Optimization for Machine Learning
 (Problems; Algorithms - B)

Suvrit Sra
Massachusetts Institute of Technology

PKU Summer School on Data Science (July 2017)

Recap

\bigcirc Convex sets, convex functions, some challenges

Recap

\bigcirc Convex sets, convex functions, some challenges
 \bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\odot Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$
\bigcirc Optimality condition: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$
\bigcirc Optimality condition: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$
\bigcirc Frank-Wolfe algorithm, using $\min _{z \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), z\right\rangle$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$
\bigcirc Optimality condition: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$
\bigcirc Frank-Wolfe algorithm, using $\min _{z \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), z\right\rangle$
\bigcirc Projected gradient, $x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$
\bigcirc Optimality condition: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$
\bigcirc Frank-Wolfe algorithm, using $\min _{z \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), z\right\rangle$
\bigcirc Projected gradient, $x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))$
\bigcirc Stochastic programming: $\min _{x} F(x):=\mathbb{E}_{\xi}[f(x, \xi)]$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$
\bigcirc Optimality condition: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$
\bigcirc Frank-Wolfe algorithm, using $\min _{z \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), z\right\rangle$
\bigcirc Projected gradient, $x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))$
\bigcirc Stochastic programming: $\min _{x} F(x):=\mathbb{E}_{\xi}[f(x, \xi)]$
\bigcirc SA/SGD: $x^{k+1}=x^{k}-\alpha_{k} g_{k}$, where $\mathbb{E}\left[g_{k}\right]=\nabla F\left(x^{k}\right)$

Recap

\bigcirc Convex sets, convex functions, some challenges
\bigcirc Minimizing $f(x)$ via descent $x \leftarrow x+\alpha d(\langle\nabla f, d\rangle<0)$
$\bigcirc \nabla f\left(x^{*}\right)=0$ necessary for optimality; sufficient for convex
\bigcirc Gradient descent ensures $f\left(x^{k}\right)-f\left(x^{*}\right) \leq \epsilon$ in $O(1 / \epsilon)$ iterations (we wrote this as: $f\left(x^{k}\right)-f\left(x^{*}\right)=O(1 / k)$).
\bigcirc Lower bound: $O\left(1 / k^{2}\right)$; attained by Nesterov's accelerated gradient method.
\bigcirc Converge as $O\left(e^{-k}\right)$ for strongly convex; AGM attains lower-bd.
\bigcirc Constrained optimization: $\min f(x)$ s.t. $x \in \mathcal{X}$
\bigcirc Optimality condition: $\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all $x \in \mathcal{X}$
\bigcirc Frank-Wolfe algorithm, using $\min _{z \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), z\right\rangle$
\bigcirc Projected gradient, $x \leftarrow P_{\mathcal{X}}(x-\alpha \nabla f(x))$
\bigcirc Stochastic programming: $\min _{x} F(x):=\mathbb{E}_{\xi}[f(x, \xi)]$
\bigcirc SA/SGD: $x^{k+1}=x^{k}-\alpha_{k} g_{k}$, where $\mathbb{E}\left[g_{k}\right]=\nabla F\left(x^{k}\right)$
\bigcirc Finite-sum: $\frac{1}{n} \sum_{i} f_{i}(x) ; x^{k+1}=x^{k}-\alpha_{k} \nabla f_{i_{k}}\left(x^{k}\right)$, where $i_{k} \sim \mathrm{U}([n])$

Example: joint convexity

- Show that $f(w, X):=w^{T} X^{-1} w$ is jointly convex (in $w \in \mathbb{R}^{n}$ and $X \succ 0$, i.e., positive definite)

Example: joint convexity

- Show that $f(w, X):=w^{T} X^{-1} w$ is jointly convex (in $w \in \mathbb{R}^{n}$ and $X \succ 0$, i.e., positive definite)

Let us prove via midpoint convexity. So we show that

$$
f\left(\frac{w+v}{2}, \frac{A+B}{2}\right) \leq \frac{1}{2} f(w, A)+\frac{1}{2} f(v, B) .
$$

Example: joint convexity

- Show that $f(w, X):=w^{T} X^{-1} w$ is jointly convex (in $w \in \mathbb{R}^{n}$ and $X \succ 0$, i.e., positive definite)

Let us prove via midpoint convexity. So we show that

$$
f\left(\frac{w+v}{2}, \frac{A+B}{2}\right) \leq \frac{1}{2} f(w, A)+\frac{1}{2} f(v, B) .
$$

In other words, we show that

$$
\left\langle\frac{w+v}{2},\left(\frac{A+B}{2}\right)^{-1} \frac{w+v}{2}\right\rangle \leq \frac{1}{2} f(w, A)+\frac{1}{2} f(v, B),
$$

which simplifies to showing that (verify!)

Example: joint convexity

$$
w^{T} A^{-1} w+v^{T} B^{-1} v \geq(w+v)^{T}(A+B)^{-1}(w+v) .
$$

Example: joint convexity

$$
w^{T} A^{-1} w+v^{T} B^{-1} v \geq(w+v)^{T}(A+B)^{-1}(w+v)
$$

Recall the Schur complement lemma, i.e., $\left[\begin{array}{cc}P & Q \\ Q^{T} & R\end{array}\right] \succeq 0$ iff $P \succeq Q R^{-1} Q^{T}$ (we essentially proved this in Lecture 1).

Example: joint convexity

$$
w^{T} A^{-1} w+v^{T} B^{-1} v \geq(w+v)^{T}(A+B)^{-1}(w+v)
$$

Recall the Schur complement lemma, i.e., $\left[\begin{array}{cc}P & Q \\ Q^{T} & R\end{array}\right] \succeq 0$ iff $P \succeq Q R^{-1} Q^{T}$ (we essentially proved this in Lecture 1).

Thus, since $w^{T} A^{-1} w \geq w^{T} A^{-1} w$, we have

$$
\left[\begin{array}{cc}
w^{T} A^{-1} w & w^{T} \\
w & A
\end{array}\right] \succeq 0
$$

Example: joint convexity

$$
w^{T} A^{-1} w+v^{T} B^{-1} v \geq(w+v)^{T}(A+B)^{-1}(w+v)
$$

Recall the Schur complement lemma, i.e., $\left[\begin{array}{cc}P & Q \\ Q^{T} & R\end{array}\right] \succeq 0$ iff $P \succeq Q R^{-1} Q^{T}$ (we essentially proved this in Lecture 1).
Thus, since $w^{T} A^{-1} w \geq w^{T} A^{-1} w$, we have

$$
\left[\begin{array}{cc}
w^{T} A^{-1} w & w^{T} \\
w & A
\end{array}\right] \succeq 0, \text { similarly, }\left[\begin{array}{cc}
v^{T} B^{-1} v & v^{T} \\
v & B
\end{array}\right] \succeq 0 .
$$

Since sum of PD matrices is PD, this implies that

$$
\left[\begin{array}{cc}
w^{T} A^{-1} w+v^{T} B^{-1} v & w^{T}+v^{T} \\
w+v & A+B
\end{array}\right] \succeq 0
$$

Taking Schur complements of this matrix, we obtain (\star). Thus, we have proved $f(w, X)=w^{T} X^{-1} w$ is jointly convex.

Nonsmooth functions

Power of nonsmooth functions

Write constrained problem as unconstrained

$$
\min \quad f(x) \quad \text { s.t. } x \in \mathcal{X}
$$

Power of nonsmooth functions

Write constrained problem as unconstrained

$$
\begin{array}{ll}
\min & f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f(x)+\mathbb{1}_{\mathcal{X}}(x),
\end{array}
$$

where $\mathbb{1}_{\mathcal{X}}(x)=0$ if $x \in \mathcal{X}$ and $+\infty$ otherwise.

Subgradients: global underestimators

Hence $\nabla f(y)=0$ implies that y is global min.

Subgradients: global underestimators

If one of the $g=0$, then y a global min.

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus-major achievement in convex analysis
- Fenchel-Young inequality: $f(x)+f^{*}(s) \geq\langle s, x\rangle$ tight at a subgradient

Rules for subgradients

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
& h\left(z, y^{*}\right) \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
& h\left(z, y^{*}\right) \geq f(x)+g^{T}(z-x)
\end{aligned}
$$

Subgradient for pointwise sup

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Getting $\partial f(x)$ is complicated!
Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

$$
\begin{aligned}
h\left(z, y^{*}\right) & \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
h\left(z, y^{*}\right) & \geq f(x)+g^{T}(z-x) \\
f(z) & \geq h(z, y) \quad \text { (because of sup) } \\
f(z) & \geq f(x)+g^{T}(z-x)
\end{aligned}
$$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $f(x ; y)=f_{k}(x)=a_{k}^{T} x+b_{k}$, and $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$

Example

Suppose $a_{i} \in \mathbb{R}^{n}$ and $b_{i} \in \mathbb{R}$. And

$$
f(x):=\max _{1 \leq i \leq n}\left(a_{i}^{T} x+b_{i}\right)
$$

This f a max (in fact, over a finite number of terms)

- Suppose $f(x)=a_{k}^{T} x+b_{k}$ for some index k
- Here $f(x ; y)=f_{k}(x)=a_{k}^{T} x+b_{k}$, and $\partial f_{k}(x)=\left\{\nabla f_{k}(x)\right\}$
- Hence, $a_{k} \in \partial f(x)$ works!

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$

Subgradient of expectation

Suppose $f=\mathbf{E} f(x, u)$, where f is convex in x for each u (an r.v.)

$$
f(x):=\int f(x, u) p(u) d u
$$

- For each u choose any $g(x, u) \in \partial_{x} f(x, u)$
- Then, $g=\int g(x, u) p(u) d u=\mathbf{E} g(x, u) \in \partial f(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R} \mathrm{cvx}$ and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$
- Compare with $\nabla f(x)=J \nabla h(x)$, where J matrix of $\nabla f_{i}(x)$

Subgradient of composition

Suppose $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ cvx and nondecreasing; each $f_{i} \mathrm{cvx}$

$$
f(x):=h\left(f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

To find a vector $g \in \partial f(x)$, we may:

- For $i=1$ to n, compute $g_{i} \in \partial f_{i}(x)$
- Compute $u \in \partial h\left(f_{1}(x), \ldots, f_{n}(x)\right)$
- Set $g=u_{1} g_{1}+u_{2} g_{2}+\cdots+u_{n} g_{n}$; this $g \in \partial f(x)$
- Compare with $\nabla f(x)=J \nabla h(x)$, where J matrix of $\nabla f_{i}(x)$

Exercise: Verify $g \in \partial f(x)$ by showing $f(z) \geq f(x)+g^{T}(z-x)$

References for subgradients

1 R. T. Rockafellar. Convex Analysis
2 S. Boyd (Stanford); EE364b Lecture Notes.

Subdifferential*

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\&. If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
\& If $\partial f(x)=\{g\}$, then f is differentiable and $g=\nabla f(x)$
Exercise: What is $\partial f(x)$ for the ReLU function: $\max (0, x)$?

Subdifferential - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subdifferential - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subdifferential - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

* $f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$
$\star f_{1}(y)=f_{2}(y)$: subgradients, the segment $\left[f_{1}^{\prime}(y), f_{2}^{\prime}(y)\right]$ (imagine all supporting lines turning about point y)

Subdifferential for abs value

$$
f(x)=|x|
$$

Subdifferential for abs value

$$
f(x)=|x|
$$

Subdifferential for abs value

$$
f(x)=|x|
$$

$$
\partial|x|= \begin{cases}-1 & x<0 \\ +1 & x>0 \\ {[-1,1]} & x=0\end{cases}
$$

Subdifferential for Euclidean norm

Example. $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
$$

Subdifferential for Euclidean norm

Example. $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
$$

Proof.

$$
\begin{aligned}
\|z\|_{2} & \geq\|x\|_{2}+\langle g, z-x\rangle \\
\|z\|_{2} & \geq\langle g, z\rangle \\
& \Longrightarrow\|g\|_{2} \leq 1 .
\end{aligned}
$$

Example: difficulties

Example. A convex function need not be subdifferentiable everywhere. Let

$$
f(x):= \begin{cases}-\left(1-\|x\|_{2}^{2}\right)^{1 / 2} & \text { if }\|x\|_{2} \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

f diff. for all x with $\|x\|_{2}<1$, but $\partial f(x)=\emptyset$ whenever $\|x\|_{2} \geq 1$.

Subdifferential calculus

© Finding one subgradient within $\partial f(x)$
© Determining entire subdifferential $\partial f(x)$ at a point x
A Do we have the chain rule?

Subdifferential calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition $^{*}: \partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x
\oint Conjugation: $z \in \partial f(x)$ if and only if $x \in \partial f^{*}(z)$

* - can fail to hold without precise assumptions.

Example: breakdown

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example. Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array}\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0 .\end{cases}$
Then, $f=\max \left\{f_{1}, f_{2}\right\}=\mathbb{1}_{\{0\}}$, whereby $\partial f(0)=\mathbb{R}$
But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.
However, $\partial f_{1}(x)+\partial f_{2}(x) \subset \partial\left(f_{1}+f_{2}\right)(x)$ always holds.

Subdifferential - example

Example. $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}
$$

where e_{i} is i-th canonical basis vector.
To prove, notice that $f(x)=\max _{1 \leq i \leq n}\left\{\left|e_{i}^{T} x\right|\right\}$
Then use, chain rule and max rule and $\partial|\cdot|$

Subdifferential - example (Boyd)

Example. Let $f(x)=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}\left(2^{n}\right.$ members)

∂f at $x=(0,0)$

∂f at $x=(1,0)$

∂f at $x=(1,1)$

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y$,

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Example: constrained smooth problem

Constrained smooth problem

$$
\begin{array}{ll}
\min & f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f(x)+\mathbb{1}_{\mathcal{X}}(x) .
\end{array}
$$

Example: constrained smooth problem

Constrained smooth problem

$$
\begin{array}{ll}
\min & f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f(x)+\mathbb{1}_{\mathcal{X}}(x) .
\end{array}
$$

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Thus: $\min f(x)$ s.t. $x \in \mathcal{X}$:
\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$

Example: constrained smooth problem

Constrained smooth problem

$$
\begin{array}{ll}
\min & f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f(x)+\mathbb{1}_{\mathcal{X}}(x) .
\end{array}
$$

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri(dom $f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Thus: $\min f(x)$ s.t. $x \in \mathcal{X}$:
\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$
$\diamond-\nabla f\left(x^{*}\right) \in \mathcal{N}_{\mathcal{X}}\left(x^{*}\right) \Longleftrightarrow\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$ for all $y \in \mathcal{X}$.

Subgradient methods

Subgradient method

$$
\begin{gathered}
x^{k+1}=x^{k}-\alpha_{k} g^{k} \\
\text { where } g^{k} \in \partial f\left(x^{k}\right) \text { is any subgradient }
\end{gathered}
$$

Subgradient method

$$
\begin{gathered}
x^{k+1}=x^{k}-\alpha_{k} g^{k} \\
\text { where } g^{k} \in \partial f\left(x^{k}\right) \text { is any subgradient }
\end{gathered}
$$

Stepsize $\alpha_{k}>0$ must be chosen

Subgradient method

$$
\begin{gathered}
x^{k+1}=x^{k}-\alpha_{k} g^{k} \\
\text { where } g^{k} \in \partial f\left(x^{k}\right) \text { is any subgradient }
\end{gathered}
$$

Stepsize $\alpha_{k}>0$ must be chosen

- Method generates sequence $\left\{x^{k}\right\}_{k \geq 0}$
- Does this sequence converge to an optimal solution x^{*} ?
- If yes, then how fast?
- What if have constraints: $x \in \mathcal{X}$?

Example: Lasso problem

$$
\begin{aligned}
& \min \frac{1}{2}\|A x-b\|_{2}^{2}+\lambda\|x\|_{1} \\
& x^{k+1}=x^{k}-\alpha_{k}\left(A^{T}\left(A x^{k}-b\right)+\lambda \operatorname{sgn}\left(x^{k}\right)\right)
\end{aligned}
$$

Example: Lasso problem

(More careful implementation)

Subgradient method - stepsizes

- Constant Set $\alpha_{k}=\alpha>0$, for $k \geq 0$
- Scaled constant $\alpha_{k}=\alpha /\left\|g^{k}\right\|_{2} \quad\left(\left\|x^{k+1}-x^{k}\right\|_{2}=\alpha\right)$

Subgradient method - stepsizes

- Constant Set $\alpha_{k}=\alpha>0$, for $k \geq 0$
- Scaled constant $\alpha_{k}=\alpha /\left\|g^{k}\right\|_{2} \quad\left(\left\|x^{k+1}-x^{k}\right\|_{2}=\alpha\right)$
- Square summable but not summable

$$
\sum_{k} \alpha_{k}^{2}<\infty, \quad \sum_{k} \alpha_{k}=\infty
$$

- Diminishing scalar

$$
\lim _{k} \alpha_{k}=0, \quad \sum_{k} \alpha_{k}=\infty
$$

- Adaptive stepsizes (not covered)

Not a descent method!
Work with best f^{k} so far: $f_{\text {min }}^{k}:=\min _{0 \leq i \leq k} f^{i}$

Convergence analysis

Assumptions

- Min is attained: $f^{\star}:=\inf _{x} f(x)>-\infty$, with $f\left(x^{*}\right)=f^{\star}$

Convergence analysis

Assumptions

- Min is attained: $f^{\star}:=\inf _{x} f(x)>-\infty$, with $f\left(x^{*}\right)=f^{\star}$
- Bounded subgradients: $\|g\|_{2} \leq G$ for all $g \in \partial f$ $\left(f(x)-f(y)=\left\langle g_{\xi}, x-y\right\rangle\right.$; use Cauchy-Schwarz or Hölder)

Convergence analysis

Assumptions

- Min is attained: $f^{\star}:=\inf _{x} f(x)>-\infty$, with $f\left(x^{*}\right)=f^{\star}$
- Bounded subgradients: $\|g\|_{2} \leq G$ for all $g \in \partial f$ $\left(f(x)-f(y)=\left\langle g_{\xi}, x-y\right\rangle\right.$; use Cauchy-Schwarz or Hölder)
- Bounded domain: $\left\|x^{0}-x^{*}\right\|_{2} \leq R$

Convergence analysis

Assumptions

- Min is attained: $f^{\star}:=\inf _{x} f(x)>-\infty$, with $f\left(x^{*}\right)=f^{\star}$
- Bounded subgradients: $\|g\|_{2} \leq G$ for all $g \in \partial f$ $\left(f(x)-f(y)=\left\langle g_{\xi}, x-y\right\rangle\right.$; use Cauchy-Schwarz or Hölder)
- Bounded domain: $\left\|x^{0}-x^{*}\right\|_{2} \leq R$

$$
\text { Convergence results for: } f_{\min }^{k}:=\min _{0 \leq i \leq k} f^{i}
$$

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2}=\left\|x^{k}-\alpha_{k} g^{k}-x^{*}\right\|_{2}^{2}
$$

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} & =\left\|x^{k}-\alpha_{k} g^{k}-x^{*}\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2\left\langle\alpha_{k} g^{k}, x^{k}-x^{*}\right\rangle
\end{aligned}
$$

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} & =\left\|x^{k}-\alpha_{k} g^{k}-x^{*}\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2\left\langle\alpha_{k} g^{k}, x^{k}-x^{*}\right\rangle \\
& \leq\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{k}\right)-f^{\star}\right)
\end{aligned}
$$

since $f^{\star}=f\left(x^{*}\right) \geq f\left(x^{k}\right)+\left\langle g^{k}, x^{*}-x^{k}\right\rangle$

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} & =\left\|x^{k}-\alpha_{k} g^{k}-x^{*}\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2\left\langle\alpha_{k} g^{k}, x^{k}-x^{*}\right\rangle \\
& \leq\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{k}\right)-f^{\star}\right)
\end{aligned}
$$

since $f^{\star}=f\left(x^{*}\right) \geq f\left(x^{k}\right)+\left\langle g^{k}, x^{*}-x^{k}\right\rangle$
Apply same argument to $\left\|x^{k}-x^{*}\right\|_{2}^{2}$ recursively

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} & =\left\|x^{k}-\alpha_{k} g^{k}-x^{*}\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2\left\langle\alpha_{k} g^{k}, x^{k}-x^{*}\right\rangle \\
& \leq\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{k}\right)-f^{\star}\right),
\end{aligned}
$$

since $f^{\star}=f\left(x^{*}\right) \geq f\left(x^{k}\right)+\left\langle g^{k}, x^{*}-x^{k}\right\rangle$
Apply same argument to $\left\|x^{k}-x^{*}\right\|_{2}^{2}$ recursively

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} \leq\left\|x^{0}-x^{*}\right\|_{2}^{2}+\sum_{t=1}^{k} \alpha_{t}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right)
$$

Subgradient method - convergence

Lyapunov function: Distance to x^{*}, not function values

$$
\begin{aligned}
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} & =\left\|x^{k}-\alpha_{k} g^{k}-x^{*}\right\|_{2}^{2} \\
& =\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2\left\langle\alpha_{k} g^{k}, x^{k}-x^{*}\right\rangle \\
& \leq\left\|x^{k}-x^{*}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \alpha_{k}\left(f\left(x^{k}\right)-f^{\star}\right)
\end{aligned}
$$

since $f^{\star}=f\left(x^{*}\right) \geq f\left(x^{k}\right)+\left\langle g^{k}, x^{*}-x^{k}\right\rangle$
Apply same argument to $\left\|x^{k}-x^{*}\right\|_{2}^{2}$ recursively

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} \leq\left\|x^{0}-x^{*}\right\|_{2}^{2}+\sum_{t=1}^{k} \alpha_{t}^{2}\left\|g^{k}\right\|_{2}^{2}-2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right)
$$

Now use our convenient assumptions!

Subgradient method - convergence

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} \leq R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}-2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right)
$$

- To get a bound on the last term, simply notice (for $t \leq k$)

$$
f^{t} \geq f_{\min }^{t} \geq f_{\min }^{k} \quad \text { since } \quad f_{\min }^{t}:=\min _{0 \leq i \leq t} f\left(x^{i}\right)
$$

Subgradient method - convergence

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} \leq R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}-2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right)
$$

- To get a bound on the last term, simply notice (for $t \leq k$)

$$
f^{t} \geq f_{\min }^{t} \geq f_{\min }^{k} \quad \text { since } \quad f_{\min }^{t}:=\min _{0 \leq i \leq t} f\left(x^{i}\right)
$$

- Plugging this in yields the bound

$$
2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right) \geq 2\left(f_{\min }^{k}-f^{\star}\right) \sum_{t=1}^{k} \alpha_{t}
$$

Subgradient method - convergence

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} \leq R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}-2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right)
$$

- To get a bound on the last term, simply notice (for $t \leq k$)

$$
f^{t} \geq f_{\min }^{t} \geq f_{\min }^{k} \quad \text { since } \quad f_{\min }^{t}:=\min _{0 \leq i \leq t} f\left(x^{i}\right)
$$

- Plugging this in yields the bound

$$
2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right) \geq 2\left(f_{\min }^{k}-f^{\star}\right) \sum_{t=1}^{k} \alpha_{t}
$$

- So that we finally have

$$
0 \leq\left\|x^{k+1}-x^{*}\right\|_{2} \leq R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}-2\left(f_{\min }^{k}-f^{\star}\right) \sum_{t=1}^{k} \alpha_{t}
$$

Subgradient method - convergence

$$
\left\|x^{k+1}-x^{*}\right\|_{2}^{2} \leq R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}-2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right)
$$

- To get a bound on the last term, simply notice (for $t \leq k$)

$$
f^{t} \geq f_{\min }^{t} \geq f_{\min }^{k} \quad \text { since } \quad f_{\min }^{t}:=\min _{0 \leq i \leq t} f\left(x^{i}\right)
$$

- Plugging this in yields the bound

$$
2 \sum_{t=1}^{k} \alpha_{t}\left(f^{t}-f^{\star}\right) \geq 2\left(f_{\min }^{k}-f^{\star}\right) \sum_{t=1}^{k} \alpha_{t}
$$

- So that we finally have

$$
0 \leq\left\|x^{k+1}-x^{*}\right\|_{2} \leq R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}-2\left(f_{\min }^{k}-f^{\star}\right) \sum_{t=1}^{k} \alpha_{t}
$$

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}}
$$

Subgradient method - convergence

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}}
$$

Exercise: Analyze $\lim _{k \rightarrow \infty} f_{\text {min }}^{k}-f^{\star}$ for the different choices of stepsize that we mentioned.

Subgradient method - convergence

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}}
$$

Exercise: Analyze $\lim _{k \rightarrow \infty} f_{\min }^{k}-f^{\star}$ for the different choices of stepsize that we mentioned.

Constant step: $\alpha_{k}=\alpha$; We obtain

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} k \alpha^{2}}{2 k \alpha}
$$

Subgradient method - convergence

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}}
$$

Exercise: Analyze $\lim _{k \rightarrow \infty} f_{\min }^{k}-f^{\star}$ for the different choices of stepsize that we mentioned.

Constant step: $\alpha_{k}=\alpha$; We obtain

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} k \alpha^{2}}{2 k \alpha} \rightarrow \frac{G^{2} \alpha}{2} \quad \text { as } k \rightarrow \infty
$$

Subgradient method - convergence

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}}
$$

Exercise: Analyze $\lim _{k \rightarrow \infty} f_{\min }^{k}-f^{\star}$ for the different choices of stepsize that we mentioned.

Constant step: $\alpha_{k}=\alpha$; We obtain

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} k \alpha^{2}}{2 k \alpha} \rightarrow \frac{G^{2} \alpha}{2} \quad \text { as } k \rightarrow \infty
$$

Square summable, not summable: $\sum_{k} \alpha_{k}^{2}<\infty, \sum_{k} \alpha_{k}=\infty$

Subgradient method - convergence

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}}
$$

Exercise: Analyze $\lim _{k \rightarrow \infty} f_{\text {min }}^{k}-f^{\star}$ for the different choices of stepsize that we mentioned.

Constant step: $\alpha_{k}=\alpha$; We obtain

$$
f_{\min }^{k}-f^{\star} \leq \frac{R^{2}+G^{2} k \alpha^{2}}{2 k \alpha} \rightarrow \frac{G^{2} \alpha}{2} \quad \text { as } k \rightarrow \infty
$$

Square summable, not summable: $\sum_{k} \alpha_{k}^{2}<\infty, \sum_{k} \alpha_{k}=\infty$ As $k \rightarrow \infty$, numerator $<\infty$ but denominator $\rightarrow \infty$; so $f_{\min }^{k} \rightarrow f^{*}$ In practice, fair bit of stepsize tuning needed, e.g. $\alpha_{k}=a /(b+k)$

Subgradient method - convergence

- Suppose we want $f_{\min }^{k}-f^{*} \leq \varepsilon$, how big should k be?

Subgradient method - convergence

- Suppose we want $f_{\min }^{k}-f^{*} \leq \varepsilon$, how big should k be?
- Optimize the bound for α_{t}

Subgradient method - convergence

- Suppose we want $f_{\min }^{k}-f^{*} \leq \varepsilon$, how big should k be?
- Optimize the bound for α_{t}
- We want

$$
\frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}} \leq \varepsilon
$$

Subgradient method - convergence

- Suppose we want $f_{\min }^{k}-f^{*} \leq \varepsilon$, how big should k be?
- Optimize the bound for α_{t}
- We want

$$
\frac{R^{2}+G^{2} \sum_{t=1}^{k} \alpha_{t}^{2}}{2 \sum_{t=1}^{k} \alpha_{t}} \leq \varepsilon
$$

- Largest possible $\alpha_{t} \propto 1 / \sqrt{t}$
- Number of steps $k=(R G / \varepsilon)^{2}=O\left(\frac{1}{\varepsilon^{2}}\right)$

Exercise

Support vector machines

- Let $\mathcal{D}:=\left\{\left(x_{i}, y_{i}\right) \mid x_{i} \in \mathbb{R}^{n}, y_{i} \in\{ \pm 1\}\right\}$
- We wish to find $w \in \mathbb{R}^{n}$ and $b \in \mathbb{R}$ such that

$$
\min _{w, b} \frac{1}{2}\|w\|_{2}^{2}+C \sum_{i=1}^{m} \max \left[0,1-y_{i}\left(w^{T} x_{i}+b\right)\right]
$$

- Derive and implement a subgradient method
- Plot evolution of objective function
- Experiment with different values of $C>0$
- Plot and keep track of $f_{\text {min }}^{k}:=\min _{0 \leq t \leq k} f\left(x^{t}\right)$

Subgradient method - exercise

- Let $a \in \mathbb{R}^{n}$ be a given vector.
- Let $f(x)=\sum_{i}\left|x-a_{i}\right|$, i.e., $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$
- Implement different subgradient methods to minimize f
- Also keep track of $f_{\text {best }}^{k}:=\min _{0 \leq i<k} f\left(x_{i}\right)$

Subgradient method - exercise

- Let $a \in \mathbb{R}^{n}$ be a given vector.
- Let $f(x)=\sum_{i}\left|x-a_{i}\right|$, i.e., $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$
- Implement different subgradient methods to minimize f
- Also keep track of $f_{\text {best }}^{k}:=\min _{0 \leq i<k} f\left(x_{i}\right)$

Exercise: Implement the above in Matlab. Report a plot of $f\left(x_{k}\right)$ values; also try to guess what optimum is being found.
\bigcirc Hint: Here we can use $\partial(f(x)+g(x))=\partial f(x)+\partial g(x)$
\bigcirc Hint: $|x-c|$ is not diff. at $x=c$; there subgrad is $[-1,1]$
\bigcirc Hint: It might help to try solving this for an integer valued vector a

Polyak's stepsize

- Assume f^{\star} is known (or can be estimated). Then use

$$
\alpha_{k}=\frac{f^{k}-f^{\star}}{\left\|g^{k}\right\|_{2}^{2}}
$$

Polyak's stepsize

- Assume f^{\star} is known (or can be estimated). Then use

$$
\alpha_{k}=\frac{f^{k}-f^{\star}}{\left\|g^{k}\right\|_{2}^{2}}
$$

- Motivation: recall bound

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-2 \alpha_{k}\left(f^{k}-f^{\star}\right)+\alpha_{k}^{2}\left\|g^{k}\right\|^{2}
$$ and minimize RHS.

Polyak's stepsize

- Assume f^{\star} is known (or can be estimated). Then use

$$
\alpha_{k}=\frac{f^{k}-f^{\star}}{\left\|g^{k}\right\|_{2}^{2}}
$$

- Motivation: recall bound

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-2 \alpha_{k}\left(f^{k}-f^{\star}\right)+\alpha_{k}^{2}\left\|g^{k}\right\|^{2}
$$

and minimize RHS.

- Let's plug in α_{k} :

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

Polyak's stepsize

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

Polyak's stepsize

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

- Observation $1\left\|x^{k}-x^{*}\right\|$ decreases

Polyak's stepsize

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

- Observation $1\left\|x^{k}-x^{*}\right\|$ decreases
- Recursion:

$$
\sum_{k=1}^{K} \frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g^{k}\right\|^{2}} \leq\left\|x^{1}-x^{*}\right\|^{2} \leq R^{2}
$$

Polyak's stepsize

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

- Observation $1\left\|x^{k}-x^{*}\right\|$ decreases
- Recursion:

$$
\sum_{k=1}^{K} \frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g^{k}\right\|^{2}} \leq\left\|x^{1}-x^{*}\right\|^{2} \leq R^{2}
$$

- Now use $\left\|g^{k}\right\| \leq G$

$$
\sum_{k=1}^{K}\left(f^{k}-f^{\star}\right)^{2} \leq R^{2} G^{2}
$$

Polyak's stepsize

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

- Observation $1\left\|x^{k}-x^{*}\right\|$ decreases
- Recursion:

$$
\sum_{k=1}^{K} \frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g^{k}\right\|^{2}} \leq\left\|x^{1}-x^{*}\right\|^{2} \leq R^{2}
$$

- Now use $\left\|g^{k}\right\| \leq G$

$$
\sum_{k=1}^{K}\left(f^{k}-f^{\star}\right)^{2} \leq R^{2} G^{2}
$$

- Observation $2 f^{k} \rightarrow f^{\star}$

Polyak's stepsize

$$
\left\|x^{k+1}-x^{*}\right\|^{2} \leq\left\|x^{k}-x^{*}\right\|^{2}-\frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g_{k}\right\|^{2}}
$$

- Observation $1\left\|x^{k}-x^{*}\right\|$ decreases
- Recursion:

$$
\sum_{k=1}^{K} \frac{\left(f^{k}-f^{\star}\right)^{2}}{\left\|g^{k}\right\|^{2}} \leq\left\|x^{1}-x^{*}\right\|^{2} \leq R^{2}
$$

- Now use $\left\|g^{k}\right\| \leq G$

$$
\sum_{k=1}^{K}\left(f^{k}-f^{\star}\right)^{2} \leq R^{2} G^{2}
$$

- Observation $2 f^{k} \rightarrow f^{\star}$
- for accuracy ε, need $K=(R G / \varepsilon)^{2}$

Nonsmooth convergence rates

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$

Nonsmooth convergence rates

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.

Nonsmooth convergence rates

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$

Nonsmooth convergence rates

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain ϵ-accuracy.

Nonsmooth convergence rates

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain ϵ-accuracy.
- This behavior typical for the subgradient method which exhibits $O(1 / \sqrt{k})$ convergence in general

Nonsmooth convergence rates

- Let $\phi(x)=|x|$ for $x \in \mathbb{R}$
- Subgradient method $x^{k+1}=x^{k}-\alpha_{k} g^{k}$, where $g^{k} \in \partial\left|x^{k}\right|$.
- If $x^{0}=1$ and $\alpha_{k}=\frac{1}{\sqrt{k+1}}+\frac{1}{\sqrt{k+2}}$ (this stepsize is known to be optimal), then $\left|x^{k}\right|=\frac{1}{\sqrt{k+1}}$
- Thus, $O\left(\frac{1}{\epsilon^{2}}\right)$ iterations are needed to obtain ϵ-accuracy.
- This behavior typical for the subgradient method which exhibits $O(1 / \sqrt{k})$ convergence in general

Can we do better in general?

Nonsmooth convergence rates

Theorem. (Nesterov.) Let $\mathcal{B}=\left\{x \mid\left\|x-x^{0}\right\|_{2} \leq D\right\}$. Assume, $x^{*} \in \mathcal{B}$. There exists a convex function f in $C_{L}^{0}(\mathcal{B})$ (with $L>0$), such that for $0 \leq k \leq n-1$, the lower-bound

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \geq \frac{L D}{2(1+\sqrt{k+1})},
$$

holds for any algorithm that generates x^{k} by linearly combining the previous iterates and subgradients.

Exercise: So design problems where we can do better!

