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Efficient Nearest Neighbors via
Robust Sparse Hashing

Anoop Cherian Suvrit Sra Vassilios Morellas Nikolaos Papanikolopoulos

Abstract—This work presents a new Nearest Neighbor (NN)
retrieval framework: Robust Sparse Hashing (RSH). Our ap-
proach is inspired by the success of dictionary learning for
sparse coding. Our key idea is to sparse code the data using
a learned dictionary, and then to generate hash codes out of
these sparse codes for accurate and fast NN retrieval. But direct
application of sparse coding to NN retrieval poses a technical
difficulty: when data are noisy or uncertain (which is the case
with most real world datasets), for a query point, an exact match
of the hash code generated from the sparse code seldom happens,
thereby breaking the NN retrieval. Borrowing ideas from robust
optimization theory, we circumvent this difficulty via our novel
robust dictionary learning and sparse coding framework called
RSH, by learning dictionaries on the robustified counterparts
of the perturbed data points. The algorithm is applied to NN
retrieval on both simulated and real world data. Our results
demonstrate that RSH holds significant promise for efficient NN
retrieval against the state of the art.

Index Terms—Dictionary Learning, Sparse Coding, Robust
Optimization, Nearest Neighbors.

I. INTRODUCTION

Finding data points nearest to a query point is an important
operation that arises in many areas of computer science
including computer vision and pattern recognition. It is well-
known that as data dimensionality increases, finding the Near-
est Neighbors (NN) becomes computationally expensive [16].
This is a short coming for NN retrieval on real-world data
descriptors, which are often high dimensional (e.g. Scale
Invariant Feature Transform (SIFT) descriptors (128D) [25],
Generalized image descriptors (960D) [36], etc.).

Faster NN retrieval schemes are valuable. Traditionally,
many approaches have been advocated to solve the NN
problem in large dimensions. One approach is to search for
Approximate Nearest Neighbors (ANN) so that the recovered
neighbor is in an ϵ-neighborhood of the true solution. A more
efficient way to approach this problem is hashing, in which
similar data points are mapped to compact codes called hash
codes, with the condition that similar data points will have
similar hash codes. This is the primary theme of Locality
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Sensitive Hashing (LSH) [13]. In this paper, we propose a
novel hashing algorithm based on the concepts of Sparse
Coding (SC) and Dictionary Learning (DL). The main idea
of SC is to represent each data vector as a sparse linear
combination of basis vectors from an overcomplete dictionary
learned using DL. Our NN algorithm builds a hash code over
this sparse code using the indices of the active basis in the
learned dictionary.

Traditionally, for each input vector, SC algorithms select
a set of dictionary atoms that minimize the reconstruction
error between the original data point and its sparsity based
approximation. Since these algorithms are not concerned with
the active set of dictionary elements for a given data vector,
it often happens that two data vectors that are close to
each other in the input space might have different atoms
involved in their sparse approximations. Since our hash coding
scheme requires that similar data points have the same basis
activations, such a scheme might not help us in robust hash
code generation or NN retrieval. This mismatch in the basis
activations can arise due to two reasons, namely (i) the vectors
are noise corrupted versions of each other, whereby some of
the dictionary atoms might reconstruct the noise; and (ii) the
true vectors themselves are perturbed or uncertain.

Existing DL methods such as [11], [15], [35], that address
noise corruption, impose a noise model on the data, with the
hope that filtering out the noise and sparse coding the denoised
data points might produce similar hash codes for similar data
points. Unfortunately, such an idea assumes that the noise
distribution is known. This is seldom true for real-world data.
We study the second scenario instead, and explicitly model
data uncertainty from a robust optimization perspective. The
main advantage of our approach is that rather than assuming
any noise distribution, we estimate the maximum perturbation
that the data points may undergo. This estimation is based on
a supervised learning scheme. Such worst case perturbations
are then used to immunize the data points against any further
perturbations; a sparse coding scheme over these immunized
data descriptors produces robust hash codes. Our experiments
show that such a scheme can generalize and subsume a diverse
set of noise distributions using a single perturbation model,
which might otherwise have required investigations into dis-
parate noise models when using the denoising approach.

Before we describe the details of our approach, let us enlist
the main contributions of this paper.

• Formulation: We present a new Robust Sparse Hashing
(RSH) framework for learning robust sparse codes, by
showing a practical extension to the traditional DL setup.

• Algorithm: Our RSH formulation leads to a difficult non-
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convex optimization problem. We investigate properties
of this optimization problem, and propose a novel algo-
rithm for its efficient local solution.

• Application: We illustrate the utility of RSH by applying
it to the task of NN retrieval on benchmark datasets and
compare it against state-of-the-art algorithms.

II. RELATED WORK

a) Nearest Neighbors: Low dimensional data has several
data structure based schemes for efficient ANN retrieval, such
as k-d trees, R-trees, etc.([12], [22]). Unfortunately, when the
data dimensionality increases moderately (say beyond 20), the
efficiency of such schemes starts dropping as shown in [5].
It is seen that in high dimensional spaces, the computational
expense of these classical algorithms is no better than a linear
scan over the entire dataset [16]. Of the several schemes
advocated for efficient ANN, the most popular has been
Locality Sensitive Hashing (LSH) [13], which introduces the
traditional hashing schemes into a probabilistic framework in
which similar data points have a greater probability of being
assigned to the same hash bucket. It is often seen that the
hash family selected for LSH do not have any connection to
the structural properties of the original data, whose knowledge
might help in generating smaller hash codes. Towards this end,
Restricted Boltzmann Machines (RBMs) [33] and adaptations
of Boosting [34] have been proposed. These algorithms need
to store the original data points in the hash table to resolve
collisions; hindering their scalability. When there is a choice of
multiple alternatives to solve a problem, it is often difficult to
choose the best algorithm. Automating this selection process
for ANN algorithms has been tried in [27], which suggests a
combination of two popular ANN techniques: (i) hierarchical
K-means and (ii) randomized k-d trees. This hybrid algorithm
is well-known as Fast Large scale ANN (FLANN). Similar to
the above approaches, this algorithm also suffers from issues
of scalability when higher retrieval accuracy is desired, due to
the need for storing higher number of cluster centroids.

Recent efforts in ANN retrieval have been towards priori-
tizing for lower memory footprint, while relaxing retrieval ac-
curacy, and resulted in the design of efficient hashing schemes
that capture the data properties. An effort in this direction is
the well-known Spectral Hashing (SH) algorithm ([38]) that
embeds the data in a Hamming space in such a way that
the data neighborhood in the original space is preserved. To
make the resultant optimization objective tractable, SH makes
the assumption that the data is uniformly distributed. This
assumption is avoided in [24] by estimating a low dimensional
data distribution. Learning such low dimensional structures has
also been adopted in other hashing algorithms such as [18].
There have also been efforts to leverage standard machine
learning techniques to address ANN via LSH. For example,
in [23], random linear data projections are extended to non-
linear functions through a kernel mapping. A general trend
in all these methods is the selection of a set of random
hyperplanes to which the data is projected, later these pro-
jections are used for hashing in the binary Hamming space.
It is often seen that the selection of these hyperplanes has a
tremendous impact on the accuracy of the respective algorithm.

More recently, quantization techniques have been extended to
produce efficient indexing techniques in [1], [19], in which a
data vector is split into multiple disjoint sub-vectors, each such
sub-vector quantized independently using centroids learned via
k-means. There could be redundancies in the centroids used
for quantizing sub-vectors, using which could help improve
ANN retrieval.

Building similarity metrics on sparse codes has been investi-
gated several times in the recent past ([32], [9]). Unfortunately,
the adequacy of these metrics for retrieval problems is not
thoroughly investigated. Sparse coding for image classification
has been suggested in [37], [39]. A sparse coding framework
that approximates the inner-product distance between data
points for retrieval is presented in [40]. All these papers agree
that sparse coding is sensitive to variations in the original
data vectors; as a result, applying these approaches to retrieval
problems is difficult.

b) Robustness and Dictionary Learning: Robust opti-
mization (RO) [4] is a well-established branch of optimization
that has lately been gaining importance in machine learn-
ing [8]. The normal DL problem has been viewed from
certain robust perspectives previously, but these are different
from the formal notions of robustness propounded by RO.
For example, in [2], the image sparse coding problem is
made robust to image rotations and scaling through learning
a dictionary in the log-polar space. Dictionary learning in
the presence of Gaussian noise is suggested in [15], while
other noise models are considered in [35]. A fundamental
limitation of these approaches are the assumptions that they
impose on the noise model; often such assumptions can be
infeasible or even incorrect. In [29], a robust formulation of
the dictionary learning problem is suggested in the context
of outlier detection by using the Lorentzian norm instead of
the L1 norm. This paper also proposes constraints on the
dictionary atoms for better incoherence and thereby improve
the robustness of the reconstruction. Another method using
LSH via dictionary learning method is presented in [11],
where the noise is modeled as a convolution of Gaussian and
Laplacian distributions, followed by a denoising approach to
generate robust hash codes. The density of this convolution
is difficult to characterize analytically leading to approximate
inference schemes.

In contrast to the existing methods, we ground RSH using
the notion of robustness from RO, wherein the solution sought
must be invariant to certain bounded uncertainty in the data.
To our knowledge, the problem of learning a dictionary based
on an RO formalism and its application to NN retrieval are
novel.

III. BACKGROUND

A. Dictionary Learning and Sparse Coding

Before we describe our formulation, let us recall the stan-
dard ideas of dictionary learning and sparse coding. Learning
overcomplete dictionaries has long been a key problem in
sparse approximation [15], [31]. Compressed sensing for-
malisms suggest that for a vector that is dense (in some
basis), there exists an incoherent overcomplete basis over
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which the vector has a sparse representation [7]; e.g., a vector
encoding a signal that is dense in the time domain, will have
a sparse representation in the frequency domain. Learning an
overcomplete basis over which the input vectors have sparse
representations is roughly the goal of DL.

A commonly used formulation of DL is the following. Let
T = {v1, · · · , vm} (vi ∈ Rd) be input (training) vectors. DL
seeks a dictionary D ∈ Rd×n that is overcomplete (i.e., n ≫
d), so that each vi ≈ Dci for some sparse vector ci. A natural
optimization problem for learning D and ci is then,

min
D,c1,...,cm

∑m

i=1

(1

2
∥vi −Dci∥

2

2 + β∥ci∥1

)

s.t. ∥bj∥2 ≤ 1, for j = 1, 2, . . . , n,
(1)

where β > 0 is a sparsity tuning parameter (or regularization)
while the constraint ∥bj∥2 ≤ 1 normalizes each column bj

of D to prevent degeneracy. Problem (1) is computationally
difficult due to its non-convexity, so we can at best hope for
locally optimal solutions.

B. Dictionary Learning for NN retrieval

Intuitively, the motivation for the use of DL for NN comes
from the fact that there is a large set of basis vectors of which
only a very few are active. Suppose we use a dictionary with n
basis vectors, and if only k of them are required to reconstruct
a given data vector to a reasonable level of accuracy, then
overall s =

(

n
k

)

unique active basis combinations are possible.
Assuming the active set is uniformly distributed across all the
basis vectors (that is, every basis in the dictionary is equally-
likely to be used in an active set), a corpus of m data vectors
can be mapped into s hash bins, such that each bin will have
on an average m/s data vectors. For typical choices of n and
k, there is a high probability that each data vector gets a unique
active set. To give the reader an idea of the large set of basis
combinations possible using this approach, we will consider
a typical case when using SIFT descriptors as the dataset.
Suppose we use n = 1024 basis dictionary and assume that
k = 10 basis vectors are active for hashing, then there are
approximately 3 × 1023 unique basis combinations possible.
This is a large number and on an average there is a high
likelihood that only a few data points from the dataset will
share the same active set. This leads to unique hashing and
subsequently faster NN retrieval using a hash table.

Mathematically, for an arbitrary v ∈ T , let J(v) :=
{j1, . . . , jk} be the corresponding set of indices such that
cjl

̸= 0 for 1 ≤ l ≤ k and v ≈ Dc. The set J(v) may
be viewed as a hash-code for v. Indeed, we can build a
data structure that stores D along with the vectors T hashed
according to {J(v1), . . . , J(vm)}. Now, suppose a new (test or
query) point v′ is presented. We first obtain the corresponding
sparse representation v′ ≈ Dc′ by solving

c′ = argminc

1

2
∥v′ −Dc∥2

2 + β∥c∥1, (2)

to obtain the hash key J(v′), which we can rapidly look
up in the hashtable. The nearest data points are retrieved by
scanning through (linearly or via a further data structure) the

points associated with the key J(v′). The idea is illustrated in
Figure 1.

A theoretical investigation into the connection between
sparse coding and NN retrieval for inner product distances
is established in [40] and for Euclidean distances in [10].
Since we assume the latter, we will briefly review the main
idea proposed in [10]. This paper suggests that the Euclidean
distances between data points is upper-bounded by the Eu-
clidean distance between their sparse representations. The idea
is captured in the following theorem.

Theorem 1 (Distances): Let v1, v2 ∈ Rd be two zero-mean
data points and let D be the dictionary. Further, let c1 and
c2 be the sparse coefficient vectors of v1 and v2 respectively,
produced as per the formulation (2) so that ∥vi −Dci∥2

2 ≤ δ2,
for i ∈ {1, 2}, where δ is a constant and is inversely related to
β (it is actually the regularization parameter when writing (2)
in the traditional LASSO form [14]). Then, we have:

∥v1 − v2∥2 ≤ 2δ + ∥D∥2∥c1 − c2∥2. (3)

Proof: See [10].
Further, the paper [10] also shows that when the data

vectors are closer to each other in radial angles (assuming
the data vectors are centralized to have zero-mean), they are
more likely to share the same set of basis elements from
the dictionary when they are sparse coded. This idea, when
combined with Theorem 1, provides a powerful NN retrieval
framework for locality sensitive hashing based on angles
(and a subsequent linear search using Euclidean distances
on the sparse coefficients). Unfortunately, the method in [10]
needs sparse coding with mutliple regularization constants; a
deficiency that we will fix in the current paper.

Although the above NN scheme we described seems attrac-
tive, it could be brittle. Neither while building D nor while
testing a query point, do we really enforce any constraints
that J(v1) should be similar to J(v2) whenever v1 and v2 are
similar (or strongly correlated) vectors in the original input
space. In symbols, suppose v1 ≈ Dc and v2 = (1 + γ)v2, for
some small perturbation γ ̸= 0. For facilitating NN retrieval,
we desire J(v1) = J(v2); but since D is overcomplete there
is no guarantee that this happens. This problem is illustrated
in Figure 2, and overcoming it is precisely the goal of RSH.

C. Robust Optimization

One practical way to avoid difficulties in dealing with data
uncertainties is to resort to robust optimization [3]; the main
idea is to explicitly model the worst case data uncertainty.
Traditionally, in the robust optimization literature, methods
that assume probability distributions on the perturbations fall
under the so called chance constrained problems. In the
context of robustifying the data point, we can generically write
such a problem in the following form: given a data point v,
we seek an associated sparse code c such that:

min
c,t

{t : Probθ∼P (φ(c; θ, v) ≤ t) ≥ 1 − ϵ} , (4)

where φ is an appropriate loss function, θ encapsulates the
parameters of the model including the dictionary D, P repre-
sents the distribution of the perturbations (such as the Gaussian
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Fig. 1. An illustration of the various steps involved in NN retrieval via sparse coding. An overcomplete dictionary is first learned from the
data. Next, each data vector is sparse coded using this learned dictionary. The indices in the dictionary for each active basis in the sparse
code is then used to construct a tuple based hash code for each data vector. This tuple hash code is later used for hashing. Data vectors
having the same hash code are placed in a linked list associated with the corresponding hash bucket.
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Fig. 2. (a) shows (with green arrows) two SIFT descriptors corresponding to the same key point, (b) plots the two SIFT descriptors in
Figure 2(a) as a discrete time signal in 128 dimensions, and (c) shows the sparse representation of the descriptors using a 1024 dimensional
learned dictionary. The arrows in (c) show dimensions where the non-zero indices mismatch.

and Laplacian presented in [11]), and ϵ ≈ 0 is a tolerance.
The semi-colon notation separates the unknown parameters
on its left from the known parameters on its right. When the
distribution of P is unknown, we have an ambiguous chance

constrained problem [3], which takes the following variant
of (4):

min
c,t

{t : Probθ∼P (φ(c; θ, v) ≤ t) ≥ 1 − ϵ,∀P ∈ U} , (5)

where now the distribution P is not well-defined, but what is
known is that it belongs to a set U of all valid distributions.
Such a scheme provides a rich setup for inference, but unfortu-
nately, care must be taken to make sure that the robust model
remains tractable. In the rest of this paper, we will look at the
robust counterparts of chance constrained problems for our
case of sparse coding. Our approach is basically to model the
allowed uncertainties that a given data point might undergo,
subsequently incorporating the worst case uncertainty in our
sparse coding formulation so that our hash codes are immune
to these perturbations.

IV. ROBUST SPARSE HASHING

Let there be a set of nominal data vectors T̄ = {v̄1, . . . , v̄m}
that is sparse in an appropriate dictionary D. Let U(v̄) model
uncertainty for the point v̄, i.e., it is some set that models
perturbations in v̄. To be robust against the perturbations,
RSH seeks a dictionary so that all points v ∈ U(v̄) have the
same hash codes: J(v) = J(v̄). Consider therefore, the robust

counterpart of (1):

min
D,c1,...,cm

∑m

i=1

(1

2
∥S(vi) −Dci∥

2

2 + β∥ci∥1

)

s.t. ∥bj∥2 ≤ 1, for j = 1, 2, . . . , n

vi ∈ U(v̄i), for i = 1, 2, . . . ,m.

(6)

where the notation S(v) stands for the robustified data point
v. Based on [4], a few choices of U are:

• Norm-ball: U(v̄) := {v : ∥v − v̄∥p ≤ α} for p ≥ 1
• Ellipsoidal: U(v̄) := {v : v = v̄ + Pu, ∥u∥2 ≤ 1, P ≻

0},

where the notation P ≻ 0 stands for P is positive definite.
A natural choice for the norm-ball constraints is the L2

ball, which assumes the data perturbations are uniform in all
directions. Such an assumption is seldom true in practice and
we found it not to produce any relevant retrieval results in our
experiments. Other choices of the norm-ball (such as the L1

or L∞ balls) result in objectives that are difficult to optimize.
Thus, we prefer the ellipsoidal uncertainty model in this
paper, which models non-uniform perturbations by ellipsoids
parameterized by a symmetric positive definite matrix P . Since
the parameter P of the ellipsoids is learned from the data (as
we will detail in Section V-B, this model provides a tractable
trade-off between the various models. Also, the model shows
better empirical performance as well. Using the ellipsoidal
uncertainty leads to the following two stage min-max type
version of (1):
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min
D,C

∑m

i=1

(1

2
∥v̄i + Pu∗

i −Dci∥
2

2 + β∥ci∥1

)

where u∗
i := max

∥u∥2≤1

1

2
∥v̄i + Pu∥2

2

and ∥bj∥2 ≤ 1, for j = 1, 2, . . . , d,

(7)

where C = {c1, . . . , cm}. The formulation (7) is the core RSH
problem of this paper.

V. ALGORITHMS FOR RSH

The basic difference between the traditional dictionary
learning problem (1) and the robust formulation (7) is in
computing u∗ which is the direction of the worst case per-
turbation. Since u is dependent only on the data points v,
we can solve for it independently of D and C. Once u is
computed for each v̄, (7) reduces to (1) where the data points
are now the robustified vectors v̂ = v + Pu∗. To this end, the
primary optimization problem that we need to tackle centers in
efficiently solving for u; avoiding the subscripts for simplicity,
and replacing maximization by minimization, the formulation
in (7) on u∗ can be rewritten as:

f(u) := min
∥u∥2≤1

−
1

2
uT PT Pu − uT Pv −

1

2
vT v, (8)

At first sight (8) might look difficult to optimize, because the
quadratic term is −PT P , which is negative-definite instead
of positive-definite. That is, (8) is a non-convex quadratic
program. Fortunately, because there is just one constraint, (8)
still remains tractable. In fact, for this particular type of non-
convex problems, strong-duality holds thanks to the so-called
S-lemma [see e.g.[6]]. S-lemma says that for a quadratically
constrained quadratic program for which the objective is non-
convex, but the constraint is convex, the Lagrangian of this
objective function will satisfy strong duality. Recall that the
Lagrangian is always concave irrespective of whether the
primal objective is convex or not. Further, strong duality
implies that a solution to the Lagrangian will imply an exact
solution to the primal objective as well, with a zero duality
gap between the primal-dual problems.

Problem (8) is even more special: it is a trust-region sub-
problem, although a non-trivial one because of the negative-
definite matrix −PT P . Though, we can use a generic trust-
region solver such as the LSTRS (Large Scale Trust Region
Subproblem) method [30] for this problem, we show below
that this problem can be solved more efficiently.

A. Efficient Implementation via Newton Descent

Using a multiplier γ, the Lagrangian of (8) can be written
as:

L(γ, u) := −
1

2
uT PT Pu−uT Pv−

1

2
vT v+γ

(

uT u − 1
)

. (9)

Setting ∂L
∂u

= 0, we have:

u =
(

PT P − 2γI
)−1

Pv, (10)

where I is the d × d identity matrix. Let PT P = UΣUT for
an orthonormal U and diagonal Σ. Now, substituting for PT P

in (10) using this singular value decomposition, and applying
the unit norm constraint on u, we have the following root
finding problem in the scalar γ:

vT UT Σ (Σ − 2γI)−2 ΣUv = 1.

Using the substitution q = ΣUv and using the Hadamard
product q̂ = (q ◦ q) then leads to a simple vector equation:

d
∑

i=1

q̂i

(σi − 2γ)2
= 1. (11)

where q̂i is the ith component of q̂ and σi is the ith eigen-
value of Σ. As is clear, (11) is convex in γ and can be
efficiently solved by the Newton-Raphson method for a suit-
able initialization. For a reasonably well-conditioned matrix
PT P , (in our implementation, we initialize the iterations with
γ = −max(diag(Σ)2)), on an average, 3–6 times speedup1

was observed against the LSTRS method. Figure 3 shows
the average speedup produced by our algorithm compared to
the LSTRS method for an increasing dimensionality of the P
matrix and simulated data.
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Fig. 3. A plot of the speedup produced by the Newton Descent solution of
RSH problem against the LSTRS solver [30]. The x-axis is the dimensionality
of the data uncertainty matrix.

B. Computing the Uncertainty Matrix

The parameter P of the uncertainty ellipsoid plays a crucial
role in quantifying uncertainty and thus care must be taken
in learning this parameter. Towards this end, we propose
a supervised approach by setting P to the Löwner-Jones

uncertainty ellipsoid computed on matching data pairs. That
is; suppose we have a training set of matching data pairs
{(vi, v′

i), i = 1, 2, · · · , N}, where we assume vi = v̄ is the
nominal data point and v′

i = v̄ + ϵi for some noise ϵi. We
compute the difference ϵi = vi − v′

i, i = 1, 2, · · · , N . An
uncertainty elliposid can be defined as an ellipsoid of minimum

volume enclosing all the ϵi’s. If P represents the parameters
of this ellipsoid and if ϵc is its centroid, then the following
optimization problem ensues to find P ;

min
P≻0,c

− log det(P )

s. t. (ϵi − ϵc)
T P (ϵi − ϵc) ≤ 1, (12)

1We define speedup as the ratio of the time taken by LSTRS method to
solve the objective on u

∗ to the time taken by our algorithm for the same
input data vectors.



6

for i = 1, · · · , N . The objective (12) can be solved via
the well-known Khachiyan algorithm [21], which is a poly-
nomially bounded linear program that generates a sequence
of ellipsoids whose volume shrinks in subsequent iterations,
and approximates to the parameters of the ellipsoid that will
enclose the data points. Since we work with zero-mean data,
ϵc is generally seen to be close to the origin and thus can be
neglected.

VI. EXPERIMENTS AND RESULTS

In this section, experiments are presented to evaluate the
effectiveness of RSH. First, we will define the metrics against
which performance is measured and later compare RSH
against the state-of-the-art methods.

A. Performance Metrics

1) Basis Overlap: Assume two test data vectors v1 and v2

and a learned basis dictionary D. Let a1 and a2 represent
the set of active indices of the sparse codes for each of the
data points respectively. Let c1 and c2 represent the set of
coefficient values corresponding to each index in a1 and a2

respectively. If T (> 0) is a threshold, then we define Basis

Overlap (BO) as:

BO(v1, v2) =
#(a|c1|>T

1
∩ a|c2|>T

2
)

max(#a|c1|>T
1

, #a|c2|>T
2

)
, (13)

where the notation #a|c|>T means: the number of indices in
a whose corresponding coefficient values c are greater than
a threshold T in absolute value. Intuitively, BO describes
the proportion of the overlap of the indices in the sparse
representation of v1 and v2. Ideally, when the data points are
similar, we expect BO to be unity which we call a Perfect

Basis Overlap. We note in passing that the standard metric for
evaluating set intersections is the Jaccard distance [17], which
has a similar form as (13), but uses the cardinality of union
of the two sets in the denominator. In this paper, we prefer
BO to Jaccard distance as BO directly provides an intuition
into the proportion of the longest index set that overlapped.
This information is useful for deciding the threshold T and
the regularization constants for sparse coding; longer sparse
codes without significant BO is not useful for hashing.

2) Accuracy: When a dataset that we use does not have
a ground truth associated (e.g., SIFT eight category dataset
in Section VI-C1), the baselines are decided by the standard
distance measure (Euclidean distance) via a linear scan. For
this dataset, we create a database and a query set of q items.
For each query item i, k ground truth neighbors (Gk

i ) were
found using the linear scan, followed by k nearest neighbors
(Ak

i ) retrieved using the respective algorithm. We define

Accuracy =
1

q

∑

i

|Gk
i ∩ Ak

i |

|Gk
i |

. (14)
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Fig. 4. Simulation results: (a) Two 40D perturbed data points (that are known
to have the same active basis before adding noise) and (b) their robustified
counterparts. As is clear from the plot, robust formulation brings the noisy
data points belonging to the uncertainty set closer in the new mapping.
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Fig. 5. Simulation results: (a) Number of active non-zero dictionary indices
against an increasing regularization, (b) Average performance of NN against
increasing regularization. As is clear, using the RSH formulation, we have
more number of non-zero indices as well as increased basis overlap.

B. Simulations

In this section, we will first illustrate using simulated data,
how incorporating the worst case uncertainty increases the
basis overlap of the sparse codes. Recall that, in our robust
formulation we map a given data point to a new vector
v̂ = v + Pu along the direction of worst case perturbation
u. This vector v̂ is later sparse coded via the robust dictionary
D. To evaluate our idea and understand how robustness is
achieved, we created a dataset of 50K vectors each 40D using
a known 40 × 120 dictionary (that is, first we used simulated
sparse codes, which were then multiplied with the dictio-
nary to produce dense data vectors). The data vectors were
later corrupted by Gaussian and Laplacian noise to produce
noisy data pairs (as suggested in [11]). Figure 4 illustrates
two matching2 data pairs (Figure 4(a)) and their robustified
counterparts (Figure 4(b)). As is clear, the magnitudes of the
sparse codes are now different, while their dimensions match
almost exactly, showing that any sparse code created from
these robustified descriptors are more likely to result in the
same hash code.

2That is, two data points that are known to have the same basis originally,
but were perturbed with noise.
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We would like to highlight the importance of our robust
formulation against robustness achieved via increasing the
regularization constant in the LASSO formulation. Recall that
regularization controls the degree of sparsity; i.e., a larger
regularization means shorter and more robust sparse codes.
Since the length of the sparse codes play a significant role in
the uniqueness of our hashing formulation, shorter codes are
not desired. We used a training set of 20K data points from
the above simulated dataset to learn a dictionary using the
RSH framework. Next, we applied RSH to generate sparse
codes for the data pairs in the test set. Figure 5(a) shows
the average active basis set size for increasing regularization,
while Figure 5(b) plots the average BO between the bases in
the noisy pairs, averaged on a randomly chosen 1K test vectors
from the 10K test set. For the test set, we plot average BO for
all the data points in the dataset, while perfect BO plots the
ratio of the number of times perfect BO was achieved to the
number of test data points. The plot of average BO is an upper-
bound to the plot of perfect BO as is clear from the Figure 5(b).
More importantly, both average BO and perfect BO are better
for RSH than using just the traditional DL objective. In brief,
Figures 5(a) and 5(b) together implies that RSH leads to longer
hash codes, at the same time improve basis overlaps against a
potential robustness achieved by increasing the regularization.

C. Real Data Experiments

The primary goal of this section is to show the robustness
achieved by RSH on real data under various noise models;
the idea is to show that a single robust uncertainty model (as
in RSH) provides the needed robustness, that could otherwise
have needed different probabilistic denoising models. To verify
this claim, we used two different benchmark datasets, namely
(i) the SIFT dataset3, and (ii) the MNIST digits4 dataset.
Below, we provide details of these datasets.

1) SIFT Dataset: This dataset consists of eight image
categories, each category consisting of six images of the same
scene, but undergoing deformations of a particular type. The
categories are as follows: (i) BARK, with images undergoing
magnification, (ii) BIKES, with fogged images, (iii) LEUVEN,
with illumination differences, (iv) TREES, with Gaussian blur,
(v) BOAT, with magnification and rotation, (vi) GRAPHIC,
with 3D camera transformation, (vii) UBC, with JPEG com-
pression noise, and (viii) WALL, with changes in view angle.
Note that these distortion categories characterize almost all the
types of deformations that images in real-world undergo and
the SIFT descriptors generated from these images capture the
potential variabilities that one can expect in these descriptors.
A point that we would like to highlight here is that each
distortion category adheres to a different noise model, but
we will be learning a single uncertainty model from all the
categories together, which will be used for RSH. Each image
in the dataset produced approximately 5K SIFT descriptors.

The ground truth was decided as follows: we used an
approximate NN strategy to ensure an ϵ-neighborhood. We
first computed the NNs for a given query point using linear

3http://www.robots.ox.ac.uk/∼vgg/research/affine/index.html
4http://www.cs.nyu.edu/∼roweis/data.html

scan. Suppose dls denotes the distance of the NN for a query
point q to its closest neighbor in the database. If dq is the
distance of the closest neighbor found by an algorithm, then
we say the NN is correct if dls

dq
> ϵ (ϵ = 0.9 for all the

algorithms).

2) MNIST Dataset: This dataset contains 28 × 28 gray
scale images of digits (from 0 to 9). For tractability of our
experiments, we resized the images to half their sizes. The
images where then vectorized to 196D. There are 60K database
images and 10K query images along with the ground truth
class label for each image. From the database, we used 20K
images to train the dictionary.

D. Dictionary Size Estimation

1) SIFT DL: To choose the right size of the dictionary
for the NN operation, we used a cross-validation approach.
We trained multiple dictionaries with number of basis varying
from 256 to 4096 at steps of 256 and measured the NN
performance on a small validation set of 10K SIFT descriptors.
To train the dictionary, we used 5M SIFT descriptors from
INRIA Holidays5 dataset (although the uncertainty model
parameters were computed on the SIFT descriptors from the
eight category model). Interestingly, we found that the NN
performance decreased after a dictionary size of 2048, which
we speculate is due to the increase in the coherence of
dictionary atoms leading to ambiguous sparse codes. Thus,
we used a dictionary of size 128 × 2048 in this experiment.
We used a regularization value β = 0.2 in RSH. On an average
7 dictionary atoms were activated in sparse coding of the
robustified descriptors.

2) MNIST DL: We used a similar cross-validation approach
to choose the right dictionary size for the MNIST dataset.
A random sample of 1K digit images were used to query
the dataset while the dictionary size was varied from 392 till
3920. Contrary to the SIFT DL, we found that there was no
drop in performance when the number of basis increased, but
the time for sparse coding increased many-fold, with meager
improvement in accuracy. Thus, compromising on tractability
of our approach and accuracy, we decided to use 1960 basis
vectors in the dictionary. We used 20K data points to train the
dictionary.

E. Uncertainty Matrix Estimation

To decide the uncertainty ellipsoid matrix, we randomly
selected a set of 20K points from the SIFT eight-category
dataset and computed their one-nearest neighbor using a linear
scan with Euclidean distance. Later, the difference of matching

descriptors were used to find the Löwner-Jones ellipsoid using
the algorithm mentioned before. Even though this step is
computationally expensive, it has to be done only once. For
the MNIST digits dataset, we used 200 images per digit class
to build the uncertainty matrix.

5http://lear.inrialpes.fr/∼jegou/data.php
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Fig. 6. A comparison of NN performance of RSH against several other state-of-the-art NN methods on (a) SIFT eight category dataset and (b) MNIST
digits dataset. We used a single data uncertainty model for all the data classes in both the datasets.

F. Nearest Neighbor Performance

In this subsection, we provide experimental results on one-
nearest neighbor classification using our algorithm, along
with comparison to several state-of-the-art methods in NN
retrieval. As we alluded to earlier, our main goal in this section
is to demonstrate the robustness achieved by our algorithm
using a single worst-case uncertainty model for different data
distortion categories. In the next section, we will showcase
performance results on K-NN retrieval on large scale data.

We chose to compare our method against the following
other state-of-the-art NN algorithms, namely (i) KDT (Best-
Bin-First based on k-d trees), (ii) Kernelized LSH [23], (iii)
LASSO based NN (DL), (v) Product Quantization (PQ) [19],
and Spectral Hashing (SH) [38]. We used the publicly available
implementations of these algorithms. For SH and KLSH, we
used 64 bit hash codes, while for PQ, we used the IVFADC
variant of the algorithm (using 64 bits and with single cell
visits) using an inverted file system for retrieval.

In Figure 6, we show the accuracy of NN retrieval for the
eight distortion category SIFT dataset and the 10 category
MNIST digits dataset. The bar plots clearly demonstrate the
superior performance of RSH against the state of the art.
We found that adhering to Figure 5, RSH produced better
BO compared to non-robust DL. This improvement over DL
was more prominent in the SIFT dataset, probably because
this dataset underwent more perturbations compared to the
MNIST digits. Among the state of the art, the PQ method,
that shows promising results on the SIFT dataset, is seen to
perform poorly on the MNIST dataset.

G. Scalability of RSH

The previous experiments used relatively small datasets
for performance evaluation. Contemporary datasets are often
very large. In this section, we evaluate the performance of
RSH for the task of retrieving K nearest neighbors using the
methodology proposed in [19] using 1M SIFT descriptors from
the INRIA ANN-SIFT1M dataset. 6. To make our evaluation
comparable to the results reported in [19], we decided to
use a hash code of length 64-bits by learning a dictionary
of 256 basis and using eight active indices for every sparse
code. To learn this dictionary, we used the 100K training

6http://corpus-texmex.irisa.fr/

descriptors associated with this dataset, while we reused the
SIFT uncertainty model from our experiments in Section VI-E
for computing the robust directions.

For evaluation, we use the standard Recall@K metric (as
in [19]), which is defined as the proportion of the query vectors
for which the ground truth NN is ranked in the first K retrieved
points. Note that when K=1, this measure corresponds to the
standard precision measure used in papers such as [27] for
ANN evaluation. We also include two other popular hashing
algorithms, viz. Euclidean LSH (E2LSH) [13] and Shift Invari-
ant Kernel Hashing (SIKH) [28] in our comparisons, using
64-bit hash codes. For the product quantization method, we
used the IVFADC variant of the algorithm using single cell
visits (defined as w = 1 in [19]), as it is the most similar
variant of this technique to our method. In Figure 7, we plot
the Recall@K performance on 10K SIFT test points provided
in the dataset. The plot clearly shows that RSH outperforms
the state-of-the-art ANN methods, especially when K is small.
We achieve an improvement of 5.9% and 6.4% over the PQ-
IVFADC method at Recall@1 and Recall@100 respectively.
We outperform all other methods significantly when K is low.
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Fig. 7. SIFT dataset: comparison of K-NN recall performance against several
state-of-the-art algorithms. The evaluation used 1M SIFT descriptors from the
INRIA Copydays dataset. Our algorithm (RSH) uses a dictionary with 256
atoms and 8 active coefficients so that each data point is encoded using a
64-bit hash code. All other methods also use a 64-bit hash code.

H. Computational and Memory Requirements

Our algorithms were implemented mainly in MATLAB,
while hash table and the query software were implemented
in C++ with MATLAB interfaces. Using a single core CPU,
it took on an average 9ms (in MATLAB) for computing
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Fig. 8. Hash table statistics and average query time taken when the SIFT database size is increased to 1 billion points. We evaluate three different dictionary
size/active basis combinations, namely 256/8, 512/7, and 1024/6 leading to 64-bit, 63-bit, and 60-bit hash codes.

the robust directions (u) for a SIFT descriptor and less than
100µs for sparse coding a SIFT vector using the SPAMS tool-
box [26],7. As for the MNIST dataset, it took approximately
23ms for computing the robust directions, around 3.11ms for
sparse coding. Below, we evaluate the performance of our
hashing scheme and query retrieval when the database size
increases to billions of points.

a) Hashtable Statistics: In this section, we explicitly
evaluate the performance of hashing introduced by RSH. To
this end, our evaluation criteria is the distribution of hash codes
produced by RSH for an increasing number of data points.
For this experiment, we used the INRIA BIGANN dataset
introduced in [20] consisting of 1 billion SIFT descriptors.
We decided to use a hash code of approximately 64-bits in
our experiments so that our timing comparisons (discussed
next) is comparable to those reported in [19]. To this end, we
used three different dictionary basis/active-set combinations,
namely 256/8, 512/7, and 1024/6 leading to hash codes of
length 64-bits, 63-bits, and 60-bits respectively. Recall that
we need to use only ⌈log(n)⌉ bits to represent the indices
of a dictionary with n basis. The data points belonging to a
hash bucket are stored in a linked list (possibly on the disk).
Note that we need to store only the coefficients corresponding
to the active basis for every descriptor, and thus our memory
needs are much less compared to [27]. Also, we do not need
to store the cluster centroids as in PQ [19], which are often
non-sparse.

In Figures 8(a) and 8(b), we plot the average hash bucket
length and the maximum number of data points in any hash
bucket respectively when the hashed database size is increased
from 50M to 1000M SIFT descriptors. As is expected, using
a dictionary with large number of basis provides more di-
versity in hashing and leads to fewer hash collisions under
approximately same hash code lengths. Further, the plots
show that the average hash bucket size increases marginally,
while the maximum number of elements increases linearly,
but remains in the range of a few thousands (especially for
larger dictionaries). This substantiates our assumption that
sparse code combinations provide unique representations for
dissimilar data points, while the recall results in Figures 6
and 7 show that similar data points get hashed to the same
hash bucket.

7http://www.di.ens.fr/willow/SPAMS/

b) Query Retrieval Performance: In Figure 8(c), we eval-
uate the average query time for the three different dictionary
size/active basis combinations described in the last section. We
compare the performance against PQ as reported in [19] on
the 1 billion SIFT dataset. As this plot shows, our performance
is comparable, albeit slightly inferior when the database size
is very large while using smaller dictionaries.

VII. CONCLUSION

In this paper, we proposed a model of the sparse coding
framework for aiding NN searches. A novel formulation of
dictionary learning problem was introduced based on the
ellipsoidal data uncertainty, followed by a scalable and effi-
cient algorithm to solve the resulting robust objective. Our
experiments demonstrated the superior performance of our
scheme over the state of the art. Going forward, we would
like to investigate the effects of other perturbation models for
the L1 ball, polyhedral uncertainty, etc.

ACKNOWLEDGEMENTS

This research has been supported in part by the National
Science Foundation through grants #IIP-0443945, #CNS-
0821474, #IIP-0934327, #CNS-1039741, #IIS-1017344, #IIP-
1032018, #SMA-1028076, and #CNS-1338042. We are grate-
ful for resources from the University of Minnesota Supercom-
puting Institute.

REFERENCES

[1] A. Babenko and V. Lempitsky. The inverted multi-index. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3069–3076. IEEE, 2012.

[2] L. Bar and G. Sapiro. Hierarchical dictionary learning for invariant
classification. In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, pages 3578–3581. IEEE, 2010.

[3] A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust optimization.
Princeton University Press, 2009.

[4] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear
programs. Operations Research Letters, 25(1):1–14, 1999.

[5] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest
neighbor meaningful? Database Theory, pages 217–235, 1999.

[6] S. P. Boyd and L. Vandenberghe. Convex optimization. Cambridge
University Press, 2004.

[7] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Ex-
act signal reconstruction from highly incomplete frequency information.
IEEE Transactions on Information Theory, 52(2):489–509, 2006.

[8] C. Caraminis, H. Xu, and S. Mannor. Optmization for Machine Learning,
chapter Robust Optimization in Machine Learning. MIT Press, 2011.



10

[9] H. Cheng, Z. Liu, L. Hou, and J. Yang. Sparsity induced similarity
measure and its applications. IEEE Transactions on Circuits and Systems
for Video Technology, 2012.

[10] A. Cherian, V. Morellas, and N. Papanikolopoulos. Efficient Similarity
Search via Sparse Coding. Technical report, University of Minnesota,
2011.

[11] A. Cherian, S. Sra, and N. Papanikolopoulos. Denoising Sparse Noise
via Online Dictionary Learning. In Proceedings of the International
Conference on Acoustics, Speech and Signal Processing. IEEE, 2011.

[12] T. H. Cormen. Introduction to algorithms. The MIT press, 2001.
[13] M. Datar, N. Immorlica, P. Indyk, and V.S. Mirrokni. Locality-sensitive

hashing scheme based on p-stable distributions. Proceedings of the
Twentieth Annual Symposium on Computational Geometry, pages 253–
262, 2004.

[14] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle
regression. Annals of Statistics, 32(2):407–451, 2004.

[15] M. Elad and M. Aharon. Image denoising via learned dictionaries
and sparse representation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 895–900, 2006.

[16] P. Indyk and R. Motwani. Approximate nearest neighbors: towards
removing the curse of dimensionality. Theory of Computing, pages 604–
613, 1998.

[17] P. Jaccard. Etude comparative de la distribution florale dans une portion
des Alpes et du Jura. Bulletin de la Socit vaudoise des Sciences
Naturelles, 37:547–579, 1901.

[18] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak
geometric consistency for large scale image search. In European
Conference on Computer Vision, pages 304–317, 2008.

[19] H Jegou, M Douze, and C Schmid. Product quantization for nearest
neighbor search. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(1):117–128, 2011.

[20] H. Jégou, R. Tavenard, M. Douze, and L. Amsaleg. Searching in
one billion vectors: re-rank with source coding. In Proceedings of the
International Conference on Acoustics, Speech and Signal Processing,
pages 861–864, 2011.

[21] L. G. Khachiyan. Polynomial algorithms in linear programming. USSR
Computational Mathematics and Mathematical Physics, 20(1):53–72,
1980.

[22] D. E. Knuth. The art of computer programming. Vol. 3, Sorting and
Searching. Addison-Wesley Reading, MA, 1973.

[23] B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for
scalable image search. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2130–2137, 2009.

[24] W. Liu, J. Wang, S. Kumar, and S. Chang. Hashing with graphs.
In Proceedings of the International Conference on Machine Learning,
pages 1–8, 2011.

[25] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal on Computer Vision, 60(2):91–110, 2004.

[26] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix
factorization and sparse coding. Journal of Machine Learning Research,
11:19–60, 2010.

[27] M. Muja and D. G. Lowe. Fast approximate nearest neighbors with
automatic algorithm configuration. In International Conference on
Computer Vision Theory and Applications, pages 331–340. INSTICC
Press, 2009.

[28] M. Raginsky and S. Lazebnik. Locality-sensitive binary codes from
shift-invariant kernels. In Advances in Neural Information Processing
Systems, 2009.

[29] I. Ramirez, F. Lecumberry, and G. Sapiro. Universal priors for sparse
modeling. In Workshop on Computational Advances in Multi-Sensor
Adaptive Processing, pages 197–200, 2009.

[30] M. Rojas, S. A. Santos, and D. C. Sorensen. LSTRS: Matlab soft-
ware for large-scale trust-region subproblems and regularization. ACM
Transactions on Mathematical Software, 34(2):11, 2008.

[31] S. Roth and M. J. Black. A framework for learning image priors.
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2005.

[32] G. Heidemann S. Klenk. A sparse coding based similarity measure. In
International Conference on Data Mining, pages 512–516, 2009.

[33] R. Salakhutdinov and G. Hinton. Semantic hashing. International
Journal of Approximate Reasoning, 50(7):969–978, 2009.

[34] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter-sensitive hashing. In Proceedings of the IEEE International
Conference on Computer Vision, pages 750–757. IEEE, 2003.

[35] X. Shu and N. Ahuja. Hybrid Compressive Sampling via a New Total
Variation TVL1. European Conference on Computer Vision, pages 393–
404, 2010.

[36] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image
databases for recognition. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.

[37] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-
constrained linear coding for image classification. In IEEE Conference
on Computer Vision and Pattern Recognition. IEEE, 2010.

[38] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In Advances in
Neural Information Processing Systems, pages 1753–1760, 2009.

[39] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching
using sparse coding for image classification. In IEEE Conference on
Computer Vision and Pattern Recognition. IEEE, 2009.

[40] J. Zepeda, E. Kijak, and C. Guillemot. SIFT-based local image descrip-
tion using sparse representations. In IEEE Conference on Multimedia
Signal Processing. IEEE, 2009.

Anoop Cherian is a Postdoctoral Researcher in the
LEAR project team at INRIA Rhone-Alpes, France.
He received his B.Tech (honors) degree in computer
science and Engineering from the National Institute
of Technology, Calicut, India in 2002, his M.S.
and Ph.D. degrees in computer science from the
University of Minnesota, Minneapolis in 2010 and
2013 respectively. From 2002–2007, he worked as a
software design engineer at Microsoft. His research
interests lie in the areas of computer vision and
machine learning. He is the recipient of the Best

Student Paper Award at Intl. Conf. on Image Processing in 2012.

Suvrit Sra is a Senior Research Scientist at the Max
Planck Institute for Intelligent Systems in Tübingen,
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