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Abstract Numerous applications in computer vision and machine learning rely on
representations of data that are compact, discriminative, and robust while satisfying
several desirable invariances. One such recently successful representation is offered
by symmetric positive definite (SPD) matrices. However, the modeling power of
SPD matrices comes at a price: rather than a flat Euclidean view, SPD matrices are
more naturally viewed through curved geometry (Riemannian or otherwise) which
often complicates matters. We focus on models and algorithms that rely on the ge-
ometry of SPD matrices, and make our discussion concrete by casting it in terms of
covariance descriptors for images. We summarize various commonly used distance
metrics on SPD matrices, before highlighting formulations and algorithms for solv-
ing sparse coding and dictionary learning problems involving SPD data. Through
empirical results, we showcase the benefits of mathematical models that exploit the
curved geometry of SPD data across a diverse set of computer vision applications.

1 Introduction

Efficient representations that compactly capture salient properties of data form the
basis of every algorithm in computer vision and machine learning. Consider for in-
stance the task of tracking a person across video frames given (i) a video sequence,
and (ii) a bounding box around the object to be tracked (see Figure 1). Methods for
this task typically first generate a representation (descriptor) of the image patch in-
side the bounding box and then proceed further. Success of the tracking application
relies on several desirable properties, for instance (i) ability of the representation to
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uniquely characterize the contents of the tracked patch against any other patch in a
video frame; (ii) robustness of the descriptor to camera sensor noise; (iii) stability
despite changes in illuminations; (iv) tolerance for occlusions; and (v) robustness to
affine deformations of the object.

A simple descriptor for tracking could be the normalized color histogram of an
image patch. This choice partially satisfies properties such as (i), (ii), and (iii). We
can improve this naive color descriptor by adding additional statistics of the image
patch, such as the shape and pose of the object, texture of the patch, edge orienta-
tions, etc. However, each of these additional data features requires high-dimensional
descriptors for its representation, whereby the final augmented data descriptor can
be extremely large. This in turn raises storage concerns, while also complicating
learning, recognition, and tracking due to the curse of dimensionality.

Fig. 1 An illustrative application: people tracking in a video sequence. We are given a video se-
quence and a bounding box of the person to be tracked (dark box), and the problem is to track the
person along the sequence, i.e., to generate the lighter (yellow) boxes in subsequent frames.

A simple but effective alternative representation that fuses such multi-modal cues
was introduced in [37], dubbed region covariance descriptors. The key idea is to
model an image patch using correlations between different low-level features. To
this end, we extract raw image features such as color, intensity gradients, etc., from
every pixel within the desired patch. Then we stack these raw features and compute
their covariance matrix, resulting in the covariance descriptor (for the patch).

Although it seems surprising that such a simple approach can lead to a pow-
erful descriptor, we must note that the diagonal of the covariance matrix captures
the statistical variance of each individual feature and the off-diagonals capture the
correlation between different features. Thus, this descriptor captures second-order
co-occurrences of multimodal features. Since this matrix has size quadratic only in
the number of features, it is independent of the number of pixels in the patch and is
thus very compact. Also, since the features means are subtracted when computing
the covariance, this descriptor implicitly applies mean-filtering to the data, providing
noise robustness. Due to these unique properties, the use of covariance descriptors
has proliferated into several applications in computer vision and beyond.
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We note that SPD matrices also play an important role as data descriptors
in several other non-vision applications, such as, diffusion tensor imaging [3],
brain-computer interfaces [17], sound compression [45], polarimetric image mod-
eling [24], virus classification [21], and as quantum density matrices [20]. While,
some of these matrices are not covariances, they are indeed symmetric positive def-
inite and the algorithms proposed in this chapter are directly applicable.

While constructing covariance descriptors is simple (see Section 1.1), using them
can be demanding. The key difficulty arises due to the non-Euclidean nature of co-
variances. Although it is tempting to simply view SPD matrices using the geometry
of their embedding (Euclidean) space [2], the corresponding manifold is not com-
pact which can lead to irrelevant solutions for certain applications [4]. Therefore,
several alternative geometries for SPD matrices have been considered—Section 1.2
outlines some of the more widely used choices.

Subsequently, in Section 2 we illustrate use of these geometries on the concrete
tasks of sparse coding and dictionary learning. These problems have been widely
studied (for vectors) and are important to a variety of applications [34]. However,
their extension to SPD matrix data is non-trivial and less studied; we describe two
different frameworks that achieve these extensions.

1.1 Covariance Descriptors and Example Applications

Before delving into theoretical details, we recall below details on construction of
covariance descriptors and summarize two illustrative applications.

Definition 1 (Covariance Descriptor). Suppose we have a data instance I ∈ Rn

(image patch, video snippet, etc.). Let f j
1 , f j

2 , · · · , f j
d , (each f j

i ∈ R, j = 1,2, · · · ,n)
represent d features computed for the j-th component of I (such as image inten-
sity gradients, filter outputs, etc.). Let fff j = [ f j

1 , f j
2 , · · · , f j

d ]
T ; then the Covariance

Descriptor S for I is the d×d covariance matrix given by:

S = 1
n ∑

n
j=1( fff j−µµµ)( fff j−µµµ)T , (1)

where µ = 1
n ∑

n
j=1 fff j is the mean feature vector. We will assume that the features

are linearly independent, in which case S ∈ Sd
+, the cone of d×d SPD matrices.

1.1.1 Illustrative Application 1: People Tracking

We continue with our example of people tracking described in Figure 1. One impor-
tant choice that we must make is what features to use for constructing the descriptor.
For people tracking, we will first consider a texture based approach as described
in [37] that uses raw image intensity features from each pixel. Given a patch I, let
Ir(x,y), Ig(x,y), Ib(x,y) represent the red, green, and blue color intensities respec-
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tively of pixel at spatial coordinates (x,y) in the patch. Further, let Ix(x,y), Iy(x,y)
represent the gray scale image intensity gradients in the horizontal and vertical di-
rections respectively. Then, we define

fff (x,y) = [Ir(x,y), Ig(x,y), Ib(x,y), Ix(x,y), Iy(x,y)]
T (2)

as the feature vector. A covariance descriptor capturing color and shape of the ob-
jects in I is then given by:

Stracking =
1
|I|∑x,y( fff (x,y)−µµµ)( fff (x,y)−µµµ)T , (3)

where µ = 1
|I| ∑x,y fff (x,y) is the mean feature, and |I| is the patch size. Note that the

order of the pixels in the patch are ignored when computing the covariance matrix,
thus providing invariance to changes in the pose of the object. However, we may
associate additional spatial correlations between the pixel features by including the
(x,y) coordinates as well into (2). In case, rotational invariance is desired, instead of
including (x,y) coordinates, we could include

√
x2 + y2 as an additional feature for

a pixel at location (x,y). Curvature information could be easily included by comput-
ing the second-order gradients for every pixel and augmenting (2). This illustration
shows the flexibility of the covariance descriptor to blend any feature of choice into
the framework easily. The next example shows a richer set of features.

1.1.2 Illustrative Application 2: Face Recognition

While using raw features such as gradients could be sufficient to capture textures,
recognizing faces require much more expressive and discriminative feature sets.
In [39], the authors propose to use covariance descriptors for this task where the
features are generated from Gabor wavelets. These filters are believed to reflect the
human visual system [35] and measures the energy distribution in the image patch
at various scales and orientations. These filters have been previously shown to be
useful to extract discriminative and subtle features suitable for recognition [31];
using them within a covariance descriptor setup is shown to lead to significantly
better recognition performance in [39], via capturing their second-order statistics.
To this end, 40 Gabor wavelet filters are first designed consisting of 8 orientations
and 5 different scales. Next, small patches centered at each pixel in the face patch
are convolved with these filters, thus forming a 40 dimensional feature vector for
each pixel, which precedes applying the steps described above to generate 40× 40
covariance descriptors.

Covariance descriptors have been found to be useful in several other vision ap-
plications, such as visual surveillance [33, 36, 51], object recognition [22, 27], ac-
tion recognition [47, 25, 50], image set classification [52], and emotion classifica-
tion [53], to name a few. Almost all these works use a similar setup for computing
the covariances, except that they use various features suitable for the application.
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1.2 Geometry of SPD Matrices

To effectively use covariance descriptors we must next define schemes to compute
similarity / distance between two descriptors. Intuitively, the distance measure en-
forces some geometry on the space of these descriptors, and which particular geom-
etry is preferable depends on the application. As alluded to previously, a variety of
SPD geometries have been explored, the simplest of which is the usual Euclidean
geometry where the distance between SPD matrices XXX and YYY is simply the Frobenius
distance given by

dF(XXX ,YYY ) := ‖XXX−YYY‖F . (4)

However, dF is neither affine invariant nor does it lead to a complete metric space
(due to singular boundary). Affine invariance is important in applications such as
diffusion MRI [40] while completeness is crucial when defining convergent se-
quences on the SPD manifold.

Two basic alternatives popular in computer vision are (i) the affine invariant
Riemannian metric (AIRM) [40]; and (ii) the log-Euclidean Riemannian metric
(LERM) [4]. Both measures induce a Riemannian geometry; the former induces a
curved geometry while the latter “flattens” the manifold by mapping into the tangent
space (which is Euclidean). The corresponding distance functions are

dR(XXX ,YYY ) :=
∥∥∥LogXXX−1/2YYY XXX−1/2

∥∥∥
F
, (5)

dLE(XXX ,YYY ) := ‖LogXXX−LogYYY‖F , (6)

where XXX−1/2 is the matrix square-root of SPD matrix XXX−1 and Log is the princi-
pal matrix logarithm. Distance (5) is affine invariant, and enjoys a host of other
remarkable properties [7, Ch. 6]. LERM, however, is not affine invariant though
it is rotation and scale invariant separately. Both AIRM and LERM are computa-
tionally demanding: for d× d SPD matrices, assuming approximately 4d3/3 flops
for eigendecomposition and d3 for matrix multiplication, these distances requires
approximately 14d3/3 flops.

To reduce the computational cost, while preserving affine invariance and other
geometric properties, the Stein distance was introduced in [15, 48]; it is defined as

dS(XXX ,YYY ) :=
[
logdet

(XXX+YYY
2

)
− 1

2 logdet(XXXYYY )
]1/2

. (7)

Computing dS requires only three Cholesky decompositions, at a total cost of d3

flops. Moreover, dS is analytically simpler to work with, as its gradients are also
simpler to obtain than either AIRM or LERM. Consequently, it has found applica-
tion is a number of recent works, some of which we will refer to in the sequel.
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2 Application to Sparse Coding and Dictionary Learning

After outlining a few basic SPD geometries, we are now ready to describe concrete
applications where specific properties of SPD matrices play a role. In particular,
we discuss sparse coding and dictionary learning for SPD valued data. The first
model we cover is generalized dictionary learning (GDL), a direct extension of
usual (vector) dictionary learning. Our second model uses the natural Riemannian
geometry of SPD matrices, and measures sparse reconstruction loss using the AIRM
distance. There are other formulations for dictionary learning and sparse coding on
SPD matrices, for instance [25, 26, 46]; these differ from our model primarily in the
formulation of the sparse reconstruction loss.

2.1 Dictionary Learning with SPD atoms

Traditional dictionary learning takes vectors xxxi ∈ Rp (1 ≤ i ≤ m) and constructs a
matrix BBB ∈ Rp×n and code vectors ααα i ∈ Rn (usually n� p), so that

xxxi ≈ BBBααα i, and ααα i is sparse, for 1≤ i≤ m.

The sparsity requirement on ααα i is commonly enforced using `0- or `1-norm penalties
or constraints. Since both BBB and ααα i are unknown dictionary learning usually results
in a difficult nonconvex optimization task. Nevertheless, it has found remarkable
success toward sparse coding and other applications [18].

We depart from the above setup in that we consider input matrices XXX i ∈ Rp×q,
1 ≤ i ≤ m. Then, instead of a dictionary matrix BBB we learn a tensor B, which we
identify with a linear operator B : Rn×r→ Rp×q so that

XXX i ≈ B(AAAi), and AAAi is sparse, for 1≤ i≤ m. (8)

Using (8), one model of GDL is the following [49]:

minAAA1,...,AAAm,B
1
2 ∑

m
i=1 ‖XXX i−B(AAAi)‖2

F +∑
m
i=1 βisp(AAAi), (9)

where βi > 0 are scalar hyperparameters while sp(AAA) enforces some notion of spar-
sity. For instance, sp(AAA) could be the cardinality function ‖AAA‖0, its convex relaxation
‖AAA‖1, the matrix rank rank(AAA) or its convex relaxation, the trace-norm ‖AAA‖tr.

Formulation (9) requires one more modification for SPD valued inputs. Specifi-
cally, we ensure that the approximation B(AAAi) is also SPD by defining B via

B(AAA) := BBBAAABBBT , for some matrix BBB, (10)

and additionally restricting to AAA� 0. Observe that (10) can be written as

vec(BBBAAABBBT ) = (BBB⊗BBB)vec(AAA), (11)
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where vec stacks columns of its argument and the operator B is encoded (isomor-
phically) by the product BBB⊗BBB.

It is easy to show that (11) requires md2 + d2n+mn storage for m covariance
matrices of size d× d, while (10) takes md2 + dn+mn. Computationally, also the
first formulation is cheaper, so we prefer it. As to AAA, we consider two choices:
1. AAA = Diag(α1, . . . ,αn) where αi ≥ 0; and
2. AAA = ∑

k
j=1 ααα jααα

T
j , a potentially low-rank (if k < n) SPD matrix.

Although diagonal AAA might appear to be simple, it is quite powerful. Indeed, with
it GDL models SPD matrices as weighted sums of rank-one matrices since

XXX ≈ BBBAAABBBT = ∑
n
i=1 αibbbibbbT

i , where αi = AAAii, (12)

which offers a rich yet computationally tractable model.

2.1.1 Stochastic Gradient for GDL

Now we derive a stochastic-gradient procedure for approximately solving GDL. We
use the convex function sp(AAA) = ‖AAA‖1 for enforcing sparsity. Then, using represen-
tation (12) with diagonal AAAi, the GDL optimization problem (9) becomes

min
AAA1,...,AAAN≥0,BBB

1
2 ∑

m
i=1 ‖XXX i−BBBAAAiBBBT‖2

F +∑
m
i=1 βi‖AAAi‖1. (13)

Problem (13) is nonconvex and difficult. However, for a fixed dictionary BBB, it is
individually convex in (AAA1, . . . ,AAAm). It is thus amenable to the idea of alternating
between updating BBB and optimizing over (AAA1, . . . ,AAAm). But in many applications
the number of input data points m is very large, so the alternating steps can easily
become rather costly. Therefore, we follow a stochastic gradient approach that can
scale to large data sets, as long as the stochastic gradients can be obtained efficiently.

To prevent degenerate solutions we also impose normalization constraints ‖bbb j‖2≤
1 on each column of matrix BBB. We denote these requirements by the feasible set B.
We run stochastic gradient using K “mini-batches,” for which we rewrite (13) as

min
BBB∈B

Φ(BBB) := ∑
K
b=1 φb(BBB), (14)

where φb denotes the objective function for batch b. Let kb be the size of batch b
(1≤ b≤ K) containing the matrices

{
XXX j(i)|1≤ i≤ kb

}
, where j(i) is an appropriate

index in 1, . . . ,m. With this notation, the objective function for batch b is

φb(BBB) := min
AAA j(1),...,AAA j(k)≥0

1
2 ∑

kb
i=1 ‖XXX j(i)−BBBAAA j(i)BBB

T‖2
F +β j(i)‖AAA j(i)‖1. (15)

We apply stochastic-gradient to (14), which performs the iteration

BBBt+1 = ΠB(BBBt −ηt∇BBBφb(t)(BBBt)), b(t) ∈ [1..K], t = 0,1, . . . , (16)
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where ΠB denotes orthogonal projection onto B. Assuming (15) has a unique so-
lution, the gradient ∇BBBφb(t) is well defined. Specifically, let (AAA∗j(1), . . . ,AAA

∗
j(k)) be the

argmin of (15). Then, writing b≡ b(t), we have

∇BBBφb(BBB) = 2∑
kb
i=1

(
BBBAAA∗j(i)BBB

T −XXX j(i)

)
BBBAAA∗j(i). (17)

The computationally intensive part is to compute (17), which we now consider.

2.1.2 Sparse Coding: Computing ∇φb

Observe that (15) is a sum of kb independent problems, so it suffices to describe the
computation for a subproblem of the form

min
AAA≥0

f (AAA) := 1
2‖XXX−BBBAAABBBT‖2

F +β‖AAA‖1. (18)

Since AAA ≥ 0 and diagonal, problem (18) is nothing but a regularized nonnegative
least-squares (NNLS) problem. There exist a variety of solvers for NNLS, for ex-
ample, LBFGS-B [32], or Spectral Projected-Gradient (SPG) [8]. We prefer to use
the latter, as it is not only simple, but also exhibits excellent empirical performance.

In Section 3, we will apply this sparse coding scheme to the problem of nearest
neighbor retrieval on covariance datasets. But, before proceeding to the experiments,
we will elucidate a much richer and more powerful dictionary learning and sparse
coding scheme on SPD matrices that leads to significantly better results on vari-
ous applications; this scheme uses the natural Riemannian geometry for the sparse
construction loss instead of the Euclidean distance as in (9).

2.2 Riemannian Dictionary Learning and Sparse Coding

Recall that we wish to compute a dictionary with “SPD atoms”. We work on mani-
fold Md

n = ∏
n
i=1Sd

+ ⊂ Rd×d×n, which is the Cartesian product of n SPD manifolds.
Our goals are (i) to learn a dictionary B∈Md

n in which each slice represents an SPD
dictionary atom BBB j ∈ Sd

+ 1≤ j ≤ n; and (ii) to approximate each XXX i as a sparse conic
combination of atoms in B; i.e., XXX i ∼B(ααα i) where αi ∈Rn

+ and B(ααα) := ∑
n
i=1 ααα iBBBi.

With this notation our dictionary learning and sparse coding (DLSC) problem is

min
B∈Md

n ,ααα∈Rn×m
+

1
2 ∑

m
j=1 dR

2 (XXX j,Bααα j)+Sp(ααα j)+Ω(B), (19)

where Sp and Ω regularize the codes ααα j and the dictionary tensor B respectively.
Formulation (19) is a direct SPD analog of the vector DL setup. Instead of learn-

ing a dictionary matrix for vectors, we learn a third-order tensor dictionary as our in-
put is matricial data. We constraint the sparse codes to be non-negative to ensure that
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the linear combination B(ααα) remains SPD. In contrast to usual DL problems where
the dictionary learning and sparse coding subproblems are convex, problem (19) is
much harder: it is neither convex in itself nor are its subproblems convex.

Pragmatically speaking, this lack of subproblem convexity is not too damaging:
we just need a set of dictionary atoms that can sparse code the input data, and such
a set can still be computed by performing an alternating minimization (actually, just
descent here). We describe the details below.

2.2.1 Dictionary Learning Subproblem

Assuming that the sparse code vectors ααα are available, the subproblem of updating
the dictionary atoms can be separated from (19) and written as:

min
B∈Md

n

Θ(B) := 1
2 ∑

m
j=1 dR

2 (XXX j,Bα j)+Ω(B),

= 1
2 ∑

m
j=1

∥∥∥Log
(

XXX−1/2
j (Bα j)XXX−1/2

j

)∥∥∥2

F
+Ω(B). (20)

Due to its good empirical performance we choose Ω(B) := λB ∑
n
i=1 Tr(BBBi).

Riemannian CG

Among several first-order alternatives for optimizing over the SPD atoms (such
as the steepest-descent, trust-region methods [1], etc.), the Riemannian Conjugate
Gradient (CG) method [2, Ch. 8], was found to be empirically more stable and faster.
Below, we provide a short exposition of the CG method in the context of minimizing
over B which belongs to an SPD product manifold.

For an arbitrary non-linear function θ(x), x ∈ Rn, the CG method uses the fol-
lowing recurrence at step k+1

xk+1 = xk + γkξk, (21)

where the direction of descent ξk is

ξk =−gradθ(xk)+µkξk−1, (22)

with gradθ(xk) defining gradient of θ at xk (ξ0 =−gradθ(x0)), and µk given by

µk =
(gradθ(xk))

T (gradθ(xk)−gradθ(xk−1))

gradθ(xk−1)T gradθ(xk−1)
, (23)

The step-size γk in (21) is usually found via an efficient line-search method [6]. It can
be shown that [6, Sec. 1.6] when θ is quadratic with a Hessian Q, the directions gen-
erated by (22) are Q-conjugate to previous directions of descent ξ 0,ξ 1, · · · ,ξ k−1;
thereby (21) providing the exact minimizer of f in fewer than d iterations (d is the
manifold dimension).
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For B ∈Md
n and referring back to (20), the recurrence in (21) uses the Rieman-

nian retraction [2, Ch. 4] and the gradient gradΘ(Bk) is the Riemannian gradient
(here Bk represents the dictionary tensor at the k-th iteration). This leads to an
important issue: the gradients gradΘ(Bk) and gradΘ(Bk−1) belong to two differ-
ent tangent spaces TBkM and TBk−1M respectively, and thus cannot be combined as
in (23). Thus, following [2, Ch. 8] we resort to vector transport – a scheme to trans-
port a tangent vector at P ∈M to a point ExpP(S) where S ∈ TPM and Exp is the
exponential map. The resulting formula for the direction update becomes

ξBk =−gradΘ(Bk)+µkTγkξk−1
(ξk−1), (24)

where

µk =

〈
gradΘ(Bk),gradΘ(Bk)−T

γkξ k−1 (gradΘ(Bk−1))
〉

〈gradΘ(Bk−1),gradΘ(Bk−1)〉
. (25)

Here for Z1,Z2 ∈ TPM, the map TZ1(Z2) defines the vector transport given by:

TZ1(Z2) =
d
dt

expP(Z1 + tZ2)

∣∣∣∣
t=0

. (26)

It remains to derive an expression for the Riemannian gradient gradΘ(B).

Riemannian Gradient

Lemma 1 connects the Riemannian gradient to the Euclidean gradient of Θ(B).

Lemma 1. For a dictionary tensor B ∈Md
n , let Θ(B) be a differentiable function.

Then the Riemannian gradient gradΘ(B) satisfies the following equation:

〈gradΘ(B),ζ 〉B = 〈∇Θ(B),ζ 〉I ,∀ζ ∈ TPMd
n , (27)

where ∇Θ(B) is the Euclidean gradient of Θ(B). The Riemannian gradient for the
i-th dictionary atom is given by gradi Θ(B) = BBBi∇BBBiΘ(B)BBBi.

Proof. See [2, Ch. 5]. The latter expression is obtained by substituting the inner
product on the LHS of (27) by its definition in (5).

The Euclidean gradient ∇Θ(B) is obtained as follows: let SSS j = XXX−1/2
j and

M j(B) := B(ααα j) = ∑
n
i=1 ααα i

jBBBi. Then,

Θ(B) = 1
2 ∑

m
j=1 Tr(Log(SSS jM j(B)SSS j)

2)+λB∑
n
i=1 Tr(BBBi). (28)

The derivative ∇BBBiΘ(B) of (28) w.r.t. to atom BBBi is:

∑
m
j=1 α

i
j
(
SSS j Log(M j(B))

(
M j(B)

)−1SSS j
)
+λBI. (29)
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2.2.2 Sparse Coding Subproblem

Referring back to (19), we now consider the sparse coding subproblem. Given a
dictionary tensor B and a data matrix XXX j ∈ Sd

+, this subproblem requires solving

min
ααα j≥0

φ(ααα j) := 1
2 dR

2 (XXX i,B(ααα j))+Sp(ααα j)

= 1
2

∥∥∥Log
(
∑

n
i=1 α

i
jXXX
−1/2BBB jXXX−1/2)∥∥∥2

F
+Sp(ααα j),

(30)

where α i
j is the i-th component of ααα j and Sp is a sparsity inducing function. For sim-

plicity, we use Sp(ααα) = λ‖ααα‖1, where λ > 0 is a regularization parameter. Since we
are working with ααα ≥ 0, we replace this penalty by λ ∑i αi, which is differentiable.

Problem (30) measures reconstruction quality offered by a sparse non-negative
linear combination of the atoms to a given input point XXX . It will turn out (see exper-
iments in Section 3) that the reconstructions obtained via this model actually lead
to significant improvements in performance over sparse coding models that ignore
SPD geometry. But this gain comes at a price: objective (30) is difficult to optimize,
and remains difficult even if we take into account geodesic convexity of dR.

While in practice this nonconvexity does not seem to hurt our model, we di-
gress below to show a surprising but intuitive constraint under which Problem (30)
actually becomes convex. Although we do not exploit this observation to save on
computation, we highlight it here due to its theoretical appeal.

Theorem 1 ([14]). The function φ(α) := dR
2(∑i αiBi,X) is convex on the set

A := {α |∑i αiBi � X , and α ≥ 0}. (31)

2.2.3 Optimizing Sparse Codes

We minimize (30) using a projected gradient method. Specifically, we run the itera-
tion

α
k+1←P[αk−ηk∇φ(αk)], k = 0,1, . . . , (32)

where P[·] denotes the projection operator defined as

P[α]≡ α 7→ argminα ′
1
2‖α

′−α‖2
2, s.t. , α

′ ∈A . (33)

To implement iteration (32) we need to specify three components: (i) the stepsize
ηk; (ii) the gradient ∇φ(αk); and (iii) the projection (33). Lemma 2 shows how
to compute the gradient. The projection task (33) is a special least-squares (dual)
semidefinite program (SDP), which can be solved using any SDP solver. However,
in the interest of speed, we avoid the heavy computational burden imposed by an
SDP, and drop the constraint α ∈A . Although this sacrifices convexity, the resulting
computation is vastly easier, and work well empirically. With this change, we simply
have P[α] = max(0,α).
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It remains to specify how to obtain the stepsize ηk. There are several choices in
the nonlinear programming literature [6], but most of them can be expensive in our
setting. We wish to avoid expensive iterative algorithms for computing ηk, and thus
choose to use Barzilai-Borwein stepsizes [5] that have closed forms and that often
work remarkably well in practice [5, 43]. In particular, we use the Spectral Projected
Gradient (SPG) method [9] by adapting a simplified implementation of [43].

Lemma 2. Let BBB, CCC, and XXX be fixed SPD matrices. Consider the function f (x) :=
dR

2(xBBB+CCC,XXX). The derivative f ′(x) is given by

f ′(x) = 2Tr(log(SSS(xBBB+CCC)SSS)SSS−1(xBBB+CCC)−1BBBSSS), where SSS = XXX−1/2. (34)

Proof. Introduce the shorthand MMM(x)≡ xBBB+CCC. Using (5) we have

f (x) = Tr([log(SSSMMM(x)SSS)]T [log(SSSMMM(x)SSS)]),

The chain-rule of calculus then immediately yields the desired result

f ′(x) = 2Tr(log(SSSMMM(x)SSS)(SSSMMM(x)SSS)−1SSSMMM′(x)SSS).

Writing MMM(αp) = αpBBBp +∑i6=p αiBBBi and using Lemma 2 we obtain

∂φ(α)

∂αp
= Tr

(
log
(
SSSMMM(αp)SSS

)(
SSSMMM(αp)SSS

)−1SSSBBBpSSS
)
+λ . (35)

Computing (35) for all α is the dominant when running SPG. A a naı̈ve im-
plementation of (35) costs O(nd3), but with slight care this cost can be reduced
O(nd2)+O(d3) [14].

3 Applications of Sparse Coding

In this section, we describe an application of sparse coding for covariances, namely
nearest neighbor (NN) retrieval. This is a fundamental task in several computer vi-
sion and machine learning applications in which the goal is to find a data point
closest to a given query point within a large database.

3.1 Nearest Neighbors on Covariance Descriptors

Suppose we have obtained a sparse code matrix AAA using either GDL or Riemannian
DLSC for an input matrix XXX . Since, we use an overcomplete dictionary typically
only a few dictionary atoms participate in the reconstruction of XXX . Thus, with high
probability dissimilar input points will obtain different sparse codes. In other words,
suppose that we use a dictionary with n rank-one atoms and that only r of these
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matrices are used to obtain a reconstruction for a given input. Then, there are
(n

r

)
unique basis combinations possible. With appropriate choices of n and r, we will
likely obtain a unique set of rank-one matrices that encode XXX .

Using this intuition, we propose a sorted integer tuple representation to encode
an input covariance matrix; the integers simply index the dictionary atoms used in
the encoding. Formally, let XXX ∈ Sd

+ be the input, B an overcomplete dictionary, and
uuui (i ∈ [n]) a unique identifier for the i-th atom of B. If ααα = (α1,α2, · · · ,αn)

T is the
coefficient vector corresponding to XXX ≈ B(ααα), then the tuple h(XXX) = 〈uuui, · · · ,uuuk〉 is
the hash code of XXX . We choose only those identifiers for which the code α j is larger
than a threshold ε ≥ 0.

In our case, we assume that the ui’s are just integers in {1, . . . ,n} and that the
hash code is a sorted tuple of these indices. The threshold ε helps select significant
coefficients from the sparse coding, and makes the chosen code robust to noise. This
coded representation enables the use of hash tables for fast locality sensitive hash-
ing. Let us see how. Each column of the dictionary is identified by its index number;
so each hash-key is a set of integers encoded as a character string. To tackle colli-
sions in the hash buckets, the colliding input matrices are organized as a linked list.
If the linked list gets too long, the data within a hash bucket can be further orga-
nized using a metric tree or any other efficient data structure. This idea of hashing
is a direct adaptation of the scheme proposed in [12].

Given a query SPD matrix, we solve the sparse coding problem to first obtain the
corresponding sparse coefficients. From these coefficients we compute the above
hash code query the hash table. If there are several entries in a matching bucket, we
run a linear scan using the AIRM distance (5) to find the best matches (the bucket
can also be organized for faster than linear scans, if desired).

3.2 GDL Experiments

This section illustrates nearest neighbor search based upon our dictionary learning
examples. We use the following datasets:

– Face recognition. The FERET face dataset [42, 41] contains facial appearances
segregated into multiple classes. Each class has different views of the face of the
same person for varying poses. We selected six images from each class. Inspired
by the success of covariances created from Gabor filters for face recognition [31],
we applied 40 Gabor filters on each image, later combining the filters into a co-
variance of size 40× 40. We created a covariance dataset of approximately 10K
descriptors using this approach.

– Texture classification. Texture is an essential cue in many data mining appli-
cations like satellite imagery, industry inspection systems, etc. Thus, we used a
combination of the Brodatz dataset [11] and the Curret dataset [16] for creating
a texture covariance dataset. Brodatz dataset contains approximately 111 texture
classes, while Curret dataset contains 60 classes. To create the covariances data,
we used the feature vector F = [x,y, I, Ix, Iy], where the first two dimensions are
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the relative location of the pixel with respect to the texture patch, the third dimen-
sion encodes the grayscale intensity, and the last two dimensions capture the pixel
gradients. Thus, each covariance is 5×5, and we created approximately 40K such
covariances.

Methods Compared. We compare against locality sensitive hashing (LSH) of vec-
torized covariances (VEC), hashing after log-Euclidean embedding (L2LSH), and
kernelized LSH [28] using an RBF kernel using the AIRM distance.

3.2.1 GDL Experimental Setup

We implemented GDL in Matlab. For L2LSH, VEC, and HAM we used the C-
implementation from the Caltech Toolbox.1 Since the programs have different com-
putational baselines, we cannot compare their retrieval speed. Rather, we show in
Table 1 the average portion of each of the datasets scanned by GDL to find the near-
est neighbor. The geodesic distance was used to resolve hash table collisions. As is
seen from the table, the percentage coverage is low, which is exactly as desired.

Dataset Faces Texture
Avg. coverage (%) 3.54 6.26

Table 1 Percentage of the database searched to find the nearest neighbor using sparse codes gen-
erated by GDL.

Next, we substantiate effectiveness of our NN retrieval scheme. To this end, we
split each of the datasets into database and query sets (approximately 5% of the
data). To compute the ground truth we use a linear scan over the database using
geodesic distances to measure nearness. Since ensuring exact NN is hard, we restrict
our search to Approximate Nearest Neighbors (ANN). Assume QQQ is a query point,
XXX ls is the exact NN found by a linear scan and XXXalgo is the neighbor returned by an
NN algorithm. We classify an NN as correct if dAIRM(QQQ,XXX ls)

dAIRM(QQQ,XXXAIRM) > ε; we use ε = 0.75
below. Fig. 2 shows the accuracy of different methods, where

Accuracy :=
#correct matches

#query size
. (36)

The plots indicate that GDL performs well across the datasets, while performance
of the other methods varies. Vectorizing input matrices fails on all datasets, while
KLSH performs reasonably well. We note, however, that KLSH needs to compute
the kernel matrix for the query point against the entire dataset—this can drastically
slow it down. On the face dataset, all methods had high accuracy, most probably
because this dataset is noise free.

1 http://www.vision.caltech.edu/malaa/software/research/image-search/
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Fig. 2 Plots demonstrating nearest neighbor classification accuracy of GDL generated sparse codes
compared to various standard techniques; (a) on faces dataset and (b) on texture dataset.

3.3 Riemannian Dictionary Learning Experiments

Next, we evaluate the Riemannian DLSC setup, and denote below dictionary learn-
ing by DL and sparse coding by SC. We compare our Riemannian (Riem) formu-
lation against combinations of several state-of-the-art DLSC methods on SPD ma-
trices, namely (i) log-Euclidean (LE) metric for DLSC [25], (ii) Frobenius norm
(Frob) which discards the manifold structure, (iii) kernel methods such as the Stein-
Kernel [48] proposed in [26], and the log-Euclidean kernel [30].

We experiment on data available from three standard computer vision applica-
tions: (i) 3D object recognition on the RGBD objects dataset [29]; (ii) texture recog-
nition on the standard Brodatz dataset [38]; and (iii) person re-identification on the
ETHZ people dataset [19]. We describe (i) and (iii) below.
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Fig. 3 Results of Nearest neighbor recall@K accuracy against increasing number of retrieved
points (K). Comparisons of Riem-DL and Riem-SC against other DL learning schemes based on
clustering, while using our Riem-SC for sparse coding.

– Person re-identification task. We use the benchmark ETHZ dataset [44] for eval-
uating people re-identification. This dataset consists of low-resolution images of
tracked people from a real-world surveillance setup. The images are from 146
different individuals. There are about 5–356 images per person. There are a total
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of 8580 images in this dataset. Rather than detailing the results on several feature
combinations, we describe here the feature combination that worked the best in
our experiments. For this purpose, we used a validation set of 500 covariances
and 10 true clusters from this dataset. The performance was evaluated using the
Log-Euclidean SC setup with a dictionary learning via Log-Euclidean K-Means.
We used a combination of nine features for each image as described below:

FET HZ =
[
x, Ir, Ig, Ib, Yi, |Ix|,

∣∣Iy
∣∣ , |sin(θ)+ cos(θ)| ,

∣∣Hy
∣∣] ,

where x is the x-coordinate of a pixel location, Ir, Ig, Ib are the RGB color of a
pixel, Yi is the pixel intensity in the YCbCr color space, Ix, Iy are the gray scale
pixel gradients, and Hy is the y-gradient of pixel hue. We also use the gradient
angle θ = tan−1(Iy/Ix) in our feature set. Each image is resized to a fixed size
300× 100, and divided into upper and lower parts. We compute two different
region covariances for each part, which are combined as two block diagonal ma-
trices to form a single covariance of size 18×18 for each appearance image.

– 3D Object Recognition. The goal of this experiment is to recognize objects
in 3D point clouds. We use the public RGB-D Object dataset [29], which con-
sists of about 300 objects belonging to 51 categories and spread across ∼250K
frames. We used approximately 15K frames for our evaluation with approxi-
mately 250–350 frames devoted to every object seen from three different view-
points (30, 45, and 60 degrees above the horizon). Following the procedure sug-
gested in [23][Chap. 5], for every frame, the object was segmented out and 18
dimensional feature vectors generated for every 3D point in the cloud (and thus
18×18 covariance descriptors); the features we used are as follows:

FRGBD = [x,y,z, Ir, Ig, Ib, Ix, Iy, Ixx, Iyy, Ixy, Im,δx,δy,δm,νx,νy,νz] , (37)

where the first three dimensions are the spatial coordinates, Im is the magnitude
of the intensity gradient, δ ’s represent gradients over the depth-maps, and ν rep-
resents the surface normal at the given 3D point.
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Fig. 4 Results of k-nearest neighbor retrieval accuracy against an increasing number of retrieved
points (K). Comparisons of Riem-DL and Riem-SC against other dictionary learning and sparse
coding combinations.
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3.3.1 Evaluation Techniques

We evaluate our algorithms for nearest neighbor (NN) retrieval against a gallery set
via computing the Euclidean distances between sparse codes. We use the standard
Recall@K accuracy defined as follows: Given a gallery X and a query set Q. Re-
call@K computes the average accuracy when retrieving K nearest neighbors from
X for each instance in Q. Suppose Gq

K is the set of ground truth class labels asso-
ciated with the qth query, and Sq

K is the set of labels associated with the K neighbors
found by some algorithm, then

Recall@K :=
1
|Q| ∑q∈Q

|Gq
K ∩Sq

K |
|Gq

K |
. (38)

All the experiments used 5-fold cross-validation in which 80% of the datasets were
used for training the dictionary, 10% for generating the gallery set, and the rest
as queries. The size of the dictionary was considered to be twice the number of
classes in the respective dataset. This scheme was considered for all the comparison
methods as well. Our DLSC scheme was implemented in MATLAB. We used the
Manopt optimization toolbox [10] for implementing the CG method for our DL
subproblem. We found that initializing the dictionary learning setup using K-Means
clustering (using the Karcher mean algorithm [40]) led to faster convergence of CG.

3.3.2 Results

We compare below performance of our Riem-DL and Riem-SC against several prior
DLSC schemes on the three datasets described above. In particular, we compare (i)
Riemannian geometric methods such as log-Euclidean (LE-DL + LE-SC), (ii) Ker-
nelized methods using the Stein kernel (Kernel-Stein-DL and kernel-Stein-SC), (iii)
Euclidean DLSC (Frob-DL + Frob-SC), and using a dictionary generated by ran-
dom sampling the dataset followed by sparse coding using our Riemannian method
(Random-DL + Riem-SC). In Figure 4, we show the performance comparison for
the task of K-NN where K is increased from 1 to 25.

A commonly adopted alternative to dictionary learning is to approximate the
dictionary using centroids of a K-Means clustering of the dataset. Such a method is
faster than Riemannian DL, and also demonstrate reasonable performance [13, 46].
Thus, an important experiment is to ensure that learning the dictionary actually pro-
vides superior performance compared to the ad hoc clustering setup. In Figure 3, we
plot the K-NN retrieval when we use a clustering scheme to generate the dictionary.

3.3.3 Discussion of Results

With regard to Figure 4, we found that the performance of different methods is
diverse across datasets. For example, the log-euclidean DLSC variant (LE-DL+LE-
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SC) is generally seen to show good performance, but its performance is inferior
when the number of data instances per class is small (as in the ETHZ people
dataset). The kernelized DLSC method (Kernel-Stein-DL) performs favorably on
most datasets. The most surprising of the results that we found was for Frob-DL.
It is generally assumed that using Frobenius distance for comparing SPD matrices
leads to poor accuracy, a view echoed by Figures 4(a) and 4(b). However, when the
matrices are ill-conditioned, taking the logarithm (as in the LE-DL scheme) of these
matrices results in amplifying the influence of the smaller eigenvalues, which is es-
sentially noise. When learning a dictionary, the atoms will be learned to reconstruct
this noise against the signal, thus leading to inferior performance than for FrobDL
which do not use the logarithm. In comparison to all the compared methods, Riem-
DL+Riem-SC was found to produce consistent and competitive performance, sub-
stantiating the usefulness of our model. While running the experiments, we found
that the initialization of our DL sub-problem (using Riemannian K-Means) played
an important role in achieving this superior performance.

We further compare Riem-DL against alternative DL schemes via clustering in
Figure 3. We see that learning the dictionary using Riem-DL demonstrates the best
performance against the next best and efficient alternative of using LE-KMeans as
was done in [13]. Using Frob-KMeans or using a random dictionary are generally
seen to have inferior performance compared to other learning methods.

3.4 GDL versus Riemannian Sparse Coding

Finally, we compare sparse coding via our GDL model and the Riem-SC setup. We
use the Brodatz and RGB-D Object recognition datasets. Tables 2 and 3 show the
results. While GDL is significantly faster in sparse coding, as is clear from the table,
the Riemannian approach leads to much higher accuracy.

Method Accuracy (%)
Frob-SC 32.3 (4.4)
TSC [46] 35.6 (7.1)

GDL 43.7 (6.3)
Riem-SC 53.9 (3.4)

Table 2 Brodatz texture dataset

Method Accuracy (%)
Frob-SC 80.3 (1.1)
TSC [46] 72.8 (2.1)

GDL 61.9 (0.4)
Riem-SC 84.0 (0.6)

Table 3 RGB-D Object Recognition
Comparison of the average classification accuracy using a linear SVM.

4 Conclusion and Future Work

In this chapter, we reviewed the steps for constructing covariance descriptors, fol-
lowed by a brief exposition of SPD matrix geometry motivated by the design of
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novel machine learning models on these descriptors. We covered the concrete prob-
lems of dictionary learning and sparse coding, and noted two approaches: (i) a
framework that uses Euclidean embedding of SPD matrices for sparse coding; and
(ii) a Riemannian geometric approach. Our experiments demonstrated that design-
ing machine learning algorithms for SPD matrices that respect the Riemannian ge-
ometry fares significantly better than using Euclidean embedding.

That said, Riemannian optimization algorithms are usually computationally more
expensive. This is mainly due to the need for operating in the tangent space of
the SPD manifold, which involves matrix exponentials and logarithms that require
O(d3) flops. Designing faster Riemannian machine learning algorithms is a chal-
lenge that needs to be addressed for these algorithms to be more widely accepted.
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