Optimization for Machine Learning

(Lecture 1)

Suvrit Sra
Massachusetts Institute of Technology

MPI-IS Tübingen
Machine Learning Summer School, June 2017

Course materials

■ My website (Teaching)
■ Some references:

- Introductory lectures on convex optimization - Nesterov
- Convex optimization - Boyd \& Vandenberghe
- Nonlinear programming - Bertsekas
- Convex Analysis - Rockafellar
- Fundamentals of convex analysis - Urruty, Lemaréchal
- Lectures on modern convex optimization - Nemirovski
- Optimization for Machine Learning - Sra, Nowozin, Wright
- NIPS 2016 Optimization Tutorial - Bach, Sra

■ Some related courses:

- EE227A, Spring 2013, (Sra, UC Berkeley)
- 10-801, Spring 2014 (Sra, CMU)
- EE364a,b (Boyd, Stanford)
- EE236b,c (Vandenberghe, UCLA)

■ Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Lecture Plan

- Introduction
- Recap of convexity, sets, functions
- Recap of duality, optimality, problems
- First-order optimization algorithms and techniques
- Large-scale optimization (SGD and friends)
- Directions in non-convex optimization

Introduction

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathcal{X} \times \mathcal{Y}$
- Prediction function: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^{d}$

Introduction

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathcal{X} \times \mathcal{Y}$
- Prediction function: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^{d}$
- Motivating examples:
- Linear predictions: $h(x, \theta)=\theta^{\top} \Phi(x)$ using features $\Phi(x)$
- Neural networks: $h(x, \theta)=\theta_{m}^{\top} \sigma\left(\theta_{m-1}^{\top} \sigma\left(\cdots \theta_{2}^{\top} \sigma\left(\theta_{1}^{\top} x\right)\right)\right.$
- Estimating θ parameters is an optimization problem

Introduction

Supervised machine learning

- Data: n observations $\left(x_{i}, y_{i}\right)_{i=1}^{n} \in \mathcal{X} \times \mathcal{Y}$
- Prediction function: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^{d}$
- Motivating examples:
- Linear predictions: $h(x, \theta)=\theta^{\top} \Phi(x)$ using features $\Phi(x)$
- Neural networks: $h(x, \theta)=\theta_{m}^{\top} \sigma\left(\theta_{m-1}^{\top} \sigma\left(\cdots \theta_{2}^{\top} \sigma\left(\theta_{1}^{\top} x\right)\right)\right.$
- Estimating θ parameters is an optimization problem

Unsupervised and other ML setups

- Different formulations, but ultimately optimization at heart

The Problem!

min $\theta \in \mathcal{S}$

$f(\theta)$

The Problem!

$\min _{\theta \in \mathcal{S}}$

 $f(\theta)$

Convex analysis

Convex sets

Convex sets

Def. Set $C \subset \mathbb{R}^{n}$ called convex, if for any $x, y \in C$, the linesegment $\lambda x+(1-\lambda) y$, where $\lambda \in[0,1]$, also lies in C.

Convex sets

Def. Set $C \subset \mathbb{R}^{n}$ called convex, if for any $x, y \in C$, the linesegment $\lambda x+(1-\lambda) y$, where $\lambda \in[0,1]$, also lies in C.

Combinations of points

- Convex: $\lambda_{1} x+\lambda_{2} y \in C$, where $\lambda_{1}, \lambda_{2} \geq 0$ and $\lambda_{1}+\lambda_{2}=1$.
- Linear: if restrictions on λ_{1}, λ_{2} are dropped
- Conic: if restriction $\lambda_{1}+\lambda_{2}=1$ is dropped

Different restrictions lead to different "algebra"

Recognizing / constructing convex sets

Theorem. (Intersection).
Let C_{1}, C_{2} be convex sets. Then, $C_{1} \cap C_{2}$ is also convex.
Proof.
\rightarrow If $C_{1} \cap C_{2}=\emptyset$, then true vacuously.
\rightarrow Let $x, y \in C_{1} \cap C_{2}$. Then, $x, y \in C_{1}$ and $x, y \in C_{2}$.
\rightarrow But C_{1}, C_{2} are convex, hence $\theta x+(1-\theta) y \in C_{1}$, and also in C_{2}. Thus, $\theta x+(1-\theta) y \in C_{1} \cap C_{2}$.
\rightarrow Inductively follows that $\bigcap_{i=1}^{m} C_{i}$ is also convex.

Convex sets

(psdcone image from convexoptimization.com, Dattorro)

Convex sets

\bigcirc Let $x_{1}, x_{2}, \ldots, x_{m} \in \mathbb{R}^{n}$. Their convex hull is

$$
\operatorname{co}\left(x_{1}, \ldots, x_{m}\right):=\left\{\sum_{i} \theta_{i} x_{i} \mid \theta_{i} \geq 0, \sum_{i} \theta_{i}=1\right\} .
$$

\bigcirc Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. The set $\{x \mid A x=b\}$ is convex (it is an affine space over subspace of solutions of $A x=0$).
\bigcirc halfspace $\left\{x \mid a^{T} x \leq b\right\}$.
\bigcirc polyhedron $\{x \mid A x \leq b, C x=d\}$.
\bigcirc ellipsoid $\left\{x \mid\left(x-x_{0}\right)^{T} A\left(x-x_{0}\right) \leq 1\right\},(A$: semidefinite $)$
\bigcirc convex cone $x \in \mathcal{K} \Longrightarrow \alpha x \in \mathcal{K}$ for $\alpha \geq 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Challenge 1

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that

$$
R(A, B):=\left\{\left(x^{T} A x, x^{T} B x\right) \mid x^{T} x=1\right\}
$$

is a compact convex set for $n \geq 3$.

Convex functions

Def. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if its epigraph $\left\{(x, t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^{d}, t \in \mathbb{R}, f(x) \leq t\right\}$ is a convex set.

Convex functions

Def. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if its epigraph $\left\{(x, t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^{d}, t \in \mathbb{R}, f(x) \leq t\right\}$ is a convex set.

Def. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if its domain $\operatorname{dom}(f)$ is a convex set and for any $x, y \in \operatorname{dom}(f)$ and $\lambda \geq 0$,

$$
f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)
$$

These functions also known as Jensen convex; named after J.L.W.V. Jensen (after his influential 1905 paper).

Convex functions

Def. A function $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is convex if and only if its epigraph $\left\{(x, t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^{d}, t \in \mathbb{R}, f(x) \leq t\right\}$ is a convex set.

Def. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called convex if its domain $\operatorname{dom}(f)$ is a convex set and for any $x, y \in \operatorname{dom}(f)$ and $\lambda \geq 0$,

$$
f((1-\lambda) x+\lambda y) \leq(1-\lambda) f(x)+\lambda f(y)
$$

These functions also known as Jensen convex; named after J.L.W.V. Jensen (after his influential 1905 paper).

Exercise: Why are we focusing on these functions?

Convex functions: Jensen's inequality

Convex functions: affine lower bounds

$$
f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle
$$

Convex functions: increasing slopes

slope $\mathrm{PQ} \leq$ slope $\mathrm{PR} \leq$ slope QR

Recognizing convex functions

© If f is continuous and midpoint convex, then it is convex.
中 If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
4 If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.

Recognizing convex functions

© If f is continuous and midpoint convex, then it is convex.
A If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
4 If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.
A By showing $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ is convex if and only if its restriction to any line that intersects $\operatorname{dom}(f)$ is convex. That is, for any $x \in \operatorname{dom}(f)$ and any v, the function $g(t)=f(x+t v)$ is convex (on its domain $\{t \mid x+t v \in \operatorname{dom}(f)\}$).

Recognizing convex functions

© If f is continuous and midpoint convex, then it is convex.
A If f is differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $f(x) \geq f(y)+\langle\nabla f(y), x-y\rangle$ for all $x, y \in \operatorname{dom} f$.
4 If f is twice differentiable, then f is convex if and only if $\operatorname{dom} f$ is convex and $\nabla^{2} f(x) \succeq 0$ at every $x \in \operatorname{dom} f$.
© By showing $f: \operatorname{dom}(f) \rightarrow \mathbb{R}$ is convex if and only if its restriction to any line that intersects $\operatorname{dom}(f)$ is convex. That is, for any $x \in \operatorname{dom}(f)$ and any v, the function $g(t)=f(x+t v)$ is convex (on its domain $\{t \mid x+t v \in \operatorname{dom}(f)\}$).
A By showing f to be a pointwise max of convex functions
A See exercises (Ch. 3) in Boyd \& Vandenberghe for more!

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!
Theorem. Let $f: I_{1} \rightarrow \mathbb{R}$ and $g: I_{2} \rightarrow \mathbb{R}$, where range $(f) \subseteq I_{2}$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_{1}

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!
Theorem. Let $f: I_{1} \rightarrow \mathbb{R}$ and $g: I_{2} \rightarrow \mathbb{R}$, where range $(f) \subseteq I_{2}$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_{1}
Proof. Let $x, y \in I_{1}$, and let $\lambda \in(0,1)$.

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y) \\
g(f(\lambda x+(1-\lambda) y)) & \leq g(\lambda f(x)+(1-\lambda) f(y)) \\
& \leq \lambda g(f(x))+(1-\lambda) g(f(y))
\end{aligned}
$$

Operations preserving convexity

Example. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^{m}$. Prove that $g(x)=f(A x+b)$ is convex.

Exercise: Verify!
Theorem. Let $f: I_{1} \rightarrow \mathbb{R}$ and $g: I_{2} \rightarrow \mathbb{R}$, where range $(f) \subseteq I_{2}$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_{1}
Proof. Let $x, y \in I_{1}$, and let $\lambda \in(0,1)$.

$$
\begin{aligned}
f(\lambda x+(1-\lambda) y) & \leq \lambda f(x)+(1-\lambda) f(y) \\
g(f(\lambda x+(1-\lambda) y)) & \leq g(\lambda f(x)+(1-\lambda) f(y)) \\
& \leq \lambda g(f(x))+(1-\lambda) g(f(y))
\end{aligned}
$$

- Do not miss out on several other important examples in BV!

Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions is convex. That is, if $f(x ; y)$ is a convex function of x for every y in an arbitrary "index set" \mathcal{Y}, then

$$
f(x):=\sup _{y \in \mathcal{Y}} f(x ; y)
$$

is a convex function of x.
Exercise: Verify!

Constructing convex functions: sup

Example. The pointwise maximum of a family of convex functions is convex. That is, if $f(x ; y)$ is a convex function of x for every y in an arbitrary "index set" \mathcal{Y}, then

$$
f(x):=\sup _{y \in \mathcal{Y}} f(x ; y)
$$

is a convex function of x.
Exercise: Verify!

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in both (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} \quad L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose $L(x, y)$ is convex in both (x, y), then,

$$
f(x):=\inf _{y \in \mathcal{Y}} \quad L(x, y)
$$

is a convex function of x, provided $f(x)>-\infty$.
Proof. Let $u, v \in \operatorname{dom} f$. Since $f(u)=\inf _{y} L(u, y)$, for each $\epsilon>0$, there is a $y_{1} \in \mathcal{Y}$, s.t. $f(u)+\frac{\epsilon}{2}$ is not the infimum. Thus, $L\left(u, y_{1}\right) \leq f(u)+\frac{\epsilon}{2}$.
Similarly, there is $y_{2} \in \mathcal{Y}$, such that $L\left(v, y_{2}\right) \leq f(v)+\frac{\epsilon}{2}$.
Now we prove that $f(\lambda u+(1-\lambda) v) \leq \lambda f(u)+(1-\lambda) f(v)$ directly.

$$
\begin{aligned}
f(\lambda u+(1-\lambda) v) & =\inf _{y \in \mathcal{Y}} L(\lambda u+(1-\lambda) v, y) \\
& \leq L\left(\lambda u+(1-\lambda) v, \lambda y_{1}+(1-\lambda) y_{2}\right) \\
& \leq \lambda L\left(u, y_{1}\right)+(1-\lambda) L\left(v, y_{2}\right) \\
& \leq \lambda f(u)+(1-\lambda) f(v)+\epsilon .
\end{aligned}
$$

Since $\epsilon>0$ is arbitrary, claim follows.

Convex functions - norms

Let $\Omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function that satisfies
$1 \Omega(x) \geq 0$, and $\Omega(x)=0$ if and only if $x=0$ (definiteness)
■ $\Omega(\lambda x)=|\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
B $\Omega(x+y) \leq \Omega(x)+\Omega(y)$ (subadditivity)
Such function called norms-usually denoted $\|x\|$.
Theorem. Norms are convex.

Convex functions - norms

Let $\Omega: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a function that satisfies
$1 \Omega(x) \geq 0$, and $\Omega(x)=0$ if and only if $x=0$ (definiteness)
$2 \Omega(\lambda x)=|\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
3 $\Omega(x+y) \leq \Omega(x)+\Omega(y)$ (subadditivity)
Such function called norms-usually denoted $\|x\|$.
Theorem. Norms are convex.

Often used in "regularized" ML problems

$$
\min _{\theta} f(\theta)+\mu \Omega(\theta) .
$$

Norms: important examples

Example. (ℓ_{2}-norm): $\|x\|_{2}=\left(\sum_{i} x_{i}^{2}\right)^{1 / 2}$
Example. $\left(\ell_{p}\right.$-norm): Let $p \geq 1 .\|x\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}$

Example. $\left(\ell_{\infty}\right.$-norm): $\|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right|$

Example. (Frobenius-norm): Let $A \in \mathbb{R}^{m \times n} .\|A\|_{\mathrm{F}}:=\sqrt{\sum_{i j}\left|a_{i j}\right|^{2}}$
Example. Let A be any matrix. Then, the operator norm of A is

$$
\|A\|:=\sup _{\|x\|_{2} \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{\max }(A)
$$

Exercise: Verify that above functions are actually norms!

Convex functions - Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the indicator function for \mathcal{X} defined as:

$$
\mathbb{1}_{\mathcal{X}}(x):= \begin{cases}0 & \text { if } x \in \mathcal{X} \\ \infty & \text { otherwise } .\end{cases}
$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

- Also called "extended value" convex function.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example. $+\infty$ and $-\infty$ conjugate to each other.

Fenchel conjugate

Def. The Fenchel conjugate of a function f is

$$
f^{*}(z):=\sup _{x \in \operatorname{dom} f} x^{T} z-f(x)
$$

Note: f^{*} is pointwise (over x) sup of linear functions of z. Hence, it is always convex (even if f is not convex).

Example. $+\infty$ and $-\infty$ conjugate to each other.

Example. Let $f(x)=\|x\|$. We have $f^{*}(z)=\mathbb{1}_{\|\cdot\|_{*} \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Proof. $f^{*}(z)=\sup _{x} z^{T} x-\|x\|$. If $\|z\|_{*}>1$, by defn. of the dual norm, $\exists u$ such that $\|u\| \leq 1$ and $u^{T} z>1$. Now select $x=\alpha u$ and let $\alpha \rightarrow \infty$. Then, $z^{T} x-\|x\|=\alpha\left(z^{T} u-\|u\|\right) \rightarrow \infty$. If $\|z\|_{*} \leq 1$, then $z^{T} x \leq\|x\|\|z\|_{*}$, which implies the sup must be zero.

Fenchel conjugate: examples

Example. $f(x)=\frac{1}{2} x^{T} A x$, where $A \succ 0$. Then, $f^{*}(z)=\frac{1}{2} z^{T} A^{-1} z$.

Example. $f(x)=\max (0,1-x)$. Verify: $\operatorname{dom} f^{*}=[-1,0]$, and on this domain, $f^{*}(z)=z$.

Example. $f(x)=\mathbb{1}_{\mathcal{X}}(x): f^{*}(z)=\sup _{x \in \mathcal{X}}\langle x, z\rangle$ (aka support func)

Example. If $f^{* *}=f$, we say f is a closed convex function.
Exercise: Suppose $f(x)=\left(\sum_{i}\left|x_{i}\right|^{1 / 2}\right)^{2}$. What is $f^{* *}$?
Exercise: Suppose $f(x)=x^{T} A x+b^{T} x$ but $A \succeq 0$; what is f^{*} ?

Challenge 2

Consider the following functions on strictly positive variables:

$$
\begin{aligned}
h_{1}(x) & :=\frac{1}{x} \\
h_{2}(x, y) & :=\frac{1}{x}+\frac{1}{y}-\frac{1}{x+y} \\
h_{3}(x, y, z) & :=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y}-\frac{1}{y+z}-\frac{1}{x+z}+\frac{1}{x+y+z}
\end{aligned}
$$

\bigcirc Prove that $h_{n}(x)>0$ (easy)
\bigcirc Prove that h_{1}, h_{2}, h_{3}, and in general h_{n} are convex (hard)
\bigcirc Prove that in fact each $1 / h_{n}$ is concave (harder).

Optimization

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

Optimization problems

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \\
& \quad x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{aligned}
$$

Henceforth, we drop condition on domains for brevity.

- If f_{i} are differentiable - smooth optimization
- If any f_{i} is non-differentiable - nonsmooth optimization
- If all f_{i} are convex - convex optimization
- If $m=0$, i.e., only f_{0} is there - unconstrained minimization

Convex optimization

Let \mathcal{X} be feasible set and p^{*} the optimal value

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

Convex optimization

Let \mathcal{X} be feasible set and p^{*} the optimal value

$$
p^{*}:=\inf \left\{f_{0}(x) \mid x \in \mathcal{X}\right\}
$$

- If \mathcal{X} is empty, we say problem is infeasible
- By convention, we set $p^{*}=+\infty$ for infeasible problems
- If $p^{*}=-\infty$, we say problem is unbounded below.
- Example, $\min x$ on \mathbb{R}, or $\min -\log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \rightarrow \pm \infty$)
- Say $f_{0}(x)=0$, problem is called convex feasibility

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)

Optimality

Def. A point $x^{*} \in \mathcal{X}$ is locally optimal if $f\left(x^{*}\right) \leq f(x)$ for all x in a neighborhood of x^{*}. Global if $f\left(x^{*}\right) \leq f(x)$ for all $x \in \mathcal{X}$.

Theorem. For convex problems, local \Longrightarrow global!
Exercise: Prove this theorem (Hint: try contradiction)
Theorem. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be continuously differentiable in an open set S containing x^{*}, a local min of f. Then, $\nabla f\left(x^{*}\right)=0$.

If f is convex, then $\nabla f\left(x^{*}\right)=0$ sufficient for global optimality.
(This property makes convex optimization special!)

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.

Optimality - constrained

© For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

Optimality - constrained

中 For every $x, y \in \operatorname{dom} f$, we have $f(y) \geq f(x)+\langle\nabla f(x), y-x\rangle$.
© Thus, x^{*} is optimal if and only if

$$
\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0, \quad \text { for all } y \in \mathcal{X}
$$

© If $\mathcal{X}=\mathbb{R}^{n}$, this reduces to $\nabla f\left(x^{*}\right)=0$

© If $\nabla f\left(x^{*}\right) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^{*}

Optimization: via subgradients

Subgradients: global underestimators

Hence $\nabla f(y)=0$ implies that y is global min.

Subgradients: global underestimators

If one of the $g=0$, then y a global min.

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$

Subgradients - basic facts

- f is convex, differentiable: $\nabla f(y)$ the unique subgradient at y
- A vector g is a subgradient at a point y if and only if $f(y)+\langle g, x-y\rangle$ is globally smaller than $f(x)$.
- Usually, one subgradient costs approx. as much as $f(x)$
- Determining all subgradients at a given point - difficult.
- Subgradient calculus-major achievement in convex analysis
- Fenchel-Young inequality: $f(x)+f^{*}(s) \geq\langle s, x\rangle$ (tight at a subgradient)

Example: computing subgradients

$$
f(x):=\sup _{y \in \mathcal{Y}} h(x, y)
$$

Simple way to obtain some $g \in \partial f(x)$:

Example: computing subgradients

$$
f(x):=\sup _{y \in \mathcal{Y}} \quad h(x, y)
$$

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^{*} for which $h\left(x, y^{*}\right)=f(x)$
- Pick any subgradient $g \in \partial h\left(x, y^{*}\right)$
- This $g \in \partial f(x)$

Proof:

$$
\begin{aligned}
h\left(z, y^{*}\right) & \geq h\left(x, y^{*}\right)+g^{T}(z-x) \\
h\left(z, y^{*}\right) & \geq f(x)+g^{T}(z-x) \\
f(z) & \geq h(z, y) \quad \text { (because of sup) } \\
f(z) & \geq f(x)+g^{T}(z-x) .
\end{aligned}
$$

Computing subgradients

Several other simple rules can be proved; see Boyd's lecture notes (or my EE227A lecture slides)

- Subgradient from max
- Subgradient from expectation
- Subgradient of composition

Subdifferential*

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\& If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$

Subdifferential

Def. The set of all subgradients at y denoted by $\partial f(y)$. This set is called subdifferential of f at y

If f is convex, $\partial f(x)$ is nice:
\&. If $x \in$ relative interior of $\operatorname{dom} f$, then $\partial f(x)$ nonempty
\& If f differentiable at x, then $\partial f(x)=\{\nabla f(x)\}$
\& If $\partial f(x)=\{g\}$, then f is differentiable and $g=\nabla f(x)$
Exercise: What is $\partial f(x)$ for the ReLU function: $\max (0, x)$?

Subdifferential - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subdifferential - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subdifferential - example

$$
f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ; \text { both } f_{1}, f_{2} \text { convex, differentiable }
$$

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right) ;$ both f_{1}, f_{2} convex, differentiable

$\star f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$

Subdifferential - example

$f(x):=\max \left(f_{1}(x), f_{2}(x)\right)$; both f_{1}, f_{2} convex, differentiable

* $f_{1}(x)>f_{2}(x)$: unique subgradient of f is $f_{1}^{\prime}(x)$
$\star f_{1}(x)<f_{2}(x)$: unique subgradient of f is $f_{2}^{\prime}(x)$
* $f_{1}(y)=f_{2}(y)$: subgradients, the segment $\left[f_{1}^{\prime}(y), f_{2}^{\prime}(y)\right]$ (imagine all supporting lines turning about point y)

Subdifferential for abs value

$$
f(x)=|x|
$$

Subdifferential for abs value

$$
f(x)=|x|
$$

Subdifferential for abs value

$$
f(x)=|x|
$$

$$
\partial|x|= \begin{cases}-1 & x<0 \\ +1 & x>0 \\ {[-1,1]} & x=0\end{cases}
$$

Subdifferential for Euclidean norm

Example. $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
$$

Subdifferential for Euclidean norm

Example. $f(x)=\|x\|_{2}$. Then,

$$
\partial f(x):= \begin{cases}x /\|x\|_{2} & x \neq 0 \\ \left\{z \mid\|z\|_{2} \leq 1\right\} & x=0\end{cases}
$$

Proof.

$$
\begin{aligned}
\|z\|_{2} & \geq\|x\|_{2}+\langle g, z-x\rangle \\
\|z\|_{2} & \geq\langle g, z\rangle \\
& \Longrightarrow\|g\|_{2} \leq 1 .
\end{aligned}
$$

Example: difficulties

Example. A convex function need not be subdifferentiable everywhere. Let

$$
f(x):= \begin{cases}-\left(1-\|x\|_{2}^{2}\right)^{1 / 2} & \text { if }\|x\|_{2} \leq 1 \\ +\infty & \text { otherwise }\end{cases}
$$

f diff. for all x with $\|x\|_{2}<1$, but $\partial f(x)=\emptyset$ whenever $\|x\|_{2} \geq 1$.

Subdifferential calculus

© Finding one subgradient within $\partial f(x)$
© Determining entire subdifferential $\partial f(x)$ at a point x
A Do we have the chain rule?

Subdifferential calculus

\oint If f is differentiable, $\partial f(x)=\{\nabla f(x)\}$
\oint Scaling $\alpha>0, \partial(\alpha f)(x)=\alpha \partial f(x)=\{\alpha g \mid g \in \partial f(x)\}$
\oint Addition $^{*}: \partial(f+k)(x)=\partial f(x)+\partial k(x)$ (set addition)
\oint Chain rule*: Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}, f: \mathbb{R}^{m} \rightarrow \mathbb{R}$, and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by $h(x)=f(A x+b)$. Then,

$$
\partial h(x)=A^{T} \partial f(A x+b)
$$

\oint Chain rule*: $h(x)=f \circ k$, where $k: X \rightarrow Y$ is diff.

$$
\partial h(x)=\partial f(k(x)) \circ D k(x)=[D k(x)]^{T} \partial f(k(x))
$$

\oint Max function*: If $f(x):=\max _{1 \leq i \leq m} f_{i}(x)$, then

$$
\partial f(x)=\operatorname{conv} \bigcup\left\{\partial f_{i}(x) \mid f_{i}(x)=f(x)\right\}
$$

convex hull over subdifferentials of "active" functions at x
\oint Conjugation: $z \in \partial f(x)$ if and only if $x \in \partial f^{*}(z)$

* - can fail to hold without precise assumptions.

Example: breakdown

It can happen that $\partial\left(f_{1}+f_{2}\right) \neq \partial f_{1}+\partial f_{2}$

Example. Define f_{1} and f_{2} by
$f_{1}(x):=\left\{\begin{array}{ll}-2 \sqrt{x} & \text { if } x \geq 0, \\ +\infty & \text { if } x<0,\end{array}\right.$ and $\quad f_{2}(x):= \begin{cases}+\infty & \text { if } x>0, \\ -2 \sqrt{-x} & \text { if } x \leq 0 .\end{cases}$
Then, $f=\max \left\{f_{1}, f_{2}\right\}=\mathbb{1}_{\{0\}}$, whereby $\partial f(0)=\mathbb{R}$
But $\partial f_{1}(0)=\partial f_{2}(0)=\emptyset$.
However, $\partial f_{1}(x)+\partial f_{2}(x) \subset \partial\left(f_{1}+f_{2}\right)(x)$ always holds.

Subdifferential - example

Example. $f(x)=\|x\|_{\infty}$. Then,

$$
\partial f(0)=\operatorname{conv}\left\{ \pm e_{1}, \ldots, \pm e_{n}\right\}
$$

where e_{i} is i-th canonical basis vector.
To prove, notice that $f(x)=\max _{1 \leq i \leq n}\left\{\left|e_{i}^{T} x\right|\right\}$
Then use, chain rule and max rule and $\partial|\cdot|$

Subdifferential - example (Boyd)

Example. Let $f(x)=\max \left\{s^{T} x \mid s_{i} \in\{-1,1\}\right\}\left(2^{n}\right.$ members)

∂f at $x=(0,0)$

∂f at $x=(1,0)$

∂f at $x=(1,1)$

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then, $\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}$.

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y$,

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\}
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Optimality via subdifferentials

Theorem. (Fermat's rule): Let $f: \mathbb{R}^{n} \rightarrow(-\infty,+\infty]$. Then,

$$
\operatorname{argmin} f=\operatorname{zer}(\partial f):=\left\{x \in \mathbb{R}^{n} \mid 0 \in \partial f(x)\right\} .
$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^{n}$.
Equivalently, $f(y) \geq f(x)+\langle 0, y-x\rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Nonsmooth optimality

$$
\begin{array}{ll}
\min & f(x) \quad \text { s.t. } x \in \mathcal{X} \\
\min & f(x)+\mathbb{1}_{\mathcal{X}}(x) .
\end{array}
$$

Optimality via subdifferentials: application

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application. $\min f(x)$ s.t. $x \in \mathcal{X}$:
\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$

Optimality via subdifferentials: application

- Minimizing x must satisfy: $0 \in \partial\left(f+\mathbb{1}_{\mathcal{X}}\right)(x)$
- (CQ) Assuming ri $(\operatorname{dom} f) \cap \operatorname{ri}(\mathcal{X}) \neq \emptyset, 0 \in \partial f(x)+\partial \mathbb{1}_{X}(x)$
- Recall, $g \in \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \geq \mathbb{1}_{\mathcal{X}}(x)+\langle g, y-x\rangle$ for all y.
- So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \geq\langle g, y-x\rangle \forall y \in \mathcal{X}$.
- Normal cone:

$$
\mathcal{N}_{\mathcal{X}}(x):=\left\{g \in \mathbb{R}^{n} \mid 0 \geq\langle g, y-x\rangle \quad \forall y \in \mathcal{X}\right\}
$$

Application. $\min f(x)$ s.t. $x \in \mathcal{X}$:
\diamond If f is diff., we get $0 \in \nabla f\left(x^{*}\right)+\mathcal{N}_{\mathcal{X}}\left(x^{*}\right)$
$\diamond-\nabla f\left(x^{*}\right) \in \mathcal{N}_{\mathcal{X}}\left(x^{*}\right) \Longleftrightarrow\left\langle\nabla f\left(x^{*}\right), y-x^{*}\right\rangle \geq 0$ for all $y \in \mathcal{X}$.

Duality

min $f(\theta)$ $\theta \in \mathcal{S}$

Primal problem

Let $f_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}(0 \leq i \leq m)$. Generic nonlinear program

$$
\begin{align*}
& \min \quad f_{0}(x) \\
& \quad \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m \tag{P}\\
& \quad x \in\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\} .
\end{align*}
$$

Def. Domain: The set $\mathcal{D}:=\left\{\operatorname{dom} f_{0} \cap \operatorname{dom} f_{1} \cdots \cap \operatorname{dom} f_{m}\right\}$

- We call (P) the primal problem
- The variable x is the primal variable
- We will attach to (P) a dual problem
- In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

A Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L}: \mathbb{R}^{n} \times \mathbb{R}^{m} \rightarrow \mathbb{R}$,

$$
\mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i=1}^{m} \lambda_{i} f_{i}(x)
$$

© Variables $\lambda \in \mathbb{R}^{m}$ called Lagrange multipliers
© Suppose x is feasible, and $\lambda \geq 0$. Then, we get the lower-bound:

$$
f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \quad \lambda \in \mathbb{R}_{+}^{m}
$$

© Lagrangian helps write problem in unconstrained form

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda)
$$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda) .
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

$$
g(\lambda):=\inf _{x} \quad \mathcal{L}(x, \lambda)
$$

Observations:

- g is pointwise inf of affine functions of λ
- Thus, g is concave; it may take value $-\infty$
- Recall: $f_{0}(x) \geq \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \lambda \geq 0$; thus
- $\forall x \in \mathcal{X}, \quad f_{0}(x) \geq \inf _{x^{\prime}} \mathcal{L}\left(x^{\prime}, \lambda\right)=: g(\lambda)$
- Now minimize over x on lhs, to obtain

$$
\forall \lambda \in \mathbb{R}_{+}^{m} \quad p^{*} \geq g(\lambda)
$$

Lagrange dual problem

$$
\sup g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

Lagrange dual problem

$$
\sup _{\lambda} g(\lambda) \quad \text { s.t. } \lambda \geq 0
$$

- dual feasible: if $\lambda \geq 0$ and $g(\lambda)>-\infty$
- dual optimal: λ^{*} if sup is achieved
- Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda)
$$

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem. (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.

Weak duality

Def. Denote dual optimal value by d^{*}, i.e.,

$$
d^{*}:=\sup _{\lambda \geq 0} g(\lambda) .
$$

Theorem. (Weak-duality): For problem (P), we have $p^{*} \geq d^{*}$.
Proof: We showed that for all $\lambda \in \mathbb{R}_{+}^{m}, p^{*} \geq g(\lambda)$.
Thus, it follows that $p^{*} \geq \sup g(\lambda)=d^{*}$.

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$

 Notice: both p^{*} and d^{*} may be $+\infty$
Duality gap

$$
p^{*}-d^{*} \geq 0
$$

Strong duality if duality gap is zero: $p^{*}=d^{*}$ Notice: both p^{*} and d^{*} may be $+\infty$

Several sufficient conditions known, especially for convex optimization.
"Easy" necessary and sufficient conditions: unknown

Example: Slater's sufficient conditions

$$
\begin{aligned}
\min & f_{0}(x) \\
\text { s.t. } & f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& A x=b
\end{aligned}
$$

Example: Slater's sufficient conditions

$$
\begin{aligned}
& \min \quad f_{0}(x) \\
& \text { s.t. } f_{i}(x) \leq 0, \quad 1 \leq i \leq m, \\
& \\
& A x=b .
\end{aligned}
$$

Constraint qualification: There exists $x \in$ ri \mathcal{D} s.t.

$$
f_{i}(x)<0, \quad A x=b .
$$

That is, there is a strictly feasible point.
Theorem. Let the primal problem be convex. If there is a feasible point such that is strictly feasible for the non-affine constraints (and merely feasible for affine, linear ones), then strong duality holds. Moreover, the dual optimal is attained (i.e., $d^{*}>-\infty$).

Reading: Read BV §5.3.2 for a proof.

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$. Clearly, only feasible $x=0$. So $p^{*}=1$

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Example: failure of strong duality

$$
\min _{x, y} e^{-x} \quad x^{2} / y \leq 0
$$

over the domain $\mathcal{D}=\{(x, y) \mid y>0\}$.
Clearly, only feasible $x=0$. So $p^{*}=1$

$$
\mathcal{L}(x, y, \lambda)=e^{-x}+\lambda x^{2} / y
$$

so dual function is

$$
g(\lambda)=\inf _{x, y>0} e^{-x}+\lambda x^{2} y= \begin{cases}0 & \lambda \geq 0 \\ -\infty & \lambda<0\end{cases}
$$

Dual problem

$$
d^{*}=\max _{\lambda} 0 \quad \text { s.t. } \lambda \geq 0 \text {. }
$$

Thus, $d^{*}=0$, and gap is $p^{*}-d^{*}=1$. Here, we had no strictly feasible solution.

Zero duality gap: nonconvex example

> Trust region subproblem (TRS)
> min $\quad x^{T} A x+2 b^{T} x \quad x^{T} x \leq 1$.
A is symmetric but not necessarily semidefinite!

Theorem. TRS always has zero duality gap.

Remark: Above theorem extremely important result; part of a family of related results on strong duality for certain quadratic nonconvex problems.

Example: dual for Support Vector Machine

$$
\begin{array}{ll}
\min _{x, \xi} & \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } & A x \geq 1-\xi, \quad \xi \geq 0 .
\end{array}
$$

Example: dual for Support Vector Machine

$$
\begin{gathered}
\min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
\text { s.t. } \quad A x \geq 1-\xi, \quad \xi \geq 0 . \\
L(x, \xi, \lambda, \nu)=\frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi
\end{gathered}
$$

Example: dual for Support Vector Machine

$$
\begin{aligned}
& \min _{x, \xi} \quad \frac{1}{2}\|x\|_{2}^{2}+C \sum_{i} \xi_{i} \\
& \text { s.t. } A x \geq 1-\xi, \quad \xi \geq 0 . \\
& L(x, \xi, \lambda, \nu)= \frac{1}{2}\|x\|_{2}^{2}+C 1^{T} \xi-\lambda^{T}(A x-1+\xi)-\nu^{T} \xi \\
& g(\lambda, \nu):=\inf L(x, \xi, \lambda, \nu) \\
&= \begin{cases}\lambda^{T} 1-\frac{1}{2}\left\|A^{T} \lambda\right\|_{2}^{2} & \lambda+\nu=C 1 \\
+\infty & \text { otherwise }\end{cases} \\
& d^{*}=\max _{\lambda \geq 0, \nu \geq 0} g(\lambda, \nu)
\end{aligned}
$$

Exercise: Using $\nu \geq 0$, eliminate ν from above problem.

Example: norm regularized problems

$$
\min f(x)+\|A x\|
$$

Example: norm regularized problems

$\min f(x)+\|A x\|$
 Dual problem

$$
\min _{y} f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1
$$

Example: norm regularized problems

$$
\begin{gathered}
\min f(x)+\|A x\| \\
\text { Dual problem } \\
\min _{y} \quad f^{*}\left(-A^{T} y\right) \quad \text { s.t. }\|y\|_{*} \leq 1 .
\end{gathered}
$$

Say $\|\bar{y}\|_{*}<1$, such that $A^{T} \bar{y} \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$, then we have strong duality (e.g., for instance $0 \in \operatorname{ri}\left(\operatorname{dom} f^{*}\right)$)

Example: Lasso-like problem

$$
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} .
$$

Example: Lasso-like problem

$$
\begin{gathered}
p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
\|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
\|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{gathered}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation
$p^{*}=\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\}$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\}
\end{aligned}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1, \quad\|v\|_{\infty} \leq \lambda
\end{aligned}
$$

Example: Lasso-like problem

$$
\begin{aligned}
& p^{*}:=\min _{x} \quad\|A x-b\|_{2}+\lambda\|x\|_{1} . \\
& \|x\|_{1}=\max \left\{x^{T} v \mid\|v\|_{\infty} \leq 1\right\} \\
& \|x\|_{2}=\max \left\{x^{T} u \mid\|u\|_{2} \leq 1\right\} .
\end{aligned}
$$

Saddle-point formulation

$$
\begin{aligned}
p^{*} & =\min _{x} \max _{u, v}\left\{u^{T}(b-A x)+v^{T} x \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} \min _{x}\left\{u^{T}(b-A x)+x^{T} v \mid\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda\right\} \\
& =\max _{u, v} u^{T} b \quad A^{T} u=v,\|u\|_{2} \leq 1,\|v\|_{\infty} \leq \lambda \\
& =\max _{u} u^{T} b \quad\|u\|_{2} \leq 1, \quad\left\|A^{T} v\right\|_{\infty} \leq \lambda .
\end{aligned}
$$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right)$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair $\left(x^{*}, \lambda^{*}\right)$ such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

Example: KKT conditions

$$
\min \quad f_{0}(x) \quad f_{i}(x) \leq 0, \quad i=1, \ldots, m .
$$

- Recall: $\left\langle\nabla f_{0}\left(x^{*}\right), x-x^{*}\right\rangle \geq 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $g(\lambda)=\inf _{x} \mathcal{L}(x, \lambda):=f_{0}(x)+\sum_{i} \lambda_{i} f_{i}(x)$

Assume strong duality; and both p^{*} and d^{*} attained!
Thus, there exists a pair (x^{*}, λ^{*}) such that
$p^{*}=f_{0}\left(x^{*}\right)=d^{*}=g\left(\lambda^{*}\right)=\min _{x} \mathcal{L}\left(x, \lambda^{*}\right) \leq \mathcal{L}\left(x^{*}, \lambda^{*}\right) \leq f_{0}\left(x^{*}\right)=p^{*}$

- Thus, equalities hold in above chain.

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

Example: ККТ conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0 .
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$,

Example: KKT conditions

$$
x^{*} \in \operatorname{argmin}_{x} \mathcal{L}\left(x, \lambda^{*}\right) .
$$

If $f_{0}, f_{1}, \ldots, f_{m}$ are differentiable, this implies

$$
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}}=\nabla f_{0}\left(x^{*}\right)+\sum_{i} \lambda_{i}^{*} \nabla f_{i}\left(x^{*}\right)=0
$$

Moreover, since $\mathcal{L}\left(x^{*}, \lambda^{*}\right)=f_{0}\left(x^{*}\right)$, we also have

$$
\sum_{i} \lambda_{i}^{*} f_{i}\left(x^{*}\right)=0
$$

But $\lambda_{i}^{*} \geq 0$ and $f_{i}\left(x^{*}\right) \leq 0$, so complementary slackness

$$
\lambda_{i}^{*} f_{i}\left(x^{*}\right)=0, \quad i=1, \ldots, m
$$

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

ККТ conditions

$$
\begin{aligned}
f_{i}\left(x^{*}\right) & \leq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} & \geq 0, \quad i=1, \ldots, m \\
\lambda_{i}^{*} f_{i}\left(x^{*}\right) & =0, \quad i=1, \ldots, m \\
\left.\nabla_{x} \mathcal{L}\left(x, \lambda^{*}\right)\right|_{x=x^{*}} & =0
\end{aligned}
$$

(primal feasibility)
(dual feasibility)
(compl. slackness)
(Lagrangian stationarity)

- We showed: if strong duality holds, and $\left(x^{*}, \lambda^{*}\right)$ exist, then KKT conditions are necessary for pair $\left(x^{*}, \lambda^{*}\right)$ to be optimal
- If problem is convex, then KKT also sufficient

Exercise: Prove the above sufficiency of KKT. Hint: Use that $\mathcal{L}\left(x, \lambda^{*}\right)$ is convex, and conclude from KKT conditions that $g\left(\lambda^{*}\right)=f_{0}\left(x^{*}\right)$, so that $\left(x^{*}, \lambda^{*}\right)$ optimal primal-dual pair.

