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1. Introduction

Let X be a complex inner product space with norm ‖ ·‖, and let a, b, c ∈ X be arbitrary 
vectors. The inequality

‖a + b + c‖ + ‖a‖ + ‖b‖ + ‖c‖ � ‖a + b‖ + ‖a + c‖ + ‖b + c‖ (1.1)
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is known as Hlawka’s inequality. It seems to have appeared first in a paper of Hor-
nich [7] (who credits the proof to Hlawka). Several proofs are known, see e.g. [14, p. 100]
or [13, pp. 171–172]. This inequality has witnessed a long series of investigations and 
generalizations—we refer the reader to the recent work of Fechner [5] for an excellent 
summary of related work as well as a substantial list of references. Fechner himself con-
siders the functional Hlawka inequality

f(a + b + c) + f(a) + f(b) + f(c) � f(a + b) + f(a + c) + f(b + c), (1.2)

and studies real valued functions f on an abelian group (A, +) that satisfy (1.2).
To our knowledge, all authors who previously published Hlawka type inequalities 

limited their attention to inequalities over the reals. In contrast, we study “operator 
Hlawka inequalities,” so that instead of the total order on the reals, we consider the 
Löwner partial order ‘�’ on Hermitian positive definite matrices or operators. As a 
consequence, we are able to recover as corollaries several Hlawka type inequalities for 
scalar valued matrix functions known as “generalized matrix functions,” which include 
the determinant and permanent as special cases. Observe also the resemblance between 
(1.2) and Popoviciu’s inequality (1.3), which states for a convex function f on a real 
interval I and a, b, c ∈ I that

3f
(
a+b+c

3
)

+ f(a) + f(b) + f(c) � 2
(
f
(
a+b
2

)
+ f

(
a+c
2

)
+ f

(
b+c
2
))
. (1.3)

In fact, this resemblance will allow us to obtain some operator Popoviciu inequalities. 
After having submitted this paper, it was brought to the authors’ attention that some 
results of the paper are also obtained independently in [2].

Notation and background

Throughout this paper, matrices and tensors are denoted by upper case letters. Unless 
otherwise specified, all matrices are assumed to be of same size (say m ×m), self-adjoint 
and positive (semi)definite. The operator inequality A � B denotes the Löwner partial 
order, meaning that A −B � 0 is positive definite. Wherever multiplication is used, we 
mean tensor products (though unusual, we use this notation for aesthetic reasons to keep 
the “visual burden” of our proofs low); thus for arbitrary matrices A, B:

Ap ≡ A⊗p = A⊗A⊗ · · · ⊗A (p times)

ApBq ≡ (A⊗p) ⊗ (B⊗q) (integers p, q).

Note that this multiplication is noncommutative, so AB �= BA.
We write [n] to denote the set {1, 2, . . . , n} and [n\k] to denote the set [n] \ {k}.
For some indices, we use Matlab notation, e.g. the form i = 1 : 2 : 2k − 1 meaning 

that i increases in steps of 2, taking on only the values 1, 3, 5, . . . , 2k − 1.
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Since the entire paper relies extensively on elementary properties of Kronecker (tensor) 
products, let us briefly recall these below.

Proposition 1.1. Let A, B, C, D be positive definite operators. Then,

(i) AB ≡ A ⊗B is also positive definite
(ii) If A � B and C � D then AC � BD

(iii) A(B + C) = AB + AC, (A + B)C = AC + BC

(iv) (A + B)p � Ap + Bp for all p ∈ N.

2. Hlawka type inequalities for three operators

With this background we are ready to prove our first operator Hlawka inequality.

Theorem 2.1. Let A, B, C be positive definite operators. Then for each integer p � 1,

(A + B + C)p + Ap + Bp + Cp � (A + B)p + (A + C)p + (B + C)p. (2.1)

Proof. The case p = 1 is trivial and holds with equality. Unsurprisingly, for p = 2 we 
again have equality, since both sides expand to

2(A2 + B2 + C2) + AB + BA + AC + CA + BC + CB.

We prove the general claim by induction. Assume therefore that (2.1) holds for some 
integer p � 2. Then,

(A + B + C)p+1 = (A + B + C)p(A + B + C)

� ((A + B)p + (A + C)p + (B + C)p −Ap −Bp − Cp) (A + B + C)

= (A + B)p+1 + (A + C)p+1 + (B + C)p+1

−Ap+1 −Bp+1 − Cp+1 + T ,

where the inequality follows from the induction hypothesis. The term T is defined as

T = (A + B)pC + (A + C)pB + (B + C)pA−Ap(B + C) −Bp(A + C) − Cp(A + B).

It remains to show that T � 0. But this follows immediately upon applying the superad-
ditivity inequality Proposition 1.1(iv) to the first three terms of T and canceling. Thus, 
inequality (2.1) is proved. �

Theorem 2.1 yields the following result of Tie et al. [17, Lemma 2.2] as a corollary. 
(Note that the inequality (2.2) is called strong superadditivity of tensor products; readers 
familiar with combinatorics may recognize it as supermodularity.)
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Corollary 2.2. Let A, B, C be positive definite operators. Then for each integer p � 1,

(A + B + C)p + Ap � (A + B)p + (A + C)p. (2.2)

Proof. Immediate upon combining Proposition 1.1(iv) with inequality (2.1). �
Using the operator inequality (2.1) and restricting to suitable symmetry classes, we 

can obtain Hlawka inequalities for determinants, permanents, and immanants. This line 
of thought is well known in matrix analysis, see e.g. [1, p. 114] and also [15].

Specifically, let G be a subgroup of the symmetric group Sm on m letters, and let 
χ be an irreducible character of G. The G-immanant (also known as generalized matrix 
function [11,12]) of an arbitrary m ×m complex matrix X is defined as

dGχ (X) :=
∑
σ∈G

χ(σ)
m∏
i=1

ai,σ(i). (2.3)

When G = Sm and χ(σ) = sgn(σ) we have dGχ (X) = det(X); χ(σ) ≡ 1 yields the 
permanent, while other choices yield immanants [11]. Using arguments from multilinear 
algebra (e.g., [11,8]), it can be shown [11, p. 126] that there exists a matrix ZG,χ such 
that

dGχ (X) = Z∗
G,χ(⊗mX)ZG,χ. (2.4)

Using representation (2.4) and Theorem 2.1 we then obtain the following corollary.

Corollary 2.3. Let A, B, C be positive definite, and let dGχ be as defined by (2.3). Then,

dGχ (A + B + C) + dGχ (A) + dGχ (B) + dGχ (C) � dGχ (A + B) + dGχ (A + C) + dGχ (B + C).

(2.5)

Proof. Congruence preserves Löwner partial order, so we use (2.4) and (2.1) and con-
clude. �
Remark 2.4. The recent strong superadditivity result of Paksoy et al. [15, Theorem 3.2]
for three matrices follows by combining (2.4) with Corollary 2.3 and Proposition 1.1(iv).

Remark 2.5. M. Lin brought to our notice his very recent result that establishes inequal-
ity (2.5) for the special case of determinants [9]. His proof uses only elementary methods, 
is entirely different from our approach, and is of instructive value.

3. A multivariable tensor Hlawka inequality

It turns out that the above results can be obtained as corollaries of a more general 
operator inequality involving n positive definite matrices. Before considering this more 
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general inequality, let us mention a Hlawka type inequality that was conjectured by the 
first named author, which originally inspired this paper.

Conjecture 3.1 (Berndt). For n � 3, let A1, . . . , An be positive definite; for each k =
1, . . . , n, let sk be the elementary symmetric determinantal polynomial

sk :=
∑

1�i1<i2<···<ik�n

det(Ai1 + · · · + Aik).

Then, the following generalization of the Hlawka inequality holds:

sn + sn−2 + · · · � sn−1 + sn−3 + · · · . (3.1)

Inequality (3.1) may come as a surprise to those who study Hlawka type inequalities. 
Indeed, Freudenthal [6] considered generalizing the basic norm inequality (1.1) to a form 
similar to (3.1). Specifically, he asked whether for n vectors a1, . . . , an the inequality

n∑
i=1

‖ai‖ −
∑
i<j

‖ai + aj‖ ± · · · + (−1)n−1‖a1 + · · · + an‖ � 0

holds. According to Mitrinović [13, p. 174], this inequality was shown to be false for 
n ≥ 4 by W.A.J. Luxemburg. Nevertheless, other multivariable generalizations do hold, 
among which the following seems to be of the most general kind:

Proposition 3.2. (See [16, Corollary 3.5].) Let H be a metric space, n � 3 and k ∈
{2, . . . , n}. Then for all a1, . . . , an ∈ H,

∑
1�i1<i2<···<ik�n

‖ai1 + · · · + aik‖ �
(
n− 2
k − 1

) n∑
i=1

‖ai‖ +
(
n− 2
k − 2

)∥∥∥∥
n∑

i=1
ai

∥∥∥∥.
We now proceed to show that for positive operators a multivariable Hlawka type 

inequality does hold. Combined with representation (2.4), it then implies not only the 
determinantal inequality (3.1) but also its G-immanant version.

For positive integers k, n, p with k ≤ n define the following symmetric tensor sums:

Sp
k,[n] :=

∑
I⊆[n],|I|=k

(∑
i∈I

Ai

)p
. (3.2)

The main result of this paper is the following theorem.

Theorem 3.3. Let n � 3 and A1, . . . , An � 0. Then, for p ∈ N the operator inequality

Sp
n,[n] + Sp

n−2,[n] + · · · � Sp
n−1,[n] + Sp

n−3,[n] + · · · (3.3)

holds.
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Proof. We prove the claim (call it Cn,p) by induction on n. For n = 3, C3,p is the Hlawka 
inequality established by Theorem 2.1. Fix n ≥ 4 and suppose we have proved Cn−1,p
for all p. We first assume that n is even (the argument for odd n will be similar).

We now perform an induction on p. For p = 1, the claim clearly holds as both sides of 
(3.3) are equal. Assume therefore that the claim holds up to some integer p − 1. Thus,

Sp−1
n,[n] + Sp−1

n−2,[n] + · · · + Sp−1
2,[n] � Sp−1

n−1,[n] + Sp−1
n−3,[n] + · · · + Sp−1

1,[n].

Multiplying (i.e., taking tensor products) both sides by (A1 + · · ·+An) on the right and 
using Proposition 1.1(ii), we obtain

∑
j=2:2:n

Sp
j,[n] + L �

∑
j=1:2:n−1

Sp
j,[n] + R,

where L and R denote the respective mixed terms. The claim Cn,p will be proved if we 
show that R � L. Details follow below.

An easy rearrangement of the respective terms shows that

L =
∑
I⊂[n]

|I|=n−2

(∑
i∈I

Ai

)p−1 (∑
i/∈I

Ai

)
+ · · · +

∑
I⊂[n]
|I|=2

(∑
i∈I

Ai

)p−1 (∑
i/∈I

Ai

)

R =
∑
I⊂[n]

|I|=n−1

(∑
i∈I

Ai

)p−1 (∑
i/∈I

Ai

)
+ · · · +

n∑
k=1

Ap−1
k

(∑
i�=k

Ai

) (3.4)

Note that the main sums in L and R are only over even and odd sized subsets, respec-
tively.

The key to the proof is the following regrouping of (3.4), which reveals the underlying 
inductive structure:

R =
( ∑

i∈[n\n]

Ai

)p−1

An +
( ∑

I⊂[n\n]
|I|=n−3

(
∑

i∈I
Ai)p−1

)
An + · · · +

( ∑
I⊂[n\n]
I={i}

Ap−1
i

)
An

+
( ∑

i∈[n\n−1]

Ai

)p−1

An−1 +
( ∑

I⊂[n\n−1]
|I|=n−3

(
∑

i∈I
Ai)p−1

)
An−1 + · · ·

+
( ∑

I⊂[n\n−1]
I={i}

Ap−1
i

)
An−1

+ · · · + · · · · · · + · · ·

+
( ∑

i∈[n\1]
Ai

)p−1

A1 +
( ∑

I⊂[n\1]
(
∑

i∈I
Ai)p−1

)
A1 + · · · +

( ∑
I⊂[n\1]

Ap−1
i

)
A1,
|I|=n−3 I={i}
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and

L =
( ∑

I⊂[n\n]
|I|=n−2

Ai

)p−1

An +
( ∑

I⊂[n\n]
|I|=n−4

(
∑

i∈I
Ai)p−1

)
An + · · · +

( ∑
I⊂[n\n]
|I|=2

Ap−1
i

)
An

+ · · · + · · · · · · + · · ·

+
( ∑

I⊂[n\1]
|I|=n−2

Ai

)p−1

A1 +
( ∑

I⊂[n\1]
|I|=n−4

(
∑

i∈I
Ai)p−1

)
A1 + · · · +

( ∑
I⊂[n\1]
|I|=2

Ap−1
i

)
A1.

The above expressions may be more succinctly written as

R =
( ∑
j=1:2:n−1

Sp−1
j,[n\n]

)
An +

( ∑
j=1:2:n−1

Sp−1
j,[n\n−1]

)
An−1 + · · · +

( ∑
j=1:2:n−1

Sp−1
j,[n\1]

)
A1

L =
( ∑
j=2:2:n−2

Sp−1
j,[n\n]

)
An +

( ∑
j=2:2:n−2

Sp−1
j,[n\n−1]

)
An−1 + · · · +

( ∑
j=2:2:n−2

Sp−1
j,[n\1]

)
A1.

For each pair of corresponding terms between R and L, we can apply the statement 
Cn−1,p−1 because each set [n\k] is of size n − 1. So we conclude that R � L.

If n is odd, the only difference is in the indices of the summations, which now run 
over j = 1 : 2 : n− 2 for L and j = 2 : 2 : n − 1 for R. We conclude again that R � L, 
finishing the proof. �
Corollary 3.4. Conjecture 3.1 is true.

Proof. Recall that for an m × m matrix A, det(A) = ∧mA, where ∧ denotes the 
usual (Grassmann) exterior product. Moreover, there exists a matrix Z such that 
∧mA = Z∗(A⊗m)Z. Since congruence preserves Löwner order, setting p = m in (3.3)
and transforming with Z, we immediately obtain inequality (3.1). �

Using the argument of Corollary 3.4 along with (2.4), we obtain a more general result.

Corollary 3.5. Conjecture 3.1 is true even when determinants are replaced by
G-immanants.

We note in passing that even more is true: Combining Theorem 3.3 with the proof 
technique of [10] we can obtain a block-matrix version of inequality (3.3). Specifically, 
for 1 ≤ i ≤ m let Ai = [(Ai)pq]mp,q=1 � 0 be positive definite block matrices comprised 
of d × d complex matrices (Ai)pq. Define dGχ (A) := [dGχ

(
Apq

)
]mp,q=1 for a block matrix A. 

Then, Corollary 3.5 holds in its “completely positive” incarnation applied to a collection 
of block matrices A1, . . . , An. We leave the details as an exercise for the interested 
reader.
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4. From Popoviciu to Hlawka

In this section we explore the connection with Popoviciu type inequalities alluded to in 
the introduction. In particular, we follow the proof technique of Theorem 3.3 to establish 
several Popoviciu type inequalities, one of which recovers the multivariable G-immanant 
“superadditivity” inequality of [15, Theorem 4.1] as a special case.

To simplify notation, we will frequently drop subscripts on summations; hence 
∑

is 
understood to mean 

∑n
i=1 or 

∑n
k=1, the choice being clear from context.

For a convex function f : R → R and scalars x1, . . . , xk Jensen’s inequality says that

f(x1) + · · · + f(xk) � kf
(x1 + · · · + xk

k

)
.

After Jensen’s inequality, Popoviciu’s inequality may be considered as the next-to-
simplest inequality for convex functions. We restate it here.

Proposition 4.1. If f is a convex function on a real interval I and x1, x2, x3 ∈ I, then

f(x1) + f(x2) + f(x3) + 3f
(
x1+x2+x3

3
)

� 2
(
f
(
x1+x2

2
)

+ f
(
x1+x3

2
)

+ f
(
x2+x3

2
))

(4.1)

Formally, inequality (4.1) resembles Hlawka’s inequality (up to scaling factors, which 
are actually crucial). This resemblance motivates us to examine if some known general-
izations to Popoviciu’s inequality for scalars also extend to positive operators.

We begin with the following generalization of (4.1) given by Cirtoaje [3].

Proposition 4.2. Let f be convex on a real interval I, and x1, x2, . . . , xn ∈ I. Then,

f(x1) + · · · + f(xn) + n

n− 2f
(x1 + · · · + xn

n

)
� 2

n− 2
∑
i<j

f
(xi + xj

2

)
.

Comparing the case n = 3 (4.1) with the Hlawka inequality (1.1), it is clear that 
kf

(x1 + · · · + xk

k

)
should correspond to ‖a1 + · · · + ak‖. In terms of tensor sums, after 

multiplying with (n − 2), we are led to conjecture (4.2), which turns out to be true.

Theorem 4.3. Let A1, . . . , An be positive definite operators. Then for each integer p � 1,

(n− 2)
∑

Ap
i +

(∑
Ai

)p

�
∑
i<j

(Ai + Aj)p. (4.2)

Proof. The proof is similar to the one of Theorem 2.1. We proceed by induction on p. 
For p = 1, both sides of (4.2) are equal to (n −1) 

∑
Ai; for p = 2 we again have equality, 
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since both sides of (4.2) are equal to

(n− 1)
∑

A2
i +

∑
i<j

(AiAj + AjAi).

Assume for the inductive step that (4.2) holds for some integer p � 2. Then for p + 1,

(∑
Ai

)p+1 + (n− 2)
∑

Ap+1
i

=
(∑

Ai

)p (∑
Ak

)
+ (n− 2)

∑
Ap

i

∑
Ak︸ ︷︷ ︸ − (n− 2)

∑
i<j

(Ap
iAj + Ap

jAi )

�
∑
i<j

(Ai + Aj)p
∑

Ak − (n− 2)
∑
i<j

(Ap
iAj + Ap

jAi )

=
∑
i<j

(Ai + Aj)p+1 +
∑
i<j

(Ai + Aj)p
∑

k/∈{i,j}
Ak − (n− 2)

∑
i<j

(Ap
iAj + Ap

jAi )

�
∑
i<j

(Ai + Aj)p+1 +
∑
i<j

(Ap
i + Ap

j )
∑

k/∈{i,j}
Ak − (n− 2)

∑
i<j

(Ap
iAj + Ap

jAi )

=
∑
i<j

(Ai + Aj)p+1.

The first inequality follows from the induction hypothesis applied to the underbraced 
term, while the second inequality follows from superadditivity Proposition 1.1(iv). The 
final equality is easy to verify: Fix i = 1, then the second term yields for each j = 2, . . . , n
the product of Ap

1 with (n − 2) of the Ak’s (k �= 1), so for each k �= 1 the product Ap
1Ak

occurs (n − 2) times, and so it does also in the negative term. By symmetry, the same 
holds for all i. �
Corollary 4.4. Let A1, . . . , An be positive definite, and let dGχ be as in (2.3). Then,

(n− 2)
∑

dGχ (Ai) + dGχ (
∑

Ai) �
∑
i<j

dGχ (Ai + Aj).

Corollary 4.4 combined with the superadditivity inequality Proposition 1.1(iv) for the 
appropriate pairs of indices implies the following result of Paksoy et al. [15].

Corollary 4.5. (See [15, Theorem 4.1].) Let A1, . . . , An and dGχ be as in Corollary 4.4. 
Then,

dGχ (A1 + . . . + An) �
∑
i�=j

dGχ (Ai + Aj) − (n− 2)dGχ (Ai) for each i = 1, . . . , n.
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Before stating the most general result in this direction, we mention an intermediate 
generalization of Popoviciu’s inequality, which we call Popoviciu–Cirtoaje–Zhao inequal-
ity.1 It states the following:

Proposition 4.6. If f is a convex function on a real interval I and x1, x2, . . . , xn ∈ I, 
then for 2 � m < n,

(
n− 2
m− 1

)
(f(x1) + · · · + f(xn)) + n

(
n− 2
m− 2

)
f
(x1 + · · · + xn

n

)

� m
∑

i1<···<im

f
(xi1 + · · · + xim

m

)

The corresponding generalization of Theorem 4.3 is

Theorem 4.7. Let A1, . . . , An be positive definite operators. Then for each integer p � 1,
(
n− 2
m− 1

)∑
Ap

i +
(
n− 2
m− 2

)(∑
Ai

)p

�
∑

i1<···<im

(Ai1 + · · · + Aim)p. (4.3)

Instead of proving Theorem 4.7, we move on to the most general Popoviciu type 
inequality for tensors, motivated by a scalar case partially treated in [4].

Theorem 4.8. Let A1, . . . , An be positive definite operators. Let Sp
k,[n] be defined as in 

(3.2). Then for integers 1 � k < � < m � n,

m− �

k
(
n
k

) Sp
k,[n] + �− k

m
(
n
m

)Sp
m,[n] � m− k

�
(
n
�

) Sp
�,[n].

We omit the proof for brevity; it can be obtained by following the inductive technique 
developed above. It should be mentioned that the corresponding inequality for convex 
functions only holds for certain choices of k, �, m [4].
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