Optimization for Machine Learning

(Introduction)

SUVRIT SRA Massachusetts Institute of Technology

PKU Summer School on Data Science (July 2017)

Course materials

- http://suvrit.de/teaching.html
- Some references:
 - Introductory lectures on convex optimization Nesterov
 - Convex optimization Boyd & Vandenberghe
 - Nonlinear programming Bertsekas
 - Convex Analysis Rockafellar
 - Fundamentals of convex analysis Urruty, Lemaréchal
 - Lectures on modern convex optimization Nemirovski
 - Optimization for Machine Learning Sra, Nowozin, Wright
 - Theory of Convex Optimization for Machine Learning Bubeck
 - NIPS 2016 Optimization Tutorial Bach, Sra
- Some related courses:
 - EE227A, Spring 2013, (Sra, UC Berkeley)
 - 10-801, Spring 2014 (Sra, CMU)
 - EE364a,b (Boyd, Stanford)
 - EE236b,c (Vandenberghe, UCLA)
- Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Lecture Plan

- Introduction (3 lectures)
- Problems and algorithms (5 lectures)
- Non-convex optimization, perspectives (2 lectures)

Introduction

Supervised machine learning

- ▶ **Data**: *n* observations $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- ▶ **Prediction function**: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

Introduction

Supervised machine learning

- **Data**: *n* observations $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- ▶ **Prediction function**: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- Motivating examples:
 - Linear predictions: $h(x, \theta) = \theta^{\top} \Phi(x)$ using features $\Phi(x)$
 - Neural networks: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$
- Estimating θ parameters is an optimization problem

Introduction

Supervised machine learning

- **Data**: *n* observations $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- ▶ **Prediction function**: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- Motivating examples:
 - Linear predictions: $h(x, \theta) = \theta^{\top} \Phi(x)$ using features $\Phi(x)$
 - Neural networks: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$
- Estimating θ parameters is an optimization problem
 Unsupervised and other ML setups
- Different formulations, but ultimately optimization at heart

The Problem!

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 5 / 59

Suvrit Sra (suvrit@mit.edu)

Convex analysis

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 6 / 59

Convex sets

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the linesegment $\lambda x + (1 - \lambda)y$, where $\lambda \in [0, 1]$, also lies in *C*.

Convex sets

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the line-segment $\lambda x + (1 - \lambda)y$, where $\lambda \in [0, 1]$, also lies in *C*.

Combinations of points

- **Convex**: $\lambda_1 x + \lambda_2 y \in C$, where $\lambda_1, \lambda_2 \ge 0$ and $\lambda_1 + \lambda_2 = 1$.
- **Linear:** if restrictions on λ_1, λ_2 are dropped
- **Conic:** if restriction $\lambda_1 + \lambda_2 = 1$ is dropped

Different restrictions lead to different "algebra"

Recognizing / constructing convex sets

Theorem. (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof.

- \rightarrow If $C_1 \cap C_2 = \emptyset$, then true vacuously.
- \rightarrow Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$.
- → But C_1 , C_2 are convex, hence $\theta x + (1 \theta)y \in C_1$, and also in C_2 . Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$.
- \rightarrow Inductively follows that $\bigcap_{i=1}^{m} C_i$ is also convex.

Convex sets

(psdcone image from convexoptimization.com, Dattorro)

Suvrit Sra (suvrit@mit.edu)

Convex sets

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their **convex hull** is

$$co(x_1, \dots, x_m) := \left\{ \sum_i \theta_i x_i \mid \theta_i \ge 0, \sum_i \theta_i = 1 \right\}.$$

Example:

- ♡ Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).
- \heartsuit halfspace $\{x \mid a^T x \leq b\}$.
- \heartsuit polyhedron { $x \mid Ax \leq b, Cx = d$ }.
- \heartsuit ellipsoid { $x \mid (x x_0)^T A(x x_0) \le 1$ }, (A: semidefinite)
- \heartsuit *convex cone* $x \in \mathcal{K} \implies \alpha x \in \mathcal{K}$ for $\alpha \ge 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Suvrit Sra (suvrit@mit.edu)

Challenge 1

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that $R(A, B) := \left\{ (x^T A x, x^T B x) \mid x^T x = 1 \right\}$

is a compact convex set for $n \ge 3$.

Convex functions

Def. A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if its *epigraph* $\{(x,t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^d, t \in \mathbb{R}, f(x) \le t\}$ is a convex set.

Convex functions

Def. A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if its *epigraph* $\{(x,t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^d, t \in \mathbb{R}, f(x) \le t\}$ is a convex set.

Def. Function $f : I \to \mathbb{R}$ on interval *I* called **midpoint convex** if

 $f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2},$ whenever $x, y \in I.$

Read: *f* of AM is less than or equal to AM of *f*.

Suvrit Sra (suvrit@mit.edu)

Convex functions

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\lambda \ge 0$,

 $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$

These functions also known as **Jensen convex**; named after J.L.W.V. Jensen (after his influential 1905 paper).

Theorem. (J.L.W.V. Jensen). Let $f : I \to \mathbb{R}$ be continuous. Then, f is convex *if and only if* it is midpoint convex.

Exercise: Prove Jensen's theorem.

Convex functions: Jensen's inequality

Suvrit Sra (suvrit@mit.edu)

Convex functions: via gradients

$$f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$$

Suvrit Sra (suvrit@mit.edu)

Convex functions: increasing slopes

 $slope \ PQ \leq slope \ PR \leq slope \ QR$

Suvrit Sra (suvrit@mit.edu)

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♦ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom} f$.
- ▲ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♦ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom} f$.
- ▲ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- ★ By showing $f : dom(f) \to \mathbb{R}$ is convex *if and only if* its restriction to **any** line that intersects dom(*f*) is convex. That is, for any $x \in dom(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in dom(f)\}$).

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♦ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom} f$.
- ▲ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- ♦ By showing $f : dom(f) \to \mathbb{R}$ is convex *if and only if* its restriction to **any** line that intersects dom(*f*) is convex. That is, for any $x \in dom(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in dom(f)\}$).
- ♠ By showing *f* to be a pointwise max of convex functions
- See exercises (Ch. 3) in Boyd & Vandenberghe for more!

Example: Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$.

Suvrit Sra (suvrit@mit.edu)

Example: Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. What is: $\nabla^2 f(x)$?

Example: Quadratic

Let $f(x) = x^T A x + b^T x + c$, where $A \succeq 0, b \in \mathbb{R}^n$, and $c \in \mathbb{R}$. What is: $\nabla^2 f(x)$?

 $\nabla f(x) = 2Ax + b$, $\nabla^2 f(x) = A \succeq 0$, hence *f* is convex.

Suvrit Sra (suvrit@mit.edu)

Examples

Exercise: Prove the convexity of the following functions in **at least** two different ways

1
$$f(x,y) = x^2/y$$
 for $y > 0$ on $\mathbb{R} \times \mathbb{R}_{++}$
2 $f(x) = \log(1 + e^{\sum_i a_i x_i})$ on \mathbb{R}^n $(a_i \in \mathbb{R} \text{ for } 1 \le i \le n)$.

3 Using 2 show that

$$\det(X+Y)^{1/n} \ge \det(X)^{1/n} + \det(Y)^{1/n}$$

for $X, Y \in \mathbb{S}^{n}_{++}$ (i.e., positive definite matrices).

4 **Challenge:** $f(X) = X^{-1}$ on positive definite matrices. (*This question is about convexity/concavity over matrices, so we have to replace the* \leq *by the Löwner order* \leq).

Suvrit Sra (suvrit@mit.edu)

Operations preserving convexity

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Suvrit Sra (suvrit@mit.edu)

Operations preserving convexity

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Let $f : I_1 \to \mathbb{R}$ and $g : I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Operations preserving convexity

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Let $f : I_1 \to \mathbb{R}$ and $g : I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$. $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ $g(f(\lambda x + (1 - \lambda)y)) \leq g(\lambda f(x) + (1 - \lambda)f(y))$ $\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)).$

Check out several other important examples in BV!

Suvrit Sra (suvrit@mit.edu)

Constructing convex functions: sup

Example. The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in an arbitrary "index set" \mathcal{Y} , then

$$f(x) := \sup_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of *x*.

Exercise: Verify!

Example. The ℓ_{∞} -norm $||x||_{\infty} := \max_{1 \le i \le n} |x_i|$

Exercise: Prove that |x| is a convex function.

Suvrit Sra (suvrit@mit.edu)

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose L(x, y) is convex in **both** (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of *x*, provided $f(x) > -\infty$.

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose L(x, y) is convex in **both** (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of *x*, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom} f$. Since $f(u) = \inf_y L(u, y)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$. Similarly, there is $y_2 \in \mathcal{Y}$, such that $L(v, y_2) \leq f(v) + \frac{\epsilon}{2}$. Now we prove that $f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v)$ directly.

$$\begin{aligned} f(\lambda u + (1 - \lambda)v) &= \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y) \\ &\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2) \\ &\leq \lambda L(u, y_1) + (1 - \lambda)L(v, y_2) \\ &\leq \lambda f(u) + (1 - \lambda)f(v) + \epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, claim follows.

Suvrit Sra (suvrit@mit.edu)

Example: Schur complement

Let *A*, *B*, *C* be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the **Schur complement** $A - BC^{-1}B^T \succeq 0$.

Suvrit Sra (suvrit@mit.edu)

Example: Schur complement

Let *A*, *B*, *C* be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the Schur complement $A - BC^{-1}B^T \succeq 0$. *Proof.* $L(x, y) = [x, y]^T Z[x, y]$ is convex in (x, y) since $Z \succeq 0$
Example: Schur complement

Let *A*, *B*, *C* be matrices such that $C \succ 0$, and let

$$Z := \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \succeq 0,$$

then the Schur complement $A - BC^{-1}B^T \succeq 0$. *Proof.* $L(x, y) = [x, y]^T Z[x, y]$ is convex in (x, y) since $Z \succeq 0$ Observe that $f(x) = \inf_y L(x, y) = x^T (A - BC^{-1}B^T)x$ is convex. (We skipped ahead and solved $\nabla_y L(x, y) = 0$ to minimize).

Exercise: Verify the above example!

Suvrit Sra (suvrit@mit.edu)

Convex functions – Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{1}_{\mathcal{X}}(x) := \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ \infty & \text{otherwise.} \end{cases}$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

► Also called "extended value" convex function.

Suvrit Sra (suvrit@mit.edu)

Convex functions – norms

Let $\Omega : \mathbb{R}^d \to \mathbb{R}$ be a function that satisfies

- **1** $\Omega(x) \ge 0$, and $\Omega(x) = 0$ if and only if x = 0 (definiteness)
- **2** $\Omega(\lambda x) = |\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- **3** $\Omega(x+y) \le \Omega(x) + \Omega(y)$ (subadditivity)

Such function called *norms*—usually denoted ||x||.

Theorem. Norms are convex.

Convex functions – norms

Let $\Omega : \mathbb{R}^d \to \mathbb{R}$ be a function that satisfies

- **1** $\Omega(x) \ge 0$, and $\Omega(x) = 0$ if and only if x = 0 (definiteness)
- **2** $\Omega(\lambda x) = |\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- **3** $\Omega(x+y) \le \Omega(x) + \Omega(y)$ (subadditivity)

Such function called *norms*—usually denoted ||x||.

Theorem. Norms are convex.

Often used in "regularized" ML problems

 $\min_{\boldsymbol{\theta}} \quad f(\boldsymbol{\theta}) + \mu \boldsymbol{\Omega}(\boldsymbol{\theta}).$

Suvrit Sra (suvrit@mit.edu)

Norms and distances

Example. Let \mathcal{X} be a convex set. Let $x \in \mathbb{R}^n$ be some point. The distance of x to the set \mathcal{X} is defined as

$$\operatorname{dist}(x,\mathcal{X}) := \inf_{y\in\mathcal{X}} \quad \|x-y\|.$$

Exercise: Prove the above claim. (*Hint:* argue that ||x - y|| is jointly convex in (x, y))

Norms: important examples

Example. (ℓ_2 -norm): $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example. (
$$\ell_p$$
-norm): Let $p \ge 1$. $||x||_p = (\sum_i |x_i|^p)^{1/p}$

Example. (ℓ_{∞} -norm): $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example. (Frobenius-norm): Let
$$A \in \mathbb{R}^{m \times n}$$
. $||A||_{\mathrm{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$

Suvrit Sra (suvrit@mit.edu)

Mixed norms

Def. Let $x \in \mathbb{R}^{n_1+n_2+\cdots+n_G}$ be a vector partitioned into subvectors $x_j \in \mathbb{R}^{n_j}$, $1 \le j \le G$. Let $p := (p_0, p_1, p_2, \dots, p_G)$, where $p_j \ge 1$. Consider the vector $\xi := (||x_1||_{p_1}, \cdots, ||x_G||_{p_G})$. Then, we define the **mixed-norm** of *x* as

$$\|x\|_p := \|\xi\|_{p_0}$$

Mixed norms

Def. Let $x \in \mathbb{R}^{n_1+n_2+\cdots+n_G}$ be a vector partitioned into subvectors $x_j \in \mathbb{R}^{n_j}$, $1 \le j \le G$. Let $p := (p_0, p_1, p_2, \dots, p_G)$, where $p_j \ge 1$. Consider the vector $\xi := (||x_1||_{p_1}, \cdots, ||x_G||_{p_G})$. Then, we define the **mixed-norm** of *x* as

$$||x||_p := ||\xi||_{p_0}$$

Example. $\ell_{1,q}$ -norm: Let *x* be as above.

$$||x||_{1,q} := \sum_{i=1}^{G} ||x_i||_q.$$

This norm is popular in machine learning, statistics.

Suvrit Sra (suvrit@mit.edu)

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an **induced matrix norm** as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}.$$

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an **induced matrix norm** as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}.$$

Verify that above definition yields a norm.

Suvrit Sra (suvrit@mit.edu)

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an **induced matrix norm** as

$$||A|| := \sup_{||x|| \neq 0} \frac{||Ax||}{||x||}.$$

Verify that above definition yields a norm.

- Clearly, ||A|| = 0 iff A = 0 (definiteness)
- ► $\|\alpha A\| = |\alpha| \|A\|$ (homogeneity)
- $||A + B|| = \sup \frac{||(A+B)x||}{||x||} \le \sup \frac{||Ax|| + ||Bx||}{||x||} \le ||A|| + ||B||.$

Suvrit Sra (suvrit@mit.edu)

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is $\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$ $\|A\|_2 = \sigma_{\max}(A), \text{ where } \sigma_{\max} \text{ is the largest singular value of } A.$

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is $\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$ $\|A\|_2 = \sigma_{\max}(A), \text{ where } \sigma_{\max} \text{ is the largest singular value of } A.$

• Warning! Generally, largest eigenvalue not a norm!

Suvrit Sra (suvrit@mit.edu)

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is $\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$ $\|A\|_2 = \sigma_{\max}(A), \text{ where } \sigma_{\max} \text{ is the largest singular value of } A.$

- Warning! Generally, largest eigenvalue not a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is $\|A\|_2 := \sup_{\|x\|_2 \neq 0} \frac{\|Ax\|_2}{\|x\|_2}.$ $\|A\|_2 = \sigma_{\max}(A), \text{ where } \sigma_{\max} \text{ is the largest singular value of } A.$

- Warning! Generally, largest eigenvalue **not** a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

 $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue **not** a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- Schatten *p*-norm: ℓ_p -norm of vector of singular value.

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is

$$||A||_2 := \sup_{||x||_2 \neq 0} \frac{||Ax||_2}{||x||_2}.$$

 $||A||_2 = \sigma_{\max}(A)$, where σ_{\max} is the largest singular value of A.

- Warning! Generally, largest eigenvalue **not** a norm!
- $||A||_1$ and $||A||_{\infty}$ —max-abs-column and max-abs-row sums.
- $||A||_p$ generally NP-Hard to compute for $p \notin \{1, 2, \infty\}$
- Schatten *p*-norm: ℓ_p -norm of vector of singular value.
- **Exercise:** Let $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_n \ge 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$||A||_{(k)} := \sum_{i=1}^{k} \sigma_i(A),$$

is a norm; $1 \le k \le n$.

Suvrit Sra (suvrit@mit.edu)

Proof

Proof. By definition, the largest singular value is defined as

$$\sigma_{\max}(A) := \max_{x: \|x\|_2 \le 1} \|Ax\|_2.$$

We saw that norms are convex. We also saw that for convex f, f(Ax) is also convex. Thus, $||Ax||_2$ is convex.

Since the pointwise max of convex functions (over arbitrary index sets) is convex—here we index over $x \in \mathbb{R}^n$.

_____ 0 _____

Thus, $\sigma_{\max}(A)$ is a norm. It is denoted as $||A||_2$ or just ||A|| — not to be confused with the Euclidean ℓ_2 -norm of a vector!

Suvrit Sra (suvrit@mit.edu)

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its **dual norm** is

$$||u||_* := \sup \left\{ u^T x \mid ||x|| \le 1 \right\}.$$

Suvrit Sra (suvrit@mit.edu)

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its **dual norm** is

$$||u||_* := \sup \left\{ u^T x \mid ||x|| \le 1 \right\}.$$

Exercise: Verify that we may write $||u||_* = \sup_{x \neq 0} \frac{u^T x}{||x||}$

Suvrit Sra (suvrit@mit.edu)

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^n . Its **dual norm** is

$$||u||_* := \sup \left\{ u^T x \mid ||x|| \le 1 \right\}.$$

Exercise: Verify that we may write $||u||_* = \sup_{x \neq 0} \frac{u^T x}{||x||}$ **Exercise:** Verify that $||u||_*$ is a norm.

•
$$||u + v||_* = \sup \{(u + v)^T x \mid ||x|| \le 1\}$$

• But
$$\sup (A + B) \leq \sup A + \sup B$$

Exercise: Let 1/p + 1/q = 1, where $p, q \ge 1$. Show that $\|\cdot\|_q$ is dual to $\|\cdot\|_p$. In particular, the ℓ_2 -norm is self-dual.

Hint: Use *Hölder's inequality:* $u^T v \leq ||u||_p ||v||_q$

Suvrit Sra (suvrit@mit.edu)

Challenge 2

Consider the following functions on strictly positive variables:

$$h_1(x) := \frac{1}{x}$$

$$h_2(x,y) := \frac{1}{x} + \frac{1}{y} - \frac{1}{x+y}$$

$$h_3(x,y,z) := \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x+y} - \frac{1}{y+z} - \frac{1}{x+z} + \frac{1}{x+y+z}$$

$$\heartsuit$$
 Prove that $h_n(x) > 0$ (easy)

- \heartsuit Prove that h_1 , h_2 , h_3 , and in general h_n are convex (hard)
- \heartsuit Prove that in fact each $1/h_n$ is concave (harder).

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Suvrit Sra (suvrit@mit.edu)

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

• Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$

Suvrit Sra (suvrit@mit.edu)

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ► $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||);$

Suvrit Sra (suvrit@mit.edu)

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \le 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- ► $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||); \rightarrow \infty$

Suvrit Sra (suvrit@mit.edu)

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$,

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.

Suvrit Sra (suvrit@mit.edu)

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.
- x = 0 maximizes $||x|| (||z||_* 1)$, hence f(z) = 0.

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \operatorname{dom} f} x^T z - f(x).$$

Exercise: Why is f^* convex? What if f(x) is nonconvex?

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $||z||_* > 1$; (ii) $||z||_* \le 1$
- ► Case (i), by definition of dual norm (sup over $z^T u$) there is a u s.t. $||u|| \le 1$ and $z^T u > 1$
- $f^*(z) = \sup_x x^T z f(x)$. Rewrite $x = \alpha u$, and let $\alpha \to \infty$
- Then, $z^T x ||x|| = \alpha z^T u ||\alpha u|| = \alpha (z^T u ||u||); \rightarrow \infty$
- Case (ii): Since $z^T x \le ||x|| ||z||_*$, $x^T z ||x|| \le ||x|| (||z||_* 1) \le 0$.
- x = 0 maximizes $||x|| (||z||_* 1)$, hence f(z) = 0.
- ▶ Thus, $f(z) = +\infty$ if (i), and 0 if (ii), as desired.

Suvrit Sra (suvrit@mit.edu)

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_{x} zx - (ax + b)$

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_x zx - (ax + b)$
 $= \infty, \quad \text{if } (z - a) \neq 0.$

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_{x} zx - (ax + b)$
 $= \infty, \text{ if } (z - a) \neq 0.$
Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_{x} zx - (ax + b)$
 $= \infty, \quad \text{if } (z - a) \neq 0.$

Thus, $dom f^* = \{a\}$, and $f^*(a) = -b$.

Example. Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Suvrit Sra (suvrit@mit.edu)
Fenchel conjugate

Example.
$$f(x) = ax + b$$
; then,
 $f^*(z) = \sup_{x} zx - (ax + b)$
 $= \infty$, if $(z - a) \neq 0$.

Thus, dom $f^* = \{a\}$, and $f^*(a) = -b$.

Example. Let $a \ge 0$, and set $f(x) = -\sqrt{a^2 - x^2}$ if $|x| \le a$, and $+\infty$ otherwise. Then, $f^*(z) = a\sqrt{1+z^2}$.

Example. $f(x) = \frac{1}{2}x^T A x$, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Suvrit Sra (suvrit@mit.edu)

Fenchel conjugate – exercises

Exercise: If $f(x) = \max(0, 1 - x)$ (hinge loss) then dom f^* is [-1, 0], and within this domain, $f^*(z) = z$.

If $f^{**} = f$, we say f is a closed convex function.

Exercise: Suppose $f(x) = (\sum_i |x_i|^{1/2})^2$. What is f^{**} ?

Exercise: Suppose $f(x) = x^T A x + b^T x$ but $A \succeq 0$; what is f^* ?

Exercise: For which functions is $f^* = f$?

Suvrit Sra (suvrit@mit.edu)

Optimization

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 36 / 59

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \, f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$

Henceforth, we drop condition on domains for brevity.

Suvrit Sra (suvrit@mit.edu)

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

min $f_0(x)$ s.t. $f_i(x) \le 0$, $1 \le i \le m$, $x \in \{\operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m\}$.

Henceforth, we drop condition on domains for brevity.

- If *f_i* are **differentiable** smooth optimization
- If any *f_i* is **non-differentiable** nonsmooth optimization
- If all *f*_{*i*} are **convex** convex optimization
- If m = 0, i.e., only f_0 is there **unconstrained** minimization

Standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Suvrit Sra (suvrit@mit.edu)

Standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Some observations

• All f_i are convex

Suvrit Sra (suvrit@mit.edu)

Standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Some observations

- All f_i are convex
- Direction of inequality $f_i(x) \leq 0$ crucial

Standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Some observations

- All f_i are convex
- Direction of inequality $f_i(x) \le 0$ crucial
- ▶ The only equality constraints we allow are affine

Standard form

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Some observations

- All f_i are convex
- Direction of inequality $f_i(x) \le 0$ crucial
- ▶ The only equality constraints we allow are affine
- ► This ensures, set of feasible solutions is also **convex**

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

Suvrit Sra (suvrit@mit.edu)

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

Def. We denote by p^* the **optimal value** of the problem. $p^* := \inf \{ f_0(x) \mid x \in \mathcal{X} \}$

► If *X* is empty, we say problem is **infeasible**

Suvrit Sra (suvrit@mit.edu)

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

- ► If *X* is empty, we say problem is **infeasible**
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

- If \mathcal{X} is empty, we say problem is **infeasible**
- ▶ By convention, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

- ► If *X* is empty, we say problem is **infeasible**
- ▶ By **convention**, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

- ► If *X* is empty, we say problem is **infeasible**
- ▶ By **convention**, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \to \pm \infty$)

Def. We denote by \mathcal{X} the **feasible set** $\mathcal{X} := \{x \in \mathbb{R}^n \mid f_i(x) \le 0, \ 1 \le i \le m, \ Ax = b\}.$

Def. We denote by p^* the **optimal value** of the problem. $p^* := \inf \{ f_0(x) \mid x \in \mathcal{X} \}$

- If \mathcal{X} is empty, we say problem is **infeasible**
- ▶ By **convention**, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \to \pm \infty$)
- Say $f_0(x) = 0$, problem is called **convex feasibility**

Suvrit Sra (suvrit@mit.edu)

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

Suvrit Sra (suvrit@mit.edu)

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

• Let x^* be a local minimizer of f(x) on \mathcal{X} that is not global

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

- Let x^* be a local minimizer of f(x) on \mathcal{X} that is **not** global
- ▶ Then there is a point $y \in \mathcal{X}$ such that $f(y) < f(x^*)$

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

- Let x^* be a local minimizer of f(x) on \mathcal{X} that is **not** global
- ▶ Then there is a point $y \in \mathcal{X}$ such that $f(y) < f(x^*)$
- \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

- Let x^* be a local minimizer of f(x) on \mathcal{X} that is **not** global
- ▶ Then there is a point $y \in \mathcal{X}$ such that $f(y) < f(x^*)$
- \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- ▶ Since *f* is cvx, and $x^*, y \in \text{dom} f$, we have

$$f(x_{\theta}) - f(x^*) \le \theta(f(y) - f(x^*)).$$

Suvrit Sra (suvrit@mit.edu)

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

- Let x^* be a local minimizer of f(x) on \mathcal{X} that is not global
- ▶ Then there is a point $y \in \mathcal{X}$ such that $f(y) < f(x^*)$
- \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- ▶ Since *f* is cvx, and $x^*, y \in \text{dom} f$, we have

$$f(x_{\theta}) - f(x^*) \le \theta(f(y) - f(x^*)).$$

Since x^* is a local minimizer, for small enough $\theta > 0$, lhs ≥ 0 .

Suvrit Sra (suvrit@mit.edu)

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

- Let x^* be a local minimizer of f(x) on \mathcal{X} that is not global
- ▶ Then there is a point $y \in \mathcal{X}$ such that $f(y) < f(x^*)$
- \mathcal{X} is cvx., so we have $x_{\theta} = \theta y + (1 \theta)x^* \in \mathcal{X}$ for $\theta \in (0, 1)$
- ▶ Since *f* is cvx, and $x^*, y \in \text{dom} f$, we have

$$f(x_{\theta}) - f(x^*) \le \theta(f(y) - f(x^*)).$$

- Since x^* is a local minimizer, for small enough $\theta > 0$, lhs ≥ 0 .
- ▶ But the rhs is negative, which is a contradiction.

Suvrit Sra (suvrit@mit.edu)

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

$$0 \le \frac{f(x^* + td) - f(x^*)}{2}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

$$0 \le \frac{f(x^* + td) - f(x^*)}{t}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

$$0 \le \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt}$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

$$0 \leq \lim_{t\downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough $t, f(x^* + td) \ge f(x^*)$.

$$0 \leq \lim_{t\downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Similarly, using -d it follows that $\langle \nabla f(x^*), d \rangle \le 0$, so $\langle \nabla f(x^*), d \rangle = 0$ **must hold**. Since *d* is arbitrary, $\nabla f(x^*) = 0$.

Suvrit Sra (suvrit@mit.edu)

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

Proof: Consider function $g(t) = f(x^* + td)$, where $d \in \mathbb{R}^n$; t > 0. Since x^* is a local min, for small enough $t, f(x^* + td) \ge f(x^*)$.

$$0 \leq \lim_{t \downarrow 0} \frac{f(x^* + td) - f(x^*)}{t} = \frac{dg(0)}{dt} = \langle \nabla f(x^*), d \rangle.$$

Similarly, using -d it follows that $\langle \nabla f(x^*), d \rangle \le 0$, so $\langle \nabla f(x^*), d \rangle = 0$ **must hold**. Since *d* is arbitrary, $\nabla f(x^*) = 0$.

Exercise: Prove that if *f* is convex, then $\nabla f(x^*) = 0$ is actually **sufficient** for global optimality! For general *f* this is **not** true. (This property that makes convex optimization special!)

Suvrit Sra (suvrit@mit.edu)

Descent methods

$\min_x f(x)$

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute et Technology 42 / 59

Descent methods

Suvrit Sra (suvrit@mit.edu)

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute ef Technology 43 / 59

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 43 / 59

Suvrit Sra (suvrit@mit.edu)

Suvrit Sra (suvrit@mit.edu)

Iterative Algorithm

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

• **stepsize** $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

Suvrit Sra (suvrit@mit.edu)

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

• stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

Descent direction d^k satisfies

 $\langle \nabla f(x^k), d^k \rangle < 0$

Suvrit Sra (suvrit@mit.edu)

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

• stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

Descent direction d^k satisfies

$$\langle \nabla f(x^k), d^k \rangle < 0$$

Numerous ways to select α_k and d^k

Suvrit Sra (suvrit@mit.edu)

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

• stepsize $\alpha_k \ge 0$, usually ensures $f(x^{k+1}) < f(x^k)$

Descent direction d^k satisfies

$$\langle \nabla f(x^k), d^k \rangle < 0$$

Numerous ways to select α_k and d^k

Usually (batch) methods seek monotonic descent

 $f(x^{k+1}) < f(x^k)$

Suvrit Sra (suvrit@mit.edu)

Gradient methods – direction

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

• Different choices of direction d^k

- Scaled gradient: $d^k = -D^k \nabla f(x^k)$, $D^k \succ 0$
- Newton's method: $(D^k = [\nabla^2 f(x^k)]^{-1})$
- **Quasi-Newton:** $D^k \approx [\nabla^2 f(x^k)]^{-1}$
- Steepest descent: $D^k = I$
- **Diagonally scaled:** D^k diagonal with $D_{ii}^k \approx \left(\frac{\partial^2 f(x^k)}{(\partial x_i)^2}\right)^{-1}$
- **Discretized Newton:** $D^k = [H(x^k)]^{-1}$, *H* via finite-diff.

Suvrit Sra (suvrit@mit.edu)

Gradient methods – direction

$$x^{k+1} = x^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

▶ Different choices of direction *d^k*

- Scaled gradient: $d^k = -D^k \nabla f(x^k)$, $D^k \succ 0$
- Newton's method: $(D^k = [\nabla^2 f(x^k)]^{-1})$
- **Quasi-Newton:** $D^k \approx [\nabla^2 f(x^k)]^{-1}$
- Steepest descent: $D^k = I$
- **Diagonally scaled:** D^k diagonal with $D_{ii}^k \approx \left(\frac{\partial^2 f(x^k)}{(\partial x_i)^2}\right)^{-1}$
- Discretized Newton: D^k = [H(x^k)]⁻¹, H via finite-diff.
 ...

Exercise: Verify that $\langle \nabla f(x^k), d^k \rangle < 0$ for above choices

Suvrit Sra (suvrit@mit.edu)

Gradient methods – stepsize

• Exact: $\alpha_k := \underset{\alpha \ge 0}{\operatorname{argmin}} f(x^k + \alpha d^k)$

Suvrit Sra (suvrit@mit.edu)

Gradient methods – stepsize

• Exact:
$$\alpha_k := \underset{\alpha \ge 0}{\operatorname{argmin}} f(x^k + \alpha d^k)$$

• Limited min: $\alpha_k = \underset{0 \le \alpha \le s}{\operatorname{argmin}} f(x^k + \alpha d^k)$

Suvrit Sra (suvrit@mit.edu)

Gradient methods – stepsize

• **Exact:**
$$\alpha_k := \underset{\alpha \ge 0}{\operatorname{argmin}} f(x^k + \alpha d^k)$$

- Limited min: $\alpha_k = \underset{0 \le \alpha \le s}{\operatorname{argmin}} f(x^k + \alpha d^k)$
- ► Armijo-rule. Given fixed scalars, s, β, σ with 0 < β < 1 and 0 < σ < 1 (chosen experimentally). Set</p>

$$\alpha_k = \beta^{m_k} s,$$

where we **try** $\beta^m s$ for m = 0, 1, ... until **sufficient descent**

$$f(x^k) - f(x + \beta^m s d^k) \ge -\sigma \beta^m s \langle \nabla f(x^k), d^k \rangle$$

- **Constant:** $\alpha_k = 1/L$ (for suitable value of *L*)
- **Diminishing:** $\alpha_k \to 0$ but $\sum_k \alpha_k = \infty$.

Suvrit Sra (suvrit@mit.edu)

Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

- Gradient vectors of closeby points are close to each other
- Objective function has "bounded curvature"
- Speed at which gradient varies is bounded

Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_L^1$ $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$

Lemma (Descent). Let $f \in C_L^1$. Then, $f(y) \le f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} ||y - x||_2^2$

Theorem. Let $f \in C_L^1$ be convex, and $\{x^k\}$ is sequence generated as above, with $\alpha_k = 1/L$. Then, $f(x^{k+1}) - f(x^*) = O(1/k)$.

Remark: $f \in C_L^1$ is "good" for nonconvex too, except for $f - f^*$.

Strong convexity (faster convergence)

Assumption: Strong convexity; denote $f \in S^1_{L,\mu}$ $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$

▶ A twice diff. $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if

 $\forall x \in \mathbb{R}^d$, eigenvalues $\left[\nabla^2 f(x)\right] \ge 0$.

► A twice diff. $f : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if $\forall x \in \mathbb{R}^d$, eigenvalues $[\nabla^2 f(x)] \ge \mu$.

Suvrit Sra (suvrit@mit.edu)

Strong convexity (faster convergence)

Assumption: Strong convexity; denote $f \in S_{L,\mu}^1$ $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle + \frac{\mu}{2} ||x - y||_2^2$

• A twice diff. $f : \mathbb{R}^d \to \mathbb{R}$ is convex if and only if

 $\forall x \in \mathbb{R}^d$, eigenvalues $\left[\nabla^2 f(x)\right] \ge 0$.

► A twice diff. $f : \mathbb{R}^d \to \mathbb{R}$ is μ -strongly convex if and only if $\forall x \in \mathbb{R}^d$, eigenvalues $[\nabla^2 f(x)] \ge \mu$.

Condition number: $\kappa := \frac{L}{\mu} \ge 1$ influences convergence speed.

Setting $\alpha_k = \frac{2}{\mu+L}$ yields linear rate ($\mu > 0$) for gradient descent. That is, $f(x^k) - f(x^*) = O(e^{-k})$.

Suvrit Sra (suvrit@mit.edu)

Strong convexity – linear rate

Theorem. If $f \in S^1_{L,\mu'}$ $0 < \alpha < 2/(L + \mu)$, then the gradient method generates a sequence $\{x^k\}$ that satisfies

$$\|x^k - x^*\|_2^2 \le \left(1 - \frac{2\alpha\mu L}{\mu + L}\right)^k \|x^0 - x^*\|_2.$$

Moreover, if $\alpha = 2/(L + \mu)$ then

$$f(x^k) - f^* \le \frac{L}{2} \left(\frac{\kappa - 1}{\kappa + 1}\right)^{2k} \|x^0 - x^*\|_2^2,$$

where $\kappa = L/\mu$ is the condition number.

Suvrit Sra (suvrit@mit.edu)

Gradient methods – lower bounds

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

Theorem. Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \le k \le \frac{1}{2}(n-1)$, there is a smooth f, s.t. $f(x^k) - f(x^*) \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$

Gradient methods – lower bounds

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k)$$

Theorem. Lower bound I (Nesterov) For any $x^0 \in \mathbb{R}^n$, and $1 \le k \le \frac{1}{2}(n-1)$, there is a smooth *f*, s.t.

$$f(x^k) - f(x^*) \ge \frac{3L\|x^0 - x^*\|_2^2}{32(k+1)^2}$$

Theorem. Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L,\mu}^{\infty}$ ($\mu > 0, \kappa > 1$) $f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1}\right)^{2k} \|x^0 - x^*\|_2^2.$

Suvrit Sra (suvrit@mit.edu)

Faster methods*

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 53 / 59

Optimal gradient methods

♦ We saw efficiency estimates for the gradient method:

$$f \in C_L^1: \qquad f(x^k) - f^* \le \frac{2L \|x^0 - x^*\|_2^2}{k+4}$$

$$f \in S_{L,\mu}^1: \qquad f(x^k) - f^* \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} \|x^0 - x^*\|_2^2.$$

Optimal gradient methods

♦ We saw efficiency estimates for the gradient method:

$$f \in C_L^1: \qquad f(x^k) - f^* \le \frac{2L \|x^0 - x^*\|_2^2}{k+4}$$

$$f \in S_{L,\mu}^1: \qquad f(x^k) - f^* \le \frac{L}{2} \left(\frac{L-\mu}{L+\mu}\right)^{2k} \|x^0 - x^*\|_2^2.$$

We also saw lower complexity bounds

$$f \in C_L^1: \qquad f(x^k) - f(x^*) \ge \frac{3L \|x^0 - x^*\|_2^2}{32(k+1)^2}$$
$$fS_{L,\mu}^{\infty}: \qquad f(x^k) - f(x^*) \ge \frac{\mu}{2} \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^{2k} \|x^0 - x^*\|_2^2$$

Suvrit Sra (suvrit@mit.edu)

Optimal gradient methods

♠ Subgradient method upper and lower bounds

$$f(x^k) - f(x^*) \le O(1/\sqrt{k})$$

$$f(x^k) - f(x^*) \ge \frac{LD}{2(1+\sqrt{k+1})}.$$

 Composite objective problems: proximal gradient gives same bounds as gradient methods.

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S^1_{L,\mu}$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k) + \beta_k (x^k - x^{k-1})$$

Suvrit Sra (suvrit@mit.edu)

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S^1_{L,\mu}$

$$x^{k+1} = x^k - \alpha_k \nabla f(x^k) + \beta_k (x^k - x^{k-1})$$

► **Converges** (locally, i.e., for $||x^0 - x^*||_2 \le \epsilon$) as

$$\|x^k - x^*\|_2^2 \le \left(rac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}
ight)^{2k} \|x^0 - x^*\|_2^2,$$

for
$$\alpha_k = \frac{4}{(\sqrt{L} + \sqrt{\mu})^2}$$
 and $\beta_k = \left(\frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}\right)^2$

Suvrit Sra (suvrit@mit.edu)

$\min_{x} f(x)$, where $S_{L,\mu}^{1}$ with $\mu \geq 0$

Suvrit Sra (suvrit@mit.edu)

 $\min_{x} f(x)$, where $S_{L,\mu}^{1}$ with $\mu \geq 0$

Choose x⁰ ∈ ℝⁿ, α₀ ∈ (0,1)
 Let y⁰ ← x⁰; set q = μ/L

Suvrit Sra (suvrit@mit.edu)

 $\min_x f(x)$, where $S_{L,\mu}^1$ with $\mu \ge 0$

- 1. Choose $x^0 \in \mathbb{R}^n$, $\alpha_0 \in (0, 1)$
- 2. Let $y^0 \leftarrow x^0$; set $q = \mu/L$
- 3. *k*-th iteration ($k \ge 0$):

a). Compute intermediate update

$$x^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$$

 $\min_x f(x)$, where $S_{L,\mu}^1$ with $\mu \ge 0$

- 1. Choose $x^0 \in \mathbb{R}^n$, $\alpha_0 \in (0, 1)$
- 2. Let $y^0 \leftarrow x^0$; set $q = \mu/L$
- 3. *k*-th iteration ($k \ge 0$):
 - a). Compute intermediate update

$$x^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$$

b). Compute stepsize α_{k+1} by solving

$$\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$$

Suvrit Sra (suvrit@mit.edu)

 $\min_x f(x)$, where $S_{L,\mu}^1$ with $\mu \ge 0$

- 1. Choose $x^0 \in \mathbb{R}^n$, $\alpha_0 \in (0, 1)$
- 2. Let $y^0 \leftarrow x^0$; set $q = \mu/L$
- 3. *k*-th iteration ($k \ge 0$):
 - a). Compute intermediate update

$$x^{k+1} = y^k - \frac{1}{L}\nabla f(y^k)$$

b). Compute stepsize α_{k+1} by solving

$$\alpha_{k+1}^2 = (1 - \alpha_{k+1})\alpha_k^2 + q\alpha_{k+1}$$

c). Set $\beta_k = \alpha_k (1 - \alpha_k) / (\alpha_k^2 + \alpha_{k+1})$ d). Update solution estimate

$$y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$$

Suvrit Sra (suvrit@mit.edu)

Optimal gradient method – rate

Theorem. Let $\{x^k\}$ be sequence generated by above algorithm. If $\alpha_0 \ge \sqrt{\mu/L}$, then

$$f(x^k) - f(x^*) \le c_1 \min\left\{\left(1 - \sqrt{\frac{\mu}{L}}\right)^k, \frac{4L}{(2\sqrt{L} + c_2k)^2}\right\},$$

where constants c_1 , c_2 depend on α_0 , L, μ .

Strongly convex case – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k) / (\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Strongly convex case – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k) / (\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Optimal method simplifies to

- 1. Choose $y^0 = x^0 \in \mathbb{R}^n$
- 2. *k*-th iteration ($k \ge 0$):
Strongly convex case – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k) / (\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Optimal method simplifies to

1. Choose $y^0 = x^0 \in \mathbb{R}^n$ 2. *k*-th iteration ($k \ge 0$): a). $x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$ b). $y^{k+1} = x^{k+1} + \beta(x^{k+1} - x^k)$

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Strongly convex case – simplification

If $\mu > 0$, select $\alpha_0 = \sqrt{\mu/L}$. The two main steps get simplified: 1. Set $\beta_k = \alpha_k (1 - \alpha_k) / (\alpha_k^2 + \alpha_{k+1})$ 2. $y^{k+1} = x^{k+1} + \beta_k (x^{k+1} - x^k)$ $\alpha_k = \sqrt{\frac{\mu}{L}} \qquad \beta_k = \frac{\sqrt{L} - \sqrt{\mu}}{\sqrt{L} + \sqrt{\mu}}, \qquad k \ge 0.$

Optimal method simplifies to

- 1. Choose $y^0 = x^0 \in \mathbb{R}^n$
- 2. *k*-th iteration ($k \ge 0$):

a).
$$x^{k+1} = y^k - \frac{1}{L} \nabla f(y^k)$$

b). $y^{k+1} = x^{k+1} + \beta (x^{k+1} - x^k)$

Notice similarity to Polyak's method!

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning