Optimization for Machine Learning

Lecture 13: EM, CCCP, and friends
6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

06 Apr, 2021

IIITIT

Motivation (example task)

We want a low-rank approximation $A \approx B C$

Nonnegative matrix factorization

We want a low-rank approximation $A \approx B C$

- SVD yields dense B and C
- B and C contain negative entries, even if $A \geq 0$

Nonnegative matrix factorization

We want a low-rank approximation $A \approx B C$

- SVD yields dense B and C
- B and C contain negative entries, even if $A \geq 0$

NMF imposes $B \geq 0, C \geq 0$

Algorithms

$A \approx B C \quad$ s.t. $B, C \geq 0$

Least-squares NMF

$$
\min \quad \frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2} \quad \text { s.t. } B, C \geq 0 .
$$

Algorithms

$$
A \approx B C \quad \text { s.t. } B, C \geq 0
$$

Least-squares NMF

$$
\begin{gathered}
\min \quad \frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2} \quad \text { s.t. } B, C \geq 0 . \\
\text { KL-Divergence NMF } \\
\min \quad \sum_{i j} a_{i j} \log \frac{(B C)_{i j}}{a_{i j}}-a_{i j}+(B C)_{i j} \quad \text { s.t. } B, C \geq 0 .
\end{gathered}
$$

Algorithms

$$
A \approx B C \quad \text { s.t. } B, C \geq 0
$$

Least-squares NMF

$$
\min \quad \frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2} \quad \text { s.t. } B, C \geq 0
$$

KL-Divergence NMF
$\min \quad \sum_{i j} a_{i j} \log \frac{(B C)_{i j}}{a_{i j}}-a_{i j}+(B C)_{i j} \quad$ s.t. $B, C \geq 0$.
\& NP-Hard (Vavasis 2007) - no surprise

Algorithms

$$
A \approx B C \quad \text { s.t. } B, C \geq 0
$$

Least-squares NMF

$$
\min \quad \frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2} \quad \text { s.t. } B, C \geq 0
$$

KL-Divergence NMF
$\min \quad \sum_{i j} a_{i j} \log \frac{(B C)_{i j}}{a_{i j}}-a_{i j}+(B C)_{i j} \quad$ s.t. $B, C \geq 0$.
\& NP-Hard (Vavasis 2007) - no surprise
\& Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A has a special "separable" structure, then actually globally optimal NMF is approximately solvable. More recent progress too

Algorithms

$$
A \approx B C \quad \text { s.t. } B, C \geq 0
$$

Least-squares NMF

$$
\min \quad \frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2} \quad \text { s.t. } B, C \geq 0
$$

KL-Divergence NMF
$\min \quad \sum_{i j} a_{i j} \log \frac{(B C)_{i j}}{a_{i j}}-a_{i j}+(B C)_{i j} \quad$ s.t. $B, C \geq 0$.
\& NP-Hard (Vavasis 2007) - no surprise
\& Arora, Ge, Kanna, Moitra (2011) showed that if the matrix A has a special "separable" structure, then actually globally optimal NMF is approximately solvable. More recent progress too

We'll look at simple (local) methods

Background on NMF Algorithms

■ Hack: Compute TSVD; "zero-out" negative entries
■ Alternating minimization (AM)
■ Majorize-Minimize based (MM)
■ Global optimization (not covered)
■ "Online" algorithms (not covered)

AltMin / AltDesc

$\min \quad F(B, C)$

Alternating Descent
1 Initialize $B^{0}, k \leftarrow 0$

AltMin / AltDesc

$$
\min \quad F(B, C)
$$

Alternating Descent
1 Initialize $B^{0}, k \leftarrow 0$
2 Compute C^{k+1} s.t. $F\left(A, B^{k} C^{k+1}\right) \leq F\left(A, B^{k} C^{k}\right)$

AltMin / AltDesc

$$
\min \quad F(B, C)
$$

Alternating Descent

1 Initialize $B^{0}, k \leftarrow 0$
2 Compute C^{k+1} s.t. $F\left(A, B^{k} C^{k+1}\right) \leq F\left(A, B^{k} C^{k}\right)$
3. Compute B^{k+1} s.t. $F\left(A, B^{k+1} C^{k+1}\right) \leq F\left(A, B^{k} C^{k+1}\right)$
$4 k \leftarrow k+1$, and repeat until stopping criteria met.

AltMin / AltDesc

$$
\min \quad F(B, C)
$$

Alternating Descent

1 Initialize $B^{0}, k \leftarrow 0$
2 Compute C^{k+1} s.t. $F\left(A, B^{k} C^{k+1}\right) \leq F\left(A, B^{k} C^{k}\right)$
3 Compute B^{k+1} s.t. $F\left(A, B^{k+1} C^{k+1}\right) \leq F\left(A, B^{k} C^{k+1}\right)$
$4 k \leftarrow k+1$, and repeat until stopping criteria met.
(Observe:) $\quad F\left(B^{k+1}, C^{k+1}\right) \leq F\left(B^{k}, C^{k+1}\right) \leq F\left(B^{k}, C^{k}\right)$

AltMin for NMF: naive version

Alternating Least Squares (ALS)

$$
C=\underset{C}{\operatorname{argmin}}\left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} ;
$$

AltMin for NMF: naive version

Alternating Least Squares (ALS)

$$
C=\underset{C}{\operatorname{argmin}} \quad\left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} ; \quad C^{k+1} \leftarrow \max (0, C)
$$

AltMin for NMF: naive version

Alternating Least Squares (ALS)

$$
\begin{array}{lll}
C=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} ; & C^{k+1} \leftarrow \max (0, C) \\
B=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} ; & B^{k+1} \leftarrow \max (0, B)
\end{array}
$$

AltMin for NMF: naive version

Alternating Least Squares (ALS)

$$
\begin{array}{lll}
C=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} ; & C^{k+1} \leftarrow \max (0, C) \\
B=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} ; & B^{k+1} \leftarrow \max (0, B)
\end{array}
$$

ALS is fast, simple, often effective, but ...

AltMin for NMF: naive version

Alternating Least Squares (ALS)

$$
\begin{array}{lll}
C=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} ; & C^{k+1} \leftarrow \max (0, C) \\
B=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} ; & B^{k+1} \leftarrow \max (0, B)
\end{array}
$$

ALS is fast, simple, often effective, but ...

$$
\left\|A-B^{k+1} C^{k+1}\right\|_{\mathrm{F}}^{2} \leq\left\|A-B^{k} C^{k+1}\right\|_{\mathrm{F}}^{2} \leq\left\|A-B^{k} C^{k}\right\|_{\mathrm{F}}^{2}
$$

AltMin for NMF: naive version

Alternating Least Squares (ALS)

$$
\begin{array}{lll}
C=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} ; & C^{k+1} \leftarrow \max (0, C) \\
B=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} ; & B^{k+1} \leftarrow \max (0, B)
\end{array}
$$

ALS is fast, simple, often effective, but ...

$$
\left\|A-B^{k+1} C^{k+1}\right\|_{\mathrm{F}}^{2} \leq\left\|A-B^{k} C^{k+1}\right\|_{\mathrm{F}}^{2} \leq\left\|A-B^{k} C^{k}\right\|_{\mathrm{F}}^{2}
$$

descent can fail to hold!

NMF AltMin: correct way

Use alternating nonnegative least-squares

$$
\begin{array}{lll}
C^{k+1}=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad C \geq 0 \\
B^{k+1}=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad B \geq 0
\end{array}
$$

NMF AltMin: correct way

Use alternating nonnegative least-squares

$$
\begin{array}{lll}
C^{k+1}=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad C \geq 0 \\
B^{k+1}=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad B \geq 0
\end{array}
$$

Advantages: Guaranteed descent. Theory of two-block BCD guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS

NMF AltMin: correct way

Use alternating nonnegative least-squares

$$
\begin{array}{lll}
C^{k+1}=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad C \geq 0 \\
B^{k+1}=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad B \geq 0
\end{array}
$$

Advantages: Guaranteed descent. Theory of two-block BCD guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS
Explore. Faster methods; e.g., an SGD-style method for NMF?

NMF AltMin: correct way

Use alternating nonnegative least-squares

$$
\begin{array}{ll}
C^{k+1}=\underset{C}{\operatorname{argmin}} & \left\|A-B^{k} C\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad C \geq 0 \\
B^{k+1}=\underset{B}{\operatorname{argmin}} & \left\|A-B C^{k+1}\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad B \geq 0
\end{array}
$$

Advantages: Guaranteed descent. Theory of two-block BCD guarantees convergence to a stationary point.

Disadvantages: more complex; slower than ALS
Explore. Faster methods; e.g., an SGD-style method for NMF?

Ref. Mairal, Bach, Ponce, Sapiro. Online Learning for Matrix Factorization and Sparse Coding. JMLR 11(2):19-60, 2010.

Just Descend (EM, CCCP, MM methods!)

Revisiting NMF

Consider $F(B, C)=\frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2}$: convex separately in B and C

Revisiting NMF

Consider $F(B, C)=\frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2}$: convex separately in B and C We use $F(C)$ to denote function restricted to C.

Revisiting NMF

Consider $F(B, C)=\frac{1}{2}\|A-B C\|_{\mathrm{F}}^{2}$: convex separately in B and C
We use $F(C)$ to denote function restricted to C.
Aim: Find C_{k+1} such that $F\left(B_{k}, C_{k+1}\right) \leq F\left(B_{k}, C_{k}\right)$

Revisiting NMF

Consider $F(B, C)=\frac{1}{2}\|A-B C\|_{F}^{2}$: convex separately in B and C
We use $F(C)$ to denote function restricted to C.
Aim: Find C_{k+1} such that $F\left(B_{k}, C_{k+1}\right) \leq F\left(B_{k}, C_{k}\right)$
Since $F(C)$ separable (over cols of C), we just illustrate

$$
\min _{c \geq 0} f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

Remark. This is the well-known NNLS problem.

Revisiting NMF

Consider $F(B, C)=\frac{1}{2}\|A-B C\|_{F}^{2}$: convex separately in B and C
We use $F(C)$ to denote function restricted to C.
Aim: Find C_{k+1} such that $F\left(B_{k}, C_{k+1}\right) \leq F\left(B_{k}, C_{k}\right)$
Since $F(C)$ separable (over cols of C), we just illustrate

$$
\min _{c \geq 0} f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

Remark. This is the well-known NNLS problem.

Doing descent (not necc minimization) over f !

The Majorize-Minimize (MM) idea

(Majorize: get upper bound; Minorize: minimize this bound)

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

2 Compute $c^{t+1}=\operatorname{argmin}_{c \geq 0} g\left(c, c^{t}\right)$

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

2 Compute $c^{t+1}=\operatorname{argmin}_{c \geq 0} g\left(c, c^{t}\right)$
3 Then we have descent

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

2 Compute $c^{t+1}=\operatorname{argmin}_{c \geq 0} g\left(c, c^{t}\right)$
3 Then we have descent

$$
f\left(c^{t+1}\right)
$$

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

2 Compute $c^{t+1}=\operatorname{argmin}_{c \geq 0} g\left(c, c^{t}\right)$
3 Then we have descent

$$
f\left(c^{t+1}\right) \stackrel{\operatorname{def}}{\leq} g\left(c^{t+1}, c^{t}\right)
$$

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

2. Compute $c^{t+1}=\operatorname{argmin}_{c \geq 0} g\left(c, c^{t}\right)$

3 Then we have descent

$$
f\left(c^{t+1}\right) \stackrel{\text { def }}{\leq} g\left(c^{t+1}, c^{t}\right) \stackrel{\text { argmin }}{\leq} g\left(c^{t}, c^{t}\right)
$$

Descent technique

$$
\min _{c \geq 0} \quad f(c)=\frac{1}{2}\|a-B c\|_{2}^{2}
$$

1 Find a function $g(c, \tilde{c})$ that satisfies:

$$
\begin{array}{ll}
g(c, c)=f(c), & \text { for all } \quad c, \\
g(c, \tilde{c}) \geq f(c), & \text { for all } \quad c, \tilde{c} .
\end{array}
$$

2. Compute $c^{t+1}=\operatorname{argmin}_{c \geq 0} g\left(c, c^{t}\right)$

3 Then we have descent

$$
f\left(c^{t+1}\right) \stackrel{\text { def }}{\leq} g\left(c^{t+1}, c^{t}\right) \stackrel{\text { argmin }}{\leq} g\left(c^{t}, c^{t}\right) \stackrel{\text { def }}{=} f\left(c^{t}\right)
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
\overline{h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1 .}
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
f(c)=\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
f(c)=\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\left(b_{i}^{T} c\right)^{2}
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(c) & =\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\left(b_{i}^{T} c\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2}
\end{aligned}
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(c) & =\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\left(b_{i}^{T} c\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c
\end{aligned}
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(c) & =\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\left(b_{i}^{T} c\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} \lambda_{i j} b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(c) & =\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\left(b_{i}^{T} c\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} \lambda_{i j} b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& \stackrel{\operatorname{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Constructing g for $f(c)=\|a-B c\|^{2}$

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(c) & =\frac{1}{2} \sum_{i}\left(a_{i}-b_{i}^{T} c\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\left(b_{i}^{T} c\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i}\left(\sum_{j} \lambda_{i j} b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& \stackrel{\operatorname{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& =: g(c, \tilde{c}), \quad \text { where } \quad \lambda_{i j} \quad \text { are convex coeffts }
\end{aligned}
$$

Constructing $g(c, \tilde{c})$

$$
\begin{aligned}
f(c) & =\frac{1}{2}\|a-B c\|_{2}^{2} \\
g(c, \tilde{c}) & =\frac{1}{2}\|a\|_{2}^{2}-\sum_{i} a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} .
\end{aligned}
$$

Only remains to pick $\lambda_{i j}$ as functions of \tilde{c}

Constructing $g(c, \tilde{c})$

$$
\begin{aligned}
f(c) & =\frac{1}{2}\|a-B c\|_{2}^{2} \\
g(c, \tilde{c}) & =\frac{1}{2}\|a\|_{2}^{2}-\sum_{i} a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} .
\end{aligned}
$$

Only remains to pick $\lambda_{i j}$ as functions of \tilde{c}

$$
\lambda_{i j}=\frac{b_{i j} \tilde{c}_{j}}{\sum_{k} b_{i k} \tilde{c}_{k}}=\frac{b_{i j} \tilde{c}_{j}}{b_{i}^{T} \tilde{c}}
$$

Constructing $g(c, \tilde{c})$

$$
\begin{aligned}
f(c) & =\frac{1}{2}\|a-B c\|_{2}^{2} \\
g(c, \tilde{c}) & =\frac{1}{2}\|a\|_{2}^{2}-\sum_{i} a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} .
\end{aligned}
$$

Only remains to pick $\lambda_{i j}$ as functions of \tilde{c}

$$
\lambda_{i j}=\frac{b_{i j} \tilde{c}_{j}}{\sum_{k} b_{i k} \tilde{c}_{k}}=\frac{b_{i j} \tilde{c}_{j}}{b_{i}^{T} \tilde{c}}
$$

Exercise: Verify that $g(c, c)=f(c)$;
Exercise: Let $f(c)=\sum_{i} a_{i} \log \left(a_{i} /(B c)_{i}\right)-a_{i}+(B c)_{i}$. Derive an auxiliary function $g(c, \tilde{c})$ for this $f(c)$.

Reapting the benefits of g

$$
\begin{aligned}
& \text { Key step } \\
& g(c, \tilde{c})= \frac{1}{2}\|a\|_{2}^{2}-\sum_{i} a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& c^{t+1}=\underset{c \geq 0}{\operatorname{argmin}} g\left(c, c^{t}\right)
\end{aligned}
$$

Reapting the benefits of g

$$
\begin{aligned}
& \text { Key step } \\
& g(c, \tilde{c})= \frac{1}{2}\|a\|_{2}^{2}-\sum_{i} a_{i} b_{i}^{T} c+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& c^{t+1}=\underset{c \geq 0}{\operatorname{argmin}} g\left(c, c^{t}\right)
\end{aligned}
$$

Exercise: Solve $\partial g\left(c, c^{t}\right) / \partial c_{p}=0$ to obtain closed form

$$
c_{p}=c_{p}^{t} \frac{\left[B^{T} a\right]_{p}}{\left[B^{T} B c^{t}\right]_{p}}
$$

Reapting the benefits of g

\[

\]

Exercise: Solve $\partial g\left(c, c^{t}\right) / \partial c_{p}=0$ to obtain closed form

$$
c_{p}=c_{p}^{t} \frac{\left[B^{T} a\right]_{p}}{\left[B^{T} B c^{t}\right]_{p}}
$$

This yields the famous "multiplicative update" algorithm of Lee/Seung (1999) - the paper that popularized NMF.

Broader view of what we just did

- We exploited convexity of x^{2}

Broader view of what we just did

- We exploited convexity of x^{2}

■ Our technique one instance of more general Majorization-Minimization (MM) idea

Broader view of what we just did

- We exploited convexity of x^{2}

■ Our technique one instance of more general Majorization-Minimization (MM) idea
■ Gradient-descent also an MM algorithm (Why?) Hint: Assume L-smooth function, and then argue

Broader view of what we just did

- We exploited convexity of x^{2}

■ Our technique one instance of more general Majorization-Minimization (MM) idea

- Gradient-descent also an MM algorithm (Why?) Hint: Assume L-smooth function, and then argue

Exercise: View few other optim methods via MM lens
Explore: Various other ways of doing MM!

Some key MM methods

■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
■ Convex-Concave Procedure (CCCP)
■ Variational Methods
■ Explore: More broadly, d.c. programming

Example: Variational Methods

$$
\begin{aligned}
& \text { Examples } \\
-\log x & =\min _{\lambda} \lambda x-\log \lambda-1 \\
|w| & =\min _{\lambda \geq 0} \frac{1}{2} \frac{w^{2}}{\lambda}+\frac{1}{2} \lambda
\end{aligned}
$$

Example: Variational Methods

$$
\begin{aligned}
& \text { Examples } \\
&-\log x=\min _{\lambda} \lambda x-\log \lambda-1 \\
&|w|=\min _{\lambda \geq 0} \frac{1}{2} \frac{w^{2}}{\lambda}+\frac{1}{2} \lambda .
\end{aligned}
$$

An Introduction to Variational Methods for Graphical Models

AT\&T Labs-Research, Florham Park, NJ 07932, USA

Example: Variational Methods

$$
\begin{aligned}
& \text { Examples } \\
&-\log x=\min _{\lambda} \lambda x-\log \lambda-1 \\
&|w|=\min _{\lambda \geq 0} \frac{1}{2} \frac{w^{2}}{\lambda}+\frac{1}{2} \lambda .
\end{aligned}
$$

An Introduction to Variational Methods for Graphical Models

MICHAEL I. JORDAN

Department of Electrical Engineering and Computer Sciences and Department of Statistics, University of California, Berkeley, CA 94720, USA

Gatsby Computational Neuroscience Unit, University College London WC1N 3AR, UK

TOMMI S. JAAKKOLA
tommi@ai.mit.edu
Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA

LAWRENCE K. SAUL
1saul@research.att.edu
AT\&T Labs-Research, Florham Park, NJ 07932, USA

See also: Francis Bach's blog, Posts Jul 1 \& Aug 5, 2019.
Blei, Kucukelbir, McAuliffe. Variational Inference: A Review for Statisticians

The EM algorithm

Assume $p(x)=\sum_{j=1}^{K} \pi_{j} p\left(x ; \theta_{j}\right)$ is a mixture density.

The EM algorithm

Assume $p(x)=\sum_{j=1}^{K} \pi_{j} p\left(x ; \theta_{j}\right)$ is a mixture density.

$$
\ell(\mathcal{X} ; \Theta):=\sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_{j} p\left(x_{i} ; \theta_{j}\right)\right)
$$

The EM algorithm

Assume $p(x)=\sum_{j=1}^{K} \pi_{j} p\left(x ; \theta_{j}\right)$ is a mixture density.

$$
\ell(\mathcal{X} ; \Theta):=\sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_{j} p\left(x_{i} ; \theta_{j}\right)\right)
$$

Use concavity of $\log t$ to compute lower-bound

$$
\ell(\mathcal{X} ; \Theta) \geq \sum_{i j} \beta_{i j} \log \left(\pi_{j} p\left(x_{i} ; \theta_{j}\right) / \beta_{i j}\right)
$$

The EM algorithm

Assume $p(x)=\sum_{j=1}^{K} \pi_{j} p\left(x ; \theta_{j}\right)$ is a mixture density.

$$
\ell(\mathcal{X} ; \Theta):=\sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_{j} p\left(x_{i} ; \theta_{j}\right)\right)
$$

Use concavity of $\log t$ to compute lower-bound

$$
\ell(\mathcal{X} ; \Theta) \geq \sum_{i j} \beta_{i j} \log \left(\pi_{j} p\left(x_{i} ; \theta_{j}\right) / \beta_{i j}\right)
$$

E-Step: Optimize over $\beta_{i j}$, to set them to posterior probabilities:

$$
\beta_{i j}:=\frac{\pi_{j} p\left(x_{i} ; \theta_{j}\right)}{\sum_{l} \pi_{l} p\left(x_{i} ; \theta_{l}\right)}
$$

The EM algorithm

Assume $p(x)=\sum_{j=1}^{K} \pi_{j} p\left(x ; \theta_{j}\right)$ is a mixture density.

$$
\ell(\mathcal{X} ; \Theta):=\sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_{j} p\left(x_{i} ; \theta_{j}\right)\right)
$$

Use concavity of $\log t$ to compute lower-bound

$$
\ell(\mathcal{X} ; \Theta) \geq \sum_{i j} \beta_{i j} \log \left(\pi_{j} p\left(x_{i} ; \theta_{j}\right) / \beta_{i j}\right)
$$

E-Step: Optimize over $\beta_{i j}$, to set them to posterior probabilities:

$$
\beta_{i j}:=\frac{\pi_{j} p\left(x_{i} ; \theta_{j}\right)}{\sum_{l} \pi_{l} p\left(x_{i} ; \theta_{l}\right)}
$$

M-Step: optimize the bound over Θ, using above β values

The EM algorithm

Assume $p(x)=\sum_{j=1}^{K} \pi_{j} p\left(x ; \theta_{j}\right)$ is a mixture density.

$$
\ell(\mathcal{X} ; \Theta):=\sum_{i=1}^{n} \log \left(\sum_{j=1}^{K} \pi_{j} p\left(x_{i} ; \theta_{j}\right)\right)
$$

Use concavity of $\log t$ to compute lower-bound

$$
\ell(\mathcal{X} ; \Theta) \geq \sum_{i j} \beta_{i j} \log \left(\pi_{j} p\left(x_{i} ; \theta_{j}\right) / \beta_{i j}\right)
$$

E-Step: Optimize over $\beta_{i j}$, to set them to posterior probabilities:

$$
\beta_{i j}:=\frac{\pi_{j} p\left(x_{i} ; \theta_{j}\right)}{\sum_{l} \pi_{l} p\left(x_{i} ; \theta_{l}\right)}
$$

M-Step: optimize the bound over Θ, using above β values
' Exercise: Derive a "stochastic" version of EM.

Convex-Concave Procedure

$$
\min _{x} F(x):=f(x)-h(x), \text { where } f, h \text { are both convex. }
$$

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

Convex-Concave Procedure

$$
\min _{x} F(x):=f(x)-h(x), \text { where } f, h \text { are both convex. }
$$

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method

$$
h(x) \geq h(y)+\langle\nabla h(y), x-y\rangle . \text { Thus, }
$$

Convex-Concave Procedure

$$
\min _{x} F(x):=f(x)-h(x), \text { where } f, h \text { are both convex. }
$$

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method

$$
\begin{gathered}
h(x) \geq h(y)+\langle\nabla h(y), x-y\rangle . \text { Thus, } \\
F(x) \leq f(x)-h(y)-\langle\nabla h(y), x-y\rangle=: G(x, y)
\end{gathered}
$$

Convex-Concave Procedure

$$
\min _{x} F(x):=f(x)-h(x), \text { where } f, h \text { are both convex. }
$$

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method

$$
\begin{gathered}
h(x) \geq h(y)+\langle\nabla h(y), x-y\rangle . \text { Thus, } \\
F(x) \leq f(x)-h(y)-\langle\nabla h(y), x-y\rangle=: G(x, y)
\end{gathered}
$$

Observe: $F(x)=G(x, x)$ and $F(x) \leq G(x, y)$. CCCP algo is

$$
\begin{aligned}
x_{k+1} & =\underset{x}{\operatorname{argmin}} G\left(x, x_{k}\right) \\
\nabla f\left(x_{k+1}\right) & =\nabla h\left(x_{k}\right)
\end{aligned}
$$

Convex-Concave Procedure

$$
\min _{x} F(x):=f(x)-h(x), \text { where } f, h \text { are both convex. }
$$

Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method

$$
\begin{gathered}
h(x) \geq h(y)+\langle\nabla h(y), x-y\rangle . \text { Thus, } \\
F(x) \leq f(x)-h(y)-\langle\nabla h(y), x-y\rangle=: G(x, y)
\end{gathered}
$$

Observe: $F(x)=G(x, x)$ and $F(x) \leq G(x, y)$. CCCP algo is

$$
\begin{aligned}
x_{k+1} & =\underset{x}{\operatorname{argmin}} G\left(x, x_{k}\right) \\
\nabla f\left(x_{k+1}\right) & =\nabla h\left(x_{k}\right)
\end{aligned}
$$

Exercise: Show that the EM algorithm is a special case of CССР.

Convex-Concave Procedure

$\min _{x} F(x):=f(x)-h(x)$, where f, h are both convex.
Difference of convex (DC) functions widely studied in d.c. programming. They have many nice properties, including: set of dc functions is a vector space; dc functions are locally Lipschitz on the interior of their domain, etc.

CCCP is an MM method

$$
\begin{gathered}
h(x) \geq h(y)+\langle\nabla h(y), x-y\rangle . \text { Thus, } \\
F(x) \leq f(x)-h(y)-\langle\nabla h(y), x-y\rangle=: G(x, y)
\end{gathered}
$$

Observe: $F(x)=G(x, x)$ and $F(x) \leq G(x, y)$. CCCP algo is

$$
\begin{aligned}
x_{k+1} & =\underset{x}{\operatorname{argmin}} G\left(x, x_{k}\right) \\
\nabla f\left(x_{k+1}\right) & =\nabla h\left(x_{k}\right)
\end{aligned}
$$

Exercise: Show that the EM algorithm is a special case of CCCP.
CCCP often quite useful: always try as a baseline!

Example 1 - Sinkhorn's method

Theorem. (Sinkhorn, 1964). Let A be a strictly positive matrix. There exists a unique doubly stochasic matrix $M=E A D$, where E and D are strictly positive diagonal matrices. Moreover, the iterative procedure of alternatingly normalizing the rows and columns of A to sum to 1 converges to M.

Example 1 - Sinkhorn's method

Theorem. (Sinkhorn, 1964). Let A be a strictly positive matrix. There exists a unique doubly stochasic matrix $M=E A D$, where E and D are strictly positive diagonal matrices. Moreover, the iterative procedure of alternatingly normalizing the rows and columns of A to sum to 1 converges to M.

Theorem. (Yuille, Rangarajan, 2002). Sinkhorn's algorithms is CCCP with cost function: $\phi(r)=-\sum_{i} \log r_{i}+$ $\sum_{i} \log \left(\sum_{j} r_{j} A_{i j}\right)$ where $\left\{r_{i}\right\}$ are the diagonal elements of E and the diagonal elements of D are given by $\left(\sum_{j} r_{j} A_{i j}\right)^{-1}$.
Exercise: Verify the above claim.

Example 2 - Learning DPP Kernels

$$
\max _{L \succ 0} \phi(L):=\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{det}\left(U_{i}^{*} L U_{i}\right)-\log \operatorname{det}(I+L)
$$

MLE for learning DPP kernel $L ; U_{i}$: compression matrices

Example 2 - Learning DPP Kernels

$$
\max _{L \succ 0} \phi(L):=\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{det}\left(U_{i}^{*} L U_{i}\right)-\log \operatorname{det}(I+L)
$$

MLE for learning DPP kernel $L ; U_{i}$: compression matrices

$$
\nabla \phi(L)=0: \quad \sum_{i=1}^{n} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-n(I+L)^{-1}=0
$$

Example 2 - Learning DPP Kernels

$$
\max _{L \succ 0} \phi(L):=\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{det}\left(U_{i}^{*} L U_{i}\right)-\log \operatorname{det}(I+L)
$$

MLE for learning DPP kernel $L ; U_{i}$: compression matrices

$$
\nabla \phi(L)=0: \quad \sum_{i=1}^{n} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-n(I+L)^{-1}=0
$$

Now a simple but crucial trick: write

$$
\Delta:=\frac{1}{n} \sum_{i} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-(I+L)^{-1}
$$

Example 2 - Learning DPP Kernels

$$
\max _{L \succ 0} \phi(L):=\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{det}\left(U_{i}^{*} L U_{i}\right)-\log \operatorname{det}(I+L)
$$

MLE for learning DPP kernel $L ; U_{i}$: compression matrices

$$
\nabla \phi(L)=0: \quad \sum_{i=1}^{n} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-n(I+L)^{-1}=0
$$

Now a simple but crucial trick: write

$$
\begin{aligned}
\Delta & :=\frac{1}{n} \sum_{i} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-(I+L)^{-1} \\
\Delta+L^{-1} & =L^{-1} \quad(\nabla \phi(L)=0)
\end{aligned}
$$

Example 2 - Learning DPP Kernels

$$
\max _{L \succ 0} \phi(L):=\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{det}\left(U_{i}^{*} L U_{i}\right)-\log \operatorname{det}(I+L)
$$

MLE for learning DPP kernel $L_{;} U_{i}$: compression matrices

$$
\nabla \phi(L)=0: \quad \sum_{i=1}^{n} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-n(I+L)^{-1}=0
$$

Now a simple but crucial trick: write

$$
\begin{aligned}
\Delta & :=\frac{1}{n} \sum_{i} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-(I+L)^{-1} \\
\Delta+L^{-1} & =L^{-1} \quad(\nabla \phi(L)=0)
\end{aligned}
$$

Fixed-point iteration of Mariet-Sra (2015)

$$
L_{k+1} \leftarrow L_{k}+L_{k} \Delta_{k} L_{k}
$$

Example 2 - Learning DPP Kernels

$$
\max _{L \succ 0} \phi(L):=\frac{1}{n} \sum_{i=1}^{n} \log \operatorname{det}\left(U_{i}^{*} L U_{i}\right)-\log \operatorname{det}(I+L)
$$

MLE for learning DPP kernel $L ; U_{i}$: compression matrices

$$
\nabla \phi(L)=0: \quad \sum_{i=1}^{n} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-n(I+L)^{-1}=0
$$

Now a simple but crucial trick: write

$$
\begin{aligned}
\Delta & :=\frac{1}{n} \sum_{i} U_{i}\left(U_{i}^{*} L U_{i}\right)^{-1} U_{i}^{*}-(I+L)^{-1} \\
\Delta+L^{-1} & =L^{-1} \quad(\nabla \phi(L)=0)
\end{aligned}
$$

Fixed-point iteration of Mariet-Sra (2015)

$$
L_{k+1} \leftarrow L_{k}+L_{k} \Delta_{k} L_{k}
$$

Remarkably, this generates monotonic \uparrow sequence $\left\{\phi\left(L_{k}\right)\right\}_{k \geq 1}$.

Demystifying the iteration

Key idea: Write $\psi(S)=\phi\left(L^{-1}\right)$. Then

Demystifying the iteration

Key idea: Write $\psi(S)=\phi\left(L^{-1}\right)$. Then

$$
\psi(S)=\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}\left(I+S^{-1}\right)
$$

Demystifying the iteration

Key idea: Write $\psi(S)=\phi\left(L^{-1}\right)$. Then

$$
\begin{aligned}
\psi(S) & =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}\left(I+S^{-1}\right) \\
& =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}(I+S)+\log \operatorname{det}(S)
\end{aligned}
$$

Demystifying the iteration

Key idea: Write $\psi(S)=\phi\left(L^{-1}\right)$. Then

$$
\begin{aligned}
\psi(S) & =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}\left(I+S^{-1}\right) \\
& =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}(I+S)+\log \operatorname{det}(S) \\
& =f(S)+h(S)
\end{aligned}
$$

where h is concave and f is convex.

Demystifying the iteration

Key idea: Write $\psi(S)=\phi\left(L^{-1}\right)$. Then

$$
\begin{aligned}
\psi(S) & =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}\left(I+S^{-1}\right) \\
& =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}(I+S)+\log \operatorname{det}(S) \\
& =f(S)+h(S)
\end{aligned}
$$

where h is concave and f is convex. Now invoke CCCP (remember we are maximizing).

Demystifying the iteration

Key idea: Write $\psi(S)=\phi\left(L^{-1}\right)$. Then

$$
\begin{aligned}
\psi(S) & =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}\left(I+S^{-1}\right) \\
& =\frac{1}{n} \sum_{i} \log \operatorname{det}\left(U_{i}^{*} S^{-1} U_{i}\right)-\log \operatorname{det}(I+S)+\log \operatorname{det}(S) \\
& =f(S)+h(S)
\end{aligned}
$$

where h is concave and f is convex. Now invoke CCCP (remember we are maximizing).

Conjecture. For every "step-size" $\alpha \in(0, \gamma)$, the iteration $L_{k+1}=L_{k}+\alpha L_{k} \Delta_{k} L_{k}$ generates monotonic $\phi\left(L_{k}\right)$ values.

DC Programming
 $$
f(x)-g(x)
$$

DC programming

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

DC Programming: Overview
R. Horst ${ }^{1}$ and N. V. Thoai ${ }^{2}$

DC programming

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s 10107-018-1235-y

DC Programming: Overview

R. Horst ${ }^{1}$ and N. V. Thoai ${ }^{2}$

DC programming and DCA: thirty years of developments

Hoai An Le Thi ${ }^{1}{ }^{(+5}$ - Tao Pham Dinh ${ }^{2}$

DC programming

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s 10107-018-1235-y

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

DC Programming: Overview

R. Horst ${ }^{1}$ and N. V. Thoai ${ }^{2}$

DC programming and DCA: thirty years of developments

Hoai An Le Thi ${ }^{1}{ }^{(+5}$ - Tao Pham Dinh ${ }^{2}$

Example: The k-th largest singular value: $\sigma_{k}(X)=\|X\|_{k}-\|X\|_{k-1}$. This shows that $\sigma_{k}(\cdot)$ is locally Lipschitz (d.c. functions are known to be LL), which is otherwise a challenging result to establish directly.

[^0]
DC programming

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s 10107-018-1235-y

JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 103, No. 1, pp. 1-43, OCTOBER 1999

DC Programming: Overview

R. Horst ${ }^{1}$ and N. V. Thoai ${ }^{2}$

DC programming and DCA: thirty years of developments

Hoai An Le Thi ${ }^{1}{ }^{(+5}$ - Tao Pham Dinh ${ }^{2}$

Example: The k-th largest singular value: $\sigma_{k}(X)=\|X\|_{k}-\|X\|_{k-1}$. This shows that $\sigma_{k}(\cdot)$ is locally Lipschitz (d.c. functions are known to be LL), which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability

DC programming

Math. Program., Ser. B (2018) 169:5-68 https://doi.org/10.1007/s 10107-018-1235-y

DC Programming: Overview

R. Horst ${ }^{1}$ and N. V. Thoai ${ }^{2}$

DC programming and DCA: thirty years of developments

Hoai An Le Thi ${ }^{1}{ }^{(+5}$ - Tao Pham Dinh ${ }^{2}$

Example: The k-th largest singular value: $\sigma_{k}(X)=\|X\|_{k}-\|X\|_{k-1}$. This shows that $\sigma_{k}(\cdot)$ is locally Lipschitz (d.c. functions are known to be LL), which is otherwise a challenging result to establish directly.

Note: DC programming does not assume differentiability
Explore: DC programming theory, algos, applications.

Amusement

$$
I(p):=\sqrt{p} \int_{0}^{\infty}\left|\frac{\sin x}{x}\right|^{p} d x
$$

$$
\text { Is } I(p)=f(p)-h(p) \text { for convex } f, h \text { for } p \geq 1 \text { ? }
$$

[^0]:

