Optimization for Machine Learning

(Lecture 1)

SUVRIT SRA Massachusetts Institute of Technology

MPI-IS Tübingen Machine Learning Summer School, June 2017

Course materials

- My website (Teaching)
- Some references:
 - Introductory lectures on convex optimization Nesterov
 - Convex optimization Boyd & Vandenberghe
 - Nonlinear programming Bertsekas
 - Convex Analysis Rockafellar
 - Fundamentals of convex analysis Urruty, Lemaréchal
 - Lectures on modern convex optimization Nemirovski
 - Optimization for Machine Learning Sra, Nowozin, Wright
 - NIPS 2016 Optimization Tutorial Bach, Sra
- Some related courses:
 - EE227A, Spring 2013, (Sra, UC Berkeley)
 - 10-801, Spring 2014 (Sra, CMU)
 - EE364a,b (Boyd, Stanford)
 - EE236b,c (Vandenberghe, UCLA)
- Venues: NIPS, ICML, UAI, AISTATS, SIOPT, Math. Prog.

Lecture Plan

- Introduction
- Recap of convexity, sets, functions
- Recap of duality, optimality, problems
- First-order optimization algorithms and techniques
- Large-scale optimization (SGD and friends)
- Directions in non-convex optimization

Introduction

Supervised machine learning

- ▶ **Data**: *n* observations $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- ▶ **Prediction function**: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

Introduction

Supervised machine learning

- **Data**: *n* observations $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- ▶ **Prediction function**: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- Motivating examples:
 - Linear predictions: $h(x, \theta) = \theta^{\top} \Phi(x)$ using features $\Phi(x)$
 - Neural networks: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$
- Estimating θ parameters is an optimization problem

Introduction

Supervised machine learning

- **Data**: *n* observations $(x_i, y_i)_{i=1}^n \in \mathcal{X} \times \mathcal{Y}$
- ▶ **Prediction function**: $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- Motivating examples:
 - Linear predictions: $h(x, \theta) = \theta^{\top} \Phi(x)$ using features $\Phi(x)$
 - Neural networks: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$
- Estimating θ parameters is an optimization problem
 Unsupervised and other ML setups
- Different formulations, but ultimately optimization at heart

The Problem!

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 5 / 64

Suvrit Sra (suvrit@mit.edu)

Convex analysis

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 6 / 64

Suvrit Sra (suvrit@mit.edu)

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the linesegment $\lambda x + (1 - \lambda)y$, where $\lambda \in [0, 1]$, also lies in *C*.

Def. Set $C \subset \mathbb{R}^n$ called **convex**, if for any $x, y \in C$, the line-segment $\lambda x + (1 - \lambda)y$, where $\lambda \in [0, 1]$, also lies in *C*.

Combinations of points

- **Convex**: $\lambda_1 x + \lambda_2 y \in C$, where $\lambda_1, \lambda_2 \ge 0$ and $\lambda_1 + \lambda_2 = 1$.
- **Linear:** if restrictions on λ_1, λ_2 are dropped
- **Conic:** if restriction $\lambda_1 + \lambda_2 = 1$ is dropped

Different restrictions lead to different "algebra"

Recognizing / constructing convex sets

Theorem. (Intersection).

Let C_1 , C_2 be convex sets. Then, $C_1 \cap C_2$ is also convex.

Proof.

- \rightarrow If $C_1 \cap C_2 = \emptyset$, then true vacuously.
- \rightarrow Let $x, y \in C_1 \cap C_2$. Then, $x, y \in C_1$ and $x, y \in C_2$.
- → But C_1 , C_2 are convex, hence $\theta x + (1 \theta)y \in C_1$, and also in C_2 . Thus, $\theta x + (1 - \theta)y \in C_1 \cap C_2$.
- \rightarrow Inductively follows that $\bigcap_{i=1}^{m} C_i$ is also convex.

(psdcone image from convexoptimization.com, Dattorro)

Suvrit Sra (suvrit@mit.edu)

 \heartsuit Let $x_1, x_2, \ldots, x_m \in \mathbb{R}^n$. Their **convex hull** is

$$\operatorname{co}(x_1,\ldots,x_m):=\left\{\sum_i\theta_ix_i\mid \theta_i\geq 0,\sum_i\theta_i=1\right\}.$$

♡ Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. The set $\{x \mid Ax = b\}$ is convex (it is an *affine space* over subspace of solutions of Ax = 0).

$$\heartsuit$$
 halfspace $\{x \mid a^T x \leq b\}$.

- \heartsuit polyhedron { $x \mid Ax \leq b, Cx = d$ }.
- \heartsuit ellipsoid { $x \mid (x x_0)^T A(x x_0) \le 1$ }, (A: semidefinite)
- \heartsuit *convex cone* $x \in \mathcal{K} \implies \alpha x \in \mathcal{K}$ for $\alpha \ge 0$ (and \mathcal{K} convex)

Exercise: Verify that these sets are convex.

Suvrit Sra (suvrit@mit.edu)

Challenge 1

Let $A, B \in \mathbb{R}^{n \times n}$ be symmetric. Prove that $R(A, B) := \left\{ (x^T A x, x^T B x) \mid x^T x = 1 \right\}$

is a compact convex set for $n \ge 3$.

Convex functions

Def. A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if its *epigraph* $\{(x,t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^d, t \in \mathbb{R}, f(x) \le t\}$ is a convex set.

Convex functions

Def. A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if its *epigraph* $\{(x,t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^d, t \in \mathbb{R}, f(x) \le t\}$ is a convex set.

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\lambda \ge 0$,

 $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$

These functions also known as **Jensen convex**; named after J.L.W.V. Jensen (after his influential 1905 paper).

Convex functions

Def. A function $f : \mathbb{R}^d \to \mathbb{R}$ is **convex** if and only if its *epigraph* $\{(x,t) \subseteq \mathbb{R}^{d+1} \mid x \in \mathbb{R}^d, t \in \mathbb{R}, f(x) \le t\}$ is a convex set.

Def. A function $f : \mathbb{R}^n \to \mathbb{R}$ is called **convex** if its domain dom(f) is a convex set and for any $x, y \in \text{dom}(f)$ and $\lambda \ge 0$,

 $f((1-\lambda)x + \lambda y) \le (1-\lambda)f(x) + \lambda f(y).$

These functions also known as **Jensen convex**; named after J.L.W.V. Jensen (after his influential 1905 paper).

Exercise: Why are we focusing on these functions?

Convex functions: Jensen's inequality

Suvrit Sra (suvrit@mit.edu)

Convex functions: affine lower bounds

 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$

Suvrit Sra (suvrit@mit.edu)

Convex functions: increasing slopes

slope $PQ \leq$ slope $PR \leq$ slope QR

Suvrit Sra (suvrit@mit.edu)

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♦ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom} f$.
- ▲ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♦ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom} f$.
- ▲ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- ♦ By showing $f : dom(f) \to \mathbb{R}$ is convex *if and only if* its restriction to any line that intersects dom(*f*) is convex. That is, for any $x \in dom(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in dom(f)\}$).

Recognizing convex functions

- ♠ If *f* is continuous and midpoint convex, then it is convex.
- ♦ If *f* is differentiable, then *f* is convex *if and only if* dom *f* is convex and $f(x) \ge f(y) + \langle \nabla f(y), x y \rangle$ for all $x, y \in \text{dom} f$.
- ▲ If *f* is twice differentiable, then *f* is convex *if and only if* dom *f* is convex and $\nabla^2 f(x) \succeq 0$ at every $x \in \text{dom } f$.
- ♦ By showing $f : dom(f) \to \mathbb{R}$ is convex *if and only if* its restriction to **any** line that intersects dom(*f*) is convex. That is, for any $x \in dom(f)$ and any v, the function g(t) = f(x + tv) is convex (on its domain $\{t \mid x + tv \in dom(f)\}$).
- ♠ By showing *f* to be a pointwise max of convex functions
- See exercises (Ch. 3) in Boyd & Vandenberghe for more!

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Suvrit Sra (suvrit@mit.edu)

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Let $f : I_1 \to \mathbb{R}$ and $g : I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Suvrit Sra (suvrit@mit.edu)

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Let $f : I_1 \to \mathbb{R}$ and $g : I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$. $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ $g(f(\lambda x + (1 - \lambda)y)) \leq g(\lambda f(x) + (1 - \lambda)f(y))$ $\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)).$

Suvrit Sra (suvrit@mit.edu)

Example. Let $f : \mathbb{R}^n \to \mathbb{R}$ be convex. Let $A \in \mathbb{R}^{m \times n}$, and $b \in \mathbb{R}^m$. Prove that g(x) = f(Ax + b) is convex.

Exercise: Verify!

Theorem. Let $f : I_1 \to \mathbb{R}$ and $g : I_2 \to \mathbb{R}$, where range $(f) \subseteq I_2$. If f and g are convex, and g is increasing, then $g \circ f$ is convex on I_1

Proof. Let $x, y \in I_1$, and let $\lambda \in (0, 1)$. $f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y)$ $g(f(\lambda x + (1 - \lambda)y)) \leq g(\lambda f(x) + (1 - \lambda)f(y))$ $\leq \lambda g(f(x)) + (1 - \lambda)g(f(y)).$

▶ Do not miss out on several other important examples in BV!

Suvrit Sra (suvrit@mit.edu)

Constructing convex functions: sup

Example. The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in an arbitrary "index set" \mathcal{Y} , then

$$f(x) := \sup_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of *x*.

Exercise: Verify!

Constructing convex functions: sup

Example. The *pointwise maximum* of a family of convex functions is convex. That is, if f(x; y) is a convex function of x for every y in an arbitrary "index set" \mathcal{Y} , then

$$f(x) := \sup_{y \in \mathcal{Y}} f(x; y)$$

is a convex function of *x*.

Exercise: Verify!

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose L(x, y) is convex in **both** (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of *x*, provided $f(x) > -\infty$.

Constructing convex functions: joint inf

Theorem. Let \mathcal{Y} be a nonempty convex set. Suppose L(x, y) is convex in **both** (x, y), then,

$$f(x) := \inf_{y \in \mathcal{Y}} \quad L(x, y)$$

is a convex function of *x*, provided $f(x) > -\infty$.

Proof. Let $u, v \in \text{dom} f$. Since $f(u) = \inf_y L(u, y)$, for each $\epsilon > 0$, there is a $y_1 \in \mathcal{Y}$, s.t. $f(u) + \frac{\epsilon}{2}$ is not the infimum. Thus, $L(u, y_1) \leq f(u) + \frac{\epsilon}{2}$. Similarly, there is $y_2 \in \mathcal{Y}$, such that $L(v, y_2) \leq f(v) + \frac{\epsilon}{2}$. Now we prove that $f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v)$ directly.

$$\begin{aligned} f(\lambda u + (1 - \lambda)v) &= \inf_{y \in \mathcal{Y}} L(\lambda u + (1 - \lambda)v, y) \\ &\leq L(\lambda u + (1 - \lambda)v, \lambda y_1 + (1 - \lambda)y_2) \\ &\leq \lambda L(u, y_1) + (1 - \lambda)L(v, y_2) \\ &\leq \lambda f(u) + (1 - \lambda)f(v) + \epsilon. \end{aligned}$$

Since $\epsilon > 0$ is arbitrary, claim follows.

Suvrit Sra (suvrit@mit.edu)

Convex functions – norms

Let $\Omega : \mathbb{R}^d \to \mathbb{R}$ be a function that satisfies

- **1** $\Omega(x) \ge 0$, and $\Omega(x) = 0$ if and only if x = 0 (definiteness)
- **2** $\Omega(\lambda x) = |\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- **3** $\Omega(x+y) \le \Omega(x) + \Omega(y)$ (subadditivity)

Such function called *norms*—usually denoted ||x||.

Theorem. Norms are convex.

Convex functions – norms

Let $\Omega : \mathbb{R}^d \to \mathbb{R}$ be a function that satisfies

- **1** $\Omega(x) \ge 0$, and $\Omega(x) = 0$ if and only if x = 0 (definiteness)
- **2** $\Omega(\lambda x) = |\lambda| \Omega(x)$ for any $\lambda \in \mathbb{R}$ (positive homogeneity)
- **3** $\Omega(x+y) \le \Omega(x) + \Omega(y)$ (subadditivity)

Such function called *norms*—usually denoted ||x||.

Theorem. Norms are convex.

Often used in "regularized" ML problems

 $\min_{\boldsymbol{\theta}} \quad f(\boldsymbol{\theta}) + \mu \boldsymbol{\Omega}(\boldsymbol{\theta}).$

Suvrit Sra (suvrit@mit.edu)

Norms: important examples

Example. (ℓ_2 -norm): $||x||_2 = (\sum_i x_i^2)^{1/2}$

Example. (
$$\ell_p$$
-norm): Let $p \ge 1$. $||x||_p = (\sum_i |x_i|^p)^{1/p}$

Example. (ℓ_{∞} -norm): $||x||_{\infty} = \max_{1 \le i \le n} |x_i|$

Example. (Frobenius-norm): Let
$$A \in \mathbb{R}^{m \times n}$$
. $\|A\|_{\mathrm{F}} := \sqrt{\sum_{ij} |a_{ij}|^2}$

Example. Let *A* be any matrix. Then, the **operator norm** of *A* is

$$||A|| := \sup_{\|x\|_2 \neq 0} \frac{||Ax||_2}{\|x\|_2} = \sigma_{\max}(A).$$

Exercise: Verify that above functions are actually norms!

Suvrit Sra (suvrit@mit.edu)
Convex functions – Indicator

Let $\mathbb{1}_{\mathcal{X}}$ be the *indicator function* for \mathcal{X} defined as:

$$\mathbb{1}_{\mathcal{X}}(x) := \begin{cases} 0 & \text{if } x \in \mathcal{X}, \\ \infty & \text{otherwise.} \end{cases}$$

Note: $\mathbb{1}_{\mathcal{X}}(x)$ is convex if and only if \mathcal{X} is convex.

► Also called "extended value" convex function.

Suvrit Sra (suvrit@mit.edu)

Fenchel conjugate

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Suvrit Sra (suvrit@mit.edu)

Fenchel conjugate

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over *x*) sup of linear functions of *z*. Hence, it is always convex (even if *f* is not convex).

Example. $+\infty$ and $-\infty$ conjugate to each other.

Suvrit Sra (suvrit@mit.edu)

Fenchel conjugate

Def. The **Fenchel conjugate** of a function *f* is

$$f^*(z) := \sup_{x \in \text{dom}f} \quad x^T z - f(x).$$

Note: f^* is pointwise (over *x*) sup of linear functions of *z*. Hence, it is always convex (even if *f* is not convex).

Example. $+\infty$ and $-\infty$ conjugate to each other.

Example. Let f(x) = ||x||. We have $f^*(z) = \mathbb{1}_{\|\cdot\|_* \leq 1}(z)$. That is, conjugate of norm is the indicator function of dual norm ball.

Proof. $f^*(z) = \sup_x z^T x - ||x||$. If $||z||_* > 1$, by defn. of the dual norm, $\exists u$ such that $||u|| \le 1$ and $u^T z > 1$. Now select $x = \alpha u$ and let $\alpha \to \infty$. Then, $z^T x - ||x|| = \alpha(z^T u - ||u||) \to \infty$. If $||z||_* \le 1$, then $z^T x \le ||x|| ||z||_*$, which implies the sup must be zero.

Suvrit Sra (suvrit@mit.edu)

Fenchel conjugate: examples

Example.
$$f(x) = \frac{1}{2}x^T A x$$
, where $A \succ 0$. Then, $f^*(z) = \frac{1}{2}z^T A^{-1}z$.

Example. $f(x) = \max(0, 1 - x)$. Verify: dom $f^* = [-1, 0]$, and on this domain, $f^*(z) = z$.

Example. $f(x) = \mathbb{1}_{\mathcal{X}}(x)$: $f^*(z) = \sup_{x \in \mathcal{X}} \langle x, z \rangle$ (aka support func)

Example. If $f^{**} = f$, we say f is a closed convex function.

Exercise: Suppose $f(x) = (\sum_i |x_i|^{1/2})^2$. What is f^{**} ? **Exercise:** Suppose $f(x) = x^T A x + b^T x$ but $A \succeq 0$; what is f^* ?

Suvrit Sra (suvrit@mit.edu)

Challenge 2

Consider the following functions on strictly positive variables:

$$h_1(x) := \frac{1}{x}$$

$$h_2(x,y) := \frac{1}{x} + \frac{1}{y} - \frac{1}{x+y}$$

$$h_3(x,y,z) := \frac{1}{x} + \frac{1}{y} + \frac{1}{z} - \frac{1}{x+y} - \frac{1}{y+z} - \frac{1}{x+z} + \frac{1}{x+y+z}$$

$$\heartsuit$$
 Prove that $h_n(x) > 0$ (easy)

- \heartsuit Prove that h_1 , h_2 , h_3 , and in general h_n are convex (hard)
- \heartsuit Prove that in fact each $1/h_n$ is concave (harder).

Optimization

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 26 / 64

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

 $\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} \, f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$

Henceforth, we drop condition on domains for brevity.

Suvrit Sra (suvrit@mit.edu)

Optimization problems

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

min $f_0(x)$ s.t. $f_i(x) \le 0$, $1 \le i \le m$, $x \in \{\operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m\}$.

Henceforth, we drop condition on domains for brevity.

- If *f_i* are **differentiable** smooth optimization
- If any *f_i* is **non-differentiable** nonsmooth optimization
- If all *f*_{*i*} are **convex** convex optimization
- If m = 0, i.e., only f_0 is there **unconstrained** minimization

Convex optimization

Let \mathcal{X} be **feasible set** and p^* the **optimal value**

 $p^* := \inf \left\{ f_0(x) \mid x \in \mathcal{X} \right\}$

Suvrit Sra (suvrit@mit.edu)

Convex optimization

Let \mathcal{X} be **feasible set** and p^* the **optimal value**

 $p^* := \inf \left\{ f_0(x) \mid x \in \mathcal{X} \right\}$

- ▶ If *X* is empty, we say problem is **infeasible**
- ▶ By **convention**, we set $p^* = +\infty$ for infeasible problems
- If $p^* = -\infty$, we say problem is **unbounded below**.
- Example, $\min x$ on \mathbb{R} , or $\min \log x$ on \mathbb{R}_{++}
- Sometimes minimum doesn't exist (as $x \to \pm \infty$)
- Say $f_0(x) = 0$, problem is called **convex feasibility**

Optimality

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

Suvrit Sra (suvrit@mit.edu)

Optimality

Def. A point $x^* \in \mathcal{X}$ is **locally optimal** if $f(x^*) \leq f(x)$ for all x in a **neighborhood** of x^* . **Global** if $f(x^*) \leq f(x)$ for **all** $x \in \mathcal{X}$.

Theorem. For convex problems, local \implies global!

Exercise: Prove this theorem (*Hint:* try contradiction)

Theorem. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuously differentiable in an open set *S* containing x^* , a local min of *f*. Then, $\nabla f(x^*) = 0$.

If *f* is convex, then $\nabla f(x^*) = 0$ **sufficient** for global optimality. (This property makes convex optimization special!)

Optimality – constrained

♠ For every $x, y \in \text{dom} f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$.

Suvrit Sra (suvrit@mit.edu)

Optimality – constrained

♦ For every $x, y \in \text{dom} f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$. ♦ Thus, x^* is optimal **if** and only if

 $\langle \nabla f(x^*), y - x^* \rangle \ge 0,$ for all $y \in \mathcal{X}$.

Optimality – constrained

♦ For every $x, y \in \text{dom} f$, we have $f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle$. ♦ Thus, x^* is optimal **if** and only if

 $\langle \nabla f(x^*), y - x^* \rangle \ge 0,$ for all $y \in \mathcal{X}$.

• If $\mathcal{X} = \mathbb{R}^n$, this reduces to $\nabla f(x^*) = 0$

♠ If $\nabla f(x^*) \neq 0$, it defines supporting hyperplane to \mathcal{X} at x^*

Suvrit Sra (suvrit@mit.edu)

Optimization: via subgradients

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetts Institute of Technology 31 / 64

Subgradients: global underestimators

 $f(x) \ge f(y) + \langle \nabla f(y), x - y \rangle$

Hence $\nabla f(y) = 0$ implies that *y* is global min.

Suvrit Sra (suvrit@mit.edu)

Subgradients: global underestimators

 $f(x) \ge f(y) + \langle g, x - y \rangle$

If one of the g = 0, then y a global min.

Suvrit Sra (suvrit@mit.edu)

Subgradients – basic facts

- ► *f* is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at *y*
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is globally smaller than f(x).
- Usually, **one** subgradient costs approx. as much as f(x)

Subgradients – basic facts

- ► *f* is convex, differentiable: $\nabla f(y)$ the **unique** subgradient at *y*
- A vector g is a subgradient at a point y if and only if $f(y) + \langle g, x y \rangle$ is globally smaller than f(x).
- Usually, **one** subgradient costs approx. as much as f(x)
- ► Determining all subgradients at a given point difficult.
- ► Subgradient calculus—major achievement in convex analysis
- ► Fenchel-Young inequality: f(x) + f*(s) ≥ ⟨s, x⟩ (tight at a subgradient)

Example: computing subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

Suvrit Sra (suvrit@mit.edu)

Example: computing subgradients

$$f(x) := \sup_{y \in \mathcal{Y}} \quad h(x, y)$$

Simple way to obtain some $g \in \partial f(x)$:

- Pick any y^* for which $h(x, y^*) = f(x)$
- ▶ Pick any subgradient $g \in \partial h(x, y^*)$

▶ This
$$g \in \partial f(x)$$

Proof:

$$h(z, y^*) \geq h(x, y^*) + g^T(z - x)$$

$$h(z, y^*) \geq f(x) + g^T(z - x)$$

$$f(z) \geq h(z, y) \quad \text{(because of sup)}$$

$$f(z) \geq f(x) + g^T(z - x).$$

Suvrit Sra (suvrit@mit.edu)

Computing subgradients

Several other simple rules can be proved; see Boyd's lecture notes (or my EE227A lecture slides)

- Subgradient from max
- Subgradient from expectation
- Subgradient of composition

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta institute of Technology 36 / 64

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

If *f* is convex, $\partial f(x)$ is nice:

♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

If *f* is convex, $\partial f(x)$ is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = {\nabla f(x)}$

Def. The set of all subgradients at *y* denoted by $\partial f(y)$. This set is called **subdifferential** of *f* at *y*

If *f* is convex, $\partial f(x)$ is nice:

- ♣ If *x* ∈ relative interior of dom *f*, then $\partial f(x)$ nonempty
- ♣ If *f* differentiable at *x*, then $\partial f(x) = {\nabla f(x)}$
- ♣ If $\partial f(x) = \{g\}$, then *f* is differentiable and $g = \nabla f(x)$

Exercise: What is $\partial f(x)$ for the *ReLU* function: max(0, *x*)?

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x));$ both f_1, f_2 convex, differentiable

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable}$

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$

Suvrit Sra (suvrit@mit.edu)

 $f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable}$

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$ * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$

Suvrit Sra (suvrit@mit.edu)
Subdifferential – example

 $f(x) := \max(f_1(x), f_2(x)); \text{ both } f_1, f_2 \text{ convex, differentiable}$

* $f_1(x) > f_2(x)$: unique subgradient of f is $f'_1(x)$ * $f_1(x) < f_2(x)$: unique subgradient of f is $f'_2(x)$ * $f_1(y) = f_2(y)$: subgradients, the segment $[f'_1(y), f'_2(y)]$ (imagine all supporting lines turning about point y)

Suvrit Sra (suvrit@mit.edu)

Subdifferential for abs value

$$f(x) = |x|$$

Suvrit Sra (suvrit@mit.edu)

Subdifferential for abs value

Suvrit Sra (suvrit@mit.edu)

Subdifferential for abs value

Suvrit Sra (suvrit@mit.edu)

Subdifferential for Euclidean norm

Example. $f(x) = ||x||_2$. Then, $\partial f(x) := \begin{cases} x/||x||_2 & x \neq 0, \\ \{z \mid ||z||_2 \le 1\} & x = 0. \end{cases}$

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 40 / 64

Subdifferential for Euclidean norm

Example. $f(x) = ||x||_2$. Then, $\partial f(x) := \begin{cases} x/||x||_2 & x \neq 0, \\ \{z \mid ||z||_2 \leq 1\} & x = 0. \end{cases}$

Proof.

$$\begin{aligned} \|z\|_2 &\geq \|x\|_2 + \langle g, z - x \rangle \\ \|z\|_2 &\geq \langle g, z \rangle \\ &\implies \|g\|_2 \leq 1. \end{aligned}$$

Suvrit Sra (suvrit@mit.edu)

Example: difficulties

Example. A convex function need not be subdifferentiable everywhere. Let

$$f(x) := \begin{cases} -(1 - \|x\|_2^2)^{1/2} & \text{if } \|x\|_2 \le 1, \\ +\infty & \text{otherwise.} \end{cases}$$

f diff. for all *x* with $||x||_2 < 1$, but $\partial f(x) = \emptyset$ whenever $||x||_2 \ge 1$.

Subdifferential calculus

- Finding one subgradient within $\partial f(x)$
- Determining entire subdifferential $\partial f(x)$ at a point x
- ♠ Do we have the chain rule?

Subdifferential calculus

- $\oint \text{ If } f \text{ is differentiable, } \partial f(x) = \{\nabla f(x)\}$
- $\oint \text{ Scaling } \alpha > 0, \, \partial(\alpha f)(x) = \alpha \partial f(x) = \{ \alpha g \mid g \in \partial f(x) \}$
- ∮ **Addition*:** $\partial(f + k)(x) = \partial f(x) + \partial k(x)$ (set addition)
- ∮ **Chain rule*:** Let *A* ∈ ℝ^{*m*×*n*}, *b* ∈ ℝ^{*m*}, *f* : ℝ^{*m*} → ℝ, and *h* : ℝ^{*n*} → ℝ be given by h(x) = f(Ax + b). Then,

$$\partial h(x) = A^T \partial f(Ax + b).$$

∮ **Chain rule*:** $h(x) = f \circ k$, where $k : X \to Y$ is diff.

$$\partial h(x) = \partial f(k(x)) \circ Dk(x) = [Dk(x)]^T \partial f(k(x))$$

 \oint **Max function**^{*}: If *f*(*x*) := max_{1≤*i*≤*m*}*f_i*(*x*), then

$$\partial f(x) = \operatorname{conv} \bigcup \left\{ \partial f_i(x) \mid f_i(x) = f(x) \right\},$$

convex hull over subdifferentials of "active" functions at $x \oint$ **Conjugation:** $z \in \partial f(x)$ if and only if $x \in \partial f^*(z)$ * — can fail to hold without precise assumptions.

Suvrit Sra (suvrit@mit.edu)

Example: breakdown

It can happen that
$$\partial(f_1 + f_2) \neq \partial f_1 + \partial f_2$$

Example. Define
$$f_1$$
 and f_2 by

$$f_1(x) := \begin{cases} -2\sqrt{x} & \text{if } x \ge 0, \\ +\infty & \text{if } x < 0, \end{cases} \text{ and } f_2(x) := \begin{cases} +\infty & \text{if } x > 0, \\ -2\sqrt{-x} & \text{if } x \le 0. \end{cases}$$
Then, $f = \max\{f_1, f_2\} = \mathbb{1}_{\{0\}}$, whereby $\partial f(0) = \mathbb{R}$
But $\partial f_1(0) = \partial f_2(0) = \emptyset$.

However, $\partial f_1(x) + \partial f_2(x) \subset \partial (f_1 + f_2)(x)$ always holds.

Suvrit Sra (suvrit@mit.edu)

Subdifferential – example

Example. $f(x) = ||x||_{\infty}$. Then, $\partial f(0) = \operatorname{conv} \{\pm e_1, \dots, \pm e_n\},\$

where e_i is *i*-th canonical basis vector.

To prove, notice that $f(x) = \max_{1 \le i \le n} \{ |e_i^T x| \}$

Then use, *chain rule* and *max rule* and $\partial |\cdot|$

Subdifferential - example (Boyd)

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute ef Technology 46 / 64

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \}.$$

Suvrit Sra (suvrit@mit.edu)

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$.

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y$,

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \left\{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \right\}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Theorem. (Fermat's rule): Let
$$f : \mathbb{R}^n \to (-\infty, +\infty]$$
. Then,

$$\operatorname{argmin} f = \operatorname{zer}(\partial f) := \{ x \in \mathbb{R}^n \mid 0 \in \partial f(x) \}.$$

Proof: $x \in \operatorname{argmin} f$ implies that $f(x) \leq f(y)$ for all $y \in \mathbb{R}^n$. Equivalently, $f(y) \geq f(x) + \langle 0, y - x \rangle \quad \forall y, \leftrightarrow 0 \in \partial f(x)$.

Nonsmooth optimality

 $\begin{array}{ll} \min & f(x) & \text{s.t. } x \in \mathcal{X} \\ \min & f(x) + \mathbb{1}_{\mathcal{X}}(x). \end{array}$

Suvrit Sra (suvrit@mit.edu)

Optimality via subdifferentials: application

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $ri(dom f) \cap ri(X) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

 $\mathcal{N}_{\mathcal{X}}(x) := \{ g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X} \}$

Application. min f(x) s.t. $x \in \mathcal{X}$: \diamond If *f* is diff., we get $0 \in \nabla f(x^*) + \mathcal{N}_{\mathcal{X}}(x^*)$

Optimality via subdifferentials: application

- Minimizing *x* must satisfy: $0 \in \partial (f + \mathbb{1}_{\mathcal{X}})(x)$
- ▶ (CQ) Assuming $ri(dom f) \cap ri(\mathcal{X}) \neq \emptyset$, $0 \in \partial f(x) + \partial \mathbb{1}_X(x)$
- ▶ Recall, $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ iff $\mathbb{1}_{\mathcal{X}}(y) \ge \mathbb{1}_{\mathcal{X}}(x) + \langle g, y x \rangle$ for all y.
- ▶ So $g \in \partial \mathbb{1}_{\mathcal{X}}(x)$ means $x \in \mathcal{X}$ and $0 \ge \langle g, y x \rangle \ \forall y \in \mathcal{X}$.
- Normal cone:

$$\mathcal{N}_{\mathcal{X}}(x) := \{g \in \mathbb{R}^n \mid 0 \ge \langle g, y - x \rangle \quad \forall y \in \mathcal{X}\}$$

Application. $\min f(x)$ s.t. $x \in \mathcal{X}$:

Suvrit Sra (suvrit@mit.edu)

Duality

Suvrit Sra (suvrit@mit.edu)

Primal problem

Let $f_i : \mathbb{R}^n \to \mathbb{R}$ ($0 \le i \le m$). Generic **nonlinear program**

$$\begin{array}{ll} \min & f_0(x) \\ & \text{s.t.} \, f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & x \in \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \} \,. \end{array}$$

Def. Domain: The set $\mathcal{D} := \{ \operatorname{dom} f_0 \cap \operatorname{dom} f_1 \cdots \cap \operatorname{dom} f_m \}$

- ► We call (*P*) the **primal problem**
- ► The variable *x* is the **primal variable**
- ► We will attach to (*P*) a **dual problem**
- ▶ In our initial derivation: no restriction to convexity.

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

• Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- Suppose *x* is feasible, and $\lambda \ge 0$. Then, we get the lower-bound:

$$f_0(x) \ge \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+.$$

Suvrit Sra (suvrit@mit.edu)

Lagrangian

To the primal problem, associate Lagrangian $\mathcal{L} : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$,

$$\mathcal{L}(x,\lambda) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x).$$

- Variables $\lambda \in \mathbb{R}^m$ called Lagrange multipliers
- Suppose *x* is feasible, and $\lambda \ge 0$. Then, we get the lower-bound:

$$f_0(x) \ge \mathcal{L}(x,\lambda) \qquad \forall x \in \mathcal{X}, \ \lambda \in \mathbb{R}^m_+.$$

♠ Lagrangian helps write problem in **unconstrained form**

Lagrange dual function

Def. We define the Lagrangian dual as

 $g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$

Suvrit Sra (suvrit@mit.edu)

Lagrange dual function

Def. We define the **Lagrangian dual** as

 $g(\lambda) := \inf_x \mathcal{L}(x, \lambda).$

Observations:

- *g* is pointwise inf of affine functions of λ
- Thus, *g* is concave; it may take value $-\infty$

Lagrange dual function

Def. We define the Lagrangian dual as

 $g(\lambda) := \inf_x \quad \mathcal{L}(x,\lambda).$

Observations:

- *g* is pointwise inf of affine functions of λ
- Thus, *g* is concave; it may take value $-\infty$
- ▶ Recall: $f_0(x) \ge \mathcal{L}(x, \lambda) \quad \forall x \in \mathcal{X}, \lambda \ge 0$; thus
- $\blacktriangleright \quad \forall x \in \mathcal{X}, \quad f_0(x) \ge \inf_{x'} \mathcal{L}(x', \lambda) =: g(\lambda)$
- ▶ Now minimize over *x* on lhs, to obtain

$$\forall \ \lambda \in \mathbb{R}^m_+ \qquad p^* \ge g(\lambda).$$

Suvrit Sra (suvrit@mit.edu)

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \geq 0.$$

Suvrit Sra (suvrit@mit.edu)

Lagrange dual problem

$$\sup_{\lambda} g(\lambda) \qquad \text{s.t. } \lambda \ge 0.$$

- **dual feasible:** if $\lambda \ge 0$ and $g(\lambda) > -\infty$
- **dual optimal:** λ^* if sup is achieved
- ► Lagrange dual is always concave, regardless of original

Weak duality

Def. Denote **dual optimal value** by d^* , i.e., $d^* := \sup_{\lambda \ge 0} g(\lambda).$

Weak duality

Def. Denote **dual optimal value** by d^* , i.e., $d^* := \sup_{\lambda > 0} g(\lambda).$

Theorem. (Weak-duality): For problem (P), we have $p^* \ge d^*$.

Weak duality

Def. Denote **dual optimal value** by d^* , i.e.,

$$d^* := \sup_{\lambda \ge 0} g(\lambda).$$

Theorem. (Weak-duality): For problem (P), we have $p^* \ge d^*$.

Proof: We showed that for all $\lambda \in \mathbb{R}^m_+$, $p^* \ge g(\lambda)$. Thus, it follows that $p^* \ge \sup g(\lambda) = d^*$.

Suvrit Sra (suvrit@mit.edu)

Duality gap

$$p^* - d^* \ge 0$$

Suvrit Sra (suvrit@mit.edu)

Duality gap

$$p^* - d^* \ge 0$$

Strong duality if duality gap is zero: $p^* = d^*$ Notice: both p^* and d^* may be $+\infty$

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 55 / 64

Duality gap

$$p^* - d^* \ge 0$$

Strong duality if duality gap is zero: $p^* = d^*$ Notice: both p^* and d^* may be $+\infty$

Several **sufficient** conditions known, especially for convex optimization.

"Easy" necessary and sufficient conditions: unknown

Suvrit Sra (suvrit@mit.edu)

Example: Slater's sufficient conditions

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Suvrit Sra (suvrit@mit.edu)
Example: Slater's sufficient conditions

$$\begin{array}{ll} \min & f_0(x) \\ \text{s.t.} & f_i(x) \leq 0, \quad 1 \leq i \leq m, \\ & Ax = b. \end{array}$$

Constraint qualification: There exists $x \in \operatorname{ri} \mathcal{D}$ s.t.

$$f_i(x) < 0, \qquad Ax = b.$$

That is, there is a **strictly feasible** point.

Theorem. Let the primal problem be convex. If there is a feasible point such that is strictly feasible for the non-affine constraints (and merely feasible for affine, linear ones), then strong duality holds. Moreover, the dual optimal is attained (i.e., $d^* > -\infty$).

Reading: Read BV §5.3.2 for a proof.

Suvrit Sra (suvrit@mit.edu)

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$
 over the domain $\mathcal{D} = \{(x,y) \mid y > 0\}.$

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(x, y, \lambda) = e^{-x} + \lambda x^2 / y,$$

so dual function is $g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$

Suvrit Sra (suvrit@mit.edu)

$$\min_{x,y} e^{-x} \quad x^2/y \le 0,$$

over the domain $\mathcal{D} = \{(x, y) \mid y > 0\}$. Clearly, only feasible x = 0. So $p^* = 1$

$$\mathcal{L}(x,y,\lambda) = e^{-x} + \lambda x^2/y,$$

so dual function is $g(\lambda) = \inf_{x,y>0} e^{-x} + \lambda x^2 y = \begin{cases} 0 & \lambda \ge 0 \\ -\infty & \lambda < 0. \end{cases}$

Dual problem

$$d^* = \max_{\lambda} 0 \qquad \text{s.t. } \lambda \ge 0.$$

Thus, $d^* = 0$, and gap is $p^* - d^* = 1$. Here, we had no strictly feasible solution.

Suvrit Sra (suvrit@mit.edu)

Zero duality gap: nonconvex example

Trust region subproblem (TRS)

$$\min \quad x^T A x + 2b^T x \qquad x^T x \le 1.$$

A is symmetric but not necessarily semidefinite!

Theorem. TRS always has zero duality gap.

Remark: Above theorem extremely important result; part of a family of related results on strong duality for certain quadratic nonconvex problems.

Suvrit Sra (suvrit@mit.edu)

Example: dual for Support Vector Machine

$$\min_{\substack{x,\xi \\ \text{s.t.}}} \quad \frac{1}{2} \|x\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} \quad Ax \ge 1 - \xi, \quad \xi \ge 0.$$

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning

Massachusetta Institute of Technology 59 / 64

Example: dual for Support Vector Machine

$$\begin{split} \min_{\substack{x,\xi \\ x,\xi \ }} & \frac{1}{2} \|x\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} & Ax \ge 1 - \xi, \quad \xi \ge 0. \\ L(x,\xi,\lambda,\nu) &= \frac{1}{2} \|x\|_2^2 + C \mathbf{1}^T \xi - \lambda^T (Ax - 1 + \xi) - \nu^T \xi \end{split}$$

Example: dual for Support Vector Machine

$$\begin{split} \min_{\substack{x,\xi \\ x,\xi \ }} & \frac{1}{2} \|x\|_2^2 + C \sum_i \xi_i \\ \text{s.t.} & Ax \ge 1 - \xi, \quad \xi \ge 0. \end{split}$$
$$L(x,\xi,\lambda,\nu) &= \frac{1}{2} \|x\|_2^2 + C\mathbf{1}^T \xi - \lambda^T (Ax - 1 + \xi) - \nu^T \xi \\ g(\lambda,\nu) &:= \inf L(x,\xi,\lambda,\nu) \\ &= \begin{cases} \lambda^T \mathbf{1} - \frac{1}{2} \|A^T \lambda\|_2^2 & \lambda + \nu = C\mathbf{1} \\ +\infty & \text{otherwise} \end{cases}$$
$$d^* &= \max_{\lambda \ge 0, \nu \ge 0} g(\lambda,\nu) \end{split}$$

Exercise: Using $\nu \ge 0$, eliminate ν from above problem.

Suvrit Sra (suvrit@mit.edu)

Example: norm regularized problems

min f(x) + ||Ax||

Suvrit Sra (suvrit@mit.edu)

Example: norm regularized problems

min f(x) + ||Ax||Dual problem

$$\min_{y} \quad f^{*}(-A^{T}y) \quad \text{s.t.} \ \|y\|_{*} \leq 1.$$

Suvrit Sra (suvrit@mit.edu)

Example: norm regularized problems

 $\begin{array}{ll} \min \quad f(x) + \|Ax\| \\ \textbf{Dual problem} \end{array}$

$$\min_{y} \quad f^*(-A^T y) \quad \text{s.t.} \ \|y\|_* \le 1.$$

Say $\|\bar{y}\|_* < 1$, such that $A^T \bar{y} \in ri(dom f^*)$, then we have strong duality (e.g., for instance $0 \in ri(dom f^*)$)

$$p^* := \min_x \|Ax - b\|_2 + \lambda \|x\|_1.$$

Suvrit Sra (suvrit@mit.edu)

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_\infty \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_\infty \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

Saddle-point formulation

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \ ||v||_{\infty} \le \lambda \right\}$$

Suvrit Sra (suvrit@mit.edu)

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_\infty \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

Saddle-point formulation

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid ||u||_2 \le 1, \ ||v||_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid ||u||_2 \le 1, \ ||v||_{\infty} \le \lambda \right\}$$

Suvrit Sra (suvrit@mit.edu)

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_\infty \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

Saddle-point formulation

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} u^T b \qquad A^T u = v, \ \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda$$

Suvrit Sra (suvrit@mit.edu)

$$p^* := \min_x \quad \|Ax - b\|_2 + \lambda \|x\|_1.$$
$$\|x\|_1 = \max\left\{x^T v \mid \|v\|_\infty \le 1\right\}$$
$$\|x\|_2 = \max\left\{x^T u \mid \|u\|_2 \le 1\right\}.$$

Saddle-point formulation

$$p^* = \min_{x} \max_{u,v} \left\{ u^T (b - Ax) + v^T x \mid \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} \min_{x} \left\{ u^T (b - Ax) + x^T v \mid \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda \right\}$$

=
$$\max_{u,v} u^T b \qquad A^T u = v, \ \|u\|_2 \le 1, \ \|v\|_{\infty} \le \lambda$$

=
$$\max_{u} u^T b \qquad \|u\|_2 \le 1, \ \|A^T v\|_{\infty} \le \lambda.$$

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

Suvrit Sra (suvrit@mit.edu)

$$\min \quad f_0(x) \qquad f_i(x) \le 0, \quad i = 1, \dots, m.$$

Recall: $\langle \nabla f_0(x^*), x - x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$

►

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

•
$$g(\lambda) = \inf_x \mathcal{L}(x, \lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$$

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

 $p^* = f_0(x^*)$

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- ► Can we simplify this using Lagrangian?

$$\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*)$$

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*)$$

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*)$$

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ► Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

 \blacktriangleright Thus, equalities hold in above chain.

Suvrit Sra (suvrit@mit.edu)

min
$$f_0(x)$$
 $f_i(x) \le 0$, $i = 1, ..., m$.

- ▶ Recall: $\langle \nabla f_0(x^*), x x^* \rangle \ge 0$ for all feasible $x \in \mathcal{X}$
- Can we simplify this using Lagrangian?
- $\blacktriangleright g(\lambda) = \inf_x \mathcal{L}(x,\lambda) := f_0(x) + \sum_i \lambda_i f_i(x)$

Assume strong duality; and both p^* and d^* attained!

Thus, there exists a pair (x^*, λ^*) such that

$$p^* = f_0(x^*) = d^* = g(\lambda^*) = \min_x \mathcal{L}(x, \lambda^*) \le \mathcal{L}(x^*, \lambda^*) \le f_0(x^*) = p^*$$

► Thus, equalities hold in above chain.

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

Suvrit Sra (suvrit@mit.edu)

 $x^* \in \operatorname{argmin}_{r} \mathcal{L}(x, \lambda^*).$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_{x}\mathcal{L}(x,\lambda^{*})|_{x=x^{*}} = \nabla f_{0}(x^{*}) + \sum_{i} \lambda_{i}^{*} \nabla f_{i}(x^{*}) = 0.$$

Suvrit Sra (suvrit@mit.edu)

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

Suvrit Sra (suvrit@mit.edu)

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

 $\sum_i \lambda_i^* f_i(x^*) = 0.$

Suvrit Sra (suvrit@mit.edu)

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum_i \lambda_i^* f_i(x^*) = 0.$$

But $\lambda_i^* \ge 0$ and $f_i(x^*) \le 0$,

Suvrit Sra (suvrit@mit.edu)

$$x^* \in \operatorname{argmin}_x \mathcal{L}(x, \lambda^*).$$

If f_0, f_1, \ldots, f_m are differentiable, this implies

$$\nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} = \nabla f_0(x^*) + \sum_i \lambda_i^* \nabla f_i(x^*) = 0.$$

Moreover, since $\mathcal{L}(x^*, \lambda^*) = f_0(x^*)$, we also have

$$\sum_i \lambda_i^* f_i(x^*) = 0.$$

But $\lambda_i^* \ge 0$ and $f_i(x^*) \le 0$, so **complementary slackness**

$$\lambda_i^* f_i(x^*) = 0, \quad i = 1, \dots, m.$$

Suvrit Sra (suvrit@mit.edu)

KKT conditions

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$
KKT conditions

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

We showed: if strong duality holds, and (x*, λ*) exist, then KKT conditions are necessary for pair (x*, λ*) to be optimal

KKT conditions

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

- We showed: if strong duality holds, and (x*, λ*) exist, then KKT conditions are necessary for pair (x*, λ*) to be optimal
- ▶ If problem is convex, then KKT also sufficient

KKT conditions

$$\begin{array}{rcl} f_i(x^*) &\leq & 0, \quad i=1,\ldots,m & (\text{primal feasibility}) \\ \lambda_i^* &\geq & 0, \quad i=1,\ldots,m & (\text{dual feasibility}) \\ \lambda_i^* f_i(x^*) &= & 0, \quad i=1,\ldots,m & (\text{compl. slackness}) \\ \nabla_x \mathcal{L}(x,\lambda^*)|_{x=x^*} &= & 0 & (\text{Lagrangian stationarity}) \end{array}$$

- We showed: if strong duality holds, and (x*, λ*) exist, then KKT conditions are necessary for pair (x*, λ*) to be optimal
- ▶ If problem is convex, then KKT also **sufficient**

Exercise: Prove the above sufficiency of KKT. *Hint:* Use that $\mathcal{L}(x, \lambda^*)$ is convex, and conclude from KKT conditions that $g(\lambda^*) = f_0(x^*)$, so that (x^*, λ^*) optimal primal-dual pair.

Suvrit Sra (suvrit@mit.edu)

Optimization for Machine Learning