Optimization for Machine Learning
 (Problems; Algorithms - A)

Suvrit Sra
Massachusetts Institute of Technology

PKU Summer School on Data Science (July 2017)

Course materials

- http://suvrit.de/teaching.html

■ Some references:

- Introductory lectures on convex optimization - Nesterov
- Convex optimization - Boyd \& Vandenberghe
- Nonlinear programming - Bertsekas
- Convex Analysis - Rockafellar
- Fundamentals of convex analysis - Urruty, Lemaréchal
- Lectures on modern convex optimization - Nemirovski
- Optimization for Machine Learning - Sra, Nowozin, Wright
- Theory of Convex Optimization for Machine Learning - Bubeck
- NIPS 2016 Optimization Tutorial - Bach, Sra

■ Some related courses:

- EE227A, Spring 2013, (Sra, UC Berkeley)
- 10-801, Spring 2014 (Sra, CMU)
- EE364a,b (Boyd, Stanford)
- EE236b,c (Vandenberghe, UCLA)
- Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Lecture Plan

- Introduction (3 lectures)
- Problems and algorithms (5 lectures)
- Non-convex optimization, perspectives (2 lectures)

Constrained problems

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

Optimality - constrained

中 For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

© If $\mathcal{X}=\mathbb{R}^{n}$, this reduces to $\nabla f\left(x^{*}\right)=0$

© If $\nabla f\left(x^{*}\right) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^{*}

Optimality conditions - constrained

Proof:

- Suppose $\exists y \in \mathcal{X}$ such that $\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle<0$
- Using mean-value theorem of calculus, $\exists \xi \in[0,1]$ s.t.

$$
f\left(x^{*}+t\left(y-x^{*}\right)\right)=f\left(x^{*}\right)+\left\langle\nabla f\left(x^{*}+\xi t\left(y-x^{*}\right)\right), t\left(y-x^{*}\right)\right\rangle
$$

(we applied MVT to $g(t):=f\left(x^{*}+t\left(y-x^{*}\right)\right)$)

- For sufficiently small t, since ∇f continuous, by assump on $y,\left\langle\nabla f\left(x^{*}+\xi t\left(y-x^{*}\right)\right), y-x^{*}\right\rangle<0$
- This in turn implies that $f\left(x^{*}+t\left(y-x^{*}\right)\right)<f\left(x^{*}\right)$
- Since \mathcal{X} is convex, $x^{*}+t\left(y-x^{*}\right) \in \mathcal{X}$ is also feasible
- Contradiction to local optimality of x^{*}

Example: projection operator

$$
P_{\mathcal{X}}(z):=\underset{x \in \mathcal{X}}{\operatorname{argmin}}\|x-z\|^{2}
$$

(Assume \mathcal{X} is closed and convex, then projection is unique) Let \mathcal{X} be nonempty, closed and convex.

■ Optimality condition: $x^{*}=P_{\mathcal{X}}(y)$ iff

$$
\left\langle x^{*}-z, y-x^{*}\right\rangle \geq 0 \text { for all } y \in \mathcal{X}
$$

■ Exercise: Prove that projection is nonexpansive, i.e.,

$$
\left\|P_{\mathcal{X}}(x)-P_{\mathcal{X}}(y)\right\|^{2} \leq\|x-y\|^{2} \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Feasible descent

$$
\begin{gathered}
\min \quad f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0, \quad \forall x \in \mathcal{X} .
\end{gathered}
$$

Feasible descent

\square

Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$

Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- d^{k} must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize α_{k} chosen to ensure feasibility and descent.

Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- d^{k} must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize α_{k} chosen to ensure feasibility and descent.

Since \mathcal{X} is convex, all feasible directions are of the form

$$
d^{k}=\gamma\left(z-x^{k}\right), \quad \gamma>0
$$

where $z \in \mathcal{X}$ is any feasible vector.

Feasible descent

$$
x^{k+1}=x^{k}+\alpha_{k} d^{k}
$$

- d^{k} - feasible direction, i.e., $x^{k}+\alpha_{k} d^{k} \in \mathcal{X}$
- d^{k} must also be descent direction, i.e., $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$
- Stepsize α_{k} chosen to ensure feasibility and descent.

Since \mathcal{X} is convex, all feasible directions are of the form

$$
d^{k}=\gamma\left(z-x^{k}\right), \quad \gamma>0
$$

where $z \in \mathcal{X}$ is any feasible vector.

$$
x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right), \quad \alpha_{k} \in(0,1]
$$

Cone of feasible directions

Frank-Wolfe / conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$

Frank-Wolfe / conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Frank-Wolfe / conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Frank-Wolfe (Conditional gradient) method
Δ Let $z^{k} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle$
© Use different methods to select α_{k}
© $x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right)$

Frank-Wolfe / conditional gradient method

Optimality: $\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle \geq 0$ for all $z^{k} \in \mathcal{X}$ Aim: If not optimal, then generate feasible direction $d^{k}=z^{k}-x^{k}$ that obeys descent condition $\left\langle\nabla f\left(x^{k}\right), d^{k}\right\rangle<0$.

Frank-Wolfe (Conditional gradient) method
Δ Let $z^{k} \in \operatorname{argmin}_{x \in \mathcal{X}}\left\langle\nabla f\left(x^{k}\right), x-x^{k}\right\rangle$
© Use different methods to select α_{k}
© $x^{k+1}=x^{k}+\alpha_{k}\left(z^{k}-x^{k}\right)$
© Due to M. Frank and P. Wolfe (1956)
A Practical when solving linear problem over \mathcal{X} easy
© Very popular in machine learning over recent years
A Refinements, several variants (including nonconvex)

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,
$f\left(x^{k+1}\right)-f\left(x^{*}\right)=f\left(\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}\right)-f\left(x^{*}\right)$

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,

$$
\begin{aligned}
f\left(x^{k+1}\right)-f\left(x^{*}\right) & =f\left(\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}\right)-f\left(x^{*}\right) \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C
\end{aligned}
$$

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,

$$
\begin{aligned}
f\left(x^{k+1}\right)-f\left(x^{*}\right) & =f\left(\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}\right)-f\left(x^{*}\right) \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), x^{*}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C
\end{aligned}
$$

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,

$$
\begin{aligned}
f\left(x^{k+1}\right)-f\left(x^{*}\right) & =f\left(\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}\right)-f\left(x^{*}\right) \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), x^{*}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)-\alpha_{k}\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2} \alpha_{k}^{2} C
\end{aligned}
$$

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,

$$
\begin{aligned}
f\left(x^{k+1}\right)-f\left(x^{*}\right) & =f\left(\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}\right)-f\left(x^{*}\right) \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), x^{*}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)-\alpha_{k}\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2} \alpha_{k}^{2} C \\
& =\left(1-\alpha_{k}\right)\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2} \alpha_{k}^{2} C .
\end{aligned}
$$

Frank-Wolfe: Convergence

Assum: There is a $C \geq 0$ s.t. for all $x, z \in \mathcal{X}$ and $\alpha \in(0,1)$:

$$
f((1-\alpha) x+\alpha z) \leq f(x)+\alpha\langle\nabla f(x), z-x\rangle+\frac{1}{2} C \alpha^{2} .
$$

Let $\alpha_{k}=\frac{2}{k+2}$. Recall $x^{k+1}=\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}$; thus,

$$
\begin{aligned}
f\left(x^{k+1}\right)-f\left(x^{*}\right) & =f\left(\left(1-\alpha_{k}\right) x^{k}+\alpha_{k} z^{k}\right)-f\left(x^{*}\right) \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), z^{k}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)+\alpha_{k}\left\langle\nabla f\left(x^{k}\right), x^{*}-x^{k}\right\rangle+\frac{1}{2} \alpha_{k}^{2} C \\
& \leq f\left(x^{k}\right)-f\left(x^{*}\right)-\alpha_{k}\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2} \alpha_{k}^{2} C \\
& =\left(1-\alpha_{k}\right)\left(f\left(x^{k}\right)-f\left(x^{*}\right)\right)+\frac{1}{2} \alpha_{k}^{2} C .
\end{aligned}
$$

A simple induction (Verify!) then shows that

$$
f\left(x^{k}\right)-f\left(x^{*}\right) \leq \frac{2 C}{k+2}, \quad k \geq 0
$$

Example: Linear Oracle

$$
\begin{aligned}
& \text { Suppose } \mathcal{X}=\left\{\|x\|_{p} \leq 1\right\} \text {, for } p>1 \\
& \text { Write Linear Oracle (LO) as maximization problem: } \\
& \max _{z}\langle g, z\rangle \text { s.t. }\|z\|_{p} \leq 1 . \\
& \text { What is the answer? }
\end{aligned}
$$

Example: Linear Oracle

$$
\begin{aligned}
& \text { Suppose } \mathcal{X}=\left\{\|x\|_{p} \leq 1\right\} \text {, for } p>1 \\
& \text { Write Linear Oracle (LO) as maximization problem: } \\
& \max _{z}\langle g, z\rangle \text { s.t. }\|z\|_{p} \leq 1 \\
& \text { What is the answer? }
\end{aligned}
$$

Hint: Recall, $\langle g, z\rangle \leq\|z\|_{p}\|g\|_{q}$. Pick z to obtain equality.

Example: Linear Oracle

$$
\begin{aligned}
& \text { Suppose } \mathcal{X}=\left\{\|x\|_{p} \leq 1\right\} \text {, for } p>1 \\
& \text { Write Linear Oracle (LO) as maximization problem: } \\
& \max _{z}\langle g, z\rangle \text { s.t. }\|z\|_{p} \leq 1 \\
& \text { What is the answer? }
\end{aligned}
$$

Hint: Recall, $\langle g, z\rangle \leq\|z\|_{p}\|g\|_{q}$. Pick z to obtain equality.

Example: Linear Oracle*

Trace norm LO
 $\max _{Z}\langle G, Z\rangle \quad \sum_{i} \sigma_{i}(Z) \leq 1$.

Example: Linear Oracle*

Trace norm LO

$-\max \left\{\langle G, Z\rangle \mid\|Z\|_{*} \leq 1\right\}$ is just the "dual-norm" to the trace norm; see Lectures 1-3 for more on dual norms.

Example: Linear Oracle*

Trace norm LO

$$
\max _{Z}\langle G, Z\rangle \quad \sum_{i} \sigma_{i}(Z) \leq 1 .
$$

$\checkmark \max \left\{\langle G, Z\rangle \mid\|Z\|_{*} \leq 1\right\}$ is just the "dual-norm" to the trace norm; see Lectures 1-3 for more on dual norms.

- can be shown that $\|G\|_{2}$ is the dual norm here.

Example: Linear Oracle*

Trace norm LO

$$
\max _{Z}\langle G, Z\rangle \quad \sum_{i} \sigma_{i}(Z) \leq 1 .
$$

$\checkmark \max \left\{\langle G, Z\rangle \mid\|Z\|_{*} \leq 1\right\}$ is just the "dual-norm" to the trace norm; see Lectures 1-3 for more on dual norms.

- can be shown that $\|G\|_{2}$ is the dual norm here.
- Optimal Z satisfies $\langle G, Z\rangle=\|G\|_{2}\|Z\|_{*}=\|G\|_{2}$; use Lanczos (or using power method) to compute top singular vectors.
(for more examples: Jaggi, Revisiting Frank-Wolfe: ...)

Extensions

■ How about FW for nonconvex objective functions?
■ What about FW methods that can converge faster than $O(1 / k)$?

Extensions

■ How about FW for nonconvex objective functions?

- What about FW methods that can converge faster than $O(1 / k)$?
- Nonconvex-FW possible. It "works" (i.e., satisfies first-order optimality conditions to ϵ-accuracy in $O(1 / \epsilon)$ iterations (Lacoste-Julien 2016; Reddi et al. 2016).

Extensions

■ How about FW for nonconvex objective functions?

- What about FW methods that can converge faster than $O(1 / k)$?
- Nonconvex-FW possible. It "works" (i.e., satisfies first-order optimality conditions to ϵ-accuracy in $O(1 / \epsilon)$ iterations (Lacoste-Julien 2016; Reddi et al. 2016).
- Linear convergence under quite strong assumptions on both f and \mathcal{X}; alternatively, use a more complicated method: $F W$ with Away Steps (Guelat-Marcotte 1986); more recently (Jaggi, Lacoste-Julien 2016)

Quadratic oracle: projection methods

- FW can be quite slow
- If \mathcal{X} not compact, LO does not make sense
- A possible alternative (with other weaknesses though!)

Quadratic oracle: projection methods

- FW can be quite slow
- If \mathcal{X} not compact, LO does not make sense
- A possible alternative (with other weaknesses though!)

If constraint set \mathcal{X} is simple, i.e., we can easily solve projections

$$
\min \quad \frac{1}{2}\|x-y\|_{2} \quad \text { s.t. } x \in \mathcal{X} .
$$

Quadratic oracle: projection methods

- FW can be quite slow
- If \mathcal{X} not compact, LO does not make sense
- A possible alternative (with other weaknesses though!)

If constraint set \mathcal{X} is simple, i.e., we can easily solve projections

$$
\min \quad \frac{1}{2}\|x-y\|_{2} \quad \text { s.t. } x \in \mathcal{X} .
$$

Projected Gradient

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right), \quad k=0,1, \ldots
$$

where $P_{\mathcal{X}}$ denotes above orthogonal projection.

Quadratic oracle: projection methods

- FW can be quite slow
- If \mathcal{X} not compact, LO does not make sense
- A possible alternative (with other weaknesses though!)

If constraint set \mathcal{X} is simple, i.e., we can easily solve projections

$$
\min \quad \frac{1}{2}\|x-y\|_{2} \quad \text { s.t. } x \in \mathcal{X} .
$$

Projected Gradient

$$
x^{k+1}=P_{\mathcal{X}}\left(x^{k}-\alpha_{k} \nabla f\left(x^{k}\right)\right), \quad k=0,1, \ldots
$$

where $P_{\mathcal{X}}$ denotes above orthogonal projection.

- PG can be much faster than $O(1 / k)$ of FW (e.g., $O\left(e^{-k}\right)$ for strongly convex); but LO can be sometimes much faster than projections.

Projected Gradient - convergence

Depends on the following crucial properties of P :
Nonexpansivity: $\|P x-P y\|_{2} \leq\|x-y\|_{2}$
Firm nonxpansivity: $\|P x-P y\|_{2}^{2} \leq\langle P x-P y, x-y\rangle$

Projected Gradient - convergence

Depends on the following crucial properties of P :
Nonexpansivity: $\|P x-P y\|_{2} \leq\|x-y\|_{2}$
Firm nonxpansivity: $\|P x-P y\|_{2}^{2} \leq\langle P x-P y, x-y\rangle$

- Using projections, essentially convergence analysis with $\alpha_{k}=1 / L$ for the unconstrained case works.

Exercise: Let $f(x)=\frac{1}{2}\|A x-b\|_{2}^{2}$. Write a Matlab/Python script to minimize this function over the convex set $\mathcal{X}:=\left\{-1 \leq x_{i} \leq 1\right\}$ using projected gradient as well as Frank-Wolfe. Compare the two.

Duality

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
& \quad x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem
- In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
A If x is feasible, $\lambda \geq 0$, then we get the lower-bound

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m} .
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
A If x is feasible, $\lambda \geq 0$, then we get the lower-bound

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m} .
$$

© Lagrangian helps write problem in unconstrained form

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Proof:
© If x is not feasible, then some $f_{i}(x)>0$

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Proof:
© If x is not feasible, then some $f_{i}(x)>0$
A In this case, inner sup is $+\infty$, so claim true by definition

Lagrangian

Claim: Since, $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}$, primal optimal

$$
p^{*}=\inf _{x \in \mathcal{X}} \sup _{\lambda \geq 0} \mathcal{L}(x, \lambda)
$$

Proof:
© If x is not feasible, then some $f_{i}(x)>0$
A In this case, inner sup is $+\infty$, so claim true by definition
中 If x is feasible, each $f_{i}(x) \leq 0$, so $\sup _{\lambda} \sum_{i} \lambda_{i} f_{i}(x)=0$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda)
$$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda)
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \lambda \geq 0$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=: g(\lambda)$
- Now minimize over x on lhs, to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda)
$$

Lagrange dual problem

$$
\sup g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved
- Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem. (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem. (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.
Proof: We showed that for all $\lambda \in \mathbb{R}_{+}^{m}, p^{*} \geq g(\lambda)$.
Thus, it follows that $p^{*} \geq \sup g(\lambda)=d^{*}$.

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$

 Notice: both p^{*} and d^{*} may be $+\infty$
Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$ Notice: both p^{*} and d^{*} may be $+\infty$

Several sufficient conditions known, especially for convex optimization.
"Easy" necessary and sufficient conditions: unknown

Example: Slater's sufficient conditions

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Example: Slater's sufficient conditions

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& \\
& A x=b .
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri \mathcal{D} s.t.

$$
f_{i}(x)<0, \quad A x=b .
$$

That is, there is a strictly feasible point.
Theorem. Let the primal problem be convex. If there is a feasible point such that is strictly feasible for the non-affine constraints (and merely feasible for affine, linear ones), then strong duality holds. Moreover, the dual optimal is attained (i.e., $d^{*}>-\infty$).

Reading: Read BV §5.3.2 for a proof.

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$. Clearly, only feasible $x=0$. So $p^{*}=1$

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0 \text {. }
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$. Here, we had no strictly feasible solution.

Zero duality gap: nonconvex example

> Trust region subproblem (TRS)
> min $x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$
A is symmetric but not necessarily semidefinite!

Theorem. TRS always has zero duality gap.

Remark: Above theorem extremely important; part of family of related results for certain quadratic nonconvex problems.

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

$$
\max _{\lambda, \nu} \quad g(\lambda, \nu)=-b^{T} \lambda-v-\sum_{i=1}^{n} e^{-\left(A^{T} \lambda\right)_{i}-\nu-1}
$$

$$
\text { s.t. } \quad \lambda \geq 0
$$

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0 .
\end{aligned}
$$

Convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

$$
\begin{aligned}
\max _{\lambda, \nu} & g(\lambda, \nu)=-b^{T} \lambda-v-\sum_{i=1}^{n} e^{-\left(A^{T} \lambda\right)_{i}-\nu-1} \\
& \text { s.t. } \lambda \geq 0
\end{aligned}
$$

If there is $x>0$ with $A x \leq b$ and $1^{T} x=1$, strong duality holds.

Example: Maxent

$$
\begin{aligned}
\min & \sum_{i} x_{i} \log x_{i} \\
& A x \leq b, \quad 1^{T} x=1, \quad x>0
\end{aligned}
$$

Convex conjugate of $f(x)=x \log x$ is $f^{*}(y)=e^{y-1}$.

$$
\begin{aligned}
\max _{\lambda, \nu} & g(\lambda, \nu)=-b^{T} \lambda-v-\sum_{i=1}^{n} e^{-\left(A^{T} \lambda\right)_{i}-\nu-1} \\
& \text { s.t. } \lambda \geq 0
\end{aligned}
$$

If there is $x>0$ with $A x \leq b$ and $1^{T} x=1$, strong duality holds. Exercise: Simplify above dual by optimizing out ν

Example: dual for Support Vector Machine

$$
\begin{array}{ll}
\min _{x, \xi} & \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & A x \geq 1-\xi, \quad \xi \geq 0 .
\end{array}
$$

Example: dual for Support Vector Machine

$$
\begin{gathered}
\min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } \quad A x \geq 1-\xi, \quad \xi \geq 0 \\
L(x, \xi, \lambda, \nu)=\frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi
\end{gathered}
$$

Example: dual for Support Vector Machine

$$
\begin{aligned}
& \min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
& \text { s.t. } A x \geq 1-\xi, \quad \xi \geq 0 . \\
& L(x, \xi, \lambda, \nu)= \frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi \\
& g(\lambda, \nu):=\inf L(x, \xi, \lambda, \nu) \\
&= \begin{cases}\lambda^{T} 1-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2} & \lambda+\nu=C 1 \\
+\infty & \text { otherwise }\end{cases} \\
& d^{*}=\max _{\lambda \geq 0, \nu \geq 0} g(\lambda, \nu)
\end{aligned}
$$

Exercise: Using $\nu \geq 0$, eliminate ν from above problem.

Dual via Fenchel conjugates

$\min f(x) \quad$ s.t. $\quad f_{i}(x) \leq 0, A x=b$.

$$
\mathcal{L}(x, \lambda, \nu):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b)
$$

Dual via Fenchel conjugates

$\min f(x) \quad$ s.t. $\quad f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x) \quad$ s.t. $\quad f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x) \quad$ s.t. $\quad f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x)
\end{aligned}
$$

Dual via Fenchel conjugates

$\min f(x) \quad$ s.t. $\quad f_{i}(x) \leq 0, A x=b$.

$$
\begin{aligned}
\mathcal{L}(x, \lambda, \nu) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)+\nu^{T}(A x-b) \\
g(\lambda, \nu) & =\inf _{x} \mathcal{L}(x, \lambda, \nu) \\
g(\lambda, \nu) & =-\nu^{T} b+\inf _{x} x^{T} A^{T} \nu+F(x) \\
F(x) & :=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x) \\
g(\lambda, \nu) & =-\nu^{T} b-\sup _{x}\left\langle x,-A^{T} \nu\right\rangle-F(x) \\
g(\lambda, \nu) & =-\nu^{T} b-F^{*}\left(-A^{T} \nu\right) .
\end{aligned}
$$

Not so useful! F^{*} hard to compute.

Example: norm regularized problems

$$
\min f(x)+\|A x\|
$$

Example: norm regularized problems

$\min f(x)+\|A x\|$
Dual problem
$\min _{y} f^{*}\left(-A^{T} y\right) \quad$ s.t. $\|y\|_{*} \leq 1$.
y

Example: norm regularized problems

$$
\min f(x)+\|A x\|
$$

Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality (e.g., for instance $0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$)

Example: Lasso-like problem

$$
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} .
$$

Example: Lasso-like problem

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation
$p^{*}=\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\}$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\}
\end{aligned}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda
\end{aligned}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda \\
& =\max _{u} u^{T} b \quad\|u\|_{2} \leq 1, \quad\left\|A^{T} v\right\|_{\infty} \leq \lambda .
\end{aligned}
$$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

Example: ККТ conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

Example: ККТ conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$,

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, so complementary slackness

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m
$$

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that $\mathcal{L}\left(x, \lambda^{*}\right)$ is convex, and conclude from KKT conditions that $g\left(\lambda^{*}\right)=f_{0}\left(x^{*}\right)$, so that $\left(x^{*}, \lambda^{*}\right)$ optimal primal-dual pair.

