### **Optimization for Machine Learning**

(Problems; Algorithms - B)

#### SUVRIT SRA Massachusetts Institute of Technology

#### PKU Summer School on Data Science (July 2017)



♡ Convex sets, convex functions, some challenges

- $\heartsuit$  Convex sets, convex functions, some challenges
- $\heartsuit$  Minimizing *f*(*x*) via descent *x* ← *x* + α*d* ( $\langle \nabla f, d \rangle < 0$ )

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♥ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♥ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♥ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♥ Constrained optimization:  $\min f(x)$  s.t.  $x \in X$

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♡ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♡ Constrained optimization:  $\min f(x)$  s.t.  $x \in \mathcal{X}$
- $\heartsuit$  Optimality condition:  $\langle \nabla f(x^*), x x^* \rangle \ge 0$  for all  $x \in \mathcal{X}$

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♡ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♥ Constrained optimization:  $\min f(x)$  s.t.  $x \in \mathcal{X}$
- $\heartsuit$  Optimality condition:  $\langle \nabla f(x^*), x x^* \rangle \ge 0$  for all  $x \in \mathcal{X}$
- $\heartsuit$  Frank-Wolfe algorithm, using  $\min_{z \in \mathcal{X}} \langle \nabla f(x^k), z \rangle$

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♡ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♥ Constrained optimization:  $\min f(x)$  s.t.  $x \in \mathcal{X}$
- $\heartsuit$  Optimality condition:  $\langle \nabla f(x^*), x x^* \rangle \ge 0$  for all  $x \in \mathcal{X}$
- $\heartsuit$  Frank-Wolfe algorithm, using  $\min_{z \in \mathcal{X}} \langle \nabla f(x^k), z \rangle$
- $\heartsuit$  Projected gradient,  $x \leftarrow P_{\mathcal{X}}(x \alpha \nabla f(x))$

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♡ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♥ Constrained optimization:  $\min f(x)$  s.t.  $x \in \mathcal{X}$
- $\heartsuit$  Optimality condition:  $\langle \nabla f(x^*), x x^* \rangle \ge 0$  for all  $x \in \mathcal{X}$
- $\heartsuit$  Frank-Wolfe algorithm, using  $\min_{z \in \mathcal{X}} \langle \nabla f(x^k), z \rangle$
- $\heartsuit$  Projected gradient,  $x \leftarrow P_{\mathcal{X}}(x \alpha \nabla f(x))$
- $\heartsuit$  Stochastic programming:  $\min_x F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$

Suvrit Sra (suvrit@mit.edu)

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♡ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♥ Constrained optimization:  $\min f(x)$  s.t.  $x \in \mathcal{X}$
- $\heartsuit$  Optimality condition:  $\langle \nabla f(x^*), x x^* \rangle \ge 0$  for all  $x \in \mathcal{X}$
- $\heartsuit$  Frank-Wolfe algorithm, using  $\min_{z \in \mathcal{X}} \langle \nabla f(x^k), z \rangle$
- $\heartsuit$  Projected gradient,  $x \leftarrow P_{\mathcal{X}}(x \alpha \nabla f(x))$
- $\heartsuit$  Stochastic programming:  $\min_x F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$
- $\heartsuit$  SA/SGD:  $x^{k+1} = x^k \alpha_k g_k$ , where  $\mathbb{E}[g_k] = \nabla F(x^k)$

- $\heartsuit$  Convex sets, convex functions, some challenges
- ♡ Minimizing f(x) via descent  $x \leftarrow x + \alpha d$  ( $\langle \nabla f, d \rangle < 0$ )
- $\heartsuit \nabla f(x^*) = 0$  necessary for optimality; sufficient for convex
- ♡ Gradient descent ensures  $f(x^k) f(x^*) \le \epsilon$  in  $O(1/\epsilon)$  iterations (we wrote this as:  $f(x^k) f(x^*) = O(1/k)$ ).
- ♡ Lower bound:  $O(1/k^2)$ ; attained by Nesterov's accelerated gradient method.
- $\heartsuit$  Converge as  $O(e^{-k})$  for strongly convex; AGM attains lower-bd.
- ♥ Constrained optimization:  $\min f(x)$  s.t.  $x \in X$
- $\heartsuit$  Optimality condition:  $\langle \nabla f(x^*), x x^* \rangle \ge 0$  for all  $x \in \mathcal{X}$
- $\heartsuit$  Frank-Wolfe algorithm, using  $\min_{z \in \mathcal{X}} \langle \nabla f(x^k), z \rangle$
- $\heartsuit$  Projected gradient,  $x \leftarrow P_{\mathcal{X}}(x \alpha \nabla f(x))$
- $\heartsuit$  Stochastic programming:  $\min_x F(x) := \mathbb{E}_{\xi}[f(x,\xi)]$
- $\heartsuit$  SA/SGD:  $x^{k+1} = x^k \alpha_k g_k$ , where  $\mathbb{E}[g_k] = \nabla F(x^k)$
- $\heartsuit$  Finite-sum:  $\frac{1}{n}\sum_{i}f_{i}(x)$ ;  $x^{k+1} = x^{k} \alpha_{k}\nabla f_{i_{k}}(x^{k})$ , where  $i_{k} \sim U([n])$

Show that  $f(w, X) := w^T X^{-1} w$  is jointly convex (in  $w \in \mathbb{R}^n$  and  $X \succ 0$ , i.e., positive definite)

Show that  $f(w, X) := w^T X^{-1} w$  is jointly convex (in  $w \in \mathbb{R}^n$  and  $X \succ 0$ , i.e., positive definite)

Let us prove via midpoint convexity. So we show that

$$f\left(\frac{w+v}{2},\frac{A+B}{2}\right) \leq \frac{1}{2}f(w,A) + \frac{1}{2}f(v,B).$$

Show that  $f(w, X) := w^T X^{-1} w$  is jointly convex (in  $w \in \mathbb{R}^n$  and  $X \succ 0$ , i.e., positive definite)

Let us prove via midpoint convexity. So we show that

$$f\left(\frac{w+v}{2},\frac{A+B}{2}\right) \leq \frac{1}{2}f(w,A) + \frac{1}{2}f(v,B).$$

In other words, we show that

$$\left\langle \frac{w+v}{2}, \left(\frac{A+B}{2}\right)^{-1}\frac{w+v}{2}\right\rangle \leq \frac{1}{2}f(w,A) + \frac{1}{2}f(v,B),$$

which simplifies to showing that (verify!)

Suvrit Sra (suvrit@mit.edu)

$$w^{T}A^{-1}w + v^{T}B^{-1}v \ge (w+v)^{T}(A+B)^{-1}(w+v).$$
 (\*)

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 4 / 43

$$w^{T}A^{-1}w + v^{T}B^{-1}v \ge (w+v)^{T}(A+B)^{-1}(w+v).$$
 (\*)

Recall the Schur complement lemma, i.e.,  $\begin{bmatrix} P & Q \\ Q^T & R \end{bmatrix} \succeq 0$  iff  $P \succeq QR^{-1}Q^T$  (we essentially proved this in Lecture 1).

$$w^{T}A^{-1}w + v^{T}B^{-1}v \ge (w+v)^{T}(A+B)^{-1}(w+v).$$
 (\*)

Recall the Schur complement lemma, i.e.,  $\begin{bmatrix} P & Q \\ Q^T & R \end{bmatrix} \succeq 0$  iff  $P \succeq QR^{-1}Q^T$  (we essentially proved this in Lecture 1).

Thus, since  $w^T A^{-1} w \ge w^T A^{-1} w$ , we have  $\begin{bmatrix} w^T A^{-1} w & w^T \\ w & A \end{bmatrix} \succeq 0,$ 

$$w^{T}A^{-1}w + v^{T}B^{-1}v \ge (w+v)^{T}(A+B)^{-1}(w+v).$$
 (\*)

Recall the Schur complement lemma, i.e.,  $\begin{bmatrix} P & Q \\ Q^T & R \end{bmatrix} \succeq 0$  iff  $P \succeq QR^{-1}Q^T$  (we essentially proved this in Lecture 1).

Thus, since 
$$w^T A^{-1} w \ge w^T A^{-1} w$$
, we have  
 $\begin{bmatrix} w^T A^{-1} w & w^T \\ w & A \end{bmatrix} \succeq 0$ , similarly,  $\begin{bmatrix} v^T B^{-1} v & v^T \\ v & B \end{bmatrix} \succeq 0$ .

Since sum of PD matrices is PD, this implies that

$$\begin{bmatrix} w^T A^{-1} w + v^T B^{-1} v & w^T + v^T \\ w + v & A + B \end{bmatrix} \succeq 0.$$

Taking Schur complements of this matrix, we obtain (\*). Thus, we have proved  $f(w, X) = w^T X^{-1} w$  is jointly convex.

Suvrit Sra (suvrit@mit.edu)

# **Nonsmooth functions**

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 5 / 43

#### Power of nonsmooth functions

Write constrained problem as unconstrained

min f(x) s.t.  $x \in \mathcal{X}$ 

#### **Power of nonsmooth functions**

#### Write constrained problem as unconstrained

 $\begin{array}{ll} \min & f(x) \quad \text{s.t. } x \in \mathcal{X} \\ \min & f(x) + \mathbb{1}_{\mathcal{X}}(x), \end{array}$ 

where  $\mathbb{1}_{\mathcal{X}}(x) = 0$  if  $x \in \mathcal{X}$  and  $+\infty$  otherwise.

Suvrit Sra (suvrit@mit.edu)

#### Subgradients: global underestimators



 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$ 

Hence  $\nabla f(y) = 0$  implies that *y* is global min.

Suvrit Sra (suvrit@mit.edu)

#### Subgradients: global underestimators



 $f(x) \ge f(y) + \langle g, x - y \rangle$ 

#### If one of the g = 0, then y a global min.

Suvrit Sra (suvrit@mit.edu)

# **Subgradients – basic facts**

- ► *f* is convex, differentiable:  $\nabla f(y)$  the **unique** subgradient at *y*
- A vector g is a subgradient at a point y if and only if  $f(y) + \langle g, x y \rangle$  is globally smaller than f(x).
- Usually, **one** subgradient costs approx. as much as f(x)

# **Subgradients – basic facts**

- ► *f* is convex, differentiable:  $\nabla f(y)$  the **unique** subgradient at *y*
- A vector g is a subgradient at a point y if and only if  $f(y) + \langle g, x y \rangle$  is globally smaller than f(x).
- Usually, **one** subgradient costs approx. as much as f(x)
- ► Determining all subgradients at a given point difficult.
- ► Subgradient calculus—major achievement in convex analysis
- ► Fenchel-Young inequality:  $f(x) + f^*(s) \ge \langle s, x \rangle$ tight at a subgradient

# **Rules for subgradients**

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 9 / 43

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Suvrit Sra (suvrit@mit.edu)

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Simple way to obtain some  $g \in \partial f(x)$ :

Suvrit Sra (suvrit@mit.edu)

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Simple way to obtain some  $g \in \partial f(x)$ :

• Pick any  $y^*$  for which  $h(x, y^*) = f(x)$ 

Suvrit Sra (suvrit@mit.edu)

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Simple way to obtain some  $g \in \partial f(x)$ :

- Pick any  $y^*$  for which  $h(x, y^*) = f(x)$
- ▶ Pick any subgradient  $g \in \partial h(x, y^*)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Simple way to obtain some  $g \in \partial f(x)$ :

- Pick any  $y^*$  for which  $h(x, y^*) = f(x)$
- ▶ Pick any subgradient  $g \in \partial h(x, y^*)$
- ▶ This  $g \in \partial f(x)$

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Simple way to obtain some  $g \in \partial f(x)$ :

- Pick any  $y^*$  for which  $h(x, y^*) = f(x)$
- ▶ Pick any subgradient  $g \in \partial h(x, y^*)$
- ▶ This  $g \in \partial f(x)$

$$h(z, y^*) \geq h(x, y^*) + g^T(z - x)$$
  
$$h(z, y^*) \geq f(x) + g^T(z - x)$$

Suvrit Sra (suvrit@mit.edu)

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Getting  $\partial f(x)$  is complicated!

Simple way to obtain some  $g \in \partial f(x)$ :

- Pick any  $y^*$  for which  $h(x, y^*) = f(x)$
- ▶ Pick any subgradient  $g \in \partial h(x, y^*)$
- ▶ This  $g \in \partial f(x)$

$$\begin{array}{lll} h(z,y^*) & \geq & h(x,y^*) + g^T(z-x) \\ h(z,y^*) & \geq & f(x) + g^T(z-x) \\ f(z) & \geq & h(z,y) \quad (\text{because of sup}) \\ f(z) & \geq & f(x) + g^T(z-x). \end{array}$$

Suvrit Sra (suvrit@mit.edu)
Suppose  $a_i \in \mathbb{R}^n$  and  $b_i \in \mathbb{R}$ . And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

Suvrit Sra (suvrit@mit.edu)

Suppose  $a_i \in \mathbb{R}^n$  and  $b_i \in \mathbb{R}$ . And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

• Suppose  $f(x) = a_k^T x + b_k$  for some index k

Suppose  $a_i \in \mathbb{R}^n$  and  $b_i \in \mathbb{R}$ . And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

• Suppose  $f(x) = a_k^T x + b_k$  for some index k

• Here 
$$f(x; y) = f_k(x) = a_k^T x + b_k$$
, and  $\partial f_k(x) = \{\nabla f_k(x)\}$ 

Suppose  $a_i \in \mathbb{R}^n$  and  $b_i \in \mathbb{R}$ . And

$$f(x) := \max_{1 \le i \le n} (a_i^T x + b_i).$$

This *f* a max (in fact, over a finite number of terms)

- Suppose  $f(x) = a_k^T x + b_k$  for some index k
- Here  $f(x; y) = f_k(x) = a_k^T x + b_k$ , and  $\partial f_k(x) = \{\nabla f_k(x)\}$

▶ Hence, 
$$a_k \in \partial f(x)$$
 works!

#### Subgradient of expectation

Suppose  $f = \mathbf{E}f(x, u)$ , where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

### Subgradient of expectation

Suppose  $f = \mathbf{E}f(x, u)$ , where *f* is convex in *x* for each *u* (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

▶ For each *u* choose any  $g(x, u) \in \partial_x f(x, u)$ 

### Subgradient of expectation

Suppose  $f = \mathbf{E} f(x, u)$ , where f is convex in x for each u (an r.v.)

$$f(x) := \int f(x, u) p(u) du$$

- For each *u* choose any  $g(x, u) \in \partial_x f(x, u)$
- Then,  $g = \int g(x, u)p(u)du = \mathbf{E}g(x, u) \in \partial f(x)$

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector  $g \in \partial f(x)$ , we may:

▶ For i = 1 to n, compute  $g_i \in \partial f_i(x)$ 

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

- ▶ For i = 1 to n, compute  $g_i \in \partial f_i(x)$
- Compute  $u \in \partial h(f_1(x), \ldots, f_n(x))$

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

- ▶ For i = 1 to n, compute  $g_i \in \partial f_i(x)$
- Compute  $u \in \partial h(f_1(x), \ldots, f_n(x))$

• Set 
$$g = u_1g_1 + u_2g_2 + \dots + u_ng_n$$
; this  $g \in \partial f(x)$ 

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

- ▶ For i = 1 to n, compute  $g_i \in \partial f_i(x)$
- Compute  $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set  $g = u_1g_1 + u_2g_2 + \dots + u_ng_n$ ; this  $g \in \partial f(x)$
- Compare with  $\nabla f(x) = J \nabla h(x)$ , where *J* matrix of  $\nabla f_i(x)$

Suppose  $h : \mathbb{R}^n \to \mathbb{R}$  cvx and nondecreasing; each  $f_i$  cvx

$$f(x) := h(f_1(x), f_2(x), \dots, f_n(x)).$$

To find a vector  $g \in \partial f(x)$ , we may:

- ▶ For i = 1 to n, compute  $g_i \in \partial f_i(x)$
- Compute  $u \in \partial h(f_1(x), \ldots, f_n(x))$
- Set  $g = u_1g_1 + u_2g_2 + \dots + u_ng_n$ ; this  $g \in \partial f(x)$
- Compare with  $\nabla f(x) = J \nabla h(x)$ , where *J* matrix of  $\nabla f_i(x)$

**Exercise:** Verify  $g \in \partial f(x)$  by showing  $f(z) \ge f(x) + g^T(z - x)$ 

Suvrit Sra (suvrit@mit.edu)

# **References for subgradients**

- 1 R. T. Rockafellar. Convex Analysis
- 2 S. Boyd (Stanford); EE364b Lecture Notes.

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 15 / 43

**Def.** The set of all subgradients at *y* denoted by  $\partial f(y)$ . This set is called **subdifferential** of *f* at *y* 

**Def.** The set of all subgradients at *y* denoted by  $\partial f(y)$ . This set is called **subdifferential** of *f* at *y* 

If *f* is convex,  $\partial f(x)$  is nice:

♣ If *x* ∈ relative interior of dom *f*, then  $\partial f(x)$  nonempty

**Def.** The set of all subgradients at *y* denoted by  $\partial f(y)$ . This set is called **subdifferential** of *f* at *y* 

If *f* is convex,  $\partial f(x)$  is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then  $\partial f(x)$  nonempty
- ♣ If *f* differentiable at *x*, then  $\partial f(x) = {\nabla f(x)}$

**Def.** The set of all subgradients at *y* denoted by  $\partial f(y)$ . This set is called **subdifferential** of *f* at *y* 

If *f* is convex,  $\partial f(x)$  is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then  $\partial f(x)$  nonempty
- ♣ If *f* differentiable at *x*, then  $\partial f(x) = {\nabla f(x)}$
- ♣ If  $\partial f(x) = \{g\}$ , then *f* is differentiable and  $g = \nabla f(x)$

**Exercise:** What is  $\partial f(x)$  for the *ReLU* function: max(0, *x*)?

 $f(x) := \max(f_1(x), f_2(x));$  both  $f_1, f_2$  convex, differentiable

 $f(x) := \max(f_1(x), f_2(x));$  both  $f_1, f_2$  convex, differentiable



Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$  both  $f_1, f_2$  convex, differentiable



Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$  both  $f_1, f_2$  convex, differentiable



Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$  both  $f_1, f_2$  convex, differentiable



 $f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable}$ 



\*  $f_1(x) > f_2(x)$ : unique subgradient of f is  $f'_1(x)$ 

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable}$ 



\*  $f_1(x) > f_2(x)$ : unique subgradient of f is  $f'_1(x)$ \*  $f_1(x) < f_2(x)$ : unique subgradient of f is  $f'_2(x)$ 

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable}$ 



\*  $f_1(x) > f_2(x)$ : unique subgradient of f is  $f'_1(x)$ \*  $f_1(x) < f_2(x)$ : unique subgradient of f is  $f'_2(x)$ \*  $f_1(y) = f_2(y)$ : subgradients, the segment  $[f'_1(y), f'_2(y)]$ (imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu)

#### Subdifferential for abs value

$$f(x) = |x|$$



Suvrit Sra (suvrit@mit.edu)

#### Subdifferential for abs value



Suvrit Sra (suvrit@mit.edu)

#### Subdifferential for abs value



Suvrit Sra (suvrit@mit.edu)

#### Subdifferential for Euclidean norm

Example.  $f(x) = ||x||_2$ . Then,  $\partial f(x) := \begin{cases} x/||x||_2 & x \neq 0, \\ \{z \mid ||z||_2 \le 1\} & x = 0. \end{cases}$ 

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 19 / 43

#### Subdifferential for Euclidean norm

Example.  $f(x) = ||x||_2$ . Then,  $\partial f(x) := \begin{cases} x/||x||_2 & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$ 

#### Proof.

$$\begin{aligned} \|z\|_2 &\geq \|x\|_2 + \langle g, z - x \rangle \\ \|z\|_2 &\geq \langle g, z \rangle \\ &\implies \|g\|_2 \leq 1. \end{aligned}$$

Suvrit Sra (suvrit@mit.edu)

## **Example: difficulties**

**Example.** A convex function need not be subdifferentiable everywhere. Let

$$f(x) := \begin{cases} -(1 - \|x\|_2^2)^{1/2} & \text{if } \|x\|_2 \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

*f* diff. for all *x* with  $||x||_2 < 1$ , but  $\partial f(x) = \emptyset$  whenever  $||x||_2 \ge 1$ .

# Subdifferential calculus

- Finding one subgradient within  $\partial f(x)$
- Determining entire subdifferential  $\partial f(x)$  at a point x
- ♠ Do we have the chain rule?

# Subdifferential calculus

- $\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$
- $\oint \text{ Scaling } \alpha > 0, \, \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \}$
- ∮ **Addition\*:**  $\partial(f + k)(x) = \partial f(x) + \partial k(x)$  (set addition)
- ∮ **Chain rule\*:** Let *A* ∈ ℝ<sup>*m*×*n*</sup>, *b* ∈ ℝ<sup>*m*</sup>, *f* : ℝ<sup>*m*</sup> → ℝ, and *h* : ℝ<sup>*n*</sup> → ℝ be given by h(x) = f(Ax + b). Then,

$$\partial h(x) = A^T \partial f(Ax + b).$$

∮ **Chain rule\*:**  $h(x) = f \circ k$ , where  $k : X \to Y$  is diff.

$$\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$$

 $\oint$  **Max function**<sup>\*</sup>: If *f*(*x*) := max<sub>1≤*i*≤*m*</sub>*f<sub>i</sub>*(*x*), then

$$\partial f(x) = \operatorname{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$$

convex hull over subdifferentials of "active" functions at  $x \oint$  **Conjugation:**  $z \in \partial f(x)$  if and only if  $x \in \partial f^*(z)$ \* — can fail to hold without precise assumptions.

Suvrit Sra (suvrit@mit.edu)


# **Example: breakdown**

It can happen that 
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

**Example.** Define 
$$f_1$$
 and  $f_2$  by  

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then,  $f = \max\{f_1, f_2\} = \mathbb{1}_{\{0\}}$ , whereby  $\partial f(0) = \mathbb{R}$   
But  $\partial f_1(0) = \partial f_2(0) = \emptyset$ .

However,  $\partial f_1(x) + \partial f_2(x) \subset \partial (f_1 + f_2)(x)$  always holds.

Suvrit Sra (suvrit@mit.edu)

# Subdifferential – example

Example.  $f(x) = ||x||_{\infty}$ . Then,  $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\},\$ 

where  $e_i$  is *i*-th canonical basis vector.

To prove, notice that  $f(x) = \max_{1 \le i \le n} \{ |e_i^T x| \}$ 

Then use, *chain rule* and *max rule* and  $\partial |\cdot|$ 

Suvrit Sra (suvrit@mit.edu)

# Subdifferential - example (Boyd)



Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 25 / 43

# **Optimality via subdifferentials**

**Theorem.** (Fermat's rule): Let 
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

**Proof:**  $x \in \operatorname{argmin} f$  implies that  $f(x) \leq f(y)$  for all  $y \in \mathbb{R}^n$ . Equivalently,  $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y$ ,

# **Optimality via subdifferentials**

**Theorem.** (Fermat's rule): Let 
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

**Proof:**  $x \in \operatorname{argmin} f$  implies that  $f(x) \leq f(y)$  for all  $y \in \mathbb{R}^n$ . Equivalently,  $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$ .

# **Example: constrained smooth problem**

#### Constrained smooth problem

 $\begin{array}{ll} \min & f(x) \quad \text{s.t. } x \in \mathcal{X} \\ \min & f(x) + \mathbb{1}_{\mathcal{X}}(x). \end{array}$ 

# **Example: constrained smooth problem**

#### Constrained smooth problem

 $\begin{array}{ll} \min & f(x) \quad \text{s.t. } x \in \mathcal{X} \\ \min & f(x) + \mathbb{1}_{\mathcal{X}}(x). \end{array}$ 

- Minimizing *x* must satisfy:  $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming  $ri(dom f) \cap ri(\mathcal{X}) \neq \emptyset$ ,  $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall,  $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$  iff  $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$  for all y.
- ▶ So  $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$  means  $x \in \mathcal{X}$  and  $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$ .
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X}\}$$

**Thus:**  $\min f(x)$  s.t.  $x \in \mathcal{X}$ :

 $\diamond$  If *f* is diff., we get  $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$ 

Suvrit Sra (suvrit@mit.edu)

# **Example: constrained smooth problem**

#### Constrained smooth problem

 $\begin{array}{ll} \min & f(x) \quad \text{s.t. } x \in \mathcal{X} \\ \min & f(x) + \mathbb{1}_{\mathcal{X}}(x). \end{array}$ 

- Minimizing *x* must satisfy:  $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming  $ri(dom f) \cap ri(\mathcal{X}) \neq \emptyset$ ,  $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall,  $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$  iff  $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$  for all y.
- ▶ So  $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$  means  $x \in \mathcal{X}$  and  $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$ .
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X}\}$$

**Thus:**  $\min f(x)$  s.t.  $x \in \mathcal{X}$ :

♦ If *f* is diff., we get  $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$ 

$$\diamondsuit \quad -\nabla f(x^*) \in \mathcal{N}_{\mathcal{X}}(x^*) \Longleftrightarrow \langle \nabla f(x^*), y - x^* \rangle \ge 0 \text{ for all } y \in \mathcal{X}.$$

Suvrit Sra (suvrit@mit.edu)

# **Subgradient methods**

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetts Institute of Technology 28 / 43

# Subgradient method

$$x^{k+1} = x^k - \alpha_k g^k$$
  
where  $g^k \in \partial f(x^k)$  is **any** subgradient

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 29 / 43

# Subgradient method

$$x^{k+1} = x^k - \alpha_k g^k$$
  
where  $g^k \in \partial f(x^k)$  is **any** subgradient

**Stepsize**  $\alpha_k > 0$  **must be chosen** 

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 29 / 43

# Subgradient method

$$x^{k+1} = x^k - \alpha_k g^k$$
  
where  $g^k \in \partial f(x^k)$  is **any** subgradient

#### Stepsize $\alpha_k > 0$ must be chosen

- Method generates sequence  $\{x^k\}_{k>0}$
- ▶ Does this sequence converge to an optimal solution *x*\*?
- ► If yes, then how fast?
- What if have constraints:  $x \in \mathcal{X}$ ?

### **Example: Lasso problem**



Suvrit Sra (suvrit@mit.edu)

# **Example: Lasso problem**



Suvrit Sra (suvrit@mit.edu)

# Subgradient method – stepsizes

- Constant Set  $\alpha_k = \alpha > 0$ , for  $k \ge 0$
- Scaled constant  $\alpha_k = \alpha/\|g^k\|_2$  ( $\|x^{k+1} x^k\|_2 = \alpha$ )

# Subgradient method – stepsizes

- Constant Set  $\alpha_k = \alpha > 0$ , for  $k \ge 0$
- Scaled constant  $\alpha_k = \alpha/\|g^k\|_2$   $(\|x^{k+1} x^k\|_2 = \alpha)$
- Square summable but not summable

$$\sum_k \alpha_k^2 < \infty, \qquad \sum_k \alpha_k = \infty$$

Diminishing scalar

$$\lim_k \alpha_k = 0, \qquad \sum_k \alpha_k = \infty$$

► Adaptive stepsizes (not covered)

Not a descent method! Work with best  $f^k$  so far:  $f^k_{\min} := \min_{0 \le i \le k} f^i$ 

Suvrit Sra (suvrit@mit.edu)

• Min is attained: 
$$f^* := \inf_x f(x) > -\infty$$
, with  $f(x^*) = f^*$ 

- Min is attained:  $f^* := \inf_x f(x) > -\infty$ , with  $f(x^*) = f^*$
- ► Bounded subgradients:  $||g||_2 \le G$  for all  $g \in \partial f$ ( $f(x) - f(y) = \langle g_{\xi}, x - y \rangle$ ; use Cauchy-Schwarz or Hölder)

- Min is attained:  $f^* := \inf_x f(x) > -\infty$ , with  $f(x^*) = f^*$
- ► Bounded subgradients:  $||g||_2 \le G$  for all  $g \in \partial f$ ( $f(x) - f(y) = \langle g_{\xi}, x - y \rangle$ ; use Cauchy-Schwarz or Hölder)
- ▶ Bounded domain:  $||x^0 x^*||_2 \le R$

- Min is attained:  $f^* := \inf_x f(x) > -\infty$ , with  $f(x^*) = f^*$
- ► Bounded subgradients:  $||g||_2 \le G$  for all  $g \in \partial f$ ( $f(x) - f(y) = \langle g_{\xi}, x - y \rangle$ ; use Cauchy-Schwarz or Hölder)
- ▶ Bounded domain:  $||x^0 x^*||_2 \le R$

Convergence results for: 
$$f_{\min}^k := \min_{0 \le i \le k} f^i$$

**Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

**Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

$$\|x^{k+1} - x^*\|_2^2 = \|x^k - \alpha_k g^k - x^*\|_2^2$$

**Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

$$\begin{aligned} \|x^{k+1} - x^*\|_2^2 &= \|x^k - \alpha_k g^k - x^*\|_2^2 \\ &= \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\langle \alpha_k g^k, \, x^k - x^* \rangle \end{aligned}$$

#### **Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

$$\begin{split} \|x^{k+1} - x^*\|_2^2 &= \|x^k - \alpha_k g^k - x^*\|_2^2 \\ &= \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\langle \alpha_k g^k, x^k - x^* \rangle \\ &\leq \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k (f(x^k) - f^*), \end{split}$$

since  $f^{\star} = f(x^{\star}) \ge f(x^{k}) + \langle g^{k}, x^{\star} - x^{k} \rangle$ 

Suvrit Sra (suvrit@mit.edu)

**Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

$$\begin{aligned} \|x^{k+1} - x^*\|_2^2 &= \|x^k - \alpha_k g^k - x^*\|_2^2 \\ &= \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\langle \alpha_k g^k, x^k - x^* \rangle \\ &\leq \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k (f(x^k) - f^*), \end{aligned}$$

since  $f^* = f(x^*) \ge f(x^k) + \langle g^k, x^* - x^k \rangle$ 

Apply same argument to  $||x^k - x^*||_2^2$  recursively

Suvrit Sra (suvrit@mit.edu)

**Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

$$\begin{split} \|x^{k+1} - x^*\|_2^2 &= \|x^k - \alpha_k g^k - x^*\|_2^2 \\ &= \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\langle \alpha_k g^k, x^k - x^* \rangle \\ &\leq \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k (f(x^k) - f^*), \end{split}$$

since  $f^* = f(x^*) \ge f(x^k) + \langle g^k, x^* - x^k \rangle$ 

Apply same argument to  $||x^k - x^*||_2^2$  recursively

$$\|x^{k+1} - x^*\|_2^2 \le \|x^0 - x^*\|_2^2 + \sum_{t=1}^k \alpha_t^2 \|g^k\|_2^2 - 2\sum_{t=1}^k \alpha_t (f^t - f^*).$$

Suvrit Sra (suvrit@mit.edu)

**Lyapunov function: Distance to** *x*<sup>\*</sup>, not function values

$$\begin{split} \|x^{k+1} - x^*\|_2^2 &= \|x^k - \alpha_k g^k - x^*\|_2^2 \\ &= \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\langle \alpha_k g^k, x^k - x^* \rangle \\ &\leq \|x^k - x^*\|_2^2 + \alpha_k^2 \|g^k\|_2^2 - 2\alpha_k (f(x^k) - f^*), \end{split}$$

since  $f^* = f(x^*) \ge f(x^k) + \langle g^k, x^* - x^k \rangle$ 

Apply same argument to  $||x^k - x^*||_2^2$  recursively

$$\|x^{k+1} - x^*\|_2^2 \le \|x^0 - x^*\|_2^2 + \sum_{t=1}^k \alpha_t^2 \|g^k\|_2^2 - 2\sum_{t=1}^k \alpha_t (f^t - f^*).$$

Now use our convenient assumptions!

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|_2^2 \le R^2 + G^2 \sum_{t=1}^k \alpha_t^2 - 2 \sum_{t=1}^k \alpha_t (f^t - f^*).$$

► To get a bound on the last term, simply notice (for  $t \le k$ )  $f^t \ge f^t_{\min} \ge f^k_{\min}$  since  $f^t_{\min} := \min_{0 \le i \le t} f(x^i)$ 

$$\|x^{k+1} - x^*\|_2^2 \le R^2 + G^2 \sum_{t=1}^k \alpha_t^2 - 2 \sum_{t=1}^k \alpha_t (f^t - f^*).$$

► To get a bound on the last term, simply notice (for  $t \le k$ )  $f^t \ge f^t_{\min} \ge f^k_{\min}$  since  $f^t_{\min} := \min_{0 \le i \le t} f(x^i)$ 

Plugging this in yields the bound

$$2\sum_{t=1}^k \alpha_t (f^t - f^\star) \ge 2(f_{\min}^k - f^\star) \sum_{t=1}^k \alpha_t.$$

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|_2^2 \le R^2 + G^2 \sum_{t=1}^k \alpha_t^2 - 2 \sum_{t=1}^k \alpha_t (f^t - f^*).$$

► To get a bound on the last term, simply notice (for  $t \le k$ )  $f^t \ge f^t_{\min} \ge f^k_{\min}$  since  $f^t_{\min} := \min_{0 \le i \le t} f(x^i)$ 

► Plugging this in yields the bound

$$2\sum_{t=1}^k \alpha_t (f^t - f^\star) \ge 2(f_{\min}^k - f^\star) \sum_{t=1}^k \alpha_t.$$

► So that we finally have

$$0 \le \|x^{k+1} - x^*\|_2 \le R^2 + G^2 \sum_{t=1}^k \alpha_t^2 - 2(f_{\min}^k - f^*) \sum_{t=1}^k \alpha_t$$

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|_2^2 \le R^2 + G^2 \sum_{t=1}^k \alpha_t^2 - 2 \sum_{t=1}^k \alpha_t (f^t - f^*).$$

► To get a bound on the last term, simply notice (for  $t \le k$ )  $f^t \ge f^t_{\min} \ge f^k_{\min}$  since  $f^t_{\min} := \min_{0 \le i \le t} f(x^i)$ 

► Plugging this in yields the bound

$$2\sum_{t=1}^{k}\alpha_t(f^t - f^\star) \ge 2(f_{\min}^k - f^\star)\sum_{t=1}^{k}\alpha_t.$$

► So that we finally have

$$0 \le \|x^{k+1} - x^*\|_2 \le R^2 + G^2 \sum_{t=1}^k \alpha_t^2 - 2(f_{\min}^k - f^*) \sum_{t=1}^k \alpha_t$$

$$f_{\min}^k - f^\star \leq rac{R^2 + G^2 \sum_{t=1}^k lpha_t^2}{2 \sum_{t=1}^k lpha_t}$$

Suvrit Sra (suvrit@mit.edu)

$$f_{\min}^k - f^\star \leq rac{R^2 + G^2 \sum_{t=1}^k lpha_t^2}{2 \sum_{t=1}^k lpha_t}$$

**Exercise:** Analyze  $\lim_{k\to\infty} f_{\min}^k - f^*$  for the different choices of stepsize that we mentioned.

$$f_{\min}^k - f^\star \leq rac{R^2 + G^2 \sum_{t=1}^k lpha_t^2}{2 \sum_{t=1}^k lpha_t}$$

**Exercise:** Analyze  $\lim_{k\to\infty} f_{\min}^k - f^*$  for the different choices of stepsize that we mentioned.

**Constant step:**  $\alpha_k = \alpha$ ; We obtain  $f_{\min}^k - f^* \le \frac{R^2 + G^2 k \alpha^2}{2k \alpha}$ 

Suvrit Sra (suvrit@mit.edu)

$$f_{\min}^k - f^\star \leq rac{R^2 + G^2 \sum_{t=1}^k lpha_t^2}{2 \sum_{t=1}^k lpha_t}$$

**Exercise:** Analyze  $\lim_{k\to\infty} f_{\min}^k - f^*$  for the different choices of stepsize that we mentioned.

**Constant step:**  $\alpha_k = \alpha$ ; We obtain  $f_{\min}^k - f^* \le \frac{R^2 + G^2 k \alpha^2}{2k\alpha} \to \frac{G^2 \alpha}{2} \quad \text{as } k \to \infty.$ 

Suvrit Sra (suvrit@mit.edu)

$$f_{\min}^k - f^\star \leq rac{R^2 + G^2 \sum_{t=1}^k lpha_t^2}{2 \sum_{t=1}^k lpha_t}$$

**Exercise:** Analyze  $\lim_{k\to\infty} f_{\min}^k - f^*$  for the different choices of stepsize that we mentioned.

**Constant step:**  $\alpha_k = \alpha$ ; We obtain  $f_{\min}^k - f^* \leq \frac{R^2 + G^2 k \alpha^2}{2k\alpha} \to \frac{G^2 \alpha}{2} \quad \text{as } k \to \infty.$ 

**Square summable, not summable:**  $\sum_k \alpha_k^2 < \infty$ ,  $\sum_k \alpha_k = \infty$ 

Suvrit Sra (suvrit@mit.edu)

$$f_{\min}^k - f^\star \leq rac{R^2 + G^2 \sum_{t=1}^k lpha_t^2}{2 \sum_{t=1}^k lpha_t}$$

**Exercise:** Analyze  $\lim_{k\to\infty} f_{\min}^k - f^*$  for the different choices of stepsize that we mentioned.

**Constant step:**  $\alpha_k = \alpha$ ; We obtain  $f_{\min}^k - f^* \leq \frac{R^2 + G^2 k \alpha^2}{2k\alpha} \to \frac{G^2 \alpha}{2} \quad \text{as } k \to \infty.$ 

**Square summable, not summable:**  $\sum_k \alpha_k^2 < \infty$ ,  $\sum_k \alpha_k = \infty$ As  $k \to \infty$ , numerator  $< \infty$  but denominator  $\to \infty$ ; so  $f_{\min}^k \to f^*$ 

In practice, fair bit of stepsize tuning needed, e.g.  $\alpha_k = a/(b+k)$ 

Suvrit Sra (suvrit@mit.edu)
Suppose we want  $f_{\min}^k - f^* \le \varepsilon$ , how big should *k* be?

- Suppose we want  $f_{\min}^k f^* \le \varepsilon$ , how big should *k* be?
- Optimize the bound for  $\alpha_t$

- ► Suppose we want  $f_{\min}^k f^* \le \varepsilon$ , how big should *k* be?
- Optimize the bound for  $\alpha_t$
- ► We want

$$\frac{R^2 + G^2 \sum_{t=1}^k \alpha_t^2}{2 \sum_{t=1}^k \alpha_t} \le \varepsilon$$

- ► Suppose we want  $f_{\min}^k f^* \le \varepsilon$ , how big should *k* be?
- Optimize the bound for  $\alpha_t$
- ► We want

$$\frac{R^2 + G^2 \sum_{t=1}^k \alpha_t^2}{2 \sum_{t=1}^k \alpha_t} \le \varepsilon$$

- Largest possible  $\alpha_t \propto 1/\sqrt{t}$
- Number of steps  $k = (RG/\varepsilon)^2 = O(\frac{1}{\varepsilon^2})$

#### Exercise

#### Support vector machines

- Let  $\mathcal{D} := \{(x_i, y_i) \mid x_i \in \mathbb{R}^n, y_i \in \{\pm 1\}\}$
- We wish to find  $w \in \mathbb{R}^n$  and  $b \in \mathbb{R}$  such that

$$\min_{w,b} \quad \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m \max[0, 1 - y_i(w^T x_i + b)]$$

- Derive and implement a subgradient method
- Plot evolution of objective function
- ▶ Experiment with different values of *C* > 0
- Plot and keep track of  $f_{\min}^k := \min_{0 \le t \le k} f(x^t)$

## Subgradient method – exercise

- Let  $a \in \mathbb{R}^n$  be a given vector.
- Let  $f(x) = \sum_i |x a_i|$ , i.e.,  $f : \mathbb{R} \to \mathbb{R}_+$
- Implement different subgradient methods to minimize *f*
- Also keep track of  $f_{\text{best}}^k := \min_{0 \le i < k} f(x_i)$

## Subgradient method – exercise

- Let  $a \in \mathbb{R}^n$  be a given vector.
- Let  $f(x) = \sum_i |x a_i|$ , i.e.,  $f : \mathbb{R} \to \mathbb{R}_+$
- Implement different subgradient methods to minimize f
- Also keep track of  $f_{\text{best}}^k := \min_{0 \le i < k} f(x_i)$

**Exercise:** Implement the above in Matlab. Report a plot of  $f(x_k)$  values; also try to guess what optimum is being found.

- $\heartsuit$  *Hint*: Here we can use  $\partial(f(x) + g(x)) = \partial f(x) + \partial g(x)$
- $\heartsuit$  *Hint*: |x c| is not diff. at x = c; there subgrad is [-1, 1]
- $\heartsuit$  *Hint:* It might help to try solving this for an integer valued vector *a*

• Assume  $f^*$  is known (or can be estimated). Then use

$$\alpha_k = \frac{f^k - f^\star}{\|g^k\|_2^2}$$

• Assume  $f^*$  is known (or can be estimated). Then use

$$\alpha_k = \frac{f^k - f^\star}{\|g^k\|_2^2}$$



$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - 2\alpha_k(f^k - f^*) + \alpha_k^2\|g^k\|^2$$

and minimize RHS.

• Assume  $f^*$  is known (or can be estimated). Then use

$$\alpha_k = \frac{f^k - f^\star}{\|g^k\|_2^2}$$



$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - 2\alpha_k(f^k - f^*) + \alpha_k^2\|g^k\|^2$$

and minimize RHS.

• Let's plug in  $\alpha_k$ :

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 41 / 43

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

▶ **Observation 1**  $||x^k - x^*||$  decreases

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

▶ **Observation 1**  $||x^k - x^*||$  decreases

► Recursion:

$$\sum_{k=1}^{K} \frac{(f^k - f^*)^2}{\|g^k\|^2} \leq \|x^1 - x^*\|^2 \leq R^2$$

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

**• Observation 1**  $||x^k - x^*||$  decreases

► Recursion:

$$\sum_{k=1}^{K} \frac{(f^k - f^*)^2}{\|g^k\|^2} \leq \|x^1 - x^*\|^2 \leq R^2$$

► Now use  $||g^k|| \le G$ 

$$\sum_{k=1}^{K} (f^k - f^\star)^2 \le R^2 G^2$$

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

▶ **Observation 1**  $||x^k - x^*||$  decreases

► Recursion:

$$\sum_{k=1}^{K} \frac{(f^k - f^*)^2}{\|g^k\|^2} \leq \|x^1 - x^*\|^2 \leq R^2$$

► Now use  $||g^k|| \le G$ 

$$\sum_{k=1}^{K} (f^k - f^\star)^2 \le R^2 G^2$$

**• Observation 2** 
$$f^k \rightarrow f^*$$

Suvrit Sra (suvrit@mit.edu)

$$\|x^{k+1} - x^*\|^2 \le \|x^k - x^*\|^2 - \frac{(f^k - f^*)^2}{\|g_k\|^2}$$

• **Observation 1**  $||x^k - x^*||$  decreases

► Recursion:

$$\sum_{k=1}^{K} \frac{(f^k - f^*)^2}{\|g^k\|^2} \leq \|x^1 - x^*\|^2 \leq R^2$$

► Now use  $||g^k|| \le G$ 

$$\sum_{k=1}^{K} (f^k - f^\star)^2 \le R^2 G^2$$

**• Observation 2**  $f^k \rightarrow f^*$ 

• for accuracy  $\varepsilon$ , need  $K = (RG/\varepsilon)^2$ 

Suvrit Sra (suvrit@mit.edu)

▶ Let  $\phi(x) = |x|$  for  $x \in \mathbb{R}$ 

Suvrit Sra (suvrit@mit.edu)

- ▶ Let  $\phi(x) = |x|$  for  $x \in \mathbb{R}$
- ► Subgradient method  $x^{k+1} = x^k \alpha_k g^k$ , where  $g^k \in \partial |x^k|$ .

- Let  $\phi(x) = |x|$  for  $x \in \mathbb{R}$
- ► Subgradient method  $x^{k+1} = x^k \alpha_k g^k$ , where  $g^k \in \partial |x^k|$ .
- If  $x^0 = 1$  and  $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$  (this stepsize is known to be optimal), then  $|x^k| = \frac{1}{\sqrt{k+1}}$

- Let  $\phi(x) = |x|$  for  $x \in \mathbb{R}$
- ► Subgradient method  $x^{k+1} = x^k \alpha_k g^k$ , where  $g^k \in \partial |x^k|$ .
- If  $x^0 = 1$  and  $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$  (this stepsize is known to be optimal), then  $|x^k| = \frac{1}{\sqrt{k+1}}$
- Thus,  $O(\frac{1}{\epsilon^2})$  iterations are needed to obtain  $\epsilon$ -accuracy.

- Let  $\phi(x) = |x|$  for  $x \in \mathbb{R}$
- ► Subgradient method  $x^{k+1} = x^k \alpha_k g^k$ , where  $g^k \in \partial |x^k|$ .
- If  $x^0 = 1$  and  $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$  (this stepsize is known to be optimal), then  $|x^k| = \frac{1}{\sqrt{k+1}}$
- Thus,  $O(\frac{1}{\epsilon^2})$  iterations are needed to obtain  $\epsilon$ -accuracy.
- ► This behavior typical for the subgradient method which exhibits  $O(1/\sqrt{k})$  convergence in general

- Let  $\phi(x) = |x|$  for  $x \in \mathbb{R}$
- ► Subgradient method  $x^{k+1} = x^k \alpha_k g^k$ , where  $g^k \in \partial |x^k|$ .
- If  $x^0 = 1$  and  $\alpha_k = \frac{1}{\sqrt{k+1}} + \frac{1}{\sqrt{k+2}}$  (this stepsize is known to be optimal), then  $|x^k| = \frac{1}{\sqrt{k+1}}$
- Thus,  $O(\frac{1}{\epsilon^2})$  iterations are needed to obtain  $\epsilon$ -accuracy.
- ► This behavior typical for the subgradient method which exhibits  $O(1/\sqrt{k})$  convergence in general

Can we do better in general?

Suvrit Sra (suvrit@mit.edu)

**Theorem.** (Nesterov.) Let  $\mathcal{B} = \{x \mid ||x - x^0||_2 \le D\}$ . Assume,  $x^* \in \mathcal{B}$ . There exists a convex function f in  $C_L^0(\mathcal{B})$  (with L > 0), such that for  $0 \le k \le n - 1$ , the lower-bound

$$f(x^k) - f(x^*) \ge \frac{LD}{2(1+\sqrt{k+1})},$$

holds for **any algorithm** that generates  $x^k$  by linearly combining the previous iterates and subgradients.

Exercise: So design problems where we can do better!

Suvrit Sra (suvrit@mit.edu)