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1.1 Introduction

There is a long-standing folklore in the information retrieval community
that a vector space representation of text data has directional properties, i.e.,
the direction of the vector is much more important than its magnitude. This
belief has led to practices such as using the cosine between two vectors for
measuring similarity between the corresponding text documents, and to the
scaling of vectors to unit L2 norm [41, 40, 20].

In this chapter, we describe a probabilistic generative model [44, 25] based
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2 Text Clustering with Mixture of von Mises-Fisher Distributions

on directional distributions [30] for modeling text data.1 Specifically, we sug-
gest that a set of text documents that form multiple topics can be well modeled
by a mixture of von Mises-Fisher (vMF) distributions, with each component
corresponding to a topic. Generative models often provide greater insights into
the anatomy of the data as compared to discriminative approaches. Moreover,
domain knowledge can be easily incorporated into generative models, for ex-
ample, in this chapter the directional nature of the data is reflected in our
choice of vMF distributions as the mixture components.

We derive two clustering algorithms based on Expectation Maximization
(EM) for estimating the parameters of the mixture model from first princi-
ples. Our algorithms involve estimating a concentration parameter, κ, for
each component of the mixture model. The ability to adapt κ on a per-
component basis leads to substantial performance improvements over existing
generative approaches to modeling directional data. We show a connection
between the proposed methods and a class of existing algorithms for cluster-
ing high-dimensional directional data. In particular, our generative model has
the same relation to spherical kmeans (spkmeans) [20] as a model based on
a mixture of identity covariance Gaussians has to classical kmeans that uses
squared Euclidean distances [9]. We also present detailed experimental com-
parisons of the proposed algorithms with spkmeans and one of its variants.
Our formulation uncovers the theoretical justification behind the use of the
cosine similarity measure that has largely been ad-hoc, i.e., based on empirical
or intuitive justification, so far.

While this chapter focuses on text analysis, we note that many other im-
portant domains such as bioinformatics and collaborative filtering involve di-
rectional data as well. Thus, the scope and applications of the approaches
taken in this chapter are much broader and not limited to text alone.

The remainder of the chapter is organized as follows. In section 1.2, we dis-
cuss related work on mixture models, text clustering, and vMF distributions.
We review the multivariate vMF distribution in Section 1.3. In Section 1.4
we introduce a generative model using a mixture of vMF distributions. We
then derive the maximum likelihood parameter estimates of this model by
employing an EM framework. Section 1.5 highlights our new method of ap-
proximating κ and also presents a mathematical analysis of hard assignments.
Sections 1.4 and 1.5 form the basis for two clustering algorithms using soft
and hard-assignments, respectively, and these algorithms are described in Sec-
tion 1.6. Detailed experimental results and comparisons with other algorithms
are offered in Section 1.7. A discussion on the behavior of our algorithms and
a connection with simulated annealing follows in Section 1.8, and we conclude
in Section 1.9.

Notation. Bold faced variables, e.g., x, µ represent vectors; the norm ‖ · ‖
denotes the L2 norm; sets are represented by script-style upper-case letters,

1This chapter treats L2 normalized data and directional data as synonymous.
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e.g., X , Z. The set of reals is denoted by R, while S
d−1 denotes the (d −

1)-dimensional sphere embedded in R
d. Probability density functions are

denoted by lower case letters such as f , p, q, and the probability of a set of
events is denoted by P .

1.2 Related Work

There has been an enormous amount of work on clustering a wide vari-
ety of datasets across multiple disciplines over the past fifty years [26]. The
methods presented in this chapter are tailored for high-dimensional data with
directional characteristics, rather than for arbitrary datasets. In the learn-
ing community, perhaps the most widely studied high-dimensional directional
data stem from text documents represented by vector space models. Much
of the work in this domain uses discriminative approaches [48, 54]. For ex-
ample, hierarchical agglomerative methods based on cosine, Jaccard or Dice
coefficients were dominant for text clustering till the mid-1990s [39]. Over
the past few years several new approaches, ranging from spectral partitioning
[27, 54], to the use of generative models from the exponential family, e.g.,
mixture of multinomials or Bernoulli distributions [35] etc., have emerged. A
fairly extensive list of references on generative approaches to text clustering
can be found in [55].

Of particular relevance to this work is the spkmeans algorithm [20], which
adapts the kmeans algorithm to normalized data by using the cosine simi-
larity for cluster allocation, and also by re-normalizing the cluster means to
unit length. The spkmeans algorithm is superior to regular kmeans for high-
dimensional text data, and competitive or superior in both performance and
speed to a wide range of other existing alternatives for text clustering [49]. It
also provides better characterization of clusters in terms of their top repre-
sentative or discriminative terms.

The vMF distribution is known in the literature on directional statistics
[30], and the maximum likelihood estimates (MLE) of the parameters have
been given for a single distribution. Recently Piater [37] obtained parameter
estimates for a mixture for circular, i.e., 2-dimensional vMFs. In an Appendix
to his thesis, Piater starts on an EM formulation for 2-D vMFs but cites the
difficulty of parameter estimation (especially κ) and eventually avoids doing
EM in favor of another numerical gradient descent based scheme. Mooney et
al. [33] use a mixture of two circular von Mises distributions to estimate the
parameters using a quasi-Newton procedure. Wallace and Dowe [51] perform
mixture modeling for circular von Mises distributions and have produced a
software called Snob that implements their ideas. McLachlan and Peel [31]
discuss mixture analysis of directional data and mention the possibility of us-
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ing Fisher distributions (3-dimensional vMFs), but instead use 3-dimensional
Kent distributions [30]. They also mention work related to the clustering of
directional data, but all the efforts included by them are restricted to 2-D or
3-D vMFs. Indeed, [31] also draws attention to the difficulty of parameter
estimation even for 3-D vMFs.

The connection between a generative model involving vMF distributions
with constant κ and the spkmeans algorithm was first observed by [6]. A
variant that could adapt in an on-line fashion leading to balanced cluster-
ing solutions was developed by [7]. Balancing was encouraged by taking
a frequency-sensitive competitive learning approach in which the concentra-
tion of a mixture component was made inversely proportional to the number
of data points already allocated to it. Another online competitive learning
scheme using vMF distributions for minimizing a KL-divergence based distor-
tion was proposed by [43]. Note that the full EM solution was not obtained
or employed in either of these works. Recently a detailed empirical study of
several generative models for document clustering, including a simple movMF
model that constrains the concentration κ to be the same for all mixture com-
ponents during any iteration was presented by [56]. Even with this restric-
tion, this model was superior to both hard and soft versions of multivariate
Bernoulli and multinomial models. In recent years, the movMF model has
been successfully applied to text mining and anomaly detection applications
for the NASA Aviation Safety Reporting System (ASRS) [47, 46].

Recently, [10] discussed the modeling of high dimensional directional data
using mixtures of Watson distributions, mainly to handle axial symmetries in
the data. The authors of [10] followed the parameter estimation techniques
developed in this chapter to obtain numerical estimates for the concentration
parameter κ for Watson distributions. Additionally, alternate parameter esti-
mates along with a connection of mixture of Watson based models to diametric
clustering [19] were developed in [45]. For text data, mixtures of Watson dis-
tributions usually perform inferior to moVMF based models, though for gene
expression data they could be potentially better.

1.3 Preliminaries

In this section, we review the von Mises-Fisher distribution and maximum
likelihood estimation of its parameters from independent samples.

1.3.1 The von Mises-Fisher (vMF) Distribution

A d-dimensional unit random vector x (i.e., x ∈ R
d and ‖x‖ = 1, or equiva-

lently x ∈ S
d−1) is said to have d-variate von Mises-Fisher (vMF) distribution
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if its probability density function is given by

f(x|µ, κ) = cd(κ)e
κµT

x , (1.1)

where ‖µ‖ = 1, κ ≥ 0 and d ≥ 2. The normalizing constant cd(κ) is given by

cd(κ) =
κd/2−1

(2π)d/2Id/2−1(κ)
, (1.2)

where Ip(·) represents the modified Bessel function of the first kind and order
p, and is defined as [1]

Ip(κ) =
∑

k≥0

1

Γ(p+ k + 1)k!

(κ

2

)2k+p

,

where Γ(·) is the well-known Gamma function.
The density f(x|µ, κ) is parameterized by the mean direction µ, and the

concentration parameter κ, so-called because it characterizes how strongly the
unit vectors drawn according to f(x|µ, κ) are concentrated about the mean
direction µ. Larger values of κ imply stronger concentration about the mean
direction. In particular when κ = 0, f(x|µ, κ) reduces to the uniform density
on S

d−1, and as κ → ∞, f(x|µ, κ) tends to a point density. The interested
reader is referred to [30], [24] or [21] for details on vMF distributions.

The vMF distribution is one of the simplest parametric distributions for
directional data, and has properties analogous to those of the multivariate
Gaussian distribution for data in R

d. For example, the maximum entropy
density on S

d−1 subject to the constraint that E[x] is fixed is a vMF density
(see [38, pp. 172–174] and [29] for details).

1.3.2 Maximum Likelihood Estimates

In this section we look briefly at maximum likelihood estimates for the
parameters of a single vMF distribution. The detailed derivations can be
found in [5]. Let X be a finite set of sample unit vectors drawn independently
following f(x|µ, κ) (1.1), i.e.,

X = {xi ∈ S
d−1 | xi drawn following f(x|µ, κ) for 1 ≤ i ≤ n}.

Given X we want to find maximum likelihood estimates for the parameters µ
and κ of the distribution f(x|µ, κ). Assuming the xi to be independent and
identically distributed, we can write the log-likelihood of X as

lnP (X|µ, κ) = n ln cd(κ) + κµT r, (1.3)

where r =
∑

i xi. To obtain the maximum likelihood estimates of µ and κ,
we have to maximize (1.3) subject to the constraints µTµ = 1 and κ ≥ 0. A
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simple calculation [5] shows that the MLE solutions µ̂ and κ̂ may be obtained
from the following equations:

µ̂ =
r

‖r‖
=

∑n
i=1 xi

‖
∑n

i=1 xi‖
, (1.4)

and
Id/2(κ̂)

Id/2−1(κ̂)
=
‖r‖

n
= r̄. (1.5)

Since computing κ̂ involves an implicit equation (1.5) that is a ratio of Bessel
functions, it is not possible to obtain an analytic solution, and we have to
resort to numerical or asymptotic methods to obtain an approximation (see
Section 1.5).

1.4 EM on a Mixture of vMFs (moVMF)

We now consider a mixture of k vMF (moVMF) distributions that serves
as a generative model for directional data, and obtain the update equations
for estimating the mixture-density parameters from a given dataset using
the Expectation Maximization (EM) framework. Let fh(x|θh) denote a vMF
distribution with parameters θh = (µh, κh) for 1 ≤ h ≤ k. Then a mixture of
these k vMF distributions has a density given by

f(x|Θ) =

k
∑

h=1

αhfh(x|θh), (1.6)

where Θ = {α1, · · · , αk, θ1, · · · , θk} and the αh are non-negative and sum to
one. To sample a point from this mixture density we choose the h-th vMF
randomly with probability αh, and then sample a point (on S

d−1) following
fh(x|θh). Let X = {x1, · · · ,xn} be a dataset of n independently sampled
points that follow (1.6). Let Z = {z1, · · · , zn} be the corresponding set of
hidden random variables that indicate the particular vMF distribution from
which the points are sampled. In particular, zi = h if xi is sampled from
fh(x|θh). Assuming that the values in the set Z are known, the log-likelihood
of the observed data is given by

lnP (X ,Z|Θ) =

n
∑

i=1

ln (αzi
fzi

(xi|θzi
)) . (1.7)

Obtaining maximum likelihood estimates for the parameters would have been
easy were the zi truly known. Unfortunately that is not the case, and (1.7)
is really a random variable dependent on the distribution of Z—this random
variable is usually called the complete data log-likelihood. For a given (X ,Θ), it
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is possible to estimate the most likely conditional distribution of Z|(X ,Θ), and
this estimation forms the E-step in an EM framework. Using an EM approach
for maximizing the expectation of (1.7) with the constraints µT

hµh = 1 and
κh ≥ 0, we obtain

αh =
1

n

n
∑

i=1

p(h|xi,Θ), (1.8)

rh =
n
∑

i=1

xip(h|xi,Θ), (1.9)

µ̂h =
rh
‖rh‖

, (1.10)

Id/2(κ̂h)

Id/2−1(κ̂h)
=

‖rh‖
∑n

i=1 p(h|xi,Θ)
. (1.11)

Observe that (1.10) and (1.11) are intuitive generalizations of (1.4) and (1.5)
respectively, and they correspond to an M-step in an EM framework. Given
these parameter updates, we now look at schemes for updating the distribu-
tions of Z|(X ,Θ) (i.e., an E-step) to maximize the likelihood of the data given
the parameters estimates above.

From the standard EM framework, the distribution of the hidden variables
[34, 11] is given by

p(h|xi,Θ) =
αh fh(xi|Θ)

∑k
l=1 αl fl(xi|Θ)

. (1.12)

It can be shown [15] that the incomplete data log-likelihood, ln p(X|Θ), is
non-decreasing at each iteration of the parameter and distribution updates.
Iteration over these two updates provides the foundation for our soft-moVMF
algorithm given in Section 1.6.

Our second update scheme is based on the widely used hard-assignment
heuristic for unsupervised learning. In this case, the distribution of the hidden
variables is given by

q(h|xi,Θ) =







1, if h = argmax
h′

p(h′|xi,Θ),

0, otherwise.
(1.13)

It can be shown [5] that the above hard-assignment rule actually maximizes a
non-trivial lower bound on the incomplete data log-likelihood. Iteration over
the M-step and the hard-assignment rule leads to the hard-moVMF algorithm
given in Section 1.6.
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1.5 Handling High-dimensional Text Datasets

Although the mixture model outlined in Section 1.4 appears to be straight-
forward, there is one critical issue that needs to be addressed before one can
apply the model to real life text datasets: How to efficiently and accurately
compute κh, h = 1, . . . , k from (1.11) for high-dimensional data? The problem
of estimating κh is analyzed in Section 1.5.1 and experimentally studied in
Section 1.5.2.

1.5.1 Approximating κ

Recall that due to the lack of an analytical solution, it is not possible to
directly estimate the κ values (see (1.5) and (1.11)). One may employ a non-
linear root-finder for estimating κ, but for high dimensional data, problems of
overflows and numerical instabilities plague such root-finders. Therefore, an
asymptotic approximation of κ is the best choice for estimating κ. Such ap-
proaches also have the benefit of taking constant computation time as opposed
to any iterative method.

Mardia and Jupp [30] provide approximations for estimating κ for a single
component (1.5) for two limiting cases (Approximations (10.3.7) and (10.3.10)
of [30, pp. 198]):

κ̂ ≈
d− 1

2(1− r̄)
valid for large r̄, (1.14)

κ̂ ≈ dr̄

(

1 +
d

d+ 2
r̄2 +

d2(d+ 8)

(d+ 2)2(d+ 4)
r̄4
)

valid for small r̄, (1.15)

where r̄ is given by (1.5).

These approximations assume that κ ≫ d, which is typically not valid for
high dimensional data (see the discussion in Section 1.8 for an intuition).
Furthermore, the r̄ values corresponding to the text datasets considered in
this chapter are in the mid-range rather than in the two extreme ranges of r̄
that are catered to by the above approximations. We obtain a more accurate

approximation for κ as described below. With Ad(κ) =
Id/2(κ)

Id/2−1(κ)
, observe

that Ad(κ) is a ratio of Bessel functions that differ in their order by just one.
Fortunately there exists a continued fraction representation of Ad(κ) [52] given
by

Ad(κ) =
Id/2(κ)

Id/2−1(κ)
=

1

d
κ +

1
d+2
κ + · · ·

. (1.16)
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Letting Ad(κ) = r̄, we can write (1.16) approximately as

1

r̄
≈

d

κ
+ r̄ ,

which yields

κ ≈
dr̄

1− r̄2
.

We empirically found (see Section 1.5.2 below) that the quality of the above
approximation can be improved by adding a correction term of −r̄3/(1− r̄2)
to it. Thus, we finally get

κ̂ =
r̄d− r̄3

1− r̄2
. (1.17)

Recently Tanabe et al. [50] used some inequalities regarding the Bessel func-
tion ratio Ad(κ) [3] to bound the solution to Ad(κ) = r̄ as

r̄(d− 2)

1− r̄2
≤ κ̂ ≤

r̄d

1− r̄2
.

Our solution (1.17) lies within these bounds, thus leading to a better theoret-
ical justification in retrospect.

The approximation in (1.17) could perhaps be made even more accurate
by adding other correction terms that are functions of r̄ and d. However, we
remark that if one wants a more accurate approximation, it is easier to use
(1.17) as a starting point and then perform Newton-Raphson iterations for
solving Ad(κ̂) − r̄ = 0, since it is easy to evaluate A′

d(κ) = 1 − Ad(κ)
2 −

d−1
κ Ad(κ). However, for high-dimensional data, accurately computing Ad(κ)

can be quite slow compared to efficiently approximating κ̂ using (1.17), and
a very high accuracy for κ is not that critical. For other approximations of κ
and some related issues, the reader is referred to [21, 5].

We now show some numerical results to assess the quality of our approxima-
tion in comparison to (1.14) and (1.15). First note that a particular value of r̄
may correspond to many different combinations of κ and d values. Then, one
needs to evaluate the accuracy of the approximations over the parts of the d-κ
plane that are expected to be encountered in the target application domains.
Section 1.5.2 below provides such an assessment by comparing performances
over different slices of the d-κ plane and over a range of r̄ values. Below we
simply compare the accuracies at a set of points on this plane via Table 1.1
which shows the actual numerical values of κ that the three approximations
(1.14), (1.15), and (1.17) yielded at these points. The r̄ values shown in the
table were computed using (1.5).

1.5.2 Experimental study of the approximation

In this section we provide a brief experimental study to assess the qual-
ity of our approximation of the concentration parameter κ. Recall that our
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(d, r̄, κ) κ̂ in (1.14) κ̂ in (1.15) κ̂ in (1.17)
(10, 0.633668, 10) 12.3 9.4 10.2
(100, 0.46945, 60) 93.3 59.4 60.1
(500, 0.46859, 300) 469.5 296.8 300.1

(1000, 0.554386, 800) 1120.9 776.8 800.1

Table 1.1: Approximations κ̂ for a sampling of κ and d values.

approximation (1.17) attempts to solve the implicit non-linear equation

Id/2(κ)

Id/2−1(κ)
= r̄. (1.18)

We note that for large values of r̄ (r̄ close to 1), approximation (1.14) is
reasonable; for small values of r̄ (usually for r̄ < 0.2) estimate (1.15) is quite
good; whereas (1.17) yields good approximations for most values of r̄.

Since a particular value of r̄ may correspond to many different combinations
of κ and d values, to assess the quality of various approximations, we need
to evaluate their performance across the (κ, d) plane. However, such an as-
sessment is difficult to illustrate through 2-dimensional plots. To supplement
Table 1.1, which showed how the three approximations behave on a sampling
of points from the (κ, d) plane, in this section we present experimental results
on some slices of this plane, where we either keep d fixed and vary κ, or we
keep κ fixed and vary d. For all our evaluations, the r̄ values were computed
using (1.18).

We begin by holding d fixed at 1000, and allow κ to vary from 10 to 5010.
Figure 1.1 shows the values of computed κ̂ (estimation of κ) using the three
approximations. From this figure one can see that (1.14) overestimates the
true κ, while (1.15) underestimates it. However, our approximation (1.17) is
very close to the true κ values.

Next we illustrate the quality of approximation when κ is held fixed and d is
allowed to vary. Figure 1.2 illustrates how the various approximations behave
as the dimensionality d is varied from d = 4 till d = 1454. The concentration
parameter κ was set at 500 for this experiment. We see that (1.15) catches up
with the true value of κ after approximately d ≥ 2κ (because the associated
r̄ values become small), whereas (1.17) remains accurate throughout.

Since all the approximations depend on r̄ (which implicitly depends on κ
and d), it is illustrative to also plot the approximation errors as r̄ is allowed
to vary. Figure 1.3 shows how the three approximations perform as r̄ ranges
from 0.05 to 0.95. Let f(d, r̄), g(d, r̄), and h(d, r̄) represent the approxima-
tions to κ using (1.14), (1.15) and (1.17), respectively. Figure 1.3 displays
|Ad(f(d, r̄)) − r̄|, |Ad(g(d, r̄)) − r̄|, and |Ad(h(d, r̄)) − r̄| for the varying r̄
values. Note that the y-axis is on a log-scale to appreciate the differences
between the three approximations. We see that up to r̄ ≈ 0.18 (dashed line
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FIGURE 1.1: Comparison of true and approximated κ values, with d = 1000

on the plot), the approximation yielded by (1.15) has lower error. Thereafter,
approximation (1.17) becomes better.

1.6 Algorithms

Mixture models based on vMF distributions naturally lead to two algo-
rithms for clustering directional data. The algorithms are centered on soft
and hard-assignment schemes and are titled soft-moVMF and hard-moVMF

respectively. The soft-moVMF algorithm (Algorithm 1) estimates the param-
eters of the mixture model exactly following the derivations in Section 1.4
using EM. Hence, it assigns soft (or probabilistic) labels to each point that
are given by the posterior probabilities of the components of the mixture con-
ditioned on the point. On termination, the algorithm gives the parameters
Θ = {αh, µh, κh}

k
h=1 of the k vMF distributions that model the dataset X , as

well as the soft-clustering, i.e., the posterior probabilities p(h|xi,Θ), for all h
and i.

The hard-moVMF algorithm (Algorithm 2) estimates the parameters of the
mixture model using a hard assignment, or, winner takes all strategy. In
other words, we do the assignment of the points based on a derived posterior
distribution given by (1.13). After the hard assignments in every iteration,
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FIGURE 1.2: Comparison of approximations for varying d, κ = 500.

each point belongs to a single cluster. As before, the updates of the component
parameters are done using the posteriors of the components, given the points.
The crucial difference in this case is that the posterior probabilities are allowed
to take only binary (0/1) values. Upon termination, Algorithm 2 yields a hard
clustering of the data and the parameters Θ = {αh, µh, κh}

k
h=1 of the k vMFs

that model the input dataset X .

Finally, we show that by enforcing certain restrictive assumptions on the
generative model, the spkmeans algorithm (Algorithm 3) can be viewed as a
special case of both the soft-moVMF and hard-moVMF algorithms. In a mixture
of vMF model, assume that the priors of all the components are equal, i.e.,
αh = 1/k, ∀h, and that all the components have (equal) infinite concentration
parameters, i.e., κh = κ→∞, ∀h. Under these assumptions the E-step in the
soft-moVMF algorithm reduces to assigning a point to its nearest cluster, where
nearness is computed as a cosine similarity between the point and the cluster
representative, i.e., a point xi will be assigned to cluster h∗ = argmaxh xT

i µh,
since

p(h∗|xi,Θ) = lim
κ→∞

eκ x
T
i µh∗

∑k
h=1 e

κ x
T
i µh

= 1,

and p(h|xi,Θ)→ 0, as κ→∞ for all h 6= h∗.

To show that spkmeans can also be seen as a special case of the hard-moVMF,
in addition to assuming the priors of the components to be equal, we further
assume that the concentration parameters of all the components are equal,
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FIGURE 1.3: Comparison of approximations for varying r̄ (with d = 1000)

i.e., κh = κ for all h. With these assumptions on the model, the estimation
of the common concentration parameter becomes unessential since the hard
assignment will depend only on the value of the cosine similarity xT

i µh, and
hard-moVMF reduces to spkmeans.

In addition to the above mentioned algorithms, we report experimental
results on another algorithm fskmeans [6] that belongs to the same class in
the sense that, like spkmeans, it can be derived from the mixture of vMF
models with some restrictive assumptions. In fskmeans, the centroids of
the mixture components are estimated as in hard-movMF. The κ value for
a component is explicitly set to be inversely proportional to the number of
points in the cluster corresponding to that component. This explicit choice
simulates a frequency sensitive competitive learning that implicitly prevents
the formation of null clusters, a well-known problem in regular kmeans [14].

1.7 Experimental Results

We now offer some experimental validation to assess the quality of clustering
results achieved by our algorithms. We compare the following four algorithms
on several datasets.
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Algorithm 1 soft-moVMF

Require: Set X of data points on S
d−1

Ensure: A soft clustering of X over a mixture of k vMF distributions
Initialize all αh, µh, κh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
fh(xi|θh)← cd(κh)e

κhµ
T
hxi

end for
for h = 1 to k do

p(h|xi,Θ)←
αhfh(xi|θh)

∑k
l=1 αlfl(xi|θl)

end for
end for
{The M (Maximization) step of EM}
for h = 1 to k do

αh ←
1
n

∑n
i=1 p(h|xi,Θ)

µh ←
∑n

i=1 xip(h|xi,Θ)
r̄ ← ‖µh‖/(nαh)
µh ← µh/‖µh‖

κh ←
r̄d−r̄3

1−r̄2

end for
until convergence

1. Spherical KMeans [20]—spkmeans.

2. Frequency Sensitive Spherical KMeans [6]—fskmeans.

3. moVMF based clustering using hard assignments—hard-moVMF.

4. moVMF based clustering using soft assignments—soft-moVMF.

It has already been established that kmeans using Euclidean distance performs
much worse than spkmeans for text data [49], so we do not consider it here.
Generative model based algorithms that use mixtures of Bernoulli or multino-
mial distributions, which have been shown to perform well for text datasets,
have also not been included in the experiments. This exclusion is done as a
recent empirical study over 15 text datasets showed that simple versions of
vMF mixture models (with κ constant for all clusters) outperform the multi-
nomial model except for only one dataset (Classic3), and the Bernoulli model
was inferior for all datasets [56]. Further, for certain datasets, we compare
clustering performance with latent Dirichlet allocation (LDA) [12] and expo-
nential family approximation of Dirichlet compounded multinomial (EDCM)
models [23].
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Algorithm 2 hard-moVMF

Require: Set X of data points on S
d−1

Ensure: A disjoint k-partitioning of X
Initialize all αh, µh, κh, h = 1, · · · , k
repeat
{The Hardened E (Expectation) step of EM}
for i = 1 to n do

for h = 1 to k do
fh(xi|θh)← cd(κh)e

κhµ
T
hxi

end for

q(h|xi,Θ)←







1, if h = argmax
h′

αh′ fh′(xi|θh′)

0, otherwise.

end for
{The M (Maximization) step of EM}
for h = 1 to k do

αh ←
1
n

∑n
i=1 q(h|xi,Θ)

µh ←
∑n

i=1 xiq(h|xi,Θ)
r̄ ← ‖µh‖/(nαh)
µh ← µh/‖µh‖

κh ←
r̄d−r̄3

1−r̄2

end for
until convergence.

1.7.1 Datasets

The datasets that we used for empirical validation and comparison of our
algorithms were carefully selected to represent some typical clustering prob-
lems. We also created various subsets of some of the datasets for gaining
greater insight into the nature of clusters discovered or to model some partic-
ular clustering scenario (e.g., balanced clusters, skewed clusters, overlapping
clusters etc.). We drew our data from five sources: Simulated, Classic3, Yahoo
News, 20 Newsgroups, and Slashdot. For all the text document datasets, the
toolkit MC [17] was used for creating a high-dimensional vector space model
that each of the four algorithms utilized. Matlab code was used to render
the input as a vector space for the simulated datasets.

• Simulated. We use simulated data to verify that the discrepancy be-
tween computed values of the parameters and their true values is small.
Our simulated data serves the principal purpose of validating the “cor-
rectness” of our implementations. We used a slight modification of the
algorithm given by [53] to generate a set of data points following a given
vMF distribution. We describe herein, two synthetic datasets. The
first dataset small-mix is 2-dimensional and is used to illustrate soft-
clustering. The second dataset big-mix is a high-dimensional dataset
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Algorithm 3 spkmeans

Require: Set X of data points on S
d−1

Ensure: A disjoint k-partitioning {Xh}
k
h=1 of X

Initialize µh, h = 1, · · · , k
repeat
{The E (Expectation) step of EM}
Set Xh ← ∅, h = 1, · · · , k
for i = 1 to n do
Xh ← Xh ∪ {xi} where h = argmax

h′

xT
i µh′

end for
{The M (Maximization) step of EM}
for h = 1 to k do

µh ←

∑

x∈Xh
x

‖
∑

x∈Xh
x‖

end for
until convergence.

that could serve as a model for real world text datasets. Let the triple
(n, d, k) denote the number of sample points, the dimensionality of a
sample point and the number of clusters respectively.

1. small-mix: This data has (n, d, k) = (50, 2, 2). The mean direc-
tion of each component is a random unit vector. Each component
has κ = 4.

2. big-mix: data has (n, d, k) = (5000, 1000, 4). The mean direction
of each component is a random unit vector, and the κ values of the
components are 650.98, 266.83, 267.83, and 612.88. The mixing
weights for each component are 0.251, 0.238, 0.252, and 0.259.

• Classic3. This is a well known collection of documents. It is an easy
dataset to cluster since it contains documents from three well-separated
sources. Moreover, the intrinsic clusters are largely balanced.

1. Classic3 is a corpus containining 3893 documents, among which
1400 Cranfield documents are from aeronautical system papers,
1033Medline documents are from medical journals, and 1460 Cisi

documents are from information retrieval papers. The particular
vector space model used had a total of 4666 features (words). Thus
each document, after normalization, is represented as a unit vector
in a 4666-dimensional space.

2. Classic300 is a subset of the Classic3 collection and has 300 doc-
uments. From each category of Classic3, we picked 100 documents
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at random to form this particular dataset. The dimensionality of
the data was 5471.2

3. Classic400 is a subset of Classic3 that has 400 documents. This
dataset has 100 randomly chosen documents from the Medline

and Cisi categories and 200 randomly chosen documents from the
Cranfield category. This dataset is specifically designed to create
unbalanced clusters in an otherwise easily separable and balanced
dataset. The dimensionality of the data was 6205.

• Yahoo News (K-series). This compilation has 2340 Yahoo news arti-
cles from 20 different categories. The underlying clusters in this dataset
are highly skewed in terms of the number of documents per cluster, with
sizes ranging from 9 to 494. The skewness presents additional challenges
to clustering algorithms.

• 20 Newsgroup. The 20 Newsgroup dataset is a widely used com-
pilation of documents [28]. We tested our algorithms on not only the
original dataset, but on a variety of subsets with differing characteristics
to explore and understand the behavior of our algorithms.

1. News20 is a standard dataset that comprises 19,997 messages,
gathered from 20 different USENET newsgroups. One thousand
messages are drawn from the first 19 newsgroups, and 997 from
the twentieth. The headers for each of the messages are then re-
moved to avoid biasing the results. The particular vector space
model used had 25924 words. News20 embodies the features char-
acteristic of a typical text dataset—high-dimensionality, sparsity
and significantly overlapping clusters.

2. Small-news20 is formed by selecting 2000 messages from the orig-
inal News20 dataset. We randomly selected 100 messages from each
category in the original dataset. Hence this dataset has balanced
classes (though there may be overlap). The dimensionality of the
data was 13406.

3. Same-100/1000 is a collection of 100/1000 messages from 3
very similar newsgroups: comp.graphics, comp.os.ms-windows,
comp.windows.x.

4. Similar-100/1000 is a collection of 100/1000 messages from 3
somewhat similar newsgroups: talk.politics.{guns,mideast,misc}.

2Note that the dimensionality in Classic300 is larger than the that of Classic3. Although

the same options were used in the MC toolkit for word pruning, due to very different words

distributions, fewer words got prunned for Classic300 in the ‘too common’ or ‘too rare’

categories.
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5. Different-100/1000 is a collection of 100/1000 messages from
3 very different newsgroups: alt.atheism, rec.sport.baseball,
sci.space.

• Slash-dot. We harvested news articles from the Slashdot website and
created 2 datasets. For each category in these datasets, we collected
1000 articles primarily tagged with the category label, and then removed
articles that were posted to multiple categories.

1. Slash-7 contains 6714 news articles posted to 7 Slashdot cate-
gories: Business, Education, Entertainment, Games, Music, Sci-
ence and Internet.

2. Slash-6 contains 5182 articles posted to the 6 categories: Biotech,
Microsoft, Privacy, Google, Security, Space.

1.7.2 Methodology

Performance of the algorithms on all the datasets has been analyzed using
mutual information (MI) between the cluster and class labels. MI quantifies
the amount of statistical similarity between the cluster and class labels [16].
If X is a random variable for the cluster assignments and Y is a random
variable for the pre-existing labels on the same data, then their MI is given

by I(X;Y ) = E[ln p(X,Y )
p(X)p(Y ) ] where the expectation is computed over the joint

distribution of (X,Y ) estimated from a particular clustering of the dataset
under consideration. To facilitate computing MI, for soft-moVMF we “harden”
the clustering produced by labeling a point with the cluster label for which it
has the highest value of posterior probability (ties broken arbitrarily). Note
that variants of MI have been used to evaluate clustering algorithms by several
researchers. The authors of [32] used a related concept called variation of
information to compare clusterings. An MDL-based formulation that uses
the MI between cluster assignments and class labels was proposed by [22].

All results reported herein have been averaged over 10 runs. All algorithms
were started with the same random initialization to ensure fairness of compar-
ison. Each run was started with a different random initialization. However,
no algorithm was restarted within a given run and all of them were allowed
to run to completion. Since the standard deviations of MI were reasonably
small for all algorithms, to reduce clutter, we have chosen to omit a display
of error bars in our plots. Also, for practical reasons, the estimate of κ was
upper bounded by a large number (104, in this case) in order to prevent nu-
meric overflows. For example, during the iterations, if a cluster has only one
point, the estimate of κ will be infinity (a divide by zero error). Upper bound-
ing the estimate is similar in flavor to ensuring the estimated covariance of a
multivariate Gaussian in a mixture of Gaussians remains non-singular.
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1.7.3 Simulated Datasets

First, to build some intuition and confidence in the working of our vMF
based algorithms we exhibit relevant details of soft-moVMF’s behavior on the
small-mix dataset shown in Figure 1.4(a).
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FIGURE 1.4: Small-mix dataset and its clustering by soft-moVMF.

The clustering produced by our soft cluster assignment algorithm is shown
in Figure 1.4(b). The four points (taken clockwise) marked with solid circles
have cluster labels (0.15, 0.85), (0.77, 0.23), (.82, .18) and (.11, .89), where a
cluster label (p, 1 − p) for a point means that the point has probability p of
belonging to Cluster 1 and probability 1 − p of belonging to Cluster 2. All
other points are categorized to belong to a single cluster by ignoring small
(less than 0.10) probability values.

The confusion matrix, obtained by “hardening” the clustering produced by

soft-moVMF for the small-mix dataset is

[

26 1
0 23

]

. As is evident from this con-

fusion matrix, the clustering performed by soft-moVMF is excellent, though
not surprising, since small-mix is a dataset with well-separated clusters. Fur-
ther testimony to soft-moVMF’s performance is served by Table 1.2, which
shows the discrepancy between true and estimated parameters for the small-
mix collection.

In the table µ, κ, α represent the true parameters and µ̂,κ̂, α̂ represent the
estimated parameters. We can see that even in the presence of a limited
number of data points in the small-mix dataset (50 points), the estimated
parameters approximate the true parameters quite well.

Before moving onto real datasets let us briefly look at the behavior of the
algorithms on the larger dataset big-mix. On calculating MI as described
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Table 1.2: True and estimated parameters for small-mix using soft-moVMF.

Cluster µ µ̂ κ κ̂ α α̂
1 (-0.251, -0.968) (-0.279, -0.960) 4 3.78 0.48 0.46
2 (0.399, 0.917) (0.370, 0.929) 4 3.53 0.52 0.54

previously we found that all the algorithms performed similarly with MI values
close to one. We attribute this good performance of all the algorithms to the

Table 1.3: Performance of soft-moVMF on big-mix dataset.

minµT µ̂ avg µT µ̂ max |κ−κ̂|
|κ| avg |κ−κ̂|

|κ| max |α−α̂|
|α| avg |α−α̂|

|α|

0.994 0.998 0.006 0.004 0.002 0.001

availability of a sufficient number of data points and similar sized clusters.
For reference Table 1.3 offers numerical evidence about the performance of
soft-moVMF on the big-mix dataset.

1.7.4 Classic3 Family of Datasets

Table 1.4 shows typical confusion matrices obtained for the full Classic3
dataset. We observe that the performance of all the algorithms is quite sim-
ilar and there is no added advantage yielded by using the general moVMF
model as compared to the other algorithms. This observation can be ex-
plained by noting that the clusters of Classic3 are well separated and have
a sufficient number of documents. For this clustering hard-moVMF yielded
κ values of (732.13, 809.53, 1000.04), while soft-moVMF reported κ values of
(731.55, 808.21, 1002.95).

Table 1.4: Comparative confusion matrices for 3 clusters of Classic3 (rows
represent clusters).

fskmeans spkmeans hard-moVMF soft-moVMF

med cisi cran med cisi cran med cisi cran med cisi cran
1019 0 0 1019 0 0 1018 0 0 1019 0 1
1 6 1386 1 6 1386 2 6 1387 1 4 1384

13 1454 12 13 1454 12 13 1454 11 13 1456 13
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Table 1.5: Comparative confusion matrices for 3 clusters of Classic300.

fskmeans spkmeans hard-moVMF soft-moVMF

med cisi cran med cisi cran med cisi cran med cisi cran
29 38 22 29 38 22 3 72 1 0 98 0
31 27 38 31 27 38 62 28 17 99 2 0
40 35 40 40 35 40 35 0 82 1 0 100

Table 1.5 shows the confusion matrices obtained for the Classic300 dataset.
Even though Classic300 is well separated, the small number of documents per
cluster makes the problem somewhat difficult for fskmeans and spkmeans,
while hard-moVMF has a much better performance due to its model flexibility.
The soft-moVMF algorithm performs appreciably better than the other three
algorithms.

Table 1.6: Comparative confusion matrices for 3 clusters of Classic400.

fskmeans spkmeans hard-moVMF soft-moVMF

med cisi cran med cisi cran med cisi cran med cisi cran
27 16 55 27 17 54 56 28 20 0 0 91
51 83 12 51 82 12 44 72 14 82 99 2
23 1 132 23 1 133 1 0 165 19 1 106

It seems that the low number of documents does not pose a problem for
soft-moVMF and it ends up getting an almost perfect clustering for this
dataset. Thus in this case, despite the low number of points per clus-
ter, the superior modeling power of our moVMF based algorithms prevents
them from getting trapped in inferior local-minima as compared to the other
algorithms—resulting in a better clustering.

The confusion matrices obtained for the Classic400 dataset are displayed in
Table 1.6. The behavior of the algorithms for this dataset is quite interesting.
As before, due to the small number of documents per cluster, fskmeans and
spkmeans give a rather mixed confusion matrix. The hard-moVMF algorithm
gets a significant part of the bigger cluster correctly and achieves some amount
of separation between the two smaller clusters. The soft-moVMF algorithm
exhibits a somewhat intriguing behavior. It splits the bigger cluster into two,
relatively pure segments, and merges the smaller two into one cluster. When
4 clusters are requested from soft-moVMF, it returns 4 very pure clusters (not
shown in the confusion matrices) two of which are almost equal sized segments
of the bigger cluster.

An insight into the working of the algorithms is provided by considering
their clustering performance when they are requested to produce greater than
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FIGURE 1.5: Comparison of the algorithms for the Classic3 datasets and the
Yahoo News dataset.
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the “natural” number of clusters. In Table 1.7 we show the confusion matrices
resulting from 5 clusters of the Classic3 corpus. The matrices suggest that
the moVMF algorithms have a tendency of trying to maintain larger clusters
intact as long as possible, and breaking them into reasonably pure and com-
parably sized parts when they absolutely must. This behavior of our moVMF
algorithms coupled with the observations in Table 1.6, suggest a clustering
method in which one could generate a slightly higher number of clusters than
required, and then agglomerate them appropriately.

Table 1.7: Comparative confusion matrices for 5 clusters of Classic3.

fskmeans spkmeans hard-moVMF soft-moVMF

med cisi cran med cisi cran med cisi cran med cisi cran
2 4 312 2 4 323 3 5 292 0 1 1107

8 520 10 8 512 9 511 1 0 5 1455 14
5 936 6 5 944 6 514 1 0 526 2 1

1018 0 1 1018 0 1 0 2 1093 501 0 0
0 0 1069 0 0 1059 5 1451 13 1 2 276

The MI plots for the various Classic3 datasets are given in Figures 1.5(a)-(c).
For the full Classic3 dataset (Figure 1.5(a)), all the algorithms perform almost
similarly at the true number of clusters. However, as the number of clusters
increases, soft-moVMF seems to outperform the others by a significant margin.
For Classic300 (Figure 1.5(b)) and Classic400 (Figure 1.5(c)), soft-moVMF
seems to significantly outperform the other algorithms. In fact, for these two
datasets, soft-moVMF performs substantially better than the other three, even
at the correct number of clusters. Among the other three, hard-moVMF seems
to perform better than spkmeans and fskmeans across the range of clusters.

1.7.5 Yahoo News Dataset

The Yahoo News dataset is a relatively difficult dataset for clustering since
it has a fair amount of overlap among its clusters and the number of points
per cluster is low. In addition, the clusters are highly skewed in terms of their
comparative sizes.

Results for the different algorithms can be seen in Figure 1.5(d). Over the
entire range, soft-moVMF consistently performs better than the other algo-
rithms. Even at the correct number of clusters k = 20, it performs signifi-
cantly better than the other algorithms.
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FIGURE 1.6: Comparison of the algorithms for the 20 Newsgroup and some
subsets.
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FIGURE 1.7: Comparison of the algorithms for more subsets of 20 Newsgroup
data.

1.7.6 20 Newsgroup Family of Datasets

Now we discuss clustering performance of the four algorithms on the 20
Newsgroup datasets. Figure 1.6(a) shows the MI plots for the full News20
dataset. All the algorithms perform similarly until the true number of clusters
after which soft-moVMF and spkmeans perform better than the others. We do
not notice any interesting differences between the four algorithms from this
Figure.

Figure 1.6(b) shows MI plots for the Small-News20 dataset and the results
are of course different. Since the number of documents per cluster is small
(100), as before spkmeans and fskmeans do not perform that well, even at
the true number of clusters, whereas soft-moVMF performs considerably bet-
ter than the others over the entire range. Again, hard-moVMF exhibits good
MI values until the true number of clusters, after which it falls sharply. On
the other hand, for the datasets that have a reasonably large number of doc-
uments per cluster, another kind of behavior is usually observed. All the
algorithms perform quite similarly until the true number of clusters, after
which soft-moVMF performs significantly better than the other three. This
behavior can be observed in Figures 1.6(d), 1.6(f) and 1.7(b). We note that
the other three algorithms perform quite similarly over the entire range of
clusters. We also observe that for an easy dataset like Different-1000, the MI
values peak at the true number of clusters, whereas for a more difficult dataset
such as Similar-1000 the MI values increase as the clusters get further refined.
This behavior is expected since the clusters in Similar-1000 have much greater
overlap than those in Different-1000.



26 Text Clustering with Mixture of von Mises-Fisher Distributions

1.7.7 Slashdot Datasets

The Slashdot dataset was created to test the performance of the moVMF
model on a typical web application. To gain a better understanding of the
relative performance of the model compared to other state-of-the-art models
for text clustering and topic modeling, moVMF was compared with latent
Dirichlet allocation (LDA) [12] and the exponential family approximation of
the Dirichlet compounded multinomial (EDCM) model [23]. Table 1.8 shows
the comparative performance in terms of cluster quality measured by nor-
malized mutual information (NMI), and in terms of running time. Overall,
moVMF gives significantly better clustering results, while the running time is
an order of magnitude less compared to the other algorithms. Similar results
on other benchmark datasets have been reported by [4].

Table 1.8: Performance comparison of algorithms averaged over 5 runs.

NMI Run Time (sec)
Dataset moVMF EDCM LDA vMF EDCM LDA

slash-7 0.39 0.22 0.31 15 40 47
slash-6 0.65 0.36 0.46 6 26 36

Table 1.9 shows the qualitative performance of moVMF model on the Slash-
7 dataset in terms of the top keywords associated with five of the clusters.
The “topics” associated with each cluster is of comparable quality to that
generated by Bayesian topic models such as LDA [4].

Table 1.9: Five of the topics obtained by running batch vMF on slash-7.

music web scientists internet games
apple google nasa broadband gaming
itunes search space domain game
riaa yahoo researchers net nintendo
ipod site science network sony

wikipedia online years verisign xbox
digital sites earth bittorrent gamers
napster ebay found icann wii
file amazon brain service console
drm engine university access video
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1.8 Discussion

The mixture of vMF distributions gives a parametric model-based gener-
alization of the widely used cosine similarity measure. As discussed in Sec-
tion 1.6, the spherical kmeans algorithm that uses cosine similarity arises as a
special case of EM on mixture of vMFs when, among other things, the concen-
tration κ of all the distributions is held constant. Interestingly, an alternative
and more formal connection can be made from an information geometry view-
point [2]. More precisely, consider a dataset that has been sampled following a
vMF distribution with a given κ, say κ = 1. Assuming the Fisher-Information
matrix is identity, the Fisher kernel similarity [25] corresponding to the vMF
distribution is given by

K(xi,xj) = (∇µ ln f(xi|µ))
T (∇µ ln f(xj |µ)) (see (1.1))

= (∇µ(µ
Txi))

T (∇µ(µ
Txj)) = xT

i xj ,

which is exactly the cosine similarity. This provides a theoretical justification
for a long-practiced approach in the information retrieval community.

In terms of performance, the magnitude of improvement shown by the
soft-movMF algorithm for the difficult clustering tasks was surprising, espe-
cially since for low-dimensional non-directional data, the improvements using
a soft, EM-based kmeans or fuzzy kmeans over the standard hard-assignment
based versions are often quite minimal. In particular, a couple of issues ap-
pear intriguing: (i) why is soft-movMF performing substantially better than
hard-movMF, even though the final probability values obtained by soft-movMF

are actually very close to 0 and 1; and (ii) why is soft-movMF, which needs
to estimate more parameters, doing better even when there are insufficient
number of points relative to the dimensionality of the space.

It turns out that both these issues can be understood by taking a closer look
at how soft-moVMF converges. In all our experiments, we initialized κ to 10,
and the initial centroids to small random perturbations of the global centroid.
Hence, for soft-movMF, the initial posterior membership distributions of the
data points are almost uniform and the Shannon entropy of the hidden random
variables is very high. The change of this entropy over iterations for the
News20 subsets is presented in Figure 1.8. The behavior is similar for all
the other datasets that we studied. Unlike kmeans-based algorithms where
most of the relocation happens in the first two or three iterations with only
minor adjustments later on, in soft-movMF the data points are noncommittal
in the first few iterations, and the entropy remains very high (the maximum
possible entropy for 3 clusters can be log2 3 = 1.585). The cluster patterns
are discovered only after several iterations, and the entropy drops drastically
within a small number of iterations after that. When the algorithm converges,
the entropy is practically zero and all points are effectively hard-assigned
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to their respective clusters. Note that this behavior is strikingly similar to
(locally adaptive) annealing approaches where κ can be considered as the
inverse of the temperature parameter. The drastic drop in entropy after a few
iterations is the typical critical temperature behavior observed in annealing.

As text data has only non-negative features values, all the data points lie
in the first orthant of the d-dimensional hypersphere and hence, are naturally
very concentrated. Thus, the final κ values on convergence are very high,
reflecting the concentration in the data, and implying a low final tempera-
ture from the annealing perspective. Then, initializing κ to a low value, or
equivalently a high temperature, is a good idea because in that case when
soft-movMF is running, the κ values will keep on increasing over successive
iterations to get to its final large values, giving the effect of a decreasing tem-
perature in the process, without any explicit deterministic annealing strategy.
Also different mixture components can take different values of κ, as automati-
cally determined by the EM updates, and need not be controlled by any exter-
nal heuristic. The cost of the added flexibility in soft-moVMF over spkmeans
is the extra computation in estimating the κ values. Thus the soft-movMF

algorithm provides a trade-off between modeling power and computational
demands, but one that judging from the empirical results, seems quite worth-
while. The hard-movMF algorithm, instead of using the more general vMF
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FIGURE 1.8: Variation of Entropy of hidden variables with number of Itera-
tions (soft-movMF).

model, suffers because of hard-assignments from the very beginning. The
fskmeans and spkmeans do not do well for difficult datasets due to their hard
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assignment scheme as well as their significantly less modeling capabilities.

Finally, a word on model selection, since choosing the number of clusters
remains one of the widely debated topics in clustering [31]. A new objective
criterion for evaluation and model-selection for clustering algorithms was pro-
posed in [8]: how well does the clustering algorithm perform as a prediction
algorithm. The prediction accuracy of the clustering is measured by the PAC-
MDL bound [13, 8] that upper-bounds the error-rate of predictions on the test-
set. The way to use it for model-selection is quite straight-forward: among a
range of number of clusters, choose the one that achieves the minimum bound
on the test-set error-rate. Experiments on model selection applied to several
clustering algorithms were reported by [8]. Interestingly, the movMF-based
algorithms almost always obtained the ‘right number of clusters’—in this case,
the underlying labels in the dataset were actually known and the number of
labels were considered to be the right number of clusters. It is important to
note that this form of model-selection only works in a semi-supervised setting
where a little amount of labeled data is available for model selection.

1.9 Conclusions and Future Work

From the experimental results, it seems that high-dimensional text data
have properties that match well with the modeling assumptions of the vMF
mixture model. This motivates further study of such models. For example,
one can consider a hybrid algorithm that employs soft-moVMF for the first
few (more important) iterations, and then switches to hard-moVMF for speed,
and measure the speed-quality tradeoff that this hybrid approach provides.
Another possible extension would be to consider an online version of the EM-
based algorithms as discussed in this paper, developed along the lines of [34].
Online algorithms are particularly attractive for dealing with streaming data
when memory is limited, and for modeling mildly non-stationary data sources.
We could also adapt a local search strategy such as the one in [18], for incre-
mental EM to yield better local minima for both hard and soft-assignments.

The vMF distribution that we considered in the proposed techniques is one
of the simplest parametric distributions for directional data. The iso-density
lines of the vMF distribution are circles on the hypersphere, i.e., all points on
the surface of the hypersphere at a constant angle from the mean direction.
In some applications, more general iso-density contours may be desirable.
There are more general models on the unit sphere, such as the Bingham dis-
tribution, the Kent distribution, the Watson distribution (already discussed
in the previous section), the Fisher-Bingham distribution, the Pearson type
VII distributions [42, 30], etc., that can potentially be more applicable in the
general setting. For example, the Fisher-Bingham distributions have added
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modeling power since there are O(d2) parameters for each distribution. How-
ever, the parameter estimation problem, especially in high-dimensions, can
be significantly more difficult for such models, as more parameters need to
estimated from the data. One definitely needs substantially more data to get
reliable estimates of the parameters. Further, for some cases, e.g., the Kent
distribution, it can be difficult to solve the estimation problem in more than
3-dimensions [36]. Hence these more complex models may not be viable for
many high-dimensional problems. Nevertheless, the tradeoff between model
complexity (in terms of the number of parameters and their estimation), and
sample complexity needs to be studied in more detail in the context of direc-
tional data.
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