Optimization for Machine Learning
 (Introduction)

Suvrit Sra

Massachusetts Institute of Technology

PKU Summer School on Data Science (July 2017)

Course materials

- http://suvrit.de/teaching.html

■ Some references:

- Introductory lectures on convex optimization - Nesterov
- Convex optimization - Boyd \& Vandenberghe
- Nonlinear programming - Bertsekas
- Convex Analysis - Rockafellar
- Fundamentals of convex analysis - Urruty, Lemaréchal
- Lectures on modern convex optimization - Nemirovski
- Optimization for Machine Learning - Sra, Nowozin, Wright
- Theory of Convex Optimization for Machine Learning - Bubeck
- NIPS 2016 Optimization Tutorial - Bach, Sra

■ Some related courses:

- EE227A, Spring 2013, (Sra, UC Berkeley)
- 10-801, Spring 2014 (Sra, CMU)
- EE364a,b (Boyd, Stanford)
- EE236b,c (Vandenberghe, UCLA)
- Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Lecture Plan

- Introduction (3 lectures)
- Problems and algorithms (5 lectures)
- Non-convex optimization, perspectives (2 lectures)

Introduction

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathcal{X} \times \mathcal{Y}$
- Prediction function: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^{d}$

Introduction

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathcal{X} \times \mathcal{Y}$
- Prediction function: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^{d}$
- Motivating examples:
- Linear predictions: $h(x, \theta)=\theta^{\top} \Phi(x)$ using features $\Phi(x)$
- Neural networks: $h(x, \theta)=\theta_{m}^{\top} \sigma\left(\theta_{m-1}^{\top} \sigma\left(\cdots \theta_{2}^{\top} \sigma\left(\theta_{1}^{\top} x\right)\right)\right.$
- Estimating θ parameters is an optimization problem

Introduction

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathcal{X} \times \mathcal{Y}$
- Prediction function: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^{d}$
- Motivating examples:
- Linear predictions: $h(x, \theta)=\theta^{\top} \Phi(x)$ using features $\Phi(x)$
- Neural networks: $h(x, \theta)=\theta_{m}^{\top} \sigma\left(\theta_{m-1}^{\top} \sigma\left(\cdots \theta_{2}^{\top} \sigma\left(\theta_{1}^{\top} x\right)\right)\right.$
- Estimating θ parameters is an optimization problem

Unsupervised and other ML setups

- Different formulations, but ultimately optimization at heart

The Problem!

min $\theta \in \mathcal{S}$

$f(\theta)$

The Problem!

$\min _{\theta \in \mathcal{S}}$

 $f(\theta)$

Convex analysis

Convex sets

Def. Set $C \subset \mathbb{R}^{n}$ called convex, if for any $x, y \in C$, the linesegment $\lambda x+(1-\lambda) y$, where $\lambda \in[0,1]$, also lies in C.

Convex sets

Def. Set $C \subset \mathbb{R}^{n}$ called convex, if for any $x, y \in C$, the linesegment $\lambda x+(1-\lambda) y$, where $\lambda \in[0,1]$, also lies in C.

Combinations of points

- Convex: $\lambda_{1} x+\lambda_{2} y \in C$, where $\lambda_{1}, \lambda_{2} \geq 0$ and $\lambda_{1}+\lambda_{2}=1$.
- Linear: if restrictions on λ_{1}, λ_{2} are dropped
- Conic: if restriction $\lambda_{1}+\lambda_{2}=1$ is dropped

Different restrictions lead to different "algebra"

Recognizing / constructing convex sets

Theorem. (Intersection).
Let C_{1}, C_{2} be convex sets. Then, $C_{1} \cap C_{2}$ is also convex.
Proof.
\rightarrow If $C_{1} \cap C_{2}=\emptyset$, then true vacuously.
\rightarrow Let $x, y \in C_{1} \cap C_{2}$. Then, $x, y \in C_{1}$ and $x, y \in C_{2}$.
\rightarrow But C_{1}, C_{2} are convex, hence $\theta x+(1-\theta) y \in C_{1}$, and also in C_{2}. Thus, $\theta x+(1-\theta) y \in C_{1} \cap C_{2}$.
\rightarrow Inductively follows that $\bigcap_{i=1}^{m} C_{i}$ is also convex.

Convex sets

(psdcone image from convexoptimization.com, Dattorro)

Convex sets

\bigcirc Let $x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}^{n}$. Their convex hull is

$$
\operatorname{co}\left(x_{1}, \ldots, x_{m}\right):=\left\{\sum_{i} \theta_{i} x_{i} \mid \theta_{i} \geq 0, \sum_{i} \theta_{i}=1\right\}
$$

Example:

\bigcirc Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. The set $\{x \mid A x=b\}$ is convex (it is an affine space over subspace of solutions of $A x=0$).
\bigcirc halfspace $\left\{x \mid a^{T} x \leq b\right\}$.
\bigcirc polyhedron $\{x \mid A x \leq b, C x=d\}$.
\bigcirc ellipsoid $\left\{x \mid\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right) \leq 1\right\}$, (A : semidefinite)
\bigcirc convex cone $x \in \mathcal{K} \Longrightarrow \alpha x \in \mathcal{K}$ for $\alpha \geq 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Challenge 1

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that

$$
R(A, B):=\left\{\left(x^{T} A x, x^{T} B x\right) \mid x^{T} x=1\right\}
$$

is a compact convex set for $n \geq 3$.

Convex functions

Def. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if its epigraph $\left\{(x, t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^{d}, t \in \mathbb{R}, f(x) \leq t\right\}$ is a convex set.

Convex functions

Def. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if its epigraph $\left\{(x, t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^{d}, t \in \mathbb{R}, f(x) \leq t\right\}$ is a convex set.

Def. Function $f: I \rightarrow \mathbb{R}$ on interval I called midpoint convex if

$$
f\left(\frac{x+y}{2}\right) \leq \frac{f(x)+f(y)}{2}, \quad \text { whenever } x, y \in I .
$$

Read: f of AM is less than or equal to AM of f.

Convex functions

Def. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if its domain $\operatorname{dom}(f)$ is a convex set and for any $x, y \in \operatorname{dom}(f)$ and $\lambda \geq 0$,

$$
f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)
$$

These functions also known as Jensen convex; named after J.L.W.V. Jensen (after his influential 1905 paper).

Theorem. (J.L.W.V. Jensen). Let $f: I \rightarrow \mathbb{R}$ be continuous. Then, f is convex if and only if it is midpoint convex.

Exercise: Prove Jensen's theorem.

Convex functions: Jensen's inequality

Convex functions: via gradients

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
$$

Convex functions: increasing slopes

slope $\mathrm{PQ} \leq$ slope $\mathrm{PR} \leq$ slope QR

Recognizing convex functions

© If f is continuous and midpoint convex, then it is convex.
中 If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
4 If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.

Recognizing convex functions

© If f is continuous and midpoint convex, then it is convex.
Q If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
4 If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.
© By showing $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ is convex if and only if its restriction to any line that intersects $\operatorname{dom}(f)$ is convex. That is, for any $x \in \operatorname{dom}(f)$ and any v, the function $g(t)=f(x+t v)$ is convex (on its domain $\{t \mid x+t v \in \operatorname{dom}(f)\}$).

Recognizing convex functions

© If f is continuous and midpoint convex, then it is convex.
A If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
4 If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.
A By showing $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ is convex if and only if its restriction to any line that intersects $\operatorname{dom}(f)$ is convex. That is, for any $x \in \operatorname{dom}(f)$ and any v, the function $g(t)=f(x+t v)$ is convex (on its domain $\{t \mid x+t v \in \operatorname{dom}(f)\}$).
A By showing f to be a pointwise max of convex functions
A See exercises (Ch. 3) in Boyd \& Vandenberghe for more!

Example: Quadratic

Let $f(x)=x^{T} A x+b^{T} x+c$, where $A \succeq 0, b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$.

Example: Quadratic

Let $f(x)=x^{T} A x+b^{T} x+c$, where $A \succeq 0, b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$.
What is: $\nabla^{2} f(x)$?

Example: Quadratic

Let $f(x)=x^{T} A x+b^{T} x+c$, where $A \succeq 0, b \in \mathbb{R}^{n}$, and $c \in \mathbb{R}$.
What is: $\nabla^{2} f(x)$?
$\nabla f(x)=2 A x+b, \nabla^{2} f(x)=A \succeq 0$, hence f is convex.

Examples

Exercise: Prove the convexity of the following functions in at least two different ways
$1 f(x, y)=x^{2} / y$ for $y>0$ on $\mathbb{R} \times \mathbb{R}_{++}$
2 $f(x)=\log \left(1+e^{\sum_{i} a_{i} x_{i}}\right)$ on $\mathbb{R}^{n}\left(a_{i} \in \mathbb{R}\right.$ for $\left.1 \leq i \leq n\right)$.
3 Using 2 show that

$$
\operatorname{det}(X+Y)^{1 / n} \geq \operatorname{det}(X)^{1 / n}+\operatorname{det}(Y)^{1 / n}
$$

for $X, Y \in \mathbb{S}_{++}^{n}$ (i.e., positive definite matrices).
4 Challenge: $f(X)=X^{-1}$ on positive definite matrices. (This question is about convexity/concavity over matrices, so we have to replace the \leq by the Löwner order \preceq).

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!
Theorem. Let $f: I_{1} \rightarrow \mathbb{R}$ and $g: I_{2} \rightarrow \mathbb{R}$, where range $(f) \subseteq I_{2}$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_{1}

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!
Theorem. Let $f: I_{1} \rightarrow \mathbb{R}$ and $g: I_{2} \rightarrow \mathbb{R}$, where range $(f) \subseteq I_{2}$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_{1}
Proof. Let $x, y \in I_{1}$, and let $\lambda \in(0,1)$.

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y) \\
g(f(\lambda x+(1-\lambda) y)) & \leq g(\lambda f(x)+(1-\lambda) f(y)) \\
& \leq \lambda g(f(x))+(1-\lambda) g(f(y))
\end{aligned}
$$

- Check out several other important examples in BV!

Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions is convex. That is, if $f(x ; y)$ is a convex function of x for every y in an arbitrary "index set" \mathcal{Y}, then

$$
f(x):=\sup _{y \in \mathcal{Y}} f(x ; y)
$$

is a convex function of x.
Exercise: Verify!
Example. The ℓ_{∞}-norm $\|x\|_{\infty}:=\max _{1 \leq i \leq n}\left|x_{i}\right|$
Exercise: Prove that $|x|$ is a convex function.

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in both (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} \quad L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in both (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} \quad L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.
Proof. Let $u, v \in \operatorname{dom} f$. Since $f(u)=\inf _{y} L(u, y)$, for each $\epsilon>0$, there is a $y_{1} \in \mathcal{Y}$, s.t. $f(u)+\frac{\epsilon}{2}$ is not the infimum. Thus, $L\left(u, y_{1}\right) \leq f(u)+\frac{\epsilon}{2}$.
Similarly, there is $y_{2} \in \mathcal{Y}$, such that $L\left(v, y_{2}\right) \leq f(v)+\frac{\epsilon}{2}$.
Now we prove that $f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v)$ directly.

$$
\begin{aligned}
f(\lambda u+(1-\lambda) v) & =\inf _{y \in \mathcal{Y}} L(\lambda u+(1-\lambda) v, y) \\
& \leq L\left(\lambda u+(1-\lambda) v, \lambda y_{1}+(1-\lambda) y_{2}\right) \\
& \leq \lambda L\left(u, y_{1}\right)+(1-\lambda) L\left(v, y_{2}\right) \\
& \leq \lambda f(u)+(1-\lambda) f(v)+\epsilon .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, claim follows.

Example: Schur complement

Let A, B, C be matrices such that $C \succ 0$, and let

$$
\mathrm{Z}:=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0,
$$

then the Schur complement $A-B C^{-1} B^{T} \succeq 0$.

Example: Schur complement

Let A, B, C be matrices such that $C \succ 0$, and let

$$
\mathrm{Z}:=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0
$$

then the Schur complement $A-B C^{-1} B^{T} \succeq 0$.
Proof. $L(x, y)=[x, y]^{T} Z[x, y]$ is convex in (x, y) since $Z \succeq 0$

Example: Schur complement

Let A, B, C be matrices such that $C \succ 0$, and let

$$
\mathrm{Z}:=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0
$$

then the Schur complement $A-B C^{-1} B^{T} \succeq 0$.
Proof. $L(x, y)=[x, y]^{T} Z[x, y]$ is convex in (x, y) since $Z \succeq 0$
Observe that $f(x)=\inf _{y} L(x, y)=x^{T}\left(A-B C^{-1} B^{T}\right) x$ is convex.
(We skipped ahead and solved $\nabla_{y} L(x, y)=0$ to minimize).
Exercise: Verify the above example!

Convex functions - Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the indicator function for \mathcal{X} defined as:

$$
\mathbb{1}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise } .\end{cases}
$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

- Also called "extended value" convex function.

Convex functions - norms

Let $\Omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function that satisfies
$1 \Omega(x) \geq 0$, and $\Omega(x)=0$ if and only if $x=0$ (definiteness)
■ $\Omega(\lambda x)=|\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
B $\Omega(x+y) \leq \Omega(x)+\Omega(y)$ (subadditivity)
Such function called norms-usually denoted $\|x\|$.
Theorem. Norms are convex.

Convex functions - norms

Let $\Omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function that satisfies
$1 \Omega(x) \geq 0$, and $\Omega(x)=0$ if and only if $x=0$ (definiteness)
$2 \Omega(\lambda x)=|\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
3 $\Omega(x+y) \leq \Omega(x)+\Omega(y)$ (subadditivity)
Such function called norms-usually denoted $\|x\|$.
Theorem. Norms are convex.

Often used in "regularized" ML problems

$$
\min _{\theta} f(\theta)+\mu \Omega(\theta) .
$$

Norms and distances

Example. Let \mathcal{X} be a convex set. Let $x \in \mathbb{R}^{n}$ be some point. The distance of x to the set \mathcal{X} is defined as

$$
\operatorname{dist}(x, \mathcal{X}):=\inf _{y \in \mathcal{X}} \quad\|x-y\|
$$

Exercise: Prove the above claim.
(Hint: argue that $\|x-y\|$ is jointly convex in (x, y))

Norms: important examples

Example. $\left(\ell_{2}\right.$-norm): $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$
Example. (ℓ_{p}-norm): Let $p \geq 1 .\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$
Example. (ℓ_{∞}-norm): $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$
Example. (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n} .\|A\|_{\mathrm{F}}:=\sqrt{\sum_{i j}\left|a_{i j}\right|^{2}}$

Mixed norms

Def. Let $x \in \mathbb{R}^{n_{1}+n_{2}+\cdots+n_{G}}$ be a vector partitioned into subvectors $x_{j} \in \mathbb{R}^{n_{j}}, 1 \leq j \leq G$. Let $p:=\left(p_{0}, p_{1}, p_{2}, \ldots, p_{G}\right)$, where $p_{j} \geq 1$. Consider the vector $\xi:=\left(\left\|x_{1}\right\|_{p_{1}}, \cdots,\left\|x_{G}\right\|_{p_{G}}\right)$. Then, we define the mixed-norm of x as

$$
\|x\|_{p}:=\|\xi\|_{p_{0}}
$$

Mixed norms

Def. Let $x \in \mathbb{R}^{n_{1}+n_{2}+\cdots+n_{G}}$ be a vector partitioned into subvectors $x_{j} \in \mathbb{R}^{n_{j}}, 1 \leq j \leq G$. Let $p:=\left(p_{0}, p_{1}, p_{2}, \ldots, p_{G}\right)$, where $p_{j} \geq 1$. Consider the vector $\xi:=\left(\left\|x_{1}\right\|_{p_{1}}, \cdots,\left\|x_{G}\right\|_{p_{G}}\right)$. Then, we define the mixed-norm of x as

$$
\|x\|_{p}:=\|\xi\|_{p_{0}}
$$

Example. $\ell_{1, q}$-norm: Let x be as above.

$$
\|x\|_{1, q}:=\sum_{i=1}^{G}\left\|x_{i}\right\|_{q}
$$

This norm is popular in machine learning, statistics.

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$
\|A\|:=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|} .
$$

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$
\|A\|:=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|}
$$

Verify that above definition yields a norm.

Matrix Norms

Induced norm

Let $A \in \mathbb{R}^{m \times n}$, and let $\|\cdot\|$ be any vector norm. We define an induced matrix norm as

$$
\|A\|:=\sup _{\|x\| \neq 0} \frac{\|A x\|}{\|x\|} .
$$

Verify that above definition yields a norm.

- Clearly, $\|A\|=0$ iff $A=0$ (definiteness)
- $\|\alpha A\|=|\alpha|\|A\|$ (homogeneity)
- $\|A+B\|=\sup \frac{\|(A+B) x\|}{\|x\|} \leq \sup \frac{\|A x\|+\|B x\|}{\|x\|} \leq\|A\|+\|B\|$.

Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!

Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.

Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$

Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$
- Schatten p-norm: ℓ_{p}-norm of vector of singular value.

Operator norm

Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|_{2}:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}
$$

$\|A\|_{2}=\sigma_{\max }(A)$, where $\sigma_{\max }$ is the largest singular value of A.

- Warning! Generally, largest eigenvalue not a norm!
- $\|A\|_{1}$ and $\|A\|_{\infty}$-max-abs-column and max-abs-row sums.
- $\|A\|_{p}$ generally NP-Hard to compute for $p \notin\{1,2, \infty\}$
- Schatten p-norm: ℓ_{p}-norm of vector of singular value.
- Exercise: Let $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$ be singular values of a matrix $A \in \mathbb{R}^{m \times n}$. Prove that

$$
\|A\|_{(k)}:=\sum_{i=1}^{k} \sigma_{i}(A)
$$

is a norm; $1 \leq k \leq n$.

Proof

Proof. By definition, the largest singular value is defined as

$$
\sigma_{\max }(A):=\max _{x:\|x\|_{2} \leq 1}\|A x\|_{2}
$$

We saw that norms are convex. We also saw that for convex f, $f(A x)$ is also convex. Thus, $\|A x\|_{2}$ is convex.

Since the pointwise max of convex functions (over arbitrary index sets) is convex-here we index over $x \in \mathbb{R}^{n}$.

Thus, $\sigma_{\max }(A)$ is a norm. It is denoted as $\|A\|_{2}$ or just $\|A\|$ not to be confused with the Euclidean ℓ_{2}-norm of a vector!

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\} .
$$

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$

Dual norms

Def. Let $\|\cdot\|$ be a norm on \mathbb{R}^{n}. Its dual norm is

$$
\|u\|_{*}:=\sup \left\{u^{T} x \mid\|x\| \leq 1\right\}
$$

Exercise: Verify that we may write $\|u\|_{*}=\sup _{x \neq 0} \frac{u^{T} x}{\|x\|}$
Exercise: Verify that $\|u\|_{*}$ is a norm.

- $\|u+v\|_{*}=\sup \left\{(u+v)^{T} x \mid\|x\| \leq 1\right\}$
- But $\sup (A+B) \leq \sup A+\sup B$

Exercise: Let $1 / p+1 / q=1$, where $p, q \geq 1$. Show that $\|\cdot\|_{q}$ is dual to $\|\cdot\|_{p}$. In particular, the ℓ_{2}-norm is self-dual.

Hint: Use Hölder's inequality: $u^{T} v \leq\|u\|_{p}\|v\|_{q}$

Challenge 2

Consider the following functions on strictly positive variables:

$$
\begin{aligned}
h_{1}(x) & :=\frac{1}{x} \\
h_{2}(x, y) & :=\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y} \\
h_{3}(x, y, z) & :=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y}-\frac{1}{y+z}-\frac{1}{x+z}+\frac{1}{x+y+z}
\end{aligned}
$$

\bigcirc Prove that $h_{n}(x)>0$ (easy)
\bigcirc Prove that h_{1}, h_{2}, h_{3}, and in general h_{n} are convex (hard)
\bigcirc Prove that in fact each $1 / h_{n}$ is concave (harder).

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?
Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?
Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?
Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?
Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?

> Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right)$;

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?

> Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?

> Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}$,

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?

> Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, \quad x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?

> Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.
- $x=0$ maximizes $\|x\|\left(\|z\|_{*}-1\right)$, hence $f(z)=0$.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Exercise: Why is f^{*} convex? What if $f(x)$ is nonconvex?
Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|} \|_{*} \leq 1(z)$. That is,
conjugate of norm is the indicator function of dual norm ball.

- Consider two cases: (i) $\|z\|_{*}>1$; (ii) $\|z\|_{*} \leq 1$
- Case (i), by definition of dual norm (sup over $z^{T} u$) there is a u s.t. $\|u\| \leq 1$ and $z^{T} u>1$
- $f^{*}(z)=\sup _{x} x^{T} z-f(x)$. Rewrite $x=\alpha u$, and let $\alpha \rightarrow \infty$
- Then, $z^{T} x-\|x\|=\alpha z^{T} u-\|\alpha u\|=\alpha\left(z^{T} u-\|u\|\right) ; \rightarrow \infty$
- Case (ii): Since $z^{T} x \leq\|x\|\|z\|_{*}, \quad x^{T} z-\|x\| \leq\|x\|\left(\|z\|_{*}-1\right) \leq 0$.
- $x=0$ maximizes $\|x\|\left(\|z\|_{*}-1\right)$, hence $f(z)=0$.
- Thus, $f(z)=+\infty$ if (i), and 0 if (ii), as desired.

Fenchel conjugate

Example. $f(x)=a x+b$; then,

$$
f^{*}(z)=\sup _{x} z x-(a x+b)
$$

Fenchel conjugate

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0 .
\end{aligned}
$$

Fenchel conjugate

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0 .
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.

Fenchel conjugate

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example. Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Fenchel conjugate

Example. $f(x)=a x+b$; then,

$$
\begin{aligned}
f^{*}(z) & =\sup _{x} z x-(a x+b) \\
& =\infty, \quad \text { if }(z-a) \neq 0
\end{aligned}
$$

Thus, $\operatorname{dom} f^{*}=\{a\}$, and $f^{*}(a)=-b$.
Example. Let $a \geq 0$, and set $f(x)=-\sqrt{a^{2}-x^{2}}$ if $|x| \leq a$, and $+\infty$ otherwise. Then, $f^{*}(z)=a \sqrt{1+z^{2}}$.

Example. $f(x)=\frac{1}{2} x^{T} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$.

Fenchel conjugate - exercises

Exercise: If $f(x)=\max (0,1-x)$ (hinge loss) then $\operatorname{dom} f^{*}$ is $[-1,0]$, and within this domain, $f^{*}(z)=z$.

$$
\text { If } f^{* *}=f \text {, we say } f \text { is a closed convex function. }
$$

Exercise: Suppose $f(x)=\left(\sum_{i}\left|x_{i}\right|^{1 / 2}\right)^{2}$. What is $f^{* *}$?
Exercise: Suppose $f(x)=x^{T} A x+b^{T} x$ but $A \succeq 0$; what is f^{*} ?
Exercise: For which functions is $f^{*}=f$?

Optimization

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

- If f_{i} are differentiable - smooth optimization
- If any f_{i} is non-differentiable - nonsmooth optimization
- If all f_{i} are convex - convex optimization
- If $m=0$, i.e., only f_{0} is there - unconstrained minimization

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex
- Direction of inequality $f_{i}(x) \leq 0$ crucial

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex
- Direction of inequality $f_{i}(x) \leq 0$ crucial
- The only equality constraints we allow are affine

Convex optimization problems

Standard form

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Some observations

- All f_{i} are convex
- Direction of inequality $f_{i}(x) \leq 0$ crucial
- The only equality constraints we allow are affine
- This ensures, set of feasible solutions is also convex

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \hat{\mathcal{X}}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \hat{\mathcal{X}}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \hat{\mathcal{X}}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \rightarrow \pm \infty$)

Convex optimization problems

Def. We denote by \mathcal{X} the feasible set

$$
\mathcal{X}:=\left\{x \in \mathbb{R}^{n} \mid f_{i}(x) \leq 0,1 \leq i \leq m, A x=b\right\} .
$$

Def. We denote by p^{*} the optimal value of the problem.

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \hat{\mathcal{X}}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \rightarrow \pm \infty$)
- Say $f_{0}(x)=0$, problem is called convex feasibility

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X} that is not global

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X} that is not global
- Then there is a point $y \in \mathcal{X}$ such that $f(y)<f\left(x^{*}\right)$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X} that is not global
- Then there is a point $y \in \mathcal{X}$ such that $f(y)<f\left(x^{*}\right)$
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X} that is not global
- Then there is a point $y \in \mathcal{X}$ such that $f(y)<f\left(x^{*}\right)$
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
- Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
f\left(x_{\theta}\right)-f\left(x^{*}\right) \leq \theta\left(f(y)-f\left(x^{*}\right)\right) .
$$

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X} that is not global
- Then there is a point $y \in \mathcal{X}$ such that $f(y)<f\left(x^{*}\right)$
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
- Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
f\left(x_{\theta}\right)-f\left(x^{*}\right) \leq \theta\left(f(y)-f\left(x^{*}\right)\right)
$$

- Since x^{*} is a local minimizer, for small enough $\theta>0, \mathrm{lhs} \geq 0$.

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

- Let x^{*} be a local minimizer of $f(x)$ on \mathcal{X} that is not global
- Then there is a point $y \in \mathcal{X}$ such that $f(y)<f\left(x^{*}\right)$
- \mathcal{X} is cvx., so we have $x_{\theta}=\theta y+(1-\theta) x^{*} \in \mathcal{X}$ for $\theta \in(0,1)$
- Since f is cvx, and $x^{*}, y \in \operatorname{dom} f$, we have

$$
f\left(x_{\theta}\right)-f\left(x^{*}\right) \leq \theta\left(f(y)-f\left(x^{*}\right)\right)
$$

- Since x^{*} is a local minimizer, for small enough $\theta>0, \operatorname{lhs} \geq 0$.
- But the rhs is negative, which is a contradiction.

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \underline{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}
$$

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}
$$

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}
$$

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}
$$

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

Similarly, using $-d$ it follows that $\left\langle\nabla f\left(x^{*}\right), d\right\rangle \leq 0$, so $\left\langle\nabla f\left(x^{*}\right), d\right\rangle=0$ must hold. Since d is arbitrary, $\nabla f\left(x^{*}\right)=0$.

First-order optimality conditions

Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

Proof: Consider function $g(t)=f\left(x^{*}+t d\right)$, where $d \in \mathbb{R}^{n} ; t>0$. Since x^{*} is a local min, for small enough $t, f\left(x^{*}+t d\right) \geq f\left(x^{*}\right)$.

$$
0 \leq \lim _{t \downarrow 0} \frac{f\left(x^{*}+t d\right)-f\left(x^{*}\right)}{t}=\frac{d g(0)}{d t}=\left\langle\nabla f\left(x^{*}\right), d\right\rangle .
$$

Similarly, using $-d$ it follows that $\left\langle\nabla f\left(x^{*}\right), d\right\rangle \leq 0$, so $\left\langle\nabla f\left(x^{*}\right), d\right\rangle=0$ must hold. Since d is arbitrary, $\nabla f\left(x^{*}\right)=0$.

Exercise: Prove that if f is convex, then $\nabla f\left(x^{*}\right)=0$ is actually sufficient for global optimality! For general f this is not true. (This property that makes convex optimization special!)

Descent methods

$$
\min _{x} f(x)
$$

Descent methods

$\min _{x} f(x)$

Descent methods

Descent methods

Descent methods

Descent methods

Iterative Algorithm

1 Start with some guess x^{0};
2 For each $k=0,1, \ldots$
■ "Guess" α_{k} and d^{k}

- $x^{k+1} \leftarrow x^{k}+\alpha_{k} d^{k}$
- Check when to stop (e.g., if $\nabla f\left(x^{k+1}\right) \approx 0$)

(Batch) Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

(Batch) Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$
■ Descent direction d^{k} satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

(Batch) Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

■ Descent direction d^{k} satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Numerous ways to select α_{k} and d^{k}

(Batch) Gradient methods

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

■ stepsize $\alpha_{k} \geq 0$, usually ensures $f\left(x^{k+1}\right)<f\left(x^{k}\right)$

- Descent direction d^{k} satisfies

$$
\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0
$$

Numerous ways to select α_{k} and d^{k}
Usually (batch) methods seek monotonic descent

$$
f\left(x^{k+1}\right)<f\left(x^{k}\right)
$$

Gradient methods - direction

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- Different choices of direction d^{k}
- Scaled gradient: $d^{k}=-D^{k} \nabla f\left(x^{k}\right), D^{k} \succ 0$
- Newton's method: $\left(D^{k}=\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\right)$
- Quasi-Newton: $D^{k} \approx\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}$
- Steepest descent: $D^{k}=I$
- Diagonally scaled: D^{k} diagonal with $D_{i i}^{k} \approx\left(\frac{\partial^{2} f\left(x^{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}$
- Discretized Newton: $D^{k}=\left[H\left(x^{k}\right)\right]^{-1}, H$ via finite-diff.

Gradient methods - direction

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}, \quad k=0,1, \ldots
$$

- Different choices of direction d^{k}
- Scaled gradient: $d^{k}=-D^{k} \nabla f\left(x^{k}\right), D^{k} \succ 0$
- Newton's method: $\left(D^{k}=\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}\right)$
- Quasi-Newton: $D^{k} \approx\left[\nabla^{2} f\left(x^{k}\right)\right]^{-1}$
- Steepest descent: $D^{k}=I$
- Diagonally scaled: D^{k} diagonal with $D_{i i}^{k} \approx\left(\frac{\partial^{2} f\left(x^{k}\right)}{\left(\partial x_{i}\right)^{2}}\right)^{-1}$
- Discretized Newton: $D^{k}=\left[H\left(x^{k}\right)\right]^{-1}, H$ via finite-diff.
- ...

Exercise: Verify that $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$ for above choices

Gradient methods - stepsize

- Exact: $\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$
$\alpha \geq 0$

Gradient methods - stepsize

- Exact: $\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$
$\alpha \geq 0$
- Limited min: $\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$

$$
0 \leq \alpha \leq s
$$

Gradient methods - stepsize

- Exact: $\alpha_{k}:=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$

$$
\alpha \geq 0
$$

- Limited min: $\alpha_{k}=\operatorname{argmin} f\left(x^{k}+\alpha d^{k}\right)$

$$
0 \leq \alpha \leq s
$$

- Armijo-rule. Given fixed scalars, s, β, σ with $0<\beta<1$ and $0<\sigma<1$ (chosen experimentally). Set

$$
\alpha_{k}=\beta^{m_{k}} s,
$$

where we try $\beta^{m} s$ for $m=0,1, \ldots$ until sufficient descent

$$
f\left(x^{k}\right)-f\left(x+\beta^{m} s d^{k}\right) \geq-\sigma \beta^{m} s\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle
$$

- Constant: $\alpha_{k}=1 / L$ (for suitable value of L)
- Diminishing: $\alpha_{k} \rightarrow 0$ but $\sum_{k} \alpha_{k}=\infty$.

Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

\& Gradient vectors of closeby points are close to each other
\& Objective function has "bounded curvature"
\& Speed at which gradient varies is bounded

Convergence

Assumption: Lipschitz continuous gradient; denoted $f \in C_{L}^{1}$

$$
\|\nabla f(x)-\nabla f(y)\|_{2} \leq L\|x-y\|_{2}
$$

Lemma (Descent). Let $f \in C_{L}^{1}$. Then,

$$
f(y) \leq f(x)+\langle\nabla f(x), y-x\rangle+\frac{L}{2}\|y-x\|_{2}^{2}
$$

Theorem. Let $f \in C_{L}^{1}$ be convex, and $\left\{x^{k}\right\}$ is sequence generated as above, with $\alpha_{k}=1 / L$. Then, $f\left(x^{k+1}\right)-f\left(x^{*}\right)=O(1 / k)$.

Remark: $f \in C_{L}^{1}$ is "good" for nonconvex too, except for $f-f^{*}$.

Strong convexity (faster convergence)

$$
\begin{aligned}
& \text { Assumption: Strong convexity; denote } f \in S \\
& \qquad f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
\end{aligned}
$$

- A twice diff. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if

$$
\forall x \in \mathbb{R}^{d}, \text { eigenvalues }\left[\nabla^{2} f(x)\right] \geqslant 0 .
$$

- A twice diff. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$
\forall x \in \mathbb{R}^{d}, \text { eigenvalues }\left[\nabla^{2} f(x)\right] \geqslant \mu .
$$

Strong convexity (faster convergence)

Assumption: Strong convexity; denote $f \in S_{L, \mu}^{1}$

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle+\frac{\mu}{2}\|x-y\|_{2}^{2}
$$

- A twice diff. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if

$$
\forall x \in \mathbb{R}^{d}, \text { eigenvalues }\left[\nabla^{2} f(x)\right] \geqslant 0 .
$$

- A twice diff. $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is μ-strongly convex if and only if

$$
\forall x \in \mathbb{R}^{d}, \text { eigenvalues }\left[\nabla^{2} f(x)\right] \geqslant \mu .
$$

Condition number: $\kappa:=\frac{L}{\mu} \geq 1$ influences convergence speed.

$$
\begin{aligned}
& \text { Setting } \alpha_{k}=\frac{2}{\mu+L} \text { yields linear rate }(\mu>0) \text { for gradient } \\
& \text { descent. That is, } f\left(x^{k}\right)-f\left(x^{*}\right)=O\left(e^{-k}\right) .
\end{aligned}
$$

Strong convexity - linear rate

Theorem. If $f \in S_{L, \mu^{\prime}}^{1} 0<\alpha<2 /(L+\mu)$, then the gradient method generates a sequence $\left\{x^{k}\right\}$ that satisfies

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(1-\frac{2 \alpha \mu L}{\mu+L}\right)^{k}\left\|x^{0}-x^{*}\right\|_{2}
$$

Moreover, if $\alpha=2 /(L+\mu)$ then

$$
f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{\kappa-1}{\kappa+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

where $\kappa=L / \mu$ is the condition number.

Gradient methods - lower bounds

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
$$

Theorem. Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq$ $k \leq \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Gradient methods - lower bounds

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)
$$

Theorem. Lower bound I (Nesterov) For any $x^{0} \in \mathbb{R}^{n}$, and $1 \leq$ $k \leq \frac{1}{2}(n-1)$, there is a smooth f, s.t.

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}}
$$

Theorem. Lower bound II (Nesterov). For class of smooth, strongly convex, i.e., $S_{L, \mu}^{\infty}(\mu>0, \kappa>1)$

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{\kappa}-1}{\sqrt{\kappa}+1}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

Faster methods*

Optimal gradient methods

A We saw efficiency estimates for the gradient method:

$$
\begin{array}{ll}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
\end{array}
$$

Optimal gradient methods

© We saw efficiency estimates for the gradient method:

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{2 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{k+4} \\
f \in S_{L, \mu}^{1}: & f\left(x^{k}\right)-f^{*} \leq \frac{L}{2}\left(\frac{L-\mu}{L+\mu}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2} .
\end{aligned}
$$

A We also saw lower complexity bounds

$$
\begin{aligned}
f \in C_{L}^{1}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{3 L\left\|x^{0}-x^{*}\right\|_{2}^{2}}{32(k+1)^{2}} \\
f S_{L, \mu}^{\infty}: & f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{\mu}{2}\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2} .
\end{aligned}
$$

Optimal gradient methods

© Subgradient method upper and lower bounds

$$
\begin{gathered}
f\left(x^{k}\right)-f\left(x^{*}\right) \leq O(1 / \sqrt{k}) \\
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})}
\end{gathered}
$$

© Composite objective problems: proximal gradient gives same bounds as gradient methods.

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S_{L, \mu}^{1}$

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)+\beta_{k}\left(x^{k}-x^{k-1}\right)
$$

Gradient with "momentum"

Polyak's method (aka heavy-ball) for $f \in S_{L, \mu}^{1}$

$$
x^{k+1}=x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)+\beta_{k}\left(x^{k}-x^{k-1}\right)
$$

- Converges (locally, i.e., for $\left\|x^{0}-x^{*}\right\|_{2} \leq \epsilon$) as

$$
\left\|x^{k}-x^{*}\right\|_{2}^{2} \leq\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2 k}\left\|x^{0}-x^{*}\right\|_{2}^{2}
$$

for $\alpha_{k}=\frac{4}{(\sqrt{L}+\sqrt{\mu})^{2}}$ and $\beta_{k}=\left(\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}\right)^{2}$

Nesterov's optimal gradient method

$\min _{x} f(x)$, where $S_{L, \mu}^{1}$ with $\mu \geq 0$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. k-th iteration $(k \geq 0)$:
a). Compute intermediate update

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. k-th iteration $(k \geq 0)$:
a). Compute intermediate update

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

b). Compute stepsize α_{k+1} by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

Nesterov's optimal gradient method

$$
\min _{x} f(x), \text { where } S_{L, \mu}^{1} \text { with } \mu \geq 0
$$

1. Choose $x^{0} \in \mathbb{R}^{n}, \alpha_{0} \in(0,1)$
2. Let $y^{0} \leftarrow x^{0}$; set $q=\mu / L$
3. k-th iteration $(k \geq 0)$:
a). Compute intermediate update

$$
x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)
$$

b). Compute stepsize α_{k+1} by solving

$$
\alpha_{k+1}^{2}=\left(1-\alpha_{k+1}\right) \alpha_{k}^{2}+q \alpha_{k+1}
$$

c). $\operatorname{Set} \beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
d). Update solution estimate

$$
y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)
$$

Optimal gradient method - rate

Theorem. Let $\left\{x^{k}\right\}$ be sequence generated by above algorithm. If $\alpha_{0} \geq \sqrt{\mu / L}$, then

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq c_{1} \min \left\{\left(1-\sqrt{\frac{\mu}{L}}\right)^{k}, \frac{4 L}{\left(2 \sqrt{L}+c_{2} k\right)^{2}}\right\}
$$

where constants c_{1}, c_{2} depend on α_{0}, L, μ.

Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0 .
$$

Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. k-th iteration $(k \geq 0)$:

Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0 .
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. k-th iteration $(k \geq 0)$:
a). $x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)$
b). $y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right)$

Strongly convex case - simplification

If $\mu>0$, select $\alpha_{0}=\sqrt{\mu / L}$. The two main steps get simplified:

1. Set $\beta_{k}=\alpha_{k}\left(1-\alpha_{k}\right) /\left(\alpha_{k}^{2}+\alpha_{k+1}\right)$
2. $y^{k+1}=x^{k+1}+\beta_{k}\left(x^{k+1}-x^{k}\right)$

$$
\alpha_{k}=\sqrt{\frac{\mu}{L}} \quad \beta_{k}=\frac{\sqrt{L}-\sqrt{\mu}}{\sqrt{L}+\sqrt{\mu}}, \quad k \geq 0 .
$$

Optimal method simplifies to

1. Choose $y^{0}=x^{0} \in \mathbb{R}^{n}$
2. k-th iteration $(k \geq 0)$:
a). $x^{k+1}=y^{k}-\frac{1}{L} \nabla f\left(y^{k}\right)$
b). $y^{k+1}=x^{k+1}+\beta\left(x^{k+1}-x^{k}\right)$

Notice similarity to Polyak's method!

