Optimization for Machine Learning

Lecture 12: Coordinate Descent, BCD, Altmin
6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

01 Apr, 2021

Coordinate descent

So far: minf(x) = 37, fi(x)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 2

Coordinate descent

So far: minf(x) = Y, fi(x)

Since x € RY, now consider

minf(x) = f(x1,x2,...,X4)

Previously, we went through fi, ..., f,

What if we now go through x1, ..., x; one by one?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 2

Coordinate descent

So far: minf(x) = Y, fi(x)

Since x € RY, now consider

minf(x) = f(x1,x2,...,X4)

Previously, we went through fi, ..., f,

What if we now go through x1, ..., x; one by one?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 2

Coordinate descent

Coordinate descent
B Fork=0,1,...

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 3

Coordinate descent

Coordinate descent
B Fork=0,1,...
m Pick an index i from {1,...,d}

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 3

Coordinate descent

Coordinate descent

W Fork=0,1,...
m Pick an index i from {1,...,d}
m Optimize the ith coordinate
k+ k+1 k+1 k k
< argminf(x ..,x:l, X1 Xyg)
£eR N——
done current todo

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

3

Coordinate descent

Coordinate descent

W Fork=0,1,...
m Pick an index i from {1,...,d}
m Optimize the ith coordinate
k+ k+1 k+1 k k
< argminf(x ..,x:l, X1 Xyg)
£eR N——
done current todo

B Decide when/how to stop; return xk

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

3

Coordinate descent - context

& One of the simplest optimization methods

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 4

Coordinate descent - context

& One of the simplest optimization methods

& Old idea: Gauss-Seidel, Jacobi methods for linear systems!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

4

Coordinate descent - context

& One of the simplest optimization methods
& Old idea: Gauss-Seidel, Jacobi methods for linear systems!

& Can be “slow”, but sometimes very competitive

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

4

Coordinate descent - context

& One of the simplest optimization methods
& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
& Can be “slow”, but sometimes very competitive

& Gradient, subgradient, incremental methods also “slow”

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

4

Coordinate descent - context

& One of the simplest optimization methods

& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
& Can be “slow”, but sometimes very competitive

& Gradient, subgradient, incremental methods also “slow”
& But incremental, stochastic gradient methods are scalable

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

4

Coordinate descent - context

& One of the simplest optimization methods

& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
& Can be “slow”, but sometimes very competitive

& Gradient, subgradient, incremental methods also “slow”
& But incremental, stochastic gradient methods are scalable
& Renewed interest in CD was driven by ML

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

4

Coordinate descent - context

& One of the simplest optimization methods

& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
& Can be “slow”, but sometimes very competitive

& Gradient, subgradient, incremental methods also “slow”
& But incremental, stochastic gradient methods are scalable
& Renewed interest in CD was driven by ML

& Notice: in general CD is “derivative free”

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

4

CD - which coordinate?

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];

Derivative free rules:

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];

Derivative free rules:
& Cyclicorder1,2,....d,1,...

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];
Derivative free rules:

& Cyclicorder1,2,....d,1,...

& Almost cyclic: Each coordinate 1 < i < d picked at least
once every B successive iterations (B > d)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];
Derivative free rules:

& Cyclicorder1,2,....d,1,...

& Almost cyclic: Each coordinate 1 < i < d picked at least
once every B successive iterations (B > d)

& Double sweep, 1,...,dthend —1,...,1, repeat

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];
Derivative free rules:

& Cyclicorder1,2,...,d,1,...

& Almost cyclic: Each coordinate 1 < i < d picked at least
once every B successive iterations (B > d)

& Double sweep, 1,...,dthend —1,...,1, repeat

& Cylic with permutation: random order each cycle

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

5

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the
index that minimizes [Vf (xy)];
Derivative free rules:

& Cyclicorder1,2,...,d,1,...

& Almost cyclic: Each coordinate 1 < i < d picked at least
once every B successive iterations (B > d)

& Double sweep, 1,...,dthend —1,...,1, repeat
& Cylic with permutation: random order each cycle

% Random sampling: pick random index at each iteration

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

5

Exercise: CD for least squares

min ||Ax — b||5
X

Exercise: Obtain an update for j-th coordinate
Coordinate descent update

2?1:1 aij (bi - Zl;éj ﬂilxz>
2in1 az'zj

(dropped superscripts, since we overwrite)

x]-<—

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 6

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
¢ No extra storage vectors needed

& No stepsize tuning &

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &

& No other pesky parameters (usually) that must be tuned

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement

¢ Can work well for large-scale problems

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement
¢ Can work well for large-scale problems

Disadvantages

& Tricky if single variable optimization is hard

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement
¢ Can work well for large-scale problems
Disadvantages
& Tricky if single variable optimization is hard

& Convergence theory can be complicated

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement
¢ Can work well for large-scale problems
Disadvantages
& Tricky if single variable optimization is hard
& Convergence theory can be complicated

& Can slow down near optimum

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement
¢ Can work well for large-scale problems
Disadvantages
& Tricky if single variable optimization is hard
& Convergence theory can be complicated
& Can slow down near optimum

& Nonsmooth case more tricky

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 7

Coordinate descent — some remarks

Advantages
¢ Each iteration usually cheap (single variable optimization)
& No extra storage vectors needed
& No stepsize tuning &
& No other pesky parameters (usually) that must be tuned
< Simple to implement
¢ Can work well for large-scale problems
Disadvantages
& Tricky if single variable optimization is hard
& Convergence theory can be complicated
& Can slow down near optimum
& Nonsmooth case more tricky

& Explore: not easy to use for deep learning...

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 7

BCD

(Basics, Convergence)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 8

Block coordinate descent (BCD)

Suvrit Sra (suvrit@mit.edu)

min f(x) = f(x1,...,%m)

xe X XA X X Xy

6.881 Optimization for Machine Learning

(04/01/21; Lecture 12)

9

Block coordinate descent (BCD)

min f(x) = f(x1,...,%m)

xe X XA X X Xy

Gauss-Seidel update

k 1 1 k+1 k k
+ <—ar£g€n;1nf(xk+ ,xifl, € X1 Xy)

done current todo

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

9

Block coordinate descent (BCD)

min f(x) == f(x1,...,%m)

xe X XA X X Xy

Gauss-Seidel update

k+1 +1 k+1 k k
— argmmf(xk DX & X, Xy)
EEX; h,_/ ~N ——
done current todo

Jacobi update (easy to parallelize)

PH K k
+ <—ar£g€€1nf(X, €,

don’t clobber current todo

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 9

BCD - convergence

Theorem. Let f be C! over X := [["; ;. Assume for each
block i and x € X, the minimum

?612161, f(xla o 7xl'+17$7xl'+17 ce. 7xm)

is uniquely attained. Then, every limit point of the sequence
{x*} generated by BCD, is a stationary point of f.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 10

BCD - convergence

Theorem. Let f be C! over X := [["; ;. Assume for each
block i and x € X, the minimum

?161}(1 f(xla o 7xl'+17$7xl'+17 ce. 7xm)

is uniquely attained. Then, every limit point of the sequence
{x*} generated by BCD, is a stationary point of f.

] i Corollary. If f is in addition convex, then every limit point of |
] | the BCD sequence {x*} is a global minimum. |

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

10

BCD - convergence

Theorem. Let f be C! over X := [["; ;. Assume for each
block i and x € X, the minimum

?161/{'1 f(xla o 7xl'+17$7xl'+17 ce. 7xm)

is uniquely attained. Then, every limit point of the sequence

{x*} generated by BCD, is a stationary point of f.

] i Corollary. If f is in addition convex, then every limit point of | !
] | the BCD sequence {x*} is a global minimum. :

» Unique solutions of subproblems not always possible
» Above result is only asymptotic (holds in the limit)

» Warning! BCD may cycle indefinitely without converging,
if number blocks > 2 and objective nonconvex.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

10

BCD - Two blocks

Two block BCD

minimizef(x) = f(x1,x2) x€ &} x A,

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 11

BCD - Two blocks

Two block BCD

minimizef(x) :f(X1,X2) x € Xy x A,.

Theorem. (Grippo & Sciandrone (2000)). Let f be continu-
ously differentiable. Let A7, &, be closed and convex. Assume
both BCD subproblems have solutions and the sequence {x*}
has limit points. Then, every limit point of {x*} is stationary.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 11

BCD - Two blocks

Two block BCD

minimizef(x) :f(X1,X2) x € Xy x A,.

Theorem. (Grippo & Sciandrone (2000)). Let f be continu-
ously differentiable. Let A7, &, be closed and convex. Assume
both BCD subproblems have solutions and the sequence {x*}
has limit points. Then, every limit point of {x*} is stationary.

» No need of unique solutions to subproblems
» BCD for 2 blocks is also called: Alternating Minimization

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 11

CD - projection onto convex sets

. 2
min 3 lx —ylf3
st. xeCinGCynN---NCy.

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 12

CD - projection onto convex sets

: 1 2
min 5[jx -yl
st. xeCinGCyn---NCy.

Solution 1: Rewrite using indicator functions

. 1 R m
min Y- yl3+ 3 o).

» Now invoke Douglas-Rachford using the product-space trick

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

12

CD - projection onto convex sets

: 1 2
min 5[jx -yl
st. xeCinGCyn---NCy.

Solution 1: Rewrite using indicator functions

. m
min - yl3+ 3" oc).
» Now invoke Douglas-Rachford using the product-space trick

Solution 2: Take dual of the above formulation

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

12

Solution 1: Product space technique

» Original problem over H = R"

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 13

Solution 1: Product space technique

» Original problem over H = R"
» Suppose we have >, fi(x)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 13

Solution 1: Product space technique

» Original problem over H = R"
» Suppose we have >, fi(x)

» Introduce n new variables (x1, ..., x,)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 13

Solution 1: Product space technique

» Original problem over H = R"
» Suppose we have >, fi(x)
» Introduce n new variables (x1, ..., x,)

» Now problem is over domain H" := X' ; H

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 13

Solution 1: Product space technique

» Original problem over H = R"
» Suppose we have >, fi(x)
» Introduce n new variables (x1, ..., x,)

» Now problem is over domain H" := X} ; H

» New constraint: x; = xp = ... = X,
min g ﬁ X;)
x17 ,Xn)
st. x1=x=---=Xxy.

Technique due to: G. Pierra (1976)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

13

Solution 1: Product space technique

minf (x) + Ls(x)

wherex e H"and B={ze H" | z= (x,x,...,x)}

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 14

Solution 1: Product space technique

minf(x) + 15(x)
wherex e H"and B={ze H" | z= (x,x,...,x)}
» Lety = (y1,...,Yn)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 14

Solution 1: Product space technique

minf (x) + Ls(x)

wherex e H"and B={ze H" | z= (x,x,...,x)}

» Lety = (y1,...,Yn)
> proxe(y) = (proxg (y1), .- ., proxg, (¥a))

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 14

Solution 1: Product space technique

minf (x) + Ls(x)

wherex e H"and B={ze H" | z= (x,x,...,x)}

» Lety = (y1,...,Yn)
> proxf(y) = (proxf1 (v1),..., PIroxg, (Yn))
» proxg = [Iz(y) can be solved as follows:

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 14

Solution 1: Product space technique

minf (x) + Ls(x)

wherex e H"and B={ze H" | z= (x,x,...,x)}

» Lety = (y1,...,Yn)
> proxf(y) = (proxf1 (v1),..., PIroxg, (Yn))
» proxp = II3(y) can be solvetlzl as foll%ws:
minzes 3z -yl
mingey Y %Hx -]/i”%
= x= L,
Exercise: Work out the details of the Douglas-Rachford

algorithm using the above product space trick.
Remark: This technique commonly exploited in ADMM too

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

14

Solution 2: proximal Dykstra

min 3llx — yl} +f(x) + h(x)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 15

Solution 2: proximal Dykstra

min 3llx — yl} +f(x) + h(x)

L(x,z,w0,v, 1) = x — {3 +£(2) + h(w) + 17 (x — 2) + 4" (x —w)

gv,u) = inf L(x,z,v,p)

X,2,W0

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 15

Solution 2: proximal Dykstra

min 3llx — yl} +f(x) + h(x)

L(x,z,w0,v, 1) = x — {3 +£(2) + h(w) + 17 (x — 2) + 4" (x —w)

glv,p) == inf L(x,z,v,p)

X,2,W0

x—y+v+pu=0 = x=y-v-—pu

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

15

Solution 2: proximal Dykstra

min 3llx — yl} +f(x) + h(x)

L(x,z,w0,v, 1) = x — {3 +£(2) + h(w) + 17 (x — 2) + 4" (x —w)

= inf L(x,z,v, 1)

() X,Z,W0
x—y+v+pu=0 = x=y-v-—pu
gvp) = —lvtpld+ v+)Ty = f @) - ()

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 15

Solution 2: proximal Dykstra

min 3llx — yl} +f(x) + h(x)

L(x,z,w,v, 1) = 3llx = yl3 +£(2) + h(w) + v (x —2) + p' (x —w)

gwyp) = nf L(x,z,v,p)
x—y+v+pu=0 = x=y-v-—pu
gvp) = —lvtpld+ v+)Ty = f @) - ()

Dual as minimization problem

min (v, 1) == 2y + g~ yl3 +F*(v) + " ()

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 15

The Proximal-Dykstra method

Apply CD to k(v,) = 5llv + = yl3 +f*(v) + 1 (n)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 16

The Proximal-Dykstra method

Apply CD to k(v,) = 5llv + = yl3 +f*(v) + 1 (n)

Vky1 = argmin, k(Va /J’k)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 16

The Proximal-Dykstra method

Apply CD to k(v, 1) = v + s~ yl3 + F*(v) + h* ()

Vky1 = argmin, k(ljauk)
pry1 = argming, k(v i)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 16

The Proximal-Dykstra method

Apply CD to k(v, 1) = v + s~ yl3 + F*(v) + h* ()

Vky1 = argmin, k(ljauk)
pry1 = argming, k(v i)

» 0cv+ e —y+off(v)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 16

The Proximal-Dykstra method

Apply CD to k(v, 1) = v + s~ yl3 + F*(v) + h* ()

Vky1 = argmin, k(”a“k)
pry1 = argming, k(v i)

b 0€wt g —y+af ()
» 0 € vey1 +p—y+0h*(p)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 16

The Proximal-Dykstra method

Apply CD to k(v, u) = 5llv + p = yl3 + f*(v) + h* (1)
Vky1 = argmin, k(Va Hk)
pry1 = argming, k(v i)

b 0Cut -yt of)
» 0 € vey1 +p—y+0h*(p)

>y € v+ Of (V) = (1+0f) ()
—> v = proxy. (y —)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 16

The Proximal-Dykstra method

Apply CD to k(v u) = 3llv + p —yl5 +f*(v) +h*(u)
Vky1 = argmin, k(Va Hk)
i1 = argming k(vei1,)

> 0€ v+ —y+of(v)
> 0€ v +p—y+0h*(n)

> y— v +oft(v)=(I+9f)(v)
= v =proxXp(y — k) = v =y — pix — proxp(y — pix)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

16

The Proximal-Dykstra method

Apply CD to k(v, 1) = v + s~ yl3 + F*(v) + h* ()

Vky1 = argmin, k(”?“k)
s = argming k(v 1)

» 0cv+pu—y+0f*(v)
» 0€ vpyr +p—y+0h*(p)
> y— i €v+oft(v) = (I1+0")(v)
= v =proxXp(y —) = v =y — i — Proxe(y —)
» Similarly, we see that
=Y = Vi1 — Proxy(y — Vi)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 16

The Proximal-Dykstra method

Apply CD to k(v,) = 5llv + = yl3 +f*(v) + 1 (n)

Vky1 = argmin, k(”?”k)
s = argming k(v 1)

» 0cv+pu—y+0f*(v)
» 0€ vpyr +p—y+0h*(p)
> y— i €v+oft(v) = (I1+0")(v)
= v =proxXp(y —) = v =y — i — Proxe(y —)
» Similarly, we see that
=Y = Vi1 — Proxy(y — Vi)

kg1 < Y — px — Proxg(y — i)

M1 <= Y — Vg1 — Proxp (Y — Veg1)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 16

Proximal-Dykstra as CD

B Simplify, and use Lagrangian stationarity to obtain primal

X=Yy—v—p = Yy—p=x+v

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 17

Proximal-Dykstra as CD

B Simplify, and use Lagrangian stationarity to obtain primal

X=Y—V—j = Y—p=x+v
B Thus, the CD iteration may be rewritten as

be < proxf(xk +)
Vi1 = X+ v — B
Xkq1 ¢ Proxy (g +)
Hi+1 < i+t — X

B We used: prox;, (Y — Vey1) = Mks1 — Y — Vi1 = Xkt1

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

17

Proximal-Dykstra as CD

B Simplify, and use Lagrangian stationarity to obtain primal
X=Y—V—j = Y—p=x+v
B Thus, the CD iteration may be rewritten as

be < proxf(xk +)
Vi1 = X+ v — B
Xkq1 ¢ Proxy (g +)
Hi+1 < i+t — X

B We used: prox;, (Y — Vey1) = Mks1 — Y — Vi1 = Xkt1
I This is the proximal-Dykstra method!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

17

CD - nonsmooth case

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 18

CD for nonsmooth convex problems

min|x1 — X2| + %|X1 —I—x2|

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 19

CD for separable nonsmoothness

» Nonsmooth part is separable

min f(x) + S

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 20

CD for separable nonsmoothness

» Nonsmooth part is separable

min f(x) + S

Theorem. If f is convex, continuously differentiable, each
ri(x) is closed, convex, and each coordinate admits a unique
solution. Further, assume we go through all coordinates in an
essentially cyclic way. Then, the sequence {xk} generated by
CD is bounded, and every limit point of it is optimal.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 20

CD for separable nonsmoothness

» Nonsmooth part is separable

min f(x) + S

Theorem. If f is convex, continuously differentiable, each
ri(x) is closed, convex, and each coordinate admits a unique
solution. Further, assume we go through all coordinates in an
essentially cyclic way. Then, the sequence {xk} generated by
CD is bounded, and every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness
(under more assumptions), can be found in: “Convergence of Block Coordinate
Descent Method for Nondifferentiable Minimization” by P. Tseng (2001).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 20

CD - iteration complexity

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 21

CD non-asymptotic rate

» So far, we saw CD based on essentially cyclic rules

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 22

CD non-asymptotic rate

» So far, we saw CD based on essentially cyclic rules

» It is difficult to prove global convergence and almost
impossible to estimate global rate of convergence

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

22

CD non-asymptotic rate

» So far, we saw CD based on essentially cyclic rules

» It is difficult to prove global convergence and almost
impossible to estimate global rate of convergence

» Above results highlighted at best local (asymptotic) rates

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 22

CD non-asymptotic rate

» So far, we saw CD based on essentially cyclic rules

» It is difficult to prove global convergence and almost
impossible to estimate global rate of convergence

» Above results highlighted at best local (asymptotic) rates
m Consider the unconstrained problem minf(x), s.t., x € R4

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 22

CD non-asymptotic rate

» So far, we saw CD based on essentially cyclic rules

» It is difficult to prove global convergence and almost
impossible to estimate global rate of convergence

» Above results highlighted at best local (asymptotic) rates
m Consider the unconstrained problem minf(x), s.t., x € R4
m Assume f is convex, with componentwise Lipschitz gradients

IVif (x + he;) — Vif (x)] < Li|h|, x€R\heR.

Here e; denotes the ith canonical basis vector

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 22

CD non-asymptotic rate

» So far, we saw CD based on essentially cyclic rules

» It is difficult to prove global convergence and almost
impossible to estimate global rate of convergence

» Above results highlighted at best local (asymptotic) rates
m Consider the unconstrained problem minf(x), s.t., x € R4
m Assume f is convex, with componentwise Lipschitz gradients

IVif (x + he;) — Vif (x)] < Li|h|, x€R\heR.

Here e; denotes the ith canonical basis vector

Choose xp € R?. Let M = max; L;; Fork > 0

ir = argmax | Vf (xx)|
1<i<d

Xjy1 = Xk — ﬁvi,f(xkkik-

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 22

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* Zd“IHxO - x*H%
— < - " - @ £ > 0.
flx) —f7 < 1 , k>0

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 23

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* Zd“IHxO - x*H%
— < - " - @ £ > 0.
fle) =f7 < 1 , k>0

» Looks like gradient-descent O(1/k) bound for C} cvx
» Notice factor of d in the numerator!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 23

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* ZdAIHXO x* H% k>0
— < > .
f(xk) f = i 1) =

» Looks like gradient-descent O(1/k) bound for C} cvx
» Notice factor of d in the numerator!
» But this method is impractical

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 23

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* ZdAIHXO x* H% k>0
— < > .
f(xk) f = i 1) =

» Looks like gradient-descent O(1/k) bound for C} cvx
» Notice factor of d in the numerator!
» But this method is impractical

» At each step, it requires access to full gradient

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 23

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* Zd“IHxO - X*H%
— < - " - @ £ > 0.
flx) —f7 < 1 , k>0

» Looks like gradient-descent O(1/k) bound for C} cvx
» Notice factor of 4 in the numerator!

» But this method is impractical

» At each step, it requires access to full gradient

» Might as well use ordinary gradient methods!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll

23

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* ZdMHxO - X*H%
— < - " - @ £ > 0.
fle) =f7 < 1 , k>0

Looks like gradient-descent O(1/k) bound for C} cvx
Notice factor of d in the numerator!

At each step, it requires access to full gradient
Might as well use ordinary gradient methods!

>

>

» But this method is impractical

>

>

» Also, if f € C}, it can easily happen that M > L

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 23

CD - non-asymptotic convergence

Theorem. Let {xk} be iterate sequence generated by above
greedy CD method. Then,

* ZdAIHXO x* H% k>0
— < > .
f(xk) f = i 1) =

Looks like gradient-descent O(1/k) bound for C} cvx
Notice factor of d in the numerator!

But this method is impractical

At each step, it requires access to full gradient
Might as well use ordinary gradient methods!

Also, if f € C}, it can easily happen that M > L

So above rate is in general, worse than gradient methods

vVvyVvyVvyyvyyy

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 23

BCD - Notation

» Decomposition: E = [Ey,..., E,] into n blocks

» Corresponding decomposition of x is
(ETx,Elx,..., Elx)= (xM, x@ . x(M)
~ N~ ~—~
Ni+ N+ -+ +Ny=N

» Observation:
EIT Ei= {INi l :]:
ONi’N]. i#].
» So the E;s define our partitioning of the coordinates
» Just fancier notation for a random partition of coordinates

» Now with this notation ...

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 24

BCD - formal setup

min f(x) where x € R?

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 25

BCD - formal setup

min f(x) where x € R?

Assume gradient of block i is Lipschitz continuous**

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 25

BCD - formal setup

min f(x) where x € R?

Assume gradient of block i is Lipschitz continuous™*
IVif (x + Eilt) = Vif (%) || < Li[[]

Block gradient Vf (x) is projection of full grad: E] Vf(x)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 25

BCD - formal setup

min f(x) where x € R

Assume gradient of block i is Lipschitz continuous™*
IVif (x + Eilt) = Vif (%) || < Li[[]

Block gradient Vf (x) is projection of full grad: E] Vf(x)
** — each block can use its own norm

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 25

BCD - formal setup

min f(x) where x € R

Assume gradient of block i is Lipschitz continuous™*
IVif (x + Eilt) = Vif (%) || < Li[[]

Block gradient Vf (x) is projection of full grad: E] Vf(x)
** — each block can use its own norm

Block Coordinate “Gradient” Descent

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 25

BCD - formal setup

min f(x) where x € R?

Assume gradient of block i is Lipschitz continuous™*
IVif (x + Eilt) = Vif (%) || < Li[[]

Block gradient Vf (x) is projection of full grad: E] Vf(x)
** — each block can use its own norm

Block Coordinate “Gradient” Descent

» Using the descent lemma, we have blockwise upper bounds

fx+Eh) <f(x)+ (Vif(x), h) + 5|n|? fori=1,....d.

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 25

BCD - formal setup

min f(x) where x € R?

Assume gradient of block i is Lipschitz continuous™*
IVif (x + Eilt) = Vif (%) || < Li[[]

Block gradient Vf (x) is projection of full grad: E] Vf(x)
** — each block can use its own norm

Block Coordinate “Gradient” Descent

» Using the descent lemma, we have blockwise upper bounds
fx+Eh) <f(x)+ (Vif(x), h) + 5|n|? fori=1,....d.

» At each step, minimize these upper bounds!

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 25

Randomized BCD

» For k > 0 (no init. of x necessary)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 26

Randomized BCD

» For k > 0 (no init. of x necessary)
» Pick a block i from [d] with probability p; > 0

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 26

Randomized BCD

» For k > 0 (no init. of x necessary)
» Pick a block i from [d] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = argminf(xe) + (Vif (), h) + AL

h=—1Vif (%)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 26

Randomized BCD

» For k > 0 (no init. of x necessary)
» Pick a block i from [d] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h= arg;ninf(xk) +(Vif (xx), h) + %Hth
h=—1Vifx)

» Update the impacted coordinates of x, formally

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 26

Randomized BCD

» For k > 0 (no init. of x necessary)
» Pick a block i from [d] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = argminf (x;) + (Vif (xe), 1) + i
h=—1Vif (%)
» Update the impacted coordinates of x, formally

x,((?rl — x,((i) +h

Xj1 < X — LliEin(xk)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 26

Randomized BCD

» For k > 0 (no init. of x necessary)
» Pick a block i from [d] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = argminf (xi) + (Vif (v, h) + 3 1]
h=—1Vif (%)
» Update the impacted coordinates of x, formally
x,((?rl — x,((i) +h
Xjy1 < Xk — LliEin(xk)

Notice: Original BCD had: x\" = argmin, f(..., h _,...)
block i

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 26

Randomized BCD

» For k > 0 (no init. of x necessary)
» Pick a block i from [d] with probability p; > 0
» Optimize upper bound (partial gradient step) for block i

h = argminf (x;) + (Vif (xe), 1) + i
h=—1Vif (%)
» Update the impacted coordinates of x, formally

x,((?rl — x,((i) +h

Xj1 < X — LliEin(xk)

s .. O .
Notice: Original BCD had: x;” = argmin, f(..., h_,...)
block i
We'll call this BCM (Block Coordinate Minimization)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 26

Exercise: proximal extension

) = axgminf(x) + (Vif (), h) + 5 I + 7i(ELxe + 1)
.X,((Z) — prOXri(' ’)

Exercise: Fill in the dots

h = prox py,. (E,Txk = L%_Vi (%))

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 27

Randomized BCD - analysis

h +— argminy f(x) + (Vif (xe), b) + 5 [|h]]>

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) i 28

Randomized BCD - analysis

h +— argminy f(x) + (Vif (xe), b) + 5 [|h]]>

Descent:
xk+1 == xk + Elh
fagn) < flx) + (Vi (x), b) + 5 m)?

N

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12)

28

Randomized BCD - analysis

h +— argminy f(x) + (Vif (xe), b) + 5 [|h]]>

Descent:
X1 = X+ Eh
flo) < fou) + (Vif (i), 1) + 5 1m)?
X1 = x— EVif(xn)

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 28

Randomized BCD - analysis

h « argminy, f(xyx) + (Vif(x¢), h) + %Hh”2

Descent:
Xp1 = x+Eih
fogn) < fG) + (Vi @),)+ AP
xk+1 = X — L%Elvlf(xk)
L; 1 2
feosn) < fe) = HIVFEOIP+ 5 [~E Vi)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 28

Randomized BCD - analysis

h — argming f(x) + (Vif (vi), h) + 5]2
Descent:

Xp1 = x+Eih
fogn) < fG) + (Vi @),)+ AP

xk+1 = X — L%Elvlf(xk)

2

feosn) < fe) = HIVFEOIP+ 5 [~E Vi)
fosn) < f@) = oIVl

fla) = fxeen) = 5 lIVif (017

Suvrit Sra (suvrit@mit.edu)

6.881 Optimization for Machine Learning

(04/01/21; Lecture 12)

28

Randomized BCD - analysis

Expected descent:

d
fla) —Eff(rigalx)] = D> pilf(xe) —f(x — £EVif (%))
i=1

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 29

Randomized BCD - analysis

Expected descent:

d
fla) —Eff(rigalx)] = D> pilf(xe) —f(x — £EVif (%))
i=1

Y

d
S LV)2
i=1

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 29

Randomized BCD - analysis

Expected descent:

d
fla) —Eff(rigalx)] = D> pilf(xe) —f(x — £EVif (%))
i=1

Y

d
Y IVl
i=1

= YVf(x)llfly (suitable W),

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 29

Randomized BCD - analysis

Expected descent:

d
fla) —Eff(rigalx)] = D> pilf(xe) —f(x — £EVif (%))
i=1

Y

d

IV

i=1

= %va(xk)”%v (suitable W).

Exercise: What's expected descent with uniform probabilities?

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 29

Randomized BCD - analysis

Expected descent:

d
fx) —Elfanlx)] = D pilfx) —fx — £EVif(x)))
i=1

d
=IO A\CiCall
i=1
= FIVf@)liy (suitable W).

Exercise: What's expected descent with uniform probabilities?

Descent plus some more (hard) work yields

d , ,
O(2 32 Ll —)
as the iteration complexity of obtaining E[f (xy)] — f* < €

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 29

BCD - Exercise

» Recall Lasso problem: min % |Ax — b||% + Al|x]|1 |
'» Herex € RN E
'» Make n = N blocks E
'» Show what the Randomized BCD iterations look like E
» Notice, 1D prox operations for A| - | arise E

» Try toimplement it as efficiently as you can (i.e., do not copy
i or update vectors / coordinates than necessary) |

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 30

Connections

-
Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH 31

CD - exercise

1 A
min Ezﬁ(xTai)—{—EHtz'
i=1

Dual problem

: i

T~ .. A
max E;_fi(_ai)_i)

n

1 § :

N Qi
i=1

Exercise: Study the SDCA algorithm and derive a connection
between it and SAG/SAGA family of algorithms.

S. Shalev-Shwartz, T. Zhang. Stochastic Dual Coordinate Ascent Methods for
Regularized Loss Minimization. JMLR (2013).

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) IIIH

32

Other connections

Explore: Block-Coordinate Frank-Wolfe algorithm.

mm f(x), sthHé’(’

Explore: Doubly stochastic methods

min f(x) Zflxl,...,

Being jointly stochastic over f; as well as coordinates.

Explore: CD with constraints (linear and nonlinear constraints)

Suvrit Sra (suvrit@mit.edu) 6.881 Optimization for Machine Learning (04/01/21; Lecture 12) Illll 33

