On inequalities for normalized Schur functions

CrossMark

Suvrit Sra
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States

A R T I C L E I N F O

Article history:

Received 16 February 2015
Accepted 17 July 2015

Abstract

We prove a conjecture of Cuttler et al. (2011) on the monotonicity of normalized Schur functions under the usual (dominance) partialorder on partitions. We believe that our proof technique may be helpful in obtaining similar inequalities for other symmetric functions.

© 2015 Elsevier Ltd. All rights reserved.

We prove a conjecture of Cuttler et al. [1] on the monotonicity of normalized Schur functions under the majorization (dominance) partial-order on integer partitions.

Schur functions are one of the most important bases for the algebra of symmetric functions. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ be a tuple of n real variables. Schur functions of \boldsymbol{x} are indexed by integer partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, where $\lambda_{1} \geq \cdots \geq \lambda_{n}$, and can be written as the following ratio of determinants [7, pg. 49], [5, (3.1)]:

$$
\begin{equation*}
s_{\lambda}(\boldsymbol{x})=s_{\lambda}\left(x_{1}, \ldots, x_{n}\right):=\frac{\operatorname{det}\left(\left[x_{i}^{\lambda_{j}+n-j}\right]_{i, j=1}^{n}\right)}{\operatorname{det}\left(\left[x_{i}^{n-j}\right]_{i, j=1}^{n}\right)} . \tag{0.1}
\end{equation*}
$$

To each Schur function $s_{\lambda}(\boldsymbol{x})$ we can associate the normalized Schur function

$$
\begin{equation*}
S_{\lambda}(\boldsymbol{x}) \equiv S_{\lambda}\left(x_{1}, \ldots, x_{n}\right):=\frac{s_{\lambda}\left(x_{1}, \ldots, x_{n}\right)}{s_{\lambda}(1, \ldots, 1)}=\frac{s_{\lambda}(\boldsymbol{x})}{s_{\lambda}\left(1^{n}\right)} . \tag{0.2}
\end{equation*}
$$

Let $\lambda, \mu \in \mathbb{R}^{n}$ be decreasingly ordered. We say λ is majorized by μ, denoted $\lambda \prec \mu$, if

$$
\begin{equation*}
\sum_{i=1}^{k} \lambda_{i} \leqq \sum_{i=1}^{k} \mu_{i} \quad \text { for } 1 \leq i \leq n-1, \quad \text { and } \quad \sum_{i=1}^{n} \lambda_{i}=\sum_{i=1}^{n} \mu_{i} . \tag{0.3}
\end{equation*}
$$

[^0]Cuttler et al. [1] studied normalized Schur functions (0.2) among other symmetric functions, and derived inequalities for them under the partial-order (0.3). They also conjectured related inequalities, of which perhaps Conjecture 1 is the most important.

Conjecture 1 ([1]). Let λ and μ be partitions; and let $\boldsymbol{x} \geq 0$. Then,

$$
S_{\lambda}(\boldsymbol{x}) \leq S_{\mu}(\boldsymbol{x}), \quad \text { if and only if } \quad \lambda \prec \mu .
$$

Cuttler et al. [1] established necessity (i.e., $S_{\lambda} \leq S_{\mu}$ only if $\lambda<\mu$), but sufficiency was left open. We prove sufficiency in this paper.

Theorem 2. Let λ and μ be partitions such that $\lambda \prec \mu$, and let $\boldsymbol{x} \geq 0$. Then,

$$
S_{\lambda}(\boldsymbol{x}) \leq S_{\mu}(\boldsymbol{x}) .
$$

Our proof technique differs completely from [1]: instead of taking a direct algebraic approach, we invoke a well-known integral from random matrix theory. We believe that our approach might extend to yield inequalities for other symmetric polynomials such as Jack polynomials [4] or even Hall-Littlewood and Macdonald polynomials [5].

1. Majorization inequality for Schur polynomials

Our main idea is to represent normalized Schur polynomials (0.2) using an integral compatible with the partial-order ' $<$ '. One such integral is the Harish-Chandra-Itzykson-Zuber (HCIZ) integral [2,3]:

$$
\begin{equation*}
I(A, B):=\int_{U(n)} e^{\operatorname{tr}\left(U^{*} A U B\right)} d U=c_{n} \frac{\operatorname{det}\left(\left[e^{a_{i} b_{j}}\right]_{i, j=1}^{n}\right)}{\Delta(\boldsymbol{a}) \Delta(\boldsymbol{b})}, \tag{1.1}
\end{equation*}
$$

where $d U$ is the Haar probability measure on the unitary group $U(n) ; \boldsymbol{a}$ and \boldsymbol{b} are vectors of eigenvalues of the Hermitian matrices A and $B ; \Delta$ is the Vandermonde determinant $\Delta(\boldsymbol{a}):=\prod_{1 \leq i<j \leq n}\left(a_{j}-a_{i}\right)$; and c_{n} is the constant

$$
\begin{equation*}
c_{n}=\left(\prod_{i=1}^{n-1} i!\right)=\Delta([1, \ldots, n])=\prod_{1 \leq i<j \leq n}(j-i) . \tag{1.2}
\end{equation*}
$$

The following observation [2] is of central importance to us.
Proposition 3. Let A be a Hermitian matrix, λ an integer partition, and B the diagonal matrix $\operatorname{Diag}\left(\left[\lambda_{j}+\right.\right.$ $n-j]_{j=1}^{n}$). Then,

$$
\begin{equation*}
\frac{s_{\lambda}\left(e^{a_{1}}, \ldots, e^{a_{n}}\right)}{s_{\lambda}(1, \ldots, 1)}=\frac{1}{E(A)} I(A, B), \tag{1.3}
\end{equation*}
$$

where the product $E(A)$ is given by

$$
\begin{equation*}
E(A)=\prod_{1 \leq i<j \leq n} \frac{e^{a_{i}}-e^{a_{j}}}{a_{i}-a_{j}} \tag{1.4}
\end{equation*}
$$

Proof. Recall from Weyl's dimension formula that

$$
\begin{equation*}
s_{\lambda}(1, \ldots, 1)=\prod_{1 \leq i<j \leq n} \frac{\left(\lambda_{i}-i\right)-\left(\lambda_{j}-j\right)}{j-i} . \tag{1.5}
\end{equation*}
$$

Now use identity (1.5), definition (1.2), and the ratio (0.1) in (1.1), to obtain (1.3).
Assume without loss of generality that for each $i, x_{i}>0$ (for $x_{i}=0$, apply the usual continuity argument). Then, there exist reals a_{1}, \ldots, a_{n} such that $e^{a_{i}}=x_{i}$, whereby

$$
\begin{equation*}
S_{\lambda}\left(x_{1}, \ldots, x_{n}\right)=\frac{s_{\lambda}\left(e^{\log x_{1}}, \ldots, e^{\log x_{n}}\right)}{s_{\lambda}(1, \ldots, 1)}=\frac{I(\log X, B(\lambda))}{E(\log X)} \tag{1.6}
\end{equation*}
$$

where $X=\operatorname{Diag}\left(\left[x_{i}\right]_{i=1}^{n}\right)$; we write $B(\lambda)$ to explicitly indicate B 's dependence on λ as in Proposition 3 . Since $E(\log X)>0$, to prove Theorem 2, it suffices to prove Theorem 4 instead.

Theorem 4. Let X be an arbitrary Hermitian matrix. Define the map $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
F(\lambda):=I(X, \operatorname{Diag}(\lambda)), \quad \lambda \in \mathbb{R}^{n} .
$$

Then, F is Schur-convex, i.e., if $\lambda, \mu \in \mathbb{R}^{n}$ such that $\lambda \prec \mu$, then $F(\lambda) \leq F(\mu)$.
Proof. We know from [6, Proposition C.2, pg. 97] that a convex and symmetric function is Schurconvex. From the HCIZ integral (1.1) symmetry of F is apparent; to establish its convexity it suffices to demonstrate midpoint convexity:

$$
\begin{equation*}
F\left(\frac{\lambda+\mu}{2}\right) \leq \frac{1}{2} F(\lambda)+\frac{1}{2} F(\mu) \text { for } \lambda, \mu \in \mathbb{R}^{n} . \tag{1.7}
\end{equation*}
$$

The elementary manipulations below show that inequality (1.7) holds.

$$
\begin{aligned}
F\left(\frac{\lambda+\mu}{2}\right) & =\int_{U(n)} \exp \left(\operatorname{tr}\left[U^{*} X U \operatorname{Diag}\left(\frac{\lambda+\mu}{2}\right)\right]\right) d U \\
& =\int_{U(n)} \exp \left(\operatorname{tr}\left[\frac{1}{2} U^{*} X U \operatorname{Diag}(\lambda)+\frac{1}{2} U^{*} X U \operatorname{Diag}(\mu)\right]\right) d U \\
& =\int_{U(n)} \sqrt{\exp \left(\operatorname{tr}\left[U^{*} X U \operatorname{Diag}(\lambda)\right]\right) \cdot \exp \left(\operatorname{tr}\left[U^{*} X U \operatorname{Diag}(\mu)\right]\right)} d U \\
& \leq \int_{U(n)}\left(\frac{1}{2} \exp \left(\operatorname{tr}\left[U^{*} X U \operatorname{Diag}(\lambda)\right]\right)+\frac{1}{2} \exp \left(\operatorname{tr}\left[U^{*} X U \operatorname{Diag}(\mu)\right]\right)\right) d U \\
& =\frac{1}{2} F(\lambda)+\frac{1}{2} F(\mu)
\end{aligned}
$$

where the inequality follows from the arithmetic-mean geometric-mean inequality.
Corollary 5. Conjecture 1 is true.

Acknowledgments

I am grateful to a referee for uncovering an egregious error in my initial attempt at Theorem 4; thanks also to the same or different referee for the valuable feedback and encouragement. I thank Jonathan Novak (MIT) for his help with HCIZ references.

References

[1] A. Cuttler, C. Greene, M. Skandera, Inequalities for symmetric means, European J. Combin. 32 (6) (2011) 745-761.
[2] Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957) 87-120.
[3] C. Itzykson, J.B. Zuber, The planar approximation. II, J. Math. Phys. 21 (3) (1980) 411-421.
[4] H. Jack, A class of symmetric polynomials with a parameter, in: Proceedings of the Royal Society of Edinburgh, vol. LXIX, 1970. Section A.
[5] I.G. Macdonald, Symmetric Functions and Hall Polynomials, second ed., Oxford University Press, 1995.
[6] A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and its Applications, second ed., Springer, 2011.
[7] I. Schur, Über eine Klasse von Matrizen, die sich einer gegebenen Matrix zuordnen lassen (Ph.D. thesis), Friedrich-WilhelmsUniversität zu Berlin, 1901.

[^0]: E-mail address: suvrit@mit.edu.
 http://dx.doi.org/10.1016/j.ejc.2015.07.005
 0195-6698/© 2015 Elsevier Ltd. All rights reserved.

