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Abstract. In this paper we introduce a novel approach for incrementally
building aspect models, and use it to dynamically discover underlying
themes from document streams. Using the new approach we present an
application which we call “query-line tracking” i.e., we automatically
discover and summarize different themes or stories that appear over time,
and that relate to a particular query. We present evaluation on news
corpora to demonstrate the strength of our method for both query-line
tracking, online indexing and clustering.

1 Introduction

In this paper we present a new unsupervised framework for mining a stream of
documents to extract and summarize the set of underlying themes. The system
discovers and isolates themes one by one using a novel approach that com-
bines EM and functional gradient methods. We show that our algorithm natu-
rally leads to incorporating a HITS-like spectral technique within a probabilistic
framework, thereby combining the power of both to create a unique document
mining framework. The most important functionality of our approach is its abil-
ity to handle streaming data without having to retrain the entire model. As
a result, the model can grow or shrink as needed leading to a faster, scalable
system that permits easier model selection as compared to a batch system.

Based on our incremental framework we present a new application called
“queryline tracking” which collects all documents relating to a query over time,
and automatically groups and summarizes these into themes. The system auto-
matically keeps track of themes that a user has seen and alerts the user to new
themes not seen by him/her, as soon as they are discovered. We further show
that our system makes meaningful summaries that correlate well with human
concepts, and also has good indexing properties (the model preserves the original
distances between documents as much as possible).

2 Incrementally Built Aspect Models (BAM)

BAM is motivated by ideas from density boosting [15, 16], incremental EM [15],
and aspect models [5]. In spite of the word “boosting” in the title, density boost-
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ing (also referred to as unsupervised boosting) is closer to semi-parametric max-
imum likelihood methods [3] than to traditional boosting.

Let the input be a set of documents D = {d1, d2, . . . , dN}, where each doc-
ument is represented by an M -dimensional vector of words taken from a vo-
cabulary W = {w1, w2, . . . , wM}. The data is represented by a word-document
co-occurrence matrix of size M ×N . The frequency of word w in document d is
given by nwd (or appropriately weighted versions of it like tfidf). Both M and N
can vary as new documents are added or older documents are deleted.

The aspect model is a latent variable model [5] where each document is a
mixture of underlying aspects, or themes. Each theme is represented by an the
distribution of words p(w|z). In PLSI [5] the word and document probabili-
ties are conditionally independent given the aspect z. The joint word-document
probability (with K hidden aspects) is

FK(w, d) =

K∑
k=1

P (zk)P (d|zk)P (w|zk) = (1− α)FK−1 + αhK , (2.1)

where α = P (zk) gives the prior probability that any word-document pair be-
longs to the Kth aspect zK . Thus, given the current model FK−1(w, d) we wish
to compute hK (the distribution for the individual aspect K) and α (the combin-
ing parameter), to obtain FK using (2.1). Sometimes we will abuse the notation
and also refer to hK as the aspect or latent variable.

A natural objective function for this estimation is the empirical log-likelihood
LK =

∑
wd nwd log FK(w, d), which may be written as,

LK =
∑
w,d

nwd log
(
(1− α)FK−1(w, d) + αhK(w, d)

)
(2.2)

≥
∑
w,d

nwd

[
(1− pwd) log

(1− α)FK−1

(1− pwd)
+ pwd log

αhK

pwd

]
≡ Q(P̃ , hK , α), (2.3)

where P̃ = {pwd} ∀ w, d, and (2.3) provides a “surrogate function” that lower-
bounds LK , and can be maximized instead. Thus, the E-step maximizing (2.3)
over pwd is

pwd =
αhK(w, d)

(1− α)FK−1(w, d) + αhK(w, d)
. (2.4)

Using (2.4) in (2.3) we get Q(P̃ , hK , α) =
∑

w,d nwdEP̃

[
log FK(w, d)

]
. In the

traditional M-step hK is estimated such that this Q-function is maximized.
Alternatively, we can perform a first-order functional gradient ascent on Q.
This idea is similar to the one used in AnyBoost [11], density boosting [16]
and semi-parametric methods [3]. To that end, we approximate the difference
LK − LK−1 ≈

∑
w,d nwdα〈∇L, hK − FK−1〉, where ∇L = ∂L(FK−1+δ1wd)

∂δ |δ=0 is
the functional derivative of L, and 〈∇L, hK−FK−1〉 is the directional derivative
in the new direction hK − FK−1. To ensure an increase in Q, it is enough to
maximize the expected value of the difference LK−LK−1. This leads to a gener-
alized EM approach, wherein the objective function is increased using a unique
combination of EM and functional gradient based approaches. Consequently, we
call this new method Expectation Functional Gradient (EFG).
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If a data point (w, d) is well explained by the existing model, then, FK =
FK−1, and the corresponding directional derivative is zero. Thus 〈∇L, hK −
FK−1〉 is non-zero only for points well represented by hK . For the log-likelihood
in (2.2) the expected change in Q, EP̃ [LK − LK−1] equals

α
∑
w,d

nwdpwd〈∇L, hK − FK−1〉 = α
∑
w,d

nwd pwd

(
hK(w, d)− FK−1(w, d)

FK−1(w, d)

)
. (2.5)

We can now maximize EP̃ [LK − LK−1] by solving

hK =argmax
h

∑
w,d

nwd pwdh(w, d)/FK−1(w, d). (2.6)

Once hK has been estimated, α can be estimated using line search on (2.2). We
note that as a natural consequence of the above maximization steps, the quanti-
ties 1/FK−1(w, d) act like weights—data points that are well represented by
the current model tend to be down weighted, and data points that are poorly
represented tend to be given more attention in the next BAM step. This
procedure is similar to the one used in boosting.
Estimating hK : Recall that hK(w, d) = p(w|z)p(d|z). Let w = p(w|zK) over
all words w, and d = p(d|zK) over all documents d. Introducing the matrix
V = [nwd pwd/Fwd] we write (2.6) as

min
w,d

Q(w, d) = −wT V d, where w, d ≥ 0. (2.7)

However, without further constraints on w and d (2.7) is unbounded. Using a
constraint on the L1 norm of the vector (which gives it a probabilistic interpre-
tation) leads to a formulation similar to PLSI (discussed later). Alternatively we
could use a regularization restricting the magnitude of the w and d vectors, and
then later re-interpret them as probabilities. This can be done in a principled
way starting with (2.2) to incorporate a regularizer. The rest of the analysis will
remain unchanged, but the regularized form of the function to be minimized in
(2.7) can be modified to be 3

Q(w, d) = −wT V d + ν(wT w) + µ(dT d).

where µ and ν are regularization parameters. Differentiating Q(w, d) with re-
spect to w and d and setting the derivatives to equal zero we obtain the system
of equations

w =
V d

ν
, d =

V T w

µ
, (2.8)

which can be solved iteratively. Setting w and d to the left and right singular
vectors (with ν, µ = 1) of V provides the solution. Readers will notice the
similarity of these steps to the popular HITS algorithm [7] which is a spectral
method. Due to its similarity to a spectral algorithm we call (2.8) the spectral M-
step. Since both w and d are non-negative, we can normalize them and interpret
them as probabilities. We obtain hK = wdT as the new aspect. Thereafter,
we determine α using line search and then obtain the updated model FK =
(1− α)FK−1 + αhK .
3 If w, d are initialized to be positive, they will stay positive, and the solution will

satisfy the non-negativity constraints.
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2.1 Understanding how BAM works

Relation to PLSI: In PLSI, the traditional M -step leads to the solution
p(w|z) ∝ ∑

d nwdpwd and p(d|z) ∝ ∑
w nwdpwd, which can be re-written as

w ∝ V 1, d ∝ V T 1, (2.9)

where V = [nwdpwd]. Comparing this with (2.8) we can see that this M -step (2.9)
is essentially one spectral step with w and d initialized to 1 (and an unweighted
V ). The regular PLSI M-step simply computes an average of the pre-weighted
data. Due to this behavior, in an incremental setting, PLSI leads to a sequence
of averaged models, whereas BAM produces a sequence of coherent topics. It is
difficult to grow PLSI models to accommodate new topics, while BAM is built to
do so. One has to rerun PLSI with an increased number of aspects - increasing
the computational needs with no guarantee that the new themes will correspond
to the old ones, or that the old ones will be rediscovered. Model selection can also
be a problem with PLSI—multiple runs with different model sizes are needed.
Computationally BAM is faster since, unlike PLSI, it does not need annealing to
work well, plus spectral algorithms tend to exhibit fast convergence properties.

Following (2.8), we suggest a way to modify PLSI to grow the model - before
estimating a new aspect, the data is weighted by 1/FK−1. Then the regular M-
step is replaced by the spectral M-step, i.e., iterate as per (2.8) until convergence.
This is equivalent to replacing V in (2.8) by V = [nwdpwd]. In practice, both
these approaches seem to yield similar results, so in this paper we use the latter.

Relation to HITS: The updates in (2.8) are strikingly similar to another
very popular algorithm used in the IR community to rank a set of web documents
into authorities and hubs—HITS [7]. BAM uses a similar idea to rank words and
documents. HITS can be shown to discover tightly knit clusters (TKC) based on
link structure [9]; similarly, BAM discovers TKCs based on how strongly words
and documents are connected to each other, which is what we want to achieve.
Thus BAM looks at the data weighted by 1/F (which defines the search space),
and then finds an appropriate cluster within this space. We can think of these two
steps as restriction and discovery steps respectively. This process is repeated till
all relevant topics are found. BAM also reduces the chances of mixing up weakly
connected components, i.e., it reduces the chances of discovering mixed topics.
The TKC issue can be a problem for HITS because sometimes the best cluster
is not the most relevant one. For BAM, this is not a problem; in fact it is an
advantage. BAM can be thought of as performing a series of soft cuts on the
bipartite graph to extract many tightly-knit overlapping components from it.

Relation to other spectral graph partitioning approaches: There are
other ways to partition these graphs, e.g. normalized cut using the Fiedler vec-
tor (eigenvector corresponding to the second smallest generalized eigenvalue [4].
BAM uses the top left and right singular vectors. Norm-cut looks at both inter-
and intra-partition properties while our algorithm is thought to target the tight-
ness of the partition in question.
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The convergence properties of BAM depend on the nature of the weighted
word-document graph at each BAM step. Due to lack of space, we defer a detailed
analysis of stability and convergence to future publications.

Other Relevant Work: We have briefly discussed BAM’s relation to PLSI.
Latent Dirichlet allocation (LDA) [2] addresses many of the issues faced by PLSI,
including the ability to grow with data [2, 6], but at commensurate additional
computational costs. BAM could be extended to LDA, something that we defer
to the future. LSI is a spectral method to finding topics but lacks generative
semantics. There exist some incremental approaches to LSI (e.g. [1])

There has been a significant amount of work in topic tracking and detection
[8] but we only mention a couple that are very closely related to our method.
The work by Kumar, 2004 [14] uses non-probabilistic, graph theoretic ideas to
extract storylines. It cannot handle overlapping categories, and is not dynamic
or incremental. Another recent work analyzes chunks of data over time using
static PLSI-like models, but tracking is done using similarity of aspects across
time scales [12].

2.2 Handling Streaming Data

To handle streaming data, first we need to understand how much of the new data
is already explained by the existing models. We use a “fold-in” approach similar
to the one suggested in [5]. For each aspect zk we keep p(w|zk) values fixed for
all the words that are already seen. We then use the spectral step to estimate the
probabilities of the new words (the p(w|z) vectors are normalized as needed),
and the document probabilities p(d|zk). Using the estimated probabilities we
compute a new F for all the new data, and use this new F as a starting point
to discover new themes as needed.

3 Experiments and results

We present some preliminary results on news corpora to demonstrate the per-
formance of our algorithm in queryline tracking, indexing and clustering.

3.1 Tracking Storylines Around a Query

We present an interesting application of BAM, called Queryline Tracking, which
is a mixture of TREC tasks like filtering and novelty detection, but is centered
around a query. Essentially, this task involves discovering and tracking themes
or storylines [14] based upon a query. As new data comes in, we only wish to
surface new themes. We demonstrate this idea on the publicly available RCV1-
v2 Reuters news corpus (23,000 documents) [10]. We use data from the first 10
days (Aug 20-30 1996) and run BAM on it incrementally, one day at a time.

We demonstrate the idea using the query “Clinton”. Each day we collect the
documents that contain the word “Clinton”. At the end of each day, we if we
have less than 20 documents, we defer the documents to the next day. Otherwise
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Table 1. BAM captures all the storylines around the news alert “Clinton” over a
period of 10 days. Days 4 and 6 did not have enough articles

Day 1 Storylines Day 2 Day 3

Dole Wage McDougal drug Gingrich McCurry Zogby

Powell Clinton Whitewater Hatch terror Yeltsin vote

Clinton Minimum Susan Marijuana nuclear Chechnya gap

convention bill Arkansas coppl Libya strenuous poll

Kemp legist. sentence McCurry Iraq Russian narrow

Day 5 Day 7 Day 8 Day 9 Day 10

FDA train read Jackson Morris litigation

tobacco handgun Jeep Cuomo resign tobacco

smoke Brady liter Jesse Dick lung

cigarette Ohio Americorp welfare prostitute cancer

advert Huntington Cherokee disagree tabloid letter

we run BAM on the data to discover new storylines. We can see the results in
Table 1.

The first day has stories about the presidential election, Clinton signing a bill
to raise minimum wage, The Whitewater case, Senator Hatch complaining to
the President about increase in drug use, and Gingrich cautioning the President
that the country needs to be preemptively deal with external nuclear threats.
On subsequent days the system discovers stories about Chechnya, Zogby’s elec-
tion tracking poll, Clinton asking the FDA to move against illegal practices in
tobacco advertisement, etc. Items belonging to the older themes are subsumed
by the older models and are available, but not surfaced. We can demonstrate the
advantage of the incremental algorithm by showing that for the same number of
topics discovered, the static model rediscovers themes from previous days.

We can show similar results using other queries (omitted due to lack of space).
The rest of the experiments in the paper are on query independent tasks.

3.2 Indexing Power

Just like LSI, BAM can also be used as an indexing algorithm. We evaluate this
by measuring how well it preserves distances between documents in the lower
dimensions. We demonstrate this using 1-nearest neighbor (1-NN) comparison
on the well known Reuters-21578 set. This dataset has 9063 documents in the
training set and 3699 documents in the testing set, with 22226 words and spans
113 different topics. First, we build a K-aspect BAM model using the training
data and then take the dot product of the data vector with each p(w|z) vector.
Hence the documents are projected from 22226 dimensional space to K dimen-
sions. Now for each projected document d, we choose the nearest neighbor n and
compare the labels of n against the true class labels for d. Let A be the number
of matching labels over all documents, and B be the number of unmatched la-
bels. The microaveraged F1 score is then F1 = A/(A + B/2). For test data, we
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Table 2. F1 scores for the 113 class Reuters-21758 dataset using 1-NN. LMDS
scores are from [13]

.

No. of BAM LMDS

dimensions Testing data Training Training

10 0.584 0.606 0.625

20 0.677 0.697 0.714

50 0.724 0.757 0.754

100 0.750 0.777 0.768

Table 3. NMI and Rand Index scores for RCV12 and Reuters datasets, for BAM and
PLSI. (Higher scores are better) ∗ signifies that these difference of these scores from
those of BAM are statistically significant at the level of 0.02.

RCV1-v2 subset Reuters subset

NMI Rand NMI Rand

BAM 0.54 0.49 0.56 0.32

PLSI 0.54 0.49 0.51∗ 0.26∗

can follow a similar procedure except we choose the nearest neighbor from the
training set in the reduced space. Table 2 shows the average F1 numbers as K
is varied from 10 to 100.

The F1 score using the unprojected training data was 0.719 [13]. BAM
matches this score when using around 50 aspects. The results on the unseen
test data is similar to that on the training data. Training data results for BAM
are comparable to Landmark MDS (which is similar to LSI) [13].BAM sacrifices
a little bit of indexing power to gain the ability to grow, and to create higher
quality topics.

3.3 Correlation of Aspects with Human Labels

The goal of this section is to quantitatively show that the aspects created by
BAM correlate well with human labeling. These experiments are done on two
selected subsets with 10 topics each - one from Reuters-21578 (8009 documents)
and another from RCV1-v2 (14814 documents). We run BAM incrementally to
get 10 aspects. Then, we do a hard classification for each document by assigning
it to the aspect with highest p(z|d) value. We then compute normalized mutual
information (NMI) and the Rand index for the resulting partitions by making
use of the topic labels assigned by human experts. We average over 10 runs to get
the numbers shown in on Table 3. BAM performs significantly better than PLSI
on the Reuters subset and performs just as well on the RCV1-v2 subset. The
number of documents per class is similar across classes in the RCV1-v2 subset,
and most clustering algorithms tend to do well on such sets. The Reuters subset
is very unbalanced, and we see that BAM does better on this set.
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4 Summary

In this paper we have introduced a new framework for building incremental as-
pect models incorporating the strengths of both spectral and probabilistic meth-
ods. The main advantage of this method is that it can handle documents arriving
in a stream, and the model can grow or shrink as needed. We demonstrated some
of the capabilities of the new approach in indexing and clustering. Using the new
framework we presented a new application called “queryline tracking”.
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