Optimization for Machine Learning

Lecture 12: Coordinate Descent, BCD, Altmin
6.881: MIT

Suvrit Sra
Massachusetts Institute of Technology

01 Apr, 2021

IIITiT

Coordinate descent

So far: $\min f(x)=\sum_{i=1}^{n} f_{i}(x)$

Coordinate descent

$$
\text { So far: } \min f(x)=\sum_{i=1}^{n} f_{i}(x)
$$

Since $x \in \mathbb{R}^{d}$, now consider

$$
\min f(x)=f\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

Previously, we went through f_{1}, \ldots, f_{n}
What if we now go through x_{1}, \ldots, x_{d} one by one?

Coordinate descent

$$
\text { So far: } \min f(x)=\sum_{i=1}^{n} f_{i}(x)
$$

Since $x \in \mathbb{R}^{d}$, now consider

$$
\min f(x)=f\left(x_{1}, x_{2}, \ldots, x_{d}\right)
$$

Previously, we went through f_{1}, \ldots, f_{n}
What if we now go through x_{1}, \ldots, x_{d} one by one?

Explore: Going through both $[n]$ and $[d]$?

Coordinate descent

Coordinate descent
■ For $k=0,1, \ldots$

Coordinate descent

Coordinate descent

- For $k=0,1, \ldots$
- Pick an index i from $\{1, \ldots, d\}$

Coordinate descent

Coordinate descent

■ For $k=0,1, \ldots$

- Pick an index i from $\{1, \ldots, d\}$

■ Optimize the i th coordinate

$$
x_{i}^{k+1} \leftarrow \underset{\xi \in \mathbb{R}}{\operatorname{argmin}} f(\underbrace{x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}}_{\text {done }}, \underbrace{\xi}_{\text {current }}, \underbrace{x_{i+1}^{k}, \ldots, x_{d}^{k}}_{\text {todo }})
$$

Coordinate descent

Coordinate descent

■ For $k=0,1, \ldots$

- Pick an index i from $\{1, \ldots, d\}$

■ Optimize the i th coordinate

$$
x_{i}^{k+1} \leftarrow \underset{\xi \in \mathbb{R}}{\operatorname{argmin}} f(\underbrace{x_{1}^{k+1}, \ldots, x_{i-1}^{k+1}}_{\text {done }}, \underbrace{\xi}_{\text {current }}, \underbrace{x_{i+1}^{k}, \ldots, x_{d}^{k}}_{\text {todo }})
$$

■ Decide when/how to stop; return x^{k}

Coordinate descent - context

\& One of the simplest optimization methods

Coordinate descent - context

\& One of the simplest optimization methods
\& Old idea: Gauss-Seidel, Jacobi methods for linear systems!

Coordinate descent - context

\& One of the simplest optimization methods
\& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
\& Can be "slow", but sometimes very competitive

Coordinate descent - context

\& One of the simplest optimization methods
\& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
\& Can be "slow", but sometimes very competitive
\& Gradient, subgradient, incremental methods also "slow"

Coordinate descent - context

\& One of the simplest optimization methods
\& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
\& Can be "slow", but sometimes very competitive
\& Gradient, subgradient, incremental methods also "slow"
o. But incremental, stochastic gradient methods are scalable

Coordinate descent - context

\& One of the simplest optimization methods
\& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
\& Can be "slow", but sometimes very competitive
\& Gradient, subgradient, incremental methods also "slow"
\& But incremental, stochastic gradient methods are scalable
\& Renewed interest in CD was driven by ML

Coordinate descent - context

\& One of the simplest optimization methods
\& Old idea: Gauss-Seidel, Jacobi methods for linear systems!
\& Can be "slow", but sometimes very competitive
\& Gradient, subgradient, incremental methods also "slow"
\& But incremental, stochastic gradient methods are scalable
\& Renewed interest in CD was driven by ML
$\%$ Notice: in general CD is "derivative free"

CD - which coordinate?

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

Derivative free rules:

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

Derivative free rules:
\& Cyclic order $1,2, \ldots, d, 1, \ldots$

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

Derivative free rules:
\& Cyclic order 1, $2, \ldots, d, 1, \ldots$
\& Almost cyclic: Each coordinate $1 \leq i \leq d$ picked at least once every B successive iterations $(B \geq d)$

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

Derivative free rules:
\& Cyclic order $1,2, \ldots, d, 1, \ldots$
\& Almost cyclic: Each coordinate $1 \leq i \leq d$ picked at least once every B successive iterations $(B \geq d)$
\& Double sweep, $1, \ldots, d$ then $d-1, \ldots, 1$, repeat

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

Derivative free rules:
\& Cyclic order 1, $2, \ldots, d, 1, \ldots$
\& Almost cyclic: Each coordinate $1 \leq i \leq d$ picked at least once every B successive iterations $(B \geq d)$
\& Double sweep, $1, \ldots, d$ then $d-1, \ldots, 1$, repeat
\& Cylic with permutation: random order each cycle

CD - which coordinate?

Gauss-Southwell: If f is differentiable, at iteration k, pick the index that minimizes $\left[\nabla f\left(x_{k}\right)\right]_{i}$

Derivative free rules:
\& Cyclic order $1,2, \ldots, d, 1, \ldots$
\& Almost cyclic: Each coordinate $1 \leq i \leq d$ picked at least once every B successive iterations $(B \geq d)$
\& Double sweep, $1, \ldots, d$ then $d-1, \ldots, 1$, repeat
\& Cylic with permutation: random order each cycle
$\%$ Random sampling: pick random index at each iteration

Exercise: CD for least squares

$$
\min _{x}\|A x-b\|_{2}^{2}
$$

Exercise: Obtain an update for j-th coordinate Coordinate descent update

$$
x_{j} \leftarrow \frac{\sum_{i=1}^{m} a_{i j}\left(b_{i}-\sum_{l \neq j} a_{i l} x_{l}\right)}{\sum_{i=1}^{m} a_{i j}^{2}}
$$

(dropped superscripts, since we overwrite)

Coordinate descent - some remarks

Advantages
\diamond Each iteration usually cheap (single variable optimization)

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement
\diamond Can work well for large-scale problems

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement
\diamond Can work well for large-scale problems
Disadvantages
A Tricky if single variable optimization is hard

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement
\diamond Can work well for large-scale problems
Disadvantages
A Tricky if single variable optimization is hard
© Convergence theory can be complicated

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement
\diamond Can work well for large-scale problems
Disadvantages
A Tricky if single variable optimization is hard
© Convergence theory can be complicated

- Can slow down near optimum

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement
\diamond Can work well for large-scale problems
Disadvantages
A Tricky if single variable optimization is hard
© Convergence theory can be complicated
A Can slow down near optimum

- Nonsmooth case more tricky

Coordinate descent - some remarks

Advantages

\diamond Each iteration usually cheap (single variable optimization)
\diamond No extra storage vectors needed
\diamond No stepsize tuning
\diamond No other pesky parameters (usually) that must be tuned
\diamond Simple to implement
\diamond Can work well for large-scale problems

Disadvantages

© Tricky if single variable optimization is hard
© Convergence theory can be complicated
A Can slow down near optimum
A Nonsmooth case more tricky

- Explore: not easy to use for deep learning...

BCD

(Basics, Convergence)

Block coordinate descent (BCD)

$$
\begin{array}{ll}
\min & f(\boldsymbol{x}):=f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) \\
& \boldsymbol{x} \in \mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{m} .
\end{array}
$$

Block coordinate descent (BCD)

$$
\begin{array}{ll}
\min & f(\boldsymbol{x}):=f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) \\
& \boldsymbol{x} \in \mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{m}
\end{array}
$$

Gauss-Seidel update

$$
\boldsymbol{x}_{i}^{k+1} \leftarrow \underset{\boldsymbol{\xi} \in \mathcal{X}_{i}}{\operatorname{argmin}} f(\underbrace{\boldsymbol{x}_{1}^{k+1}, \ldots, \boldsymbol{x}_{i-1}^{k+1}}_{\text {done }}, \underbrace{\boldsymbol{\xi}}_{\text {current }}, \underbrace{\boldsymbol{x}_{i+1}^{k}, \ldots, \boldsymbol{x}_{m}^{k}}_{\text {todo }})
$$

Block coordinate descent (BCD)

$$
\begin{array}{ll}
\min & f(\boldsymbol{x}):=f\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right) \\
& \boldsymbol{x} \in \mathcal{X}_{1} \times \mathcal{X}_{2} \times \cdots \times \mathcal{X}_{m}
\end{array}
$$

Gauss-Seidel update

$$
\boldsymbol{x}_{i}^{k+1} \leftarrow \underset{\boldsymbol{\xi} \in \mathcal{X}_{i}}{\operatorname{argmin}} f(\underbrace{\boldsymbol{x}_{1}^{k+1}, \ldots, \boldsymbol{x}_{i-1}^{k+1}}_{\text {done }}, \underbrace{\boldsymbol{\xi}}_{\text {current }}, \underbrace{\boldsymbol{x}_{i+1}^{k}, \ldots, \boldsymbol{x}_{m}^{k}}_{\text {todo }})
$$

Jacobi update (easy to parallelize)

$$
\boldsymbol{x}_{i}^{k+1} \leftarrow \underset{\boldsymbol{\xi} \in \mathcal{X}_{i}}{\operatorname{argmin}} f(\underbrace{}_{\text {don't clobber }^{\boldsymbol{x}_{1}^{k}, \ldots, \boldsymbol{x}_{i-1}^{k}}, \underbrace{\boldsymbol{\xi}}_{\text {current }}, \underbrace{\boldsymbol{x}_{i+1}^{k}, \ldots, \boldsymbol{x}_{m}^{k}}_{\text {todo }}), ~(\underbrace{\prime})}
$$

BCD - convergence

Theorem. Let f be C^{1} over $\mathcal{X}:=\prod_{i=1}^{m} \mathcal{X}_{i}$. Assume for each block i and $x \in \mathcal{X}$, the minimum

$$
\min _{\xi \in \mathcal{X}_{i}} f\left(x_{1}, \ldots, x_{i+1}, \boldsymbol{\xi}, x_{i+1}, \ldots, x_{m}\right)
$$

is uniquely attained. Then, every limit point of the sequence $\left\{x^{k}\right\}$ generated by BCD, is a stationary point of f.

BCD - convergence

Theorem. Let f be C^{1} over $\mathcal{X}:=\prod_{i=1}^{m} \mathcal{X}_{i}$. Assume for each block i and $x \in \mathcal{X}$, the minimum

$$
\min _{\xi \in \mathcal{X}_{i}} f\left(x_{1}, \ldots, x_{i+1}, \boldsymbol{\xi}, x_{i+1}, \ldots, x_{m}\right)
$$

is uniquely attained. Then, every limit point of the sequence $\left\{x^{k}\right\}$ generated by BCD, is a stationary point of f.

Corollary. If f is in addition convex, then every limit point of the BCD sequence $\left\{x^{k}\right\}$ is a global minimum.

BCD - convergence

Theorem. Let f be C^{1} over $\mathcal{X}:=\prod_{i=1}^{m} \mathcal{X}_{i}$. Assume for each block i and $x \in \mathcal{X}$, the minimum

$$
\min _{\xi \in \mathcal{X}_{i}} f\left(x_{1}, \ldots, x_{i+1}, \boldsymbol{\xi}, x_{i+1}, \ldots, x_{m}\right)
$$

is uniquely attained. Then, every limit point of the sequence $\left\{x^{k}\right\}$ generated by BCD, is a stationary point of f.

Corollary. If f is in addition convex, then every limit point of the BCD sequence $\left\{x^{k}\right\}$ is a global minimum.

- Unique solutions of subproblems not always possible
- Above result is only asymptotic (holds in the limit)
- Warning! BCD may cycle indefinitely without converging, if number blocks >2 and objective nonconvex.

BCD - Two blocks

Two block BCD

$$
\operatorname{minimize} f(x)=f\left(x_{1}, x_{2}\right) \quad x \in \mathcal{X}_{1} \times \mathcal{X}_{2} .
$$

BCD - Two blocks

Two block BCD

$$
\operatorname{minimize} f(x)=f\left(x_{1}, x_{2}\right) \quad x \in \mathcal{X}_{1} \times \mathcal{X}_{2} .
$$

Theorem. (Grippo \& Sciandrone (2000)). Let f be continuously differentiable. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be closed and convex. Assume both BCD subproblems have solutions and the sequence $\left\{x^{k}\right\}$ has limit points. Then, every limit point of $\left\{x^{k}\right\}$ is stationary.

BCD - Two blocks

Two block BCD

$$
\operatorname{minimize} f(x)=f\left(x_{1}, x_{2}\right) \quad x \in \mathcal{X}_{1} \times \mathcal{X}_{2} .
$$

Theorem. (Grippo \& Sciandrone (2000)). Let f be continuously differentiable. Let $\mathcal{X}_{1}, \mathcal{X}_{2}$ be closed and convex. Assume both BCD subproblems have solutions and the sequence $\left\{x^{k}\right\}$ has limit points. Then, every limit point of $\left\{x^{k}\right\}$ is stationary.

- No need of unique solutions to subproblems
- BCD for 2 blocks is also called: Alternating Minimization

$C D$ - projection onto convex sets

$$
\begin{array}{cl}
\min & \frac{1}{2}\|x-y\|_{2}^{2} \\
\text { s.t. } & x \in C_{1} \cap C_{2} \cap \cdots \cap C_{m} .
\end{array}
$$

CD - projection onto convex sets

$$
\begin{array}{cl}
\min & \frac{1}{2}\|x-y\|_{2}^{2} \\
\text { s.t. } & x \in C_{1} \cap C_{2} \cap \cdots \cap C_{m} .
\end{array}
$$

Solution 1: Rewrite using indicator functions

$$
\min \frac{1}{2}\|x-y\|_{2}^{2}+\sum_{i=1}^{m} \delta_{c_{i}}(x) .
$$

- Now invoke Douglas-Rachford using the product-space trick

CD - projection onto convex sets

$$
\begin{array}{cl}
\min & \frac{1}{2}\|x-y\|_{2}^{2} \\
\text { s.t. } & x \in C_{1} \cap C_{2} \cap \cdots \cap C_{m} .
\end{array}
$$

Solution 1: Rewrite using indicator functions

$$
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}+\sum_{i=1}^{m} \delta_{C_{i}}(x) .
$$

- Now invoke Douglas-Rachford using the product-space trick

Solution 2: Take dual of the above formulation

Solution 1: Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$

Solution 1: Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{n} f_{i}(x)$

Solution 1: Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{n} f_{i}(x)$
- Introduce n new variables $\left(x_{1}, \ldots, x_{n}\right)$

Solution 1: Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{n} f_{i}(x)$
- Introduce n new variables $\left(x_{1}, \ldots, x_{n}\right)$
- Now problem is over domain $\mathcal{H}^{n}:=X_{i=1}^{n} \mathcal{H}$

Solution 1: Product space technique

- Original problem over $\mathcal{H}=\mathbb{R}^{n}$
- Suppose we have $\sum_{i=1}^{n} f_{i}(x)$
- Introduce n new variables $\left(x_{1}, \ldots, x_{n}\right)$
- Now problem is over domain $\mathcal{H}^{n}:=X_{i=1}^{n} \mathcal{H}$
- New constraint: $x_{1}=x_{2}=\ldots=x_{n}$

$$
\begin{array}{ll}
& \min _{\left(x_{1}, \ldots, x_{n}\right)} \quad \sum_{i} f_{i}\left(x_{i}\right) \\
\text { s.t. } \quad & x_{1}=x_{2}=\cdots=x_{n} .
\end{array}
$$

Technique due to: G. Pierra (1976)

Solution 1: Product space technique

$$
\begin{gathered}
\min _{x} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x}) \\
\text { where } \boldsymbol{x} \in \mathcal{H}^{n} \text { and } \mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{n} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}
\end{gathered}
$$

Solution 1: Product space technique

$\min _{x} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x})$
where $\boldsymbol{x} \in \mathcal{H}^{n}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{n} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$
\rightarrow Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$

Solution 1: Product space technique

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{n}$ and $\mathcal{B}=\left\{z \in \mathcal{H}^{n} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$
$-\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{n}}\left(y_{n}\right)\right)$

Solution 1: Product space technique

$$
\min _{\boldsymbol{x}} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{n}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{n} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$
$-\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{n}}\left(y_{n}\right)\right)$
- $\operatorname{prox}_{\mathcal{B}} \equiv \Pi_{\mathcal{B}}(y)$ can be solved as follows:

Solution 1: Product space technique

$$
\min _{x} f(\boldsymbol{x})+\mathbb{1}_{\mathcal{B}}(\boldsymbol{x})
$$

where $\boldsymbol{x} \in \mathcal{H}^{n}$ and $\mathcal{B}=\left\{\boldsymbol{z} \in \mathcal{H}^{n} \mid \boldsymbol{z}=(x, x, \ldots, x)\right\}$

- Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)$
$-\operatorname{prox}_{f}(\boldsymbol{y})=\left(\operatorname{prox}_{f_{1}}\left(y_{1}\right), \ldots, \operatorname{prox}_{f_{n}}\left(y_{n}\right)\right)$
- $\operatorname{prox}_{\mathcal{B}} \equiv \Pi_{\mathcal{B}}(\boldsymbol{y})$ can be solved as follows:

$$
\begin{array}{cc}
\min _{\boldsymbol{z} \in \mathcal{B}} & \frac{1}{2}\|\boldsymbol{z}-\boldsymbol{y}\|_{2}^{2} \\
\min _{x \in \mathcal{H}} & \sum_{i} \frac{1}{2}\left\|x-y_{i}\right\|_{2}^{2} \\
\Longrightarrow & x=\frac{1}{n} \sum_{i} y_{i}
\end{array}
$$

Exercise: Work out the details of the Douglas-Rachford algorithm using the above product space trick.
Remark: This technique commonly exploited in ADMM too

Solution 2: proximal Dykstra

$$
\min \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

Solution 2: proximal Dykstra

$$
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w)$

$$
g(\nu, \mu) \quad:=\quad \inf _{x, z, w} L(x, z, \nu, \mu)
$$

Solution 2: proximal Dykstra

$$
\min \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
\begin{aligned}
& L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w) \\
& g(\nu, \mu) \quad:=\quad \inf _{x, z, w} L(x, z, \nu, \mu) \\
& x-y+\nu+\mu=0 \quad \Longrightarrow \quad x=y-\nu-\mu
\end{aligned}
$$

Solution 2: proximal Dykstra

$$
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w)
$$

$$
\begin{aligned}
g(\nu, \mu) & :=\inf _{x, z, w} L(x, z, \nu, \mu) \\
x-y+\nu+\mu=0 & \Longrightarrow x=y-\nu-\mu \\
g(\nu, \mu) & =-\frac{1}{2}\|\nu+\mu\|_{2}^{2}+(\nu+\mu)^{T} y-f^{*}(\nu)-h^{*}(\mu)
\end{aligned}
$$

Solution 2: proximal Dykstra

$$
\min \quad \frac{1}{2}\|x-y\|_{2}^{2}+f(x)+h(x)
$$

$$
\begin{aligned}
& L(x, z, w, \nu, \mu):=\frac{1}{2}\|x-y\|_{2}^{2}+f(z)+h(w)+\nu^{T}(x-z)+\mu^{T}(x-w) \\
& g(\nu, \mu):=\quad \inf _{x, z, w} L(x, z, \nu, \mu) \\
& x-y+\nu+\mu=0 \Longrightarrow \quad x=y-\nu-\mu \\
& g(\nu, \mu)=-\frac{1}{2}\|\nu+\mu\|_{2}^{2}+(\nu+\mu)^{T} y-f^{*}(\nu)-h^{*}(\mu)
\end{aligned}
$$

Dual as minimization problem

$$
\min k(\nu, \mu):=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

The Proximal-Dykstra method

$$
\text { Apply CD to } k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)
$$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\nu_{k+1}=\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right)
$$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

- $0 \in \nu+\mu_{k}-y+\partial f^{*}(\nu)$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

- $0 \in \nu+\mu_{k}-y+\partial f^{*}(\nu)$
- $0 \in \nu_{k+1}+\mu-y+\partial h^{*}(\mu)$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

- $0 \in \nu+\mu_{k}-y+\partial f^{*}(\nu)$
- $0 \in \nu_{k+1}+\mu-y+\partial h^{*}(\mu)$
- $y-\mu_{k} \in \nu+\partial f^{*}(\nu)=\left(I+\partial f^{*}\right)(\nu)$
$\Longrightarrow \nu=\operatorname{prox}_{f^{*}}\left(y-\mu_{k}\right)$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

- $0 \in \nu+\mu_{k}-y+\partial f^{*}(\nu)$
- $0 \in \nu_{k+1}+\mu-y+\partial h^{*}(\mu)$
- $y-\mu_{k} \in \nu+\partial f^{*}(\nu)=\left(I+\partial f^{*}\right)(\nu)$

$$
\Longrightarrow \nu=\operatorname{prox}_{f *}\left(y-\mu_{k}\right) \Longrightarrow \nu=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right)
$$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

- $0 \in \nu+\mu_{k}-y+\partial f^{*}(\nu)$
- $0 \in \nu_{k+1}+\mu-y+\partial h^{*}(\mu)$
- $y-\mu_{k} \in \nu+\partial f^{*}(\nu)=\left(I+\partial f^{*}\right)(\nu)$

$$
\Longrightarrow \nu=\operatorname{prox}_{f^{*}}\left(y-\mu_{k}\right) \Longrightarrow \nu=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right)
$$

- Similarly, we see that

$$
\mu=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
$$

The Proximal-Dykstra method

Apply CD to $k(\nu, \mu)=\frac{1}{2}\|\nu+\mu-y\|_{2}^{2}+f^{*}(\nu)+h^{*}(\mu)$

$$
\begin{aligned}
\nu_{k+1} & =\operatorname{argmin}_{\nu} k\left(\nu, \mu_{k}\right) \\
\mu_{k+1} & =\operatorname{argmin}_{\mu} k\left(\nu_{k+1}, \mu\right)
\end{aligned}
$$

- $0 \in \nu+\mu_{k}-y+\partial f^{*}(\nu)$
- $0 \in \nu_{k+1}+\mu-y+\partial h^{*}(\mu)$
- $y-\mu_{k} \in \nu+\partial f^{*}(\nu)=\left(I+\partial f^{*}\right)(\nu)$

$$
\Longrightarrow \nu=\operatorname{prox}_{f^{*}}\left(y-\mu_{k}\right) \Longrightarrow \nu=y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right)
$$

- Similarly, we see that

$$
\mu=y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
$$

$$
\begin{aligned}
& \nu_{k+1} \leftarrow y-\mu_{k}-\operatorname{prox}_{f}\left(y-\mu_{k}\right) \\
& \mu_{k+1} \leftarrow y-\nu_{k+1}-\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)
\end{aligned}
$$

Proximal-Dykstra as CD

- Simplify, and use Lagrangian stationarity to obtain primal

$$
x=y-\nu-\mu \Longrightarrow y-\mu=x+\nu
$$

Proximal-Dykstra as CD

- Simplify, and use Lagrangian stationarity to obtain primal

$$
x=y-\nu-\mu \Longrightarrow y-\mu=x+\nu
$$

- Thus, the CD iteration may be rewritten as

$$
\begin{aligned}
t_{k} & \leftarrow \operatorname{prox}_{f}\left(x_{k}+\nu_{k}\right) \\
\nu_{k+1} & \leftarrow x_{k}+\nu_{k}-t_{k} \\
x_{k+1} & \leftarrow \operatorname{prox}_{h}\left(\mu_{k}+t_{k}\right) \\
\mu_{k+1} & \leftarrow \mu_{k}+t_{k}-x_{k+1}
\end{aligned}
$$

\square We used: $\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)=\mu_{k+1}-y-\nu_{k+1}=x_{k+1}$

Proximal-Dykstra as CD

- Simplify, and use Lagrangian stationarity to obtain primal

$$
x=y-\nu-\mu \Longrightarrow y-\mu=x+\nu
$$

- Thus, the CD iteration may be rewritten as

$$
\begin{aligned}
t_{k} & \leftarrow \operatorname{prox}_{f}\left(x_{k}+\nu_{k}\right) \\
\nu_{k+1} & \leftarrow x_{k}+\nu_{k}-t_{k} \\
x_{k+1} & \leftarrow \operatorname{prox}_{h}\left(\mu_{k}+t_{k}\right) \\
\mu_{k+1} & \leftarrow \mu_{k}+t_{k}-x_{k+1}
\end{aligned}
$$

\square We used: $\operatorname{prox}_{h}\left(y-\nu_{k+1}\right)=\mu_{k+1}-y-\nu_{k+1}=x_{k+1}$

- This is the proximal-Dykstra method!

Explore: Pros-cons of Prox-Dykstra versus product space+DR

CD - nonsmooth case

CD for nonsmooth convex problems

$$
\min \left|x_{1}-x_{2}\right|+\frac{1}{2}\left|x_{1}+x_{2}\right|
$$

CD for separable nonsmoothness

- Nonsmooth part is separable

$$
\min _{x \in \mathbb{R}^{d}} f(x)+\sum_{i=1}^{d} r_{i}\left(x_{i}\right)
$$

CD for separable nonsmoothness

- Nonsmooth part is separable

$$
\min _{x \in \mathbb{R}^{d}} f(x)+\sum_{i=1}^{d} r_{i}\left(x_{i}\right)
$$

Theorem. If f is convex, continuously differentiable, each $r_{i}(x)$ is closed, convex, and each coordinate admits a unique solution. Further, assume we go through all coordinates in an essentially cyclic way. Then, the sequence $\left\{x^{k}\right\}$ generated by CD is bounded, and every limit point of it is optimal.

CD for separable nonsmoothness

- Nonsmooth part is separable

$$
\min _{x \in \mathbb{R}^{d}} f(x)+\sum_{i=1}^{d} r_{i}\left(x_{i}\right)
$$

Theorem. If f is convex, continuously differentiable, each $r_{i}(x)$ is closed, convex, and each coordinate admits a unique solution. Further, assume we go through all coordinates in an essentially cyclic way. Then, the sequence $\left\{x^{k}\right\}$ generated by CD is bounded, and every limit point of it is optimal.

Remark: A related result for nonconvex problems with separable non-smoothness (under more assumptions), can be found in: "Convergence of Block Coordinate Descent Method for Nondifferentiable Minimization" by P. Tseng (2001).

CD - iteration complexity

CD non-asymptotic rate

- So far, we saw CD based on essentially cyclic rules

CD non-asymptotic rate

- So far, we saw CD based on essentially cyclic rules
- It is difficult to prove global convergence and almost impossible to estimate global rate of convergence

CD non-asymptotic rate

- So far, we saw CD based on essentially cyclic rules
- It is difficult to prove global convergence and almost impossible to estimate global rate of convergence
- Above results highlighted at best local (asymptotic) rates

CD non-asymptotic rate

- So far, we saw CD based on essentially cyclic rules
- It is difficult to prove global convergence and almost impossible to estimate global rate of convergence
- Above results highlighted at best local (asymptotic) rates
- Consider the unconstrained problem $\min f(x)$, s.t., $x \in \mathbb{R}^{d}$

CD non-asymptotic rate

- So far, we saw CD based on essentially cyclic rules
- It is difficult to prove global convergence and almost impossible to estimate global rate of convergence
- Above results highlighted at best local (asymptotic) rates
- Consider the unconstrained problem $\min f(x)$, s.t., $x \in \mathbb{R}^{d}$
- Assume f is convex, with componentwise Lipschitz gradients

$$
\left|\nabla_{i} f\left(x+h e_{i}\right)-\nabla_{i} f(x)\right| \leq L_{i}|h|, \quad x \in \mathbb{R}^{d}, h \in \mathbb{R}
$$

Here e_{i} denotes the i th canonical basis vector

CD non-asymptotic rate

- So far, we saw CD based on essentially cyclic rules
- It is difficult to prove global convergence and almost impossible to estimate global rate of convergence
- Above results highlighted at best local (asymptotic) rates
- Consider the unconstrained problem $\min f(x)$, s.t., $x \in \mathbb{R}^{d}$
- Assume f is convex, with componentwise Lipschitz gradients

$$
\left|\nabla_{i} f\left(x+h e_{i}\right)-\nabla_{i} f(x)\right| \leq L_{i}|h|, \quad x \in \mathbb{R}^{d}, h \in \mathbb{R}
$$

Here e_{i} denotes the i th canonical basis vector

$$
\begin{gathered}
\text { Choose } x_{0} \in \mathbb{R}^{d} \text {. Let } M=\max _{i} L_{i} ; \text { For } k \geq 0 \\
\qquad i_{k}=\underset{1 \leq i \leq d}{\operatorname{argmax}}\left|\nabla_{i} f\left(x_{k}\right)\right| \\
x_{k+1}=x_{k}-\frac{1}{M} \nabla_{i_{k}} f\left(x_{k}\right) e_{i_{k}} .
\end{gathered}
$$

CD - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0
$$

CD - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0
$$

- Looks like gradient-descent $O(1 / k)$ bound for $C_{L}^{1} \mathrm{cvx}$
- Notice factor of d in the numerator!

CD - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0
$$

- Looks like gradient-descent $O(1 / k)$ bound for $C_{L}^{1} \mathrm{cvx}$
- Notice factor of d in the numerator!
- But this method is impractical

CD - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0
$$

- Looks like gradient-descent $O(1 / k)$ bound for $C_{L}^{1} \mathrm{cvx}$
- Notice factor of d in the numerator!
- But this method is impractical
- At each step, it requires access to full gradient

CD - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0
$$

- Looks like gradient-descent $O(1 / k)$ bound for $C_{L}^{1} \mathrm{cvx}$
- Notice factor of d in the numerator!
- But this method is impractical
- At each step, it requires access to full gradient
- Might as well use ordinary gradient methods!

CD - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0
$$

- Looks like gradient-descent $O(1 / k)$ bound for $C_{L}^{1} \mathrm{cvx}$
- Notice factor of d in the numerator!
- But this method is impractical
- At each step, it requires access to full gradient
- Might as well use ordinary gradient methods!
- Also, if $f \in C_{L}^{1}$, it can easily happen that $M \geq L$

$C D$ - non-asymptotic convergence

Theorem. Let $\left\{x^{k}\right\}$ be iterate sequence generated by above greedy CD method. Then,

$$
f\left(x_{k}\right)-f^{*} \leq \frac{2 d M\left\|x_{0}-x^{*}\right\|_{2}^{2}}{k+4}, \quad k \geq 0 .
$$

- Looks like gradient-descent $O(1 / k)$ bound for $C_{L}^{1} \mathrm{cvx}$
- Notice factor of d in the numerator!
- But this method is impractical
- At each step, it requires access to full gradient
- Might as well use ordinary gradient methods!
- Also, if $f \in C_{L}^{1}$, it can easily happen that $M \geq L$
- So above rate is in general, worse than gradient methods

BCD - Notation

- Decomposition: $E=\left[E_{1}, \ldots, E_{n}\right]$ into n blocks
- Corresponding decomposition of x is

$$
(\underbrace{E_{1}^{T} x}_{N_{1}+}, \underbrace{E_{2}^{T} x}_{N_{2}+}, \ldots, \underbrace{E_{n}^{T} x}_{\cdots+N_{n}=N})=\left(x^{(1)}, x^{(2)}, \ldots, x^{(n)}\right)
$$

- Observation:

$$
E_{i}^{T} E_{j}= \begin{cases}I_{N_{i}} & i=j \\ 0_{N_{i}, N_{j}} & i \neq j\end{cases}
$$

- So the E_{i} s define our partitioning of the coordinates
- Just fancier notation for a random partition of coordinates
- Now with this notation...

BCD - formal setup

$\min f(x)$ where $x \in \mathbb{R}^{d}$

BCD - formal setup

$$
\min f(x) \text { where } x \in \mathbb{R}^{d}
$$

Assume gradient of block i is Lipschitz continuous**

BCD - formal setup

$$
\min f(x) \text { where } x \in \mathbb{R}^{d}
$$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(\boldsymbol{x})$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$

BCD - formal setup

$$
\min f(x) \text { where } x \in \mathbb{R}^{d}
$$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(x)\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(x)$
${ }^{* *}$ - each block can use its own norm

BCD - formal setup

$$
\min f(x) \text { where } x \in \mathbb{R}^{d}
$$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$
** - each block can use its own norm

Block Coordinate "Gradient" Descent

BCD - formal setup

$$
\min f(x) \text { where } x \in \mathbb{R}^{d}
$$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$
** - each block can use its own norm

Block Coordinate "Gradient" Descent

- Using the descent lemma, we have blockwise upper bounds

$$
f\left(\boldsymbol{x}+E_{i} h\right) \leq f(\boldsymbol{x})+\left\langle\nabla_{i} f(\boldsymbol{x}), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, d .
$$

BCD - formal setup

$$
\min f(x) \text { where } x \in \mathbb{R}^{d}
$$

Assume gradient of block i is Lipschitz continuous**

$$
\left\|\nabla_{i} f\left(\boldsymbol{x}+E_{i} h\right)-\nabla_{i} f(\boldsymbol{x})\right\|_{*} \leq L_{i}\|h\|
$$

Block gradient $\nabla_{i} f(x)$ is projection of full grad: $E_{i}^{T} \nabla f(\boldsymbol{x})$
** - each block can use its own norm

Block Coordinate "Gradient" Descent

- Using the descent lemma, we have blockwise upper bounds

$$
f\left(\boldsymbol{x}+E_{i} h\right) \leq f(\boldsymbol{x})+\left\langle\nabla_{i} f(\boldsymbol{x}), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}, \quad \text { for } i=1, \ldots, d .
$$

- At each step, minimize these upper bounds!

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from $[d]$ with probability $p_{i}>0$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from $[d]$ with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [d] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of \boldsymbol{x}, formally

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from $[d]$ with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

$$
\begin{aligned}
\boldsymbol{x}_{k+1}^{(i)} & \leftarrow \boldsymbol{x}_{k}^{(i)}+h \\
\boldsymbol{x}_{k+1} & \leftarrow \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [d] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}+h \\
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Notice: Original BCD had: $x_{k}^{(i)}=\operatorname{argmin}_{h} f(\ldots, \underbrace{h}_{\text {block } i}, \ldots)$

Randomized BCD

- For $k \geq 0$ (no init. of x necessary)
- Pick a block i from [d] with probability $p_{i}>0$
- Optimize upper bound (partial gradient step) for block i

$$
\begin{aligned}
& h=\underset{h}{\operatorname{argmin}} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& h=-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

- Update the impacted coordinates of x, formally

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}^{(i)} \leftarrow \boldsymbol{x}_{k}^{(i)}+h \\
& \boldsymbol{x}_{k+1} \leftarrow \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Notice: Original BCD had: $x_{k}^{(i)}=\operatorname{argmin}_{h} f(\ldots, \underbrace{h}, \ldots)$ block i
We'll call this BCM (Block Coordinate Minimization)

Exercise: proximal extension

$$
\min f(\boldsymbol{x})+r(\boldsymbol{x})
$$

- If block separable $r(x):=\sum_{i=1}^{n} r_{i}\left(x^{(i)}\right)$

$$
\begin{aligned}
& x_{k}^{(i)}=\underset{h}{\operatorname{argmin}} f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}+r_{i}\left(E_{i}^{T} x_{k}+h\right) \\
& x_{k}^{(i)}=\operatorname{prox}_{r_{i}}(\cdots)
\end{aligned}
$$

Exercise: Fill in the dots

$$
h=\operatorname{prox}_{(1 / L) r_{i}}\left(E_{i}^{T} \boldsymbol{x}_{k}-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+E_{i} h \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
\end{aligned}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}+E_{i} h \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
\boldsymbol{x}_{k+1} & =\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)
\end{aligned}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
x_{k+1} & =x_{k}+E_{i} h \\
f\left(x_{k+1}\right) & \leq f\left(x_{k}\right)+\left\langle\nabla_{i} f\left(x_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
x_{k+1} & =x_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right) \\
f\left(\boldsymbol{x}_{k+1}\right) & \leq f\left(\boldsymbol{x}_{k}\right)-\frac{1}{L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}+\frac{L_{i}}{2}\left\|-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}
\end{aligned}
$$

Randomized BCD - analysis

$$
h \leftarrow \operatorname{argmin}_{h} f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2}
$$

Descent:

$$
\begin{aligned}
& \boldsymbol{x}_{k+1}= \boldsymbol{x}_{k}+E_{i} h \\
& f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)+\left\langle\nabla_{i} f\left(\boldsymbol{x}_{k}\right), h\right\rangle+\frac{L_{i}}{2}\|h\|^{2} \\
& \boldsymbol{x}_{k+1}= \boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right) \\
& f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\frac{1}{L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}+\frac{L_{i}}{2}\left\|-\frac{1}{L_{i}} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{x}_{k}\right)-\frac{1}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} . \\
& f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k+1}\right) \geq \frac{1}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}
\end{aligned}
$$

Randomized BCD - analysis

Expected descent:

$$
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right]=\sum_{i=1}^{d} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right)
$$

Randomized BCD - analysis

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{d} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{d} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2}
\end{aligned}
$$

Randomized BCD - analysis

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{d} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{d} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& \left.=\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{W}^{2} \quad \text { (suitable } W\right) .
\end{aligned}
$$

Randomized BCD - analysis

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{d} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{d} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& \left.=\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{W}^{2} \quad \text { (suitable } W\right) .
\end{aligned}
$$

Exercise: What's expected descent with uniform probabilities?

Randomized BCD - analysis

Expected descent:

$$
\begin{aligned}
f\left(\boldsymbol{x}_{k}\right)-\mathbb{E}\left[f\left(\boldsymbol{x}_{k+1} \mid \boldsymbol{x}_{k}\right)\right] & =\sum_{i=1}^{d} p_{i}\left(f\left(\boldsymbol{x}_{k}\right)-f\left(\boldsymbol{x}_{k}-\frac{1}{L_{i}} E_{i} \nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right)\right) \\
& \geq \sum_{i=1}^{d} \frac{p_{i}}{2 L_{i}}\left\|\nabla_{i} f\left(\boldsymbol{x}_{k}\right)\right\|^{2} \\
& \left.=\frac{1}{2}\left\|\nabla f\left(\boldsymbol{x}_{k}\right)\right\|_{W}^{2} \quad \text { (suitable } W\right) .
\end{aligned}
$$

Exercise: What's expected descent with uniform probabilities?
Descent plus some more (hard) work yields

$$
O\left(\frac{d}{\epsilon} \sum_{i} L_{i}\left\|x_{0}^{(i)}-x_{*}^{(i)}\right\|^{2}\right)
$$

as the iteration complexity of obtaining $\mathbb{E}\left[f\left(\boldsymbol{x}_{k}\right)\right]-f^{*} \leq \epsilon$

BCD - Exercise

Recall Lasso problem: $\min \frac{1}{2}\|A x-b\|^{2}+\lambda\|x\|_{1}$
Here $x \in \mathbb{R}^{N}$
Make $n=N$ blocks
Show what the Randomized BCD iterations look like
Notice, 1D prox operations for $\lambda|\cdot|$ arise
Try to implement it as efficiently as you can (i.e., do not copy or update vectors / coordinates than necessary)

Connections

CD - exercise

$$
\min \frac{1}{n} \sum_{i=1}^{n} f_{i}\left(x^{T} a_{i}\right)+\frac{\lambda}{2}\|x\|^{2}
$$

Dual problem

$$
\max _{\alpha} \frac{1}{n} \sum_{i=1}^{n}-f_{i}^{*}\left(-\alpha_{i}\right)-\frac{\lambda}{2}\left\|\frac{1}{\lambda n} \sum_{i=1}^{n} \alpha_{i} a_{i}\right\|^{2}
$$

Exercise: Study the SDCA algorithm and derive a connection between it and SAG/SAGA family of algorithms.
S. Shalev-Shwartz, T. Zhang. Stochastic Dual Coordinate Ascent Methods for Regularized Loss Minimization. JMLR (2013).

Other connections

Explore: Block-Coordinate Frank-Wolfe algorithm.

$$
\min _{x} f(x), \quad \text { s.t. } x \in \prod_{i} \mathcal{X}_{i}
$$

Explore: Doubly stochastic methods

$$
\min f(x)=\sum_{i} f_{i}\left(x_{1}, \ldots, x_{d}\right)
$$

Being jointly stochastic over f_{i} as well as coordinates.
Explore: CD with constraints (linear and nonlinear constraints)

