Stochastic optimization: Beyond stochastic gradients and convexity

Part 2

SUVRIT SRA

Laboratory for Information & Decision Systems (LIDS)

Massachusetts Institute of Technology

Acknowledgments: Sashank Reddi (CMU)

Joint tutorial with: Francis Bach, INRIA; ENS

NIPS 2016, Barcelona

ml.mit.edu

Outline

I. Introduction / motivation

- Strongly convex, convex, saddle point

2. Convex finite-sum problems

3. Nonconvex finite-sum problems

- Basics, background, difficulty of nonconvex
- nonconvex SVRG, SAGA
- Linear convergence rates for nonconvex
- Proximal surprises
- Handling nonlinear manifolds (orthogonality, positivity, etc.)

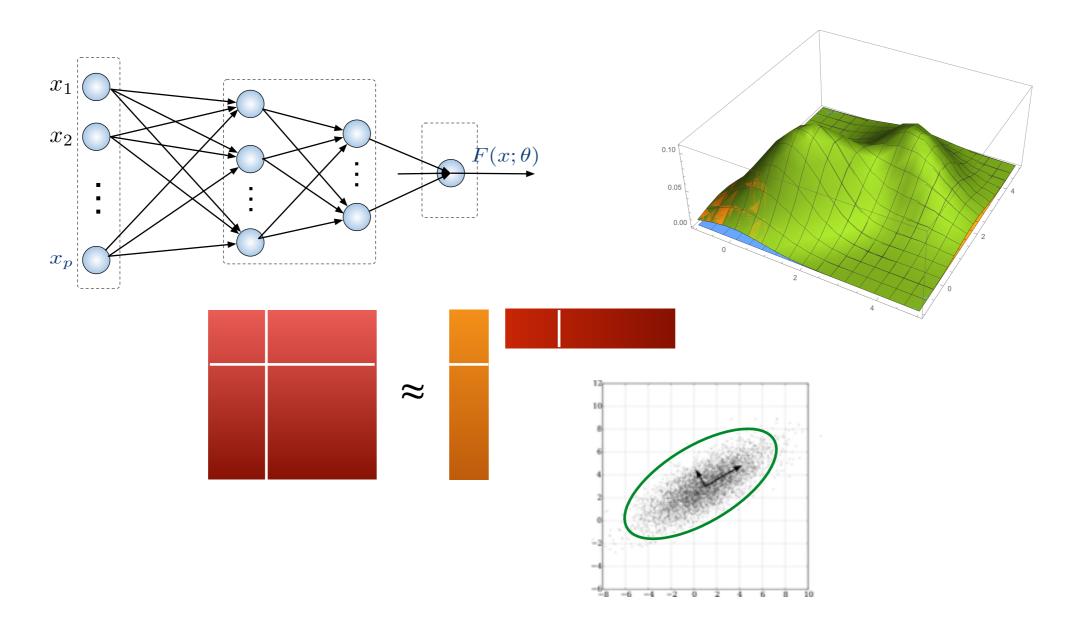
4. Large-scale problems

- Data sparse parallel methods
- Distributed settings (high level)

5. Perspectives

Massachusetts Institute of Technolog

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \ell(y_i, \mathcal{DNN}(x_i, \theta)) + \Omega(\theta)$$



$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Related work

- Original SGD paper (Robbins, Monro 1951) (asymptotic convergence; no rates)
- SGD with scaled gradients $(\theta_t \eta_t H_t \nabla f(\theta_t))$ + other tricks: space dilation, (Shor, 1972); variable metric SGD (Uryasev 1988); AdaGrad (Duchi, Hazan, Singer, 2012); Adam (Kingma, Ba, 2015), and many others... (typically asymptotic convergence for nonconvex)
- Large number of other ideas, often for step-size tuning, initialization (see e.g., blog post: by S. Ruder on gradient descent algorithms)

Our focus: going beyond SGD (theoretically; ultimately in practice too)

$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Related work (subset)

(Solodov, 1997)

Incremental gradient, smooth nonconvex

(asymptotic convergence; no rates proved)

- (Bertsekas, Tsitsiklis, 2000)

Gradient descent with errors; incremental

(see §2.4, Nonlinear Programming; no rates proved)

(Sra, 2012)

Incremental nonconvex non-smooth

(asymptotic convergence only)

(Ghadimi, Lan, 2013)

SGD for nonconvex stochastic opt.

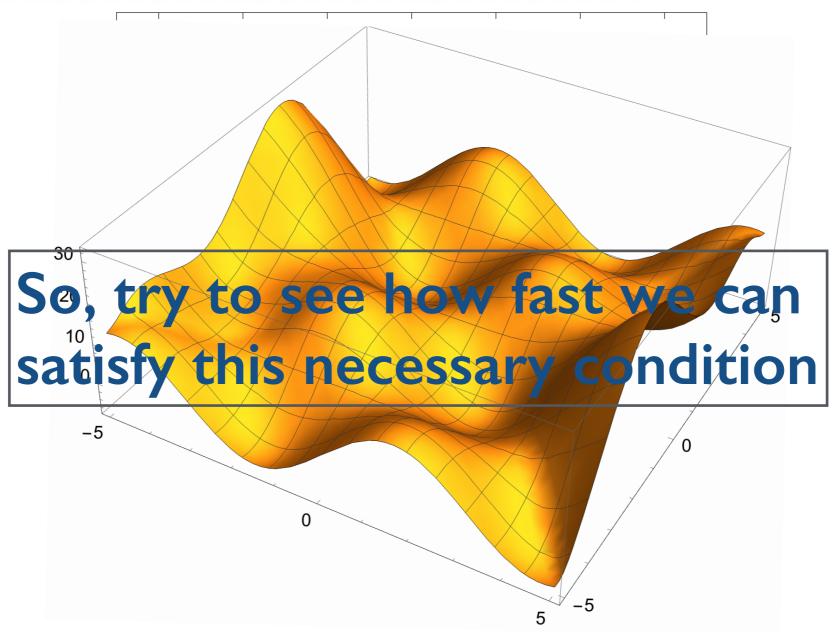
(first non-asymptotic rates to stationarity)

- (Ghadimi et al., 2013)

SGD for nonconvex non-smooth stoch. opt.

(non-asymptotic rates, but key limitations)

Difficulty of nonconvex optimization



Difficult to optimize, but

$$\nabla g(\theta) = 0$$

necessary condition – local minima, maxima, saddle points satisfy it.

MiT

Measuring efficiency of nonconvex opt.

Convex:

$$\mathbb{E}[g(\theta_t) - g^*] \le \epsilon$$

(optimality gap)

Nonconvex:

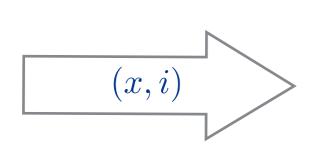
$$\mathbb{E}[\|\nabla g(\theta_t)\|^2] \le \epsilon$$

(stationarity gap)

(Nesterov 2003, Chap 1); (Ghadimi, Lan, 2012)

Incremental First-order Oracle (IFO)

(Agarwal, Bottou, 2014) (see also: Nemirovski, Yudin, 1983)



$$(f_i(x), \nabla f_i(x))$$

Measure: #IFO calls to attain ϵ accuracy

IFO Example: SGD vs GD (nonconvex)

$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

SGD

$$\theta_{t+1} = \theta_t - \eta \nabla f_{i_t}(\theta_t)$$

- → O(1) IFO calls per iter
- $O(1/\epsilon^2)$ iterations
- Total: $O(1/\epsilon^2)$ IFO calls
- independent of n

(Ghadimi, Lan, 2013, 2014)

- $\theta_{t+1} = x_t \eta \nabla g(\theta_t)$
- → O(n) IFO calls per liter
- $O(1/\epsilon)$ iterations
- Total: $O(n/\epsilon)$ IFO calls
- depends strongly on n

(Nesterov, 2003; Nesterov 2012)

assuming Lipschitz gradients

$$\mathbb{E}[\|\nabla g(\theta_t)\|^2] \le \epsilon$$

$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

SGD
$$\blacksquare$$
 $\theta_{t+1} = \theta_t - \eta \nabla f_{i_t}(\theta_t)$ $\theta_{t+1} = x_t - \eta \nabla g(\theta_t)$

Do these benefits extend to nowoswexsfinite-sums?

Analysis depends heavily on convexity (especially for controlling variance)

SVRG/SAGA work again! (with new analysis)

for
$$s=0$$
 to $S-1$

$$\theta_0^{s+1} \leftarrow \theta_m^s$$

$$\tilde{\theta}^s \leftarrow \theta_m^s$$

for t=0 to m-1

Uniformly randomly pick
$$i(t) \in \{1, \dots, n\}$$

$$\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \right]$$

end

end

The same algorithm as usual SVRG (Johnson, Zhang, 2013)

for
$$s=0$$
 to $S-1$

$$\theta_0^{s+1} \leftarrow \theta_m^s$$

$$\tilde{\theta}^s \leftarrow \theta_m^s$$

for t=0 to m-1

Uniformly randomly pick $i(t) \in \{1, \dots, n\}$

$$\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \right]$$

end

$$\begin{aligned} &\textbf{-for s=0 to S-1} \\ &\theta_0^{s+1} \leftarrow \theta_m^s \\ &\tilde{\theta}^s \leftarrow \theta_m^s \\ &\textbf{for t=0 to m-1} \\ &\textbf{Uniformly randomly pick } i(t) \in \{1,\dots,n\} \\ &\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \Big[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \Big] \\ &\textbf{end} \end{aligned}$$

$$\begin{aligned} &\textbf{-for s=0 to S-1} \\ &\theta_0^{s+1} \leftarrow \theta_m^s \\ &\tilde{\theta}^s \leftarrow \theta_m^s \\ &\textbf{for t=0 to m-1} \\ &\textbf{Uniformly randomly pick } i(t) \in \{1,\dots,n\} \\ &\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \Big[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \Big] \\ &\textbf{end} \end{aligned}$$

for s=0 to S-1
$$\theta_0^{s+1} \leftarrow \theta_m^s$$

$$\tilde{\theta}^s \leftarrow \theta_m^s$$

for t=0 to m-1

Uniformly randomly pick
$$i(t) \in \{1, \ldots, n\}$$

$$\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \right]$$

for
$$s=0$$
 to $S-1$

$$\theta_0^{s+1} \leftarrow \theta_m^s$$

$$\tilde{\theta}^s \leftarrow \theta_m^s$$

for t=0 to m-1

Uniformly randomly pick
$$i(t) \in \{1, \ldots, n\}$$

$$\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \right]$$

end

$$\Delta_t$$

$$\mathbb{E}[\Delta_t] = 0$$

Massachusetts Institute of Technology

for
$$s=0$$
 to $S-1$

$$\theta_0^{s+1} \leftarrow \theta_m^s$$

$$\tilde{\theta}^s \leftarrow \theta_m^s$$

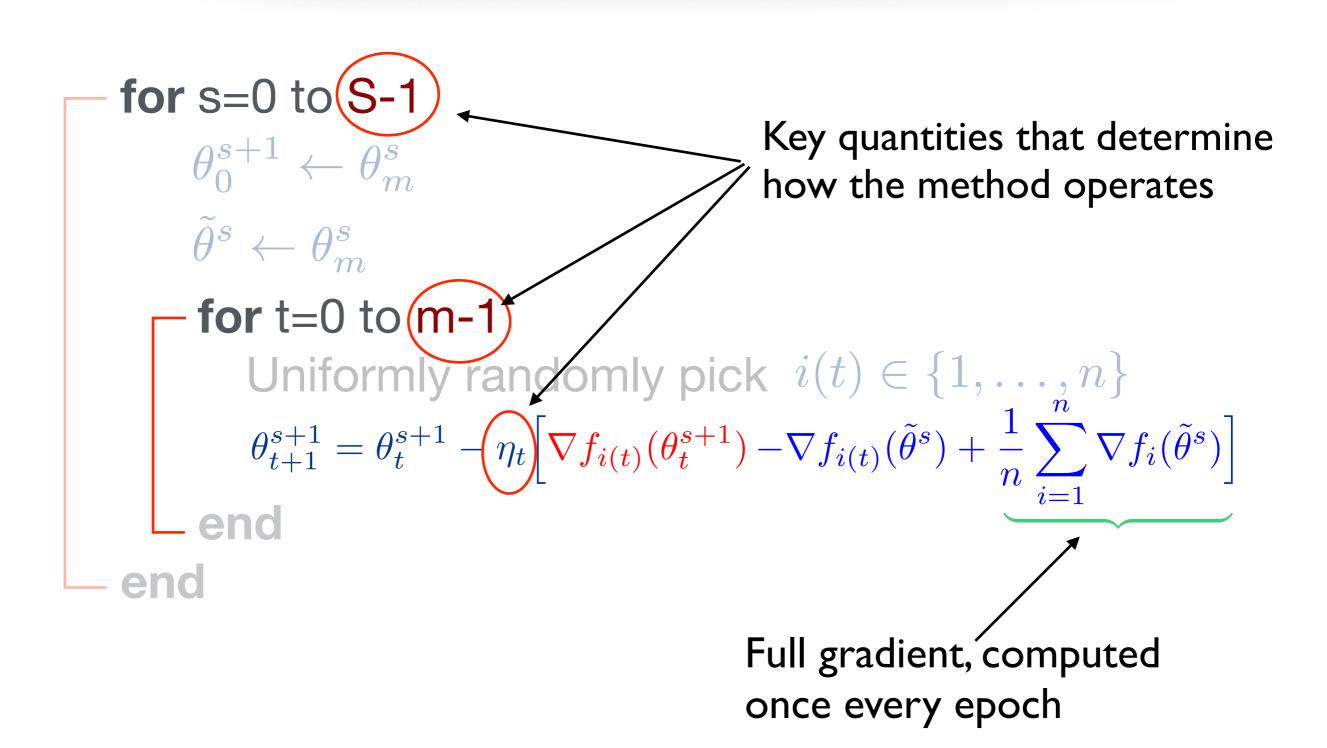
for t=0 to m-1

Uniformly randomly pick
$$i(t) \in \{1, \ldots, n\}$$

$$\theta_{t+1}^{s+1} = \theta_t^{s+1} - \eta_t \left[\nabla f_{i(t)}(\theta_t^{s+1}) - \nabla f_{i(t)}(\tilde{\theta}^s) + \frac{1}{n} \sum_{i=1}^n \nabla f_i(\tilde{\theta}^s) \right]$$

end

Full gradient, computed once every epoch



Key ideas for analysis of nc-SVRG

Previous SVRG proofs rely on convexity to control variance

New proof technique – quite general; extends to SAGA, to several other finite-sum nonconvex settings!

Larger step-size \Longrightarrow smaller inner loop (full-gradient computation dominates epoch)

Smaller step-size > slower convergence (longer inner loop)

(Carefully) trading-off #inner-loop iterations m with step-size n leads to lower #IFO calls!

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Allen-Zhu, Hazan, 2016)

Faster nonconvex optimization via VR

(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016)

Algorithm	Nonconvex (Lipschitz smooth)
SGD	$O(\frac{1}{\epsilon^2})$
GD	$O(\frac{n}{\epsilon})$
SVRG	$O(n + \frac{n^{2/3}}{\epsilon})$
SAGA	$O(n + \frac{n^{2/3}}{\epsilon})$
MSVRG	$O\left(\min\left(\frac{1}{\epsilon^2}, \frac{n^{2/3}}{\epsilon}\right)\right)$

$$\mathbb{E}[\|\nabla g(\theta_t)\|^2] \le \epsilon$$

Remarks

New results for convex case too; additional nonconvex results For related results, see also (Allen-Zhu, Hazan, 2016)

Linear rates for nonconvex problems

$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

The Polyak-Łojasiewicz (PL) class of functions

$$g(\theta) - g(\theta^*) \le \frac{1}{2\mu} \|\nabla g(\theta)\|^2$$

(Polyak, 1963); (Łojasiewicz, 1963)

 μ -strongly convex \Rightarrow PL holds

Examples:

Stochastic PCA, some large-scale eigenvector problems

(More general than many other "restricted" strong convexity uses)

(Karimi, Nutini, Schmidt, 2016)

(Attouch, Bolte, 2009)

(Bertsekas, 2016)

proximal extensions; references

more general Kurdya-Łojasiewicz class

textbook, more "growth conditions"

Linear rates for nonconvex problems

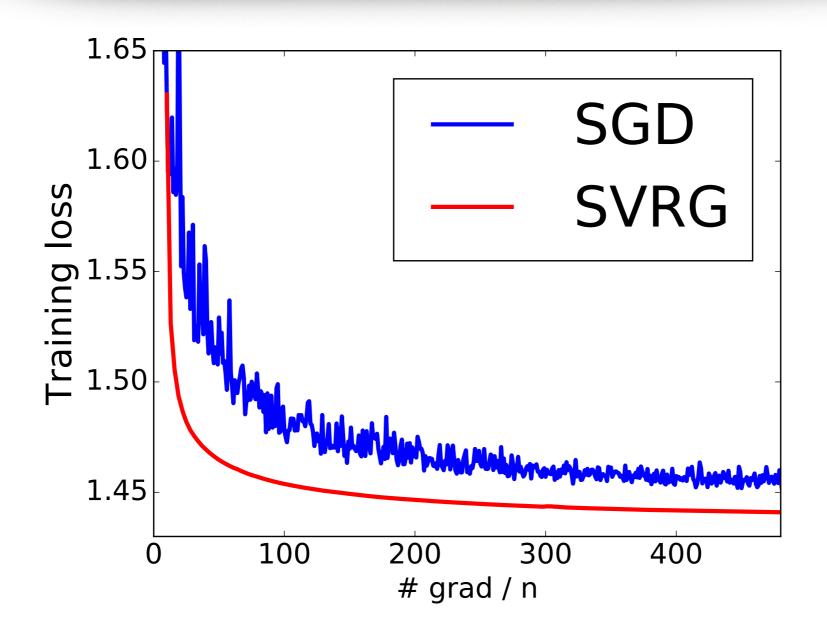
$$g(\theta) - g(\theta^*) \le \frac{1}{2\mu} \|\nabla g(\theta)\|^2 \qquad \mathbb{E}[g(\theta_t) - g^*] \le \epsilon \quad \textcircled{\bullet}$$

$$\mathbb{E}[g(\theta_t) - g^*] \le \epsilon$$

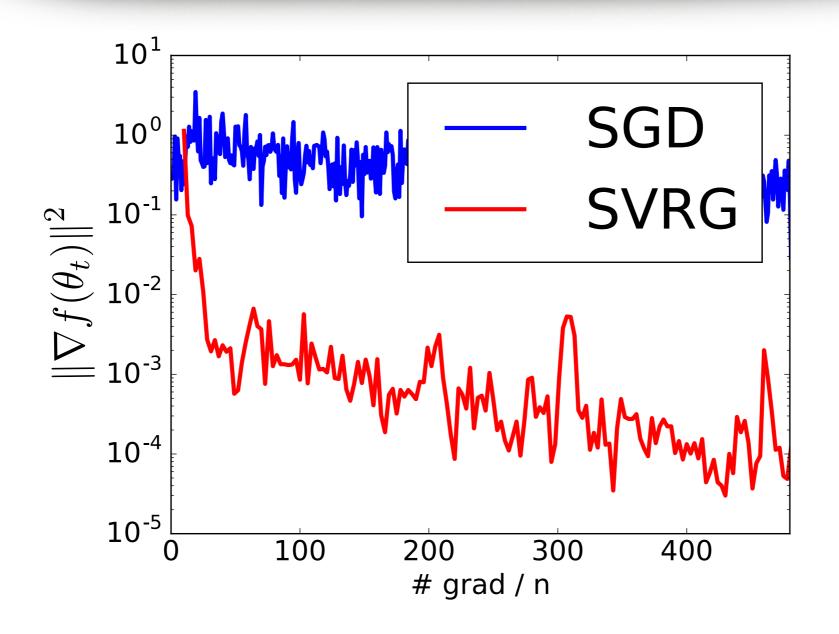
Algorithm	Nonconvex	Nonconvex-PL
SGD	$O\left(\frac{1}{\epsilon^2}\right)$	$O(\frac{1}{\epsilon^2})$
GD	$O\left(\frac{n}{\epsilon}\right)$	$O\left(\frac{n}{2\mu}\log\frac{1}{\epsilon}\right)$
SVRG	$O(n + \frac{n^{2/3}}{\epsilon})$	$O\left(\left(n + \frac{n^{2/3}}{2\mu}\right)\log\frac{1}{\epsilon}\right)$
SAGA	$O(n + \frac{n^{2/3}}{\epsilon})$	$O\left(\left(n + \frac{n^{2/3}}{2\mu}\right)\log\frac{1}{\epsilon}\right)$
MSVRG	$O\left(\min\left(\frac{1}{\epsilon^2}\right), \frac{n^{2/3}}{\epsilon}\right)$	

Variant of nc-SVRG attains this fast convergence!

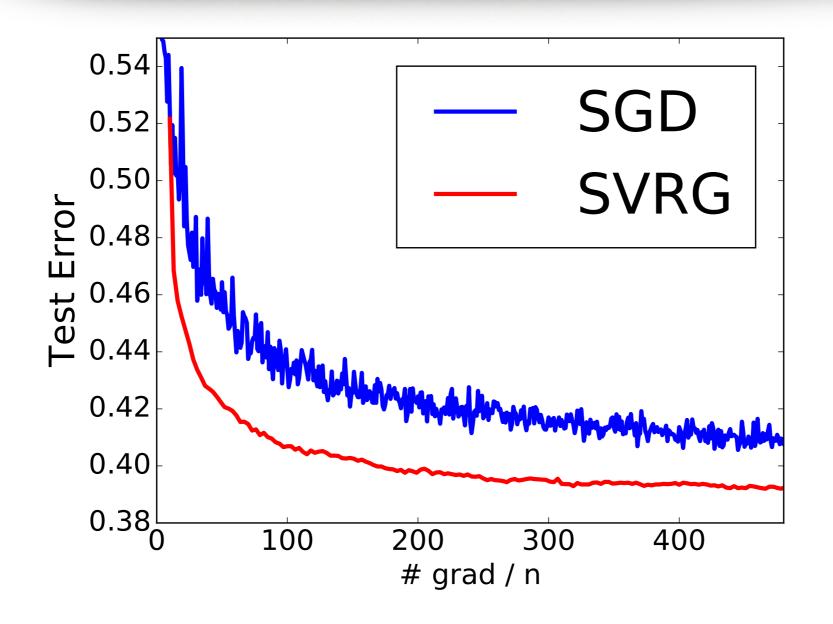
(Reddi, Hefny, Sra, Poczos, Smola, 2016; Reddi et al., 2016) 22



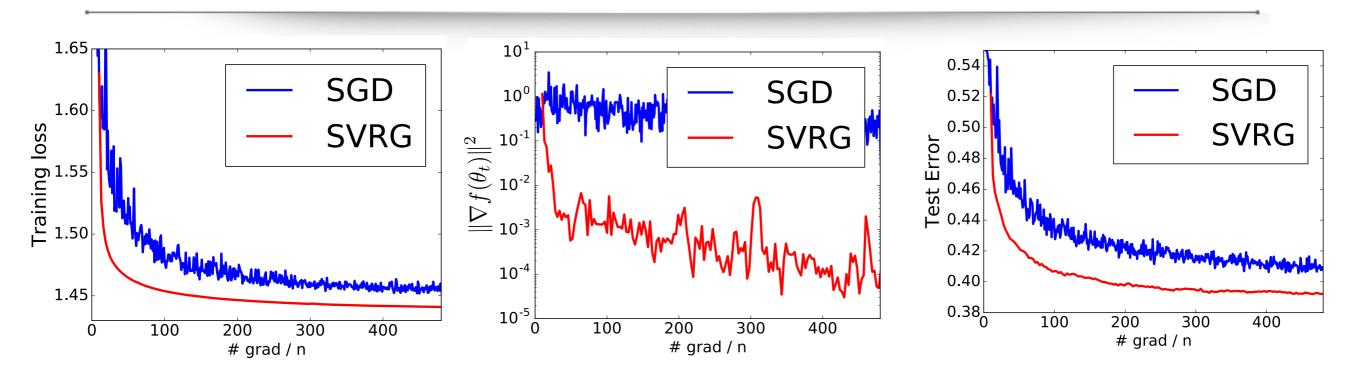
CIFAR I 0 dataset; 2-layer NN



CIFAR I 0 dataset; 2-layer NN



CIFAR I 0 dataset; 2-layer NN



CIFAR I 0 dataset; 2-layer NN

Non-smooth surprises!

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n f_i(\theta) + \Omega(\theta)$$

Regularizer, e.g., $\|\cdot\|_1$ for enforcing sparsity of weights (in a neural net, or more generally); or an indicator function of a constraint set, etc.

Nonconvex composite objective problems

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(\theta) + \Omega(\theta)$$

$$nonconvex$$

Prox-SGD

$$\theta_{t+1} = \operatorname{prox}_{\lambda_t \Omega} (\theta_t - \eta_t \nabla f_{i_t}(\theta_t))$$

Prox-SGD convergence hot known!*

prox: soft-thresholding for $\|\cdot\|_1$; projection for indicator function

- Partial results: (Ghadimi, Lan, Zhang, 2014) (using growing minibatches, shrinking step sizes)
 - * Except in special cases (where even rates may be available)

Nonconvex composite objective problems

$$\min_{\theta \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n f_i(\theta) + \Omega(\theta)$$
 $n \in \mathbb{R}^d = 0$
 $n \in \mathbb{$

Once again variance reduction to the rescue?

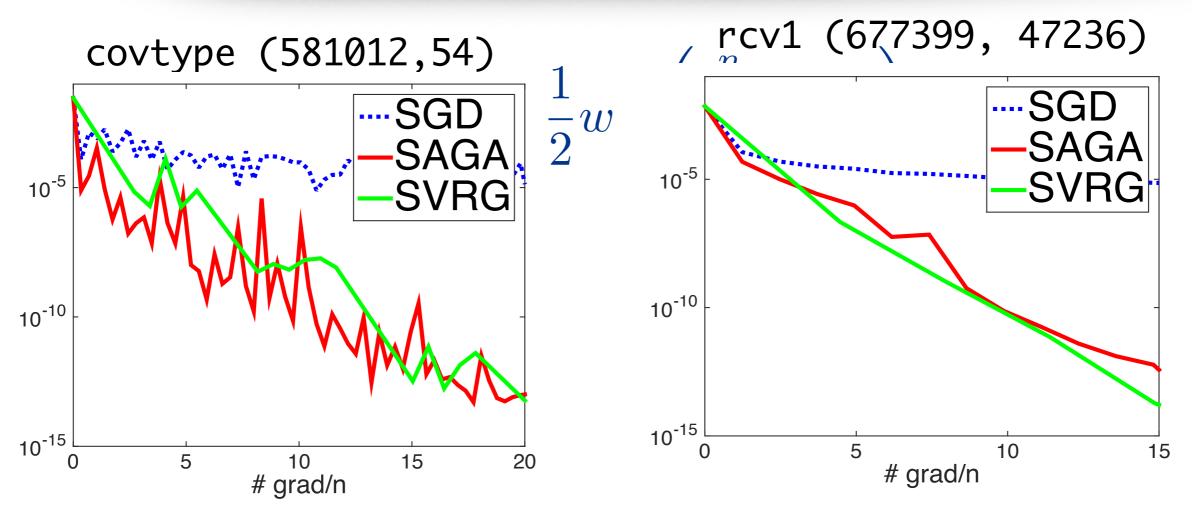
Prox-SVRG/SAGA converge*
and that too
faster than both SGD and GD!

The same $O\left(n + \frac{n^{2/3}}{\epsilon}\right)$ once again!

(Reddi, Sra, Poczos, Smola, 2016)

^{*} some care needed

Empirical results: NN-PCA



y-axis denotes distance $f(\theta) - f(\hat{\theta})$ to an approximate optimum

Eigenvecs via SGD: (Oja, Karhunen 1985); via SVRG (Shamir, 2015,2016); (Garber, Hazan, Jin, Kakade, Musco, Netrapalli, Sidford, 2016); and many more! 30

Finite-sum problems with nonconvex $g(\theta)$ and params θ lying on a known manifold

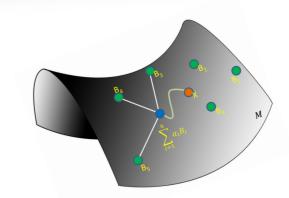
$$\min_{\theta \in \mathcal{M}} g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Example: eigenvector problems (the ||θ||=1 constraint) problems with orthogonality constraints low-rank matrices positive definite matrices / covariances

Nonconvex optimization on manifolds

(Zhang, Reddi, Sra, 2016)

$$\min_{\theta \in \mathcal{M}} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$



Related work

- (Udriste, 1994)
- (Edelman, Smith, Arias, 1999)
- (Absil, Mahony, Sepulchre, 2009)
- (Boumal, 2014)
- (Mishra, 2014)
- manopt
- (Bonnabel, 2013)
- and many more!

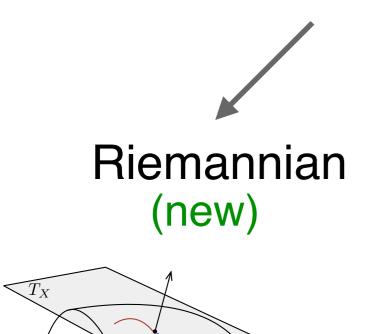
batch methods; textbook classic paper; orthogonality constraints textbook; convergence analysis phd thesis, algos, theory, examples phd thesis, algos, theory, examples excellent matlab toolbox Riemannnian SGD, asymptotic convg.

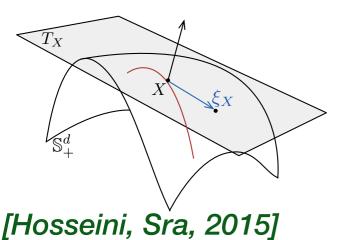
Exploiting manifold structure yields speedups

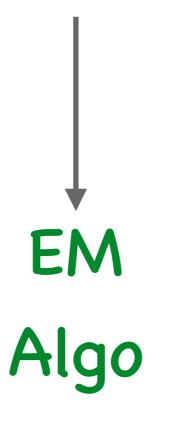
Example: Gaussian Mixture Model

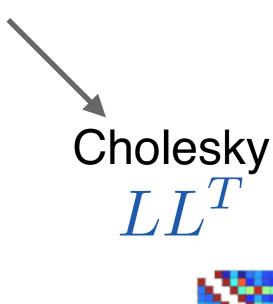
$$p_{ ext{mix}}(x) := \sum_{k=1}^K \pi_k p_{\mathcal{N}}(x; \Sigma_k, \mu_k)$$
 Likelihood $\max \prod_i p_{ ext{mix}}(x_i)$

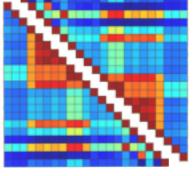
Numerical challenge: positive definite constraint on Σ_k











33

Careful use of manifold geometry helps!

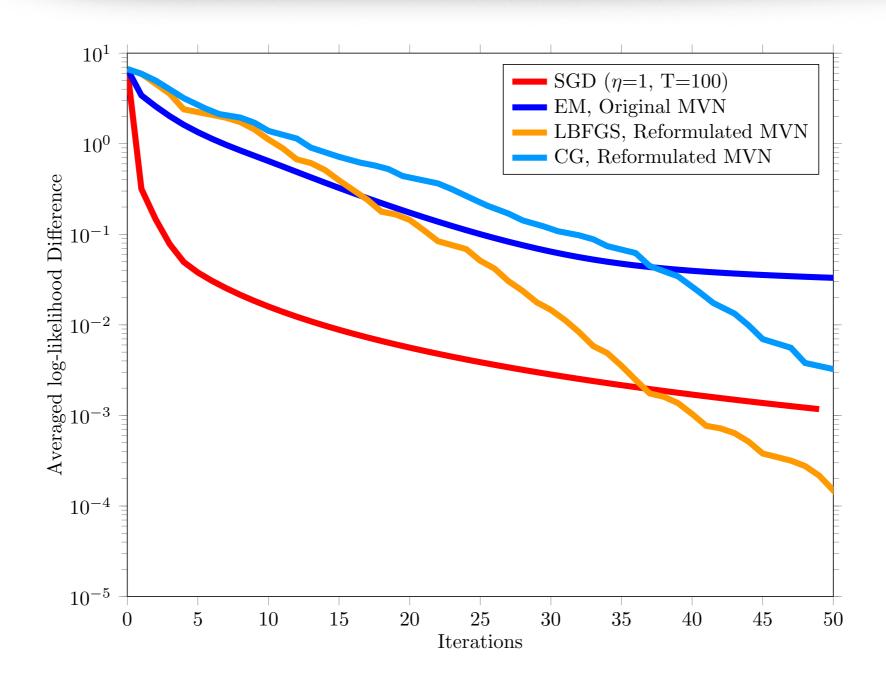
K	EM	R-LBFGS
2	17s // 29.28	14s // 29.28
5	202s // 32.07	117s // 32.07
10	2159s // 33.05	658s // 33.06

Riemannian-LBFGS (careful impl.)

github.com/utvisionlab/mixest

images dataset d=35, n=200,000

Careful use of manifold geometry helps!



Riemannian-SGD for GMMs (multi-epoch)

Summary of nonconvex VR methods

- nc-SVRG/SAGA use fewer #IFO calls than SGD & GD
- Work well in practice
- Easier (than SGD) to use and tune:

can use constant step-sizes

- Proximal extension holds a few surprises
- SGD and SVRG extend to Riemannian manifolds too

Large-scale optimization

$$\min_{\theta \in \mathbb{R}^d} \quad g(\theta) = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

Simplest setting: using mini-batches

Idea: Use 'b' stochastic gradients / IFO calls per iteration useful in parallel and distributed settings increases parallelism, reduces communication

SGD
$$\theta_{t+1} = \theta_t - \frac{\eta_t}{|I_t|} \sum_{j \in I_t} \nabla f_j(\theta_t)$$

For batch size b, SGD takes a factor $1/\sqrt{b}$ fewer iterations (Dekel, Gilad-Bachrach, Shamir, Xiao, 2012)

For batch size b, SVRG takes a factor 1/b fewer iterations

Theoretical linear speedup with parallelism

see also S2GD (convex case): (Konečný, Liu, Richtárik, Takáč, 2015)

Asynchronous stochastic algorithms

SGD
$$\theta_{t+1} = \theta_t - \frac{\eta_t}{|I_t|} \sum_{j \in I_t} \nabla f_j(\theta_t)$$

- Inherently sequential algorithm
- Slow-downs in parallel/dist settings (synchronization)

Classic results in asynchronous optimization: (Bertsekas, Tsitsiklis, 1987)

- Asynchronous SGD implementation (HogWild!)
 Avoids need to sync, operates in a "lock-free" manner
- Key assumption: sparse data (often true in ML)

but

It is still SGD, thus has slow sublinear convergence even for strongly convex functions

Asynchronous algorithms: parallel

Does variance reduction work with asynchrony?

Yes!

ASVRG (Reddi, Hefny, Sra, Poczos, Smola, 2015) ASAGA (Leblond, Pedregosa, Lacoste-Julien, 2016) Perturbed iterate analysis (Mania et al, 2016)

- a few subtleties involved
- some gaps between theory and practice
- more complex than async-SGD

Bottomline: on sparse data, can get almost linear speedup due to parallelism (π machines lead to $\sim \pi$ speedup)

Asynchronous algorithms: distributed

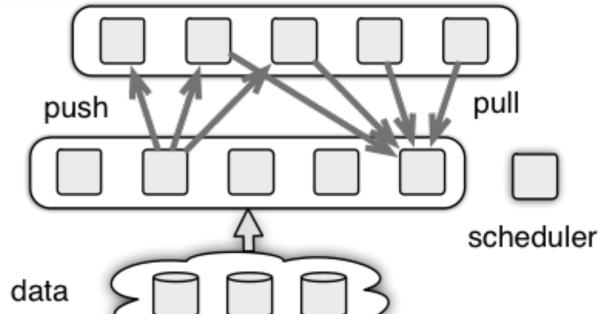
common parameter server architecture

server nodes:

worker nodes:

(Li, Andersen, Smola, Yu, 2014)

Classic ref: (Bertsekas, Tsitsiklis, 1987)



- workers compute (stochastic) gradients

D-SGD:

- server computes parameter update
- widely used (centralized) design choice
- can have quite high communication cost

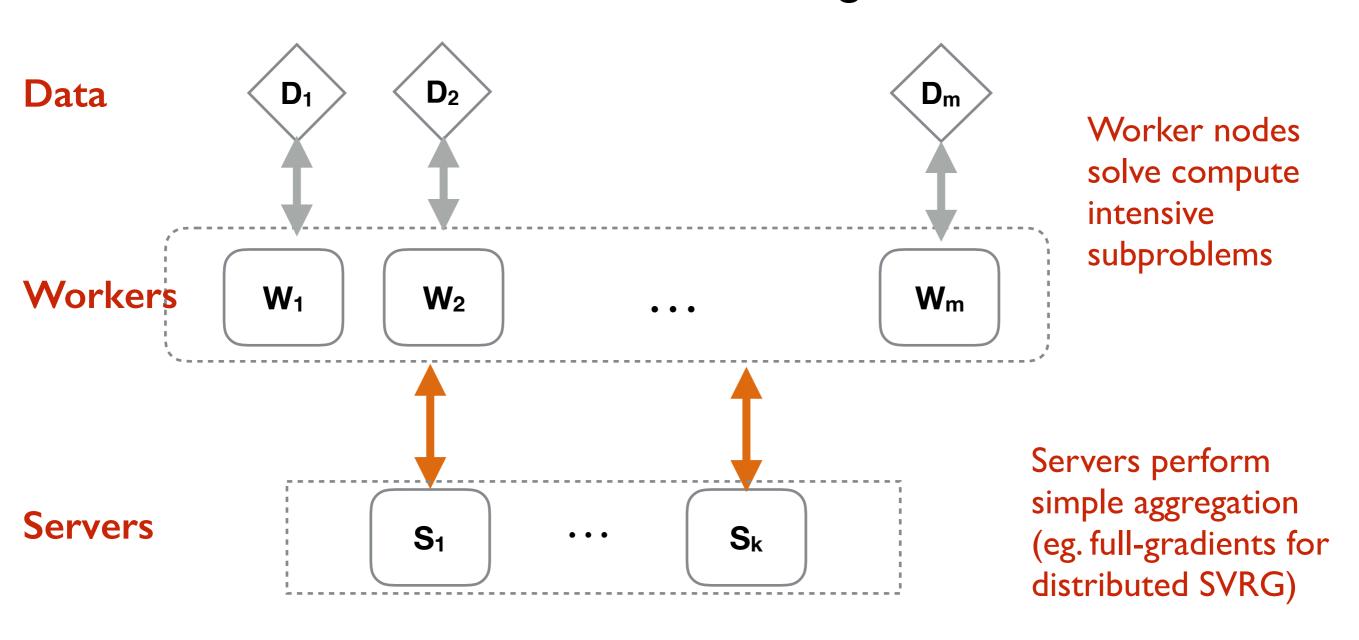
Asynchrony via: servers use delayed / stale gradients from workers

(Nedic, Bertsekas, Borkar, 2000; Agarwal, Duchi 2011) and many others

(Shamir, Srebro 2014) — nice overview of distributed stochastic optimization41

Asynchronous algorithms: distributed

To reduce communication, following idea is useful:



DANE (Shamir, Srebro, Zhang, 2013): distributed Newton, view as having an SVRG-like gradient correction

Asynchronous algorithms: distributed

Key point: Use SVRG (or related fast method) to solve suitable subproblems at workers; reduce #rounds of communication; (or just do D-SVRG)

Some related work

(Lee, Lin, Ma, Yang, 2015)

(Ma, Smith, Jaggi, Jordan, Richtárik, Takáč, 2015)

(Shamir, 2016)

D-SVRG, and accelerated version for some special cases (applies in smaller condition number regime)

CoCoA+: (updates m local dual variables using m local data points; any local opt. method can be used); higher runtime+comm.

D-SVRG via cool application of without replacement SVRG! regularized least-squares problems only for now

Several more: DANE, DISCO, AIDE, etc.

Summary

- * VR stochastic methods for nonconvex problems
- * Surprises for proximal setup
- * Nonconvex problems on manifolds
- * Large-scale: parallel + sparse data
- * Large-scale: distributed; SVRG benefits, limitations

If there is a finite-sum structure, can use VR ideas!

Perspectives: did not cover these!

- Stochastic quasi-convex optim. (Hazan, Levy, Shalev-Shwartz, 2015)

 Nonlinear eigenvalue-type problems (Belkin, Rademacher, Voss, 2016)
- Frank-Wolfe + SVRG: (Reddi, Sra, Poczos, Smola, 2016)
- Newton-type methods: (Carmon, Duchi, Hinder, Sidford, 2016); (Agarwal, Allen-Zhu, Bullins, Hazan, Ma, 2016);
- many more, including robust optimization,
- infinite dimensional nonconvex problems
- geodesic-convexity for global optimality
- polynomial optimization
- many more... it's a rich field!

Perspectives

- * Impact of non-convexity on generalization
- * Non-separable problems (e.g., minimize AUC); saddle point problems (Balamurugan, Bach 2016)
- * Convergence theory, local and global
- * Lower-bounds for nonconvex finite-sums
- * Distributed algorithms (theory and implementations)
- * New applications (e.g., of Riemannian optimization)
- * Search for other more "tractable" nonconvex models
- * Specialization to deep networks, software toolkits

