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Coordinate descent

So far: min f (x) =
∑n

i=1 fi(x)

Since x ∈ Rd, now consider

min f (x) = f (x1, x2, . . . , xd)

Previously, we went through f1, . . . , fn
What if we now go through x1, . . . , xd one by one?

Explore: Going through both [n] and [d]?
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Coordinate descent

Coordinate descent
� For k = 0, 1, . . .

Pick an index i from {1, . . . , d}
Optimize the ith coordinate

xk+1
i ← argmin

ξ∈R
f (xk+1

1 , . . . , xk+1
i−1︸ ︷︷ ︸

done

, ξ︸︷︷︸
current

, xk
i+1, . . . , x

k
d︸ ︷︷ ︸

todo

)

� Decide when/how to stop; return xk
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Coordinate descent - context

♣ One of the simplest optimization methods

♣ Old idea: Gauss-Seidel, Jacobi methods for linear systems!
♣ Can be “slow”, but sometimes very competitive
♣ Gradient, subgradient, incremental methods also “slow”
♣ But incremental, stochastic gradient methods are scalable
♣ Renewed interest in CD was driven by ML
♣ Notice: in general CD is “derivative free”
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CD – which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [∇f (xk)]i

Derivative free rules:
♣ Cyclic order 1, 2, . . . , d, 1, . . .
♣ Almost cyclic: Each coordinate 1 ≤ i ≤ d picked at least
once every B successive iterations (B ≥ d)
♣ Double sweep, 1, . . . , d then d− 1, . . . , 1, repeat
♣ Cylic with permutation: random order each cycle
♣ Random sampling: pick random index at each iteration

Which ones would you prefer? Why?
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Exercise: CD for least squares

min
x
‖Ax− b‖2

2

Exercise: Obtain an update for j-th coordinate
Coordinate descent update

xj ←

∑m
i=1 aij

(
bi −

∑
l 6=j ailxl

)
∑m

i=1 a2
ij

(dropped superscripts, since we overwrite)
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Coordinate descent – some remarks

Advantages
♦ Each iteration usually cheap (single variable optimization)

♦ No extra storage vectors needed
♦ No stepsize tuning
♦ No other pesky parameters (usually) that must be tuned
♦ Simple to implement
♦ Can work well for large-scale problems

Disadvantages
♠ Tricky if single variable optimization is hard
♠ Convergence theory can be complicated
♠ Can slow down near optimum
♠ Nonsmooth case more tricky

♠ Explore: not easy to use for deep learning...
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BCD
(Basics, Convergence)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) 8



Block coordinate descent (BCD)

min f (x) := f (x1, . . . , xm)

x ∈ X1 ×X2 × · · · × Xm.

Gauss-Seidel update

xk+1
i ← argmin

ξ∈Xi

f (xk+1
1 , . . . , xk+1

i−1︸ ︷︷ ︸
done

, ξ︸︷︷︸
current

, xk
i+1, . . . , x

k
m︸ ︷︷ ︸

todo

)

Jacobi update (easy to parallelize)

xk+1
i ← argmin

ξ∈Xi

f (xk
1, . . . , xk

i−1︸ ︷︷ ︸
don′t clobber

, ξ︸︷︷︸
current

, xk
i+1, . . . , xk

m︸ ︷︷ ︸
todo

)
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BCD – convergence

Theorem. Let f be C1 over X :=
∏m

i=1Xi. Assume for each
block i and x ∈ X , the minimum

min
ξ∈Xi

f (x1, . . . , xi+1, ξ, xi+1, . . . , xm)

is uniquely attained. Then, every limit point of the sequence{
xk} generated by BCD, is a stationary point of f .

Corollary. If f is in addition convex, then every limit point of
the BCD sequence

{
xk} is a global minimum.

I Unique solutions of subproblems not always possible
I Above result is only asymptotic (holds in the limit)
I Warning! BCD may cycle indefinitely without converging,

if number blocks > 2 and objective nonconvex.
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BCD – Two blocks

Two block BCD

minimize f (x) = f (x1, x2) x ∈ X1 ×X2.

Theorem. (Grippo & Sciandrone (2000)). Let f be continu-
ously differentiable. LetX1,X2 be closed and convex. Assume
both BCD subproblems have solutions and the sequence

{
xk}

has limit points. Then, every limit point of
{

xk} is stationary.

I No need of unique solutions to subproblems
I BCD for 2 blocks is also called: Alternating Minimization
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CD – projection onto convex sets

min 1
2‖x− y‖2

2

s.t. x ∈ C1 ∩ C2 ∩ · · · ∩ Cm.

Solution 1: Rewrite using indicator functions

min 1
2‖x− y‖2

2 +
∑m

i=1
δCi(x).

I Now invoke Douglas-Rachford using the product-space trick

Solution 2: Take dual of the above formulation
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Solution 1: Product space technique

I Original problem overH = Rn

I Suppose we have
∑n

i=1 fi(x)

I Introduce n new variables (x1, . . . , xn)

I Now problem is over domainHn := "n
i=1H

I New constraint: x1 = x2 = . . . = xn

min
(x1,...,xn)

∑
i
fi(xi)

s.t. x1 = x2 = · · · = xn.

Technique due to: G. Pierra (1976)
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Solution 1: Product space technique

min
x

f (x) + 1B(x)

where x ∈ Hn and B = {z ∈ Hn | z = (x, x, . . . , x)}

I Let y = (y1, . . . , yn)

I proxf (y) = (proxf1(y1), . . . ,proxfn(yn))

I proxB ≡ ΠB(y) can be solved as follows:
minz∈B

1
2‖z− y‖2

2

minx∈H
∑

i
1
2‖x− yi‖2

2

=⇒ x = 1
n
∑

i yi

Exercise: Work out the details of the Douglas-Rachford
algorithm using the above product space trick.
Remark: This technique commonly exploited in ADMM too
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Solution 2: proximal Dykstra

min 1
2‖x− y‖2

2 + f (x) + h(x)

L(x, z,w, ν, µ) := 1
2‖x− y‖2

2 + f (z) + h(w) + νT(x− z) +µT(x−w)

g(ν, µ) := inf
x,z,w

L(x, z, ν, µ)

x− y + ν + µ = 0 =⇒ x = y− ν − µ
g(ν, µ) = − 1

2‖ν + µ‖2
2 + (ν + µ)Ty− f ∗(ν)− h∗(µ)

Dual as minimization problem

min k(ν, µ) := 1
2‖ν + µ− y‖2

2 + f ∗(ν) + h∗(µ)
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The Proximal-Dykstra method

Apply CD to k(ν, µ) = 1
2‖ν + µ− y‖2

2 + f ∗(ν) + h∗(µ)

νk+1 = argminν k(ν, µk)

µk+1 = argminµ k(νk+1, µ)

I 0 ∈ ν + µk − y + ∂f ∗(ν)

I 0 ∈ νk+1 + µ− y + ∂h∗(µ)

I y− µk ∈ ν + ∂f ∗(ν) = (I + ∂f ∗)(ν)
=⇒ ν = proxf∗(y− µk) =⇒ ν = y− µk − proxf (y− µk)

I Similarly, we see that
µ = y− νk+1 − proxh(y− νk+1)

νk+1 ← y− µk − proxf (y− µk)

µk+1 ← y− νk+1 − proxh(y− νk+1)
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Proximal-Dykstra as CD

� Simplify, and use Lagrangian stationarity to obtain primal

x = y− ν − µ =⇒ y− µ = x + ν

� Thus, the CD iteration may be rewritten as

tk ← proxf (xk + νk)

νk+1 ← xk + νk − tk

xk+1 ← proxh(µk + tk)

µk+1 ← µk + tk − xk+1

� We used: proxh(y− νk+1) = µk+1 − y− νk+1 = xk+1

� This is the proximal-Dykstra method!

Explore: Pros-cons of Prox-Dykstra versus product space+DR
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CD – nonsmooth case
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CD for nonsmooth convex problems

min |x1 − x2|+ 1
2 |x1 + x2|
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CD for separable nonsmoothness

I Nonsmooth part is separable

min
x∈Rd

f (x) +
∑d

i=1
ri(xi)

Theorem. If f is convex, continuously differentiable, each
ri(x) is closed, convex, and each coordinate admits a unique
solution. Further, assume we go through all coordinates in an
essentially cyclic way. Then, the sequence

{
xk} generated by

CD is bounded, and every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness
(under more assumptions), can be found in: “Convergence of Block Coordinate
Descent Method for Nondifferentiable Minimization” by P. Tseng (2001).
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∑d

i=1
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CD – iteration complexity
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CD non-asymptotic rate

I So far, we saw CD based on essentially cyclic rules

I It is difficult to prove global convergence and almost
impossible to estimate global rate of convergence

I Above results highlighted at best local (asymptotic) rates
� Consider the unconstrained problem min f (x), s.t., x ∈ Rd

� Assume f is convex, with componentwise Lipschitz gradients

|∇if (x + hei)−∇if (x)| ≤ Li|h|, x ∈ Rd, h ∈ R.

Here ei denotes the ith canonical basis vector

Choose x0 ∈ Rd. Let M = maxi Li; For k ≥ 0

ik = argmax
1≤i≤d

|∇if (xk)|

xk+1 = xk − 1
M∇ik f (xk)eik .
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CD – non-asymptotic convergence

Theorem. Let
{

xk} be iterate sequence generated by above
greedy CD method. Then,

f (xk)− f ∗ ≤
2dM‖x0 − x∗‖2

2
k + 4

, k ≥ 0.

I Looks like gradient-descent O(1/k) bound for C1
L cvx

I Notice factor of d in the numerator!
I But this method is impractical
I At each step, it requires access to full gradient
I Might as well use ordinary gradient methods!
I Also, if f ∈ C1

L, it can easily happen that M ≥ L
I So above rate is in general, worse than gradient methods
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BCD – Notation

I Decomposition: E = [E1, . . . ,En] into n blocks
I Corresponding decomposition of x is

(ET
1 x︸︷︷︸

N1+

, ET
2 x︸︷︷︸

N2+

, . . . ,

· · ·
ET

nx︸︷︷︸
+Nn=N

) = (x(1), x(2), . . . , x(n))

I Observation:

ET
i Ej =

{
INi i = j
0Ni,Nj i 6= j.

I So the Eis define our partitioning of the coordinates
I Just fancier notation for a random partition of coordinates
I Now with this notation . . .
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BCD – formal setup

min f (x) where x ∈ Rd

Assume gradient of block i is Lipschitz continuous∗∗

‖∇if (x + Eih)−∇if (x)‖∗ ≤ Li‖h‖

Block gradient∇if (x) is projection of full grad: ET
i ∇f (x)

∗∗ — each block can use its own norm

Block Coordinate “Gradient” Descent
I Using the descent lemma, we have blockwise upper bounds

f (x + Eih) ≤ f (x) + 〈∇if (x), h〉+ Li
2 ‖h‖

2, for i = 1, . . . , d.

I At each step, minimize these upper bounds!
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Randomized BCD

I For k ≥ 0 (no init. of x necessary)

I Pick a block i from [d] with probability pi > 0
I Optimize upper bound (partial gradient step) for block i

h = argmin
h

f (xk) + 〈∇if (xk), h〉+ Li
2 ‖h‖

2

h = − 1
Li
∇if (xk)

I Update the impacted coordinates of x, formally

x(i)k+1 ← x(i)k + h

xk+1 ← xk − 1
Li

Ei∇f (xk)

Notice: Original BCD had: x(i)k = argminh f (. . . , h︸︷︷︸
block i

, . . .)

We’ll call this BCM (Block Coordinate Minimization)
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Exercise: proximal extension

min f (x) + r(x)

I If block separable r(x) :=
∑n

i=1 ri(x(i))

x(i)k = argmin
h

f (xk) + 〈∇if (xk), h〉+ Li
2 ‖h‖

2 + ri(ET
i xk + h)

x(i)k = proxri
(· · ·)

Exercise: Fill in the dots

h = prox(1/L)ri

(
ET

i xk − 1
Li
∇if (xk)

)
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Randomized BCD – analysis

h← argminh f (xk) + 〈∇if (xk), h〉+ Li
2 ‖h‖

2

Descent:
xk+1 = xk + Eih

f (xk+1) ≤ f (xk) + 〈∇if (xk), h〉+ Li
2 ‖h‖

2

xk+1 = xk − 1
Li

Ei∇if (xk)

f (xk+1) ≤ f (xk)− 1
Li
‖∇if (xk)‖2 + Li

2

∥∥∥− 1
Li
∇if (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇if (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇if (xk)‖2
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∥∥∥− 1
Li
∇if (xk)

∥∥∥2

f (xk+1) ≤ f (xk)− 1
2Li
‖∇if (xk)‖2.

f (xk)− f (xk+1) ≥ 1
2Li
‖∇if (xk)‖2
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Randomized BCD – analysis
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Randomized BCD – analysis

Expected descent:

f (xk)− E[f (xk+1|xk)] =

d∑
i=1

pi
(
f (xk)− f (xk − 1

Li
Ei∇if (xk))

)

≥
d∑

i=1

pi
2Li
‖∇if (xk)‖2

= 1
2‖∇f (xk)‖2

W (suitable W).

Exercise: What’s expected descent with uniform probabilities?

Descent plus some more (hard) work yields

O
(d
ε

∑
i
Li‖x

(i)
0 − x(i)∗ ‖2

)
as the iteration complexity of obtaining E[f (xk)]− f ∗ ≤ ε
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BCD – Exercise

I Recall Lasso problem: min 1
2‖Ax− b‖2 + λ‖x‖1

I Here x ∈ RN

I Make n = N blocks
I Show what the Randomized BCD iterations look like
I Notice, 1D prox operations for λ| · | arise
I Try to implement it as efficiently as you can (i.e., do not copy

or update vectors / coordinates than necessary)
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Connections
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CD – exercise

min
1
n

n∑
i=1

fi(xTai) +
λ

2
‖x‖2.

Dual problem

max
α

1
n

n∑
i=1

−f ∗i (−αi)−
λ

2

∥∥∥ 1
λn

n∑
i=1

αiai

∥∥∥2

Exercise: Study the SDCA algorithm and derive a connection
between it and SAG/SAGA family of algorithms.

S. Shalev-Shwartz, T. Zhang. Stochastic Dual Coordinate Ascent Methods for
Regularized Loss Minimization. JMLR (2013).
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Other connections

Explore: Block-Coordinate Frank-Wolfe algorithm.

min
x

f (x), s.t. x ∈
∏

i

Xi

Explore: Doubly stochastic methods

min f (x) =
∑

i
fi(x1, . . . , xd)

Being jointly stochastic over fi as well as coordinates.

Explore: CD with constraints (linear and nonlinear constraints)
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