U_i^* L U_i) - \log \det(I + L)$$

MLE for learning DPP kernel L; U_i : compression matrices

$$\nabla \phi(L) = 0: \quad \sum_{i=1}^{n} U_i (U_i^* L U_i)^{-1} U_i^* - n(I+L)^{-1} = 0$$

Now a simple but crucial trick: write

$$\Delta := \frac{1}{n} \sum_{i} U_{i} (U_{i}^{*} L U_{i})^{-1} U_{i}^{*} - (I + L)^{-1}$$

Suvrit Sra (suvrit@mit.edu)

$$\max_{L \succ 0} \phi(L) := \frac{1}{n} \sum_{i=1}^{n} \log \det(U_i^* L U_i) - \log \det(I + L)$$

MLE for learning DPP kernel L; U_i : compression matrices

$$\nabla \phi(L) = 0: \quad \sum_{i=1}^{n} U_i (U_i^* L U_i)^{-1} U_i^* - n(I+L)^{-1} = 0$$

Now a simple but crucial trick: write

$$\Delta := \frac{1}{n} \sum_{i} U_i (U_i^* L U_i)^{-1} U_i^* - (I+L)^{-1}$$

$$\Delta + L^{-1} = L^{-1} \quad (\nabla \phi(L) = 0).$$

Suvrit Sra (suvrit@mit.edu)

$$\max_{L \succ 0} \phi(L) := \frac{1}{n} \sum_{i=1}^{n} \log \det(U_i^* L U_i) - \log \det(I + L)$$

MLE for learning DPP kernel L; U_i : compression matrices

$$\nabla \phi(L) = 0: \quad \sum_{i=1}^{n} U_i (U_i^* L U_i)^{-1} U_i^* - n(I+L)^{-1} = 0$$

Now a simple but crucial trick: write

$$\Delta := \frac{1}{n} \sum_{i} U_i (U_i^* L U_i)^{-1} U_i^* - (I+L)^{-1}$$

$$\Delta + L^{-1} = L^{-1} \quad (\nabla \phi(L) = 0).$$

Fixed-point iteration of Mariet-Sra (2015) $L_{k+1} \leftarrow L_k + L_k \Delta_k L_k$

Suvrit Sra (suvrit@mit.edu)

$$\max_{L \succ 0} \phi(L) := \frac{1}{n} \sum_{i=1}^{n} \log \det(U_i^* L U_i) - \log \det(I + L)$$

MLE for learning DPP kernel L; U_i : compression matrices

$$\nabla \phi(L) = 0: \quad \sum_{i=1}^{n} U_i (U_i^* L U_i)^{-1} U_i^* - n(I+L)^{-1} = 0$$

Now a simple but crucial trick: write

$$\begin{split} \Delta &:= \ \frac{1}{n} \sum_{i} U_i (U_i^* L U_i)^{-1} U_i^* - (I+L)^{-1} \\ \Delta + L^{-1} &= \ L^{-1} \quad (\nabla \phi(L) = 0). \end{split}$$

Fixed-point iteration of Mariet-Sra (2015)

$$L_{k+1} \leftarrow L_k + L_k \Delta_k L_k$$

Remarkably, this generates monotonic \uparrow sequence $\{\phi(L_k)\}_{k>1}$.

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

22

Key idea: Write $\psi(S) = \phi(L^{-1})$. Then

Suvrit Sra (suvrit@mit.edu)

Key idea: Write $\psi(S) = \phi(L^{-1})$. Then

$$\psi(S) = \frac{1}{n} \sum_{i} \log \det(U_i^* S^{-1} U_i) - \log \det(I + S^{-1})$$

Suvrit Sra (suvrit@mit.edu)

Key idea: Write $\psi(S) = \phi(L^{-1})$. Then

$$\begin{split} \psi(S) &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S^{-1}) \\ &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S) + \log \det(S) \end{split}$$

Key idea: Write $\psi(S) = \phi(L^{-1})$. Then

$$\begin{split} \psi(S) &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S^{-1}) \\ &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S) + \log \det(S) \\ &= f(S) + h(S), \end{split}$$

where h is concave and f is convex.

Key idea: Write $\psi(S) = \phi(L^{-1})$. Then

$$\begin{split} \psi(S) &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S^{-1}) \\ &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S) + \log \det(S) \\ &= f(S) + h(S), \end{split}$$

where *h* is concave and *f* is convex. Now invoke CCCP (remember we are maximizing).

Key idea: Write $\psi(S) = \phi(L^{-1})$. Then

$$\begin{split} \psi(S) &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S^{-1}) \\ &= \frac{1}{n} \sum_{i} \log \det(U_{i}^{*}S^{-1}U_{i}) - \log \det(I + S) + \log \det(S) \\ &= f(S) + h(S), \end{split}$$

where *h* is concave and *f* is convex. Now invoke CCCP (remember we are maximizing).

Conjecture. For every "step-size" $\alpha \in (0, \gamma)$, the iteration $L_{k+1} = L_k + \alpha L_k \Delta_k L_k$ generates monotonic $\phi(L_k)$ values.

Suvrit Sra (suvrit@mit.edu)

DC Programming f(x) - g(x)

Suvrit Sra (suvrit@mit.edu)

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

DC Programming: Overview

R. Horst¹ and N. V. Thoai²

Suvrit Sra (suvrit@mit.edu)

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s10107-018-1235-y

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

FULL LENGTH PAPER

DC programming and DCA: thirty years of developments

DC Programming: Overview

R. HORST¹ AND N. V. THOAI²

Hoai An Le Thi¹ · Tao Pham Dinh²

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s10107-018-1235-y

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

FULL LENGTH PAPER

DC programming and DCA: thirty years of developments

DC Programming: Overview

R. HORST¹ AND N. V. THOAI²

Hoai An Le Thi¹ · Tao Pham Dinh²

Example: The *k*-th largest singular value: $\sigma_k(X) = ||X||_k - ||X||_{k-1}$. This shows that $\sigma_k(\cdot)$ is locally Lipschitz (d.c. functions are known to be LL), which is otherwise a challenging result to establish directly.

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s10107-018-1235-y

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

FULL LENGTH PAPER

DC programming and DCA: thirty years of developments

DC Programming: Overview

R. HORST¹ AND N. V. THOAI²

Hoai An Le Thi¹ · Tao Pham Dinh²

Example: The *k*-th largest singular value: $\sigma_k(X) = ||X||_k - ||X||_{k-1}$. This shows that $\sigma_k(\cdot)$ is locally Lipschitz (d.c. functions are known to be LL), which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s10107-018-1235-v

OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, no. 1-43, OCTOBER 19

FULL LENGTH PAPER

DC programming and DCA: thirty years of developments

DC Programming: Overview

R. HORST¹ AND N. V. THOAI²

Hoai An Le Thi¹ · Tao Pham Dinh²

Example: The *k*-th largest singular value: $\sigma_k(X) = ||X||_k - ||X||_{k-1}$. This shows that $\sigma_k(\cdot)$ is locally Lipschitz (d.c. functions are known to be LL), which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

Explore: DC programming theory, algos, applications.

25

Amusement

$$I(p) := \sqrt{p} \int_0^\infty \left| \frac{\sin x}{x} \right|^p dx$$

Is I(p) = f(p) - h(p) for convex f, h for $p \ge 1$?

