
Stochastic and incremental methods
(Optml++ Meeting 4)

Suvrit Sra

Massachusetts Institute of Technology

OPTML++, Fall 2015

Outline

– Lect 1: Recap on convexity
– Lect 1: Recap on duality, optimality
– Lect 2: First-order optimization algorithms
– Lect 3: Operator splitting
– Lect 4: Stochastic and incremental methods

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 2 / 42

Large-scale ML

Regularized Empirical Risk Minimization

min
w

1
n

n∑
i=1

`(yi ,wT xi) + λr(w).

This is the f (w) + r(w) “composite objective” form we saw.
(e.g., regression, logistic regression, lasso, CRFs, etc.)

training data: (xi , yi) ∈ Rd × Y (i.i.d.)
large-scale ML: Both d and n are large:
I d : dimension of each input sample
I n: number of training data points / samples

Assume training data “sparse”; so total datasize� dn.
Running time O(#nnz)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 3 / 42

Large-scale ML

Regularized Empirical Risk Minimization

min
w

1
n

n∑
i=1

`(yi ,wT xi) + λr(w).

This is the f (w) + r(w) “composite objective” form we saw.
(e.g., regression, logistic regression, lasso, CRFs, etc.)

training data: (xi , yi) ∈ Rd × Y (i.i.d.)
large-scale ML: Both d and n are large:
I d : dimension of each input sample
I n: number of training data points / samples

Assume training data “sparse”; so total datasize� dn.
Running time O(#nnz)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 3 / 42

Regularized Risk Minimization

Empirical: F̂ (w) = 1
n
∑n

i=1 `(yi ,wT xi) + λr(w)

Generalization: F (w) = E(x ,y)[`(y ,wT x)] + λr(w)

Single pass through data for F (w) by sampling n iid points

Multiple passes if only minimizing empirical cost F̂ (w)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 4 / 42

Regularized Risk Minimization

Empirical: F̂ (w) = 1
n
∑n

i=1 `(yi ,wT xi) + λr(w)

Generalization: F (w) = E(x ,y)[`(y ,wT x)] + λr(w)

Single pass through data for F (w) by sampling n iid points

Multiple passes if only minimizing empirical cost F̂ (w)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 4 / 42

Stochastic optimization

minx∈X F (x) := Eξ[f (x , ξ)]
(f : loss; x : parameters; ξ: data samples)

Setup
1. X ⊂ Rd compact convex set

2. ξ r.v. with distribution P on Ω ⊂ Rd

3. The expectation

Eξ[f (x , ξ)] =
∫

Ω f (x , ξ)dP(ξ)

is well-defined and finite valued for every x ∈ X .
4. For every ξ ∈ Ω, f (·, ξ) is convex

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 5 / 42

Stochastic optimization

minx∈X F (x) := Eξ[f (x , ξ)]
(f : loss; x : parameters; ξ: data samples)

Setup
1. X ⊂ Rd compact convex set
2. ξ r.v. with distribution P on Ω ⊂ Rd

3. The expectation

Eξ[f (x , ξ)] =
∫

Ω f (x , ξ)dP(ξ)

is well-defined and finite valued for every x ∈ X .
4. For every ξ ∈ Ω, f (·, ξ) is convex

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 5 / 42

Stochastic optimization

minx∈X F (x) := Eξ[f (x , ξ)]
(f : loss; x : parameters; ξ: data samples)

Setup
1. X ⊂ Rd compact convex set
2. ξ r.v. with distribution P on Ω ⊂ Rd

3. The expectation

Eξ[f (x , ξ)] =
∫

Ω f (x , ξ)dP(ξ)

is well-defined and finite valued for every x ∈ X .

4. For every ξ ∈ Ω, f (·, ξ) is convex

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 5 / 42

Stochastic optimization

minx∈X F (x) := Eξ[f (x , ξ)]
(f : loss; x : parameters; ξ: data samples)

Setup
1. X ⊂ Rd compact convex set
2. ξ r.v. with distribution P on Ω ⊂ Rd

3. The expectation

Eξ[f (x , ξ)] =
∫

Ω f (x , ξ)dP(ξ)

is well-defined and finite valued for every x ∈ X .
4. For every ξ ∈ Ω, f (·, ξ) is convex

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 5 / 42

Stochastic optimization

Assumption 1: Possible to generate iid samples ξ1, ξ2, . . .
Assumption 2: Oracle yields stochastic gradient g(x , ξ), i.e.,

G(x) := E[g(x , ξ)] s.t. G(x) ∈ ∂F (x).

Theorem Let ξ ∈ Ω; If f (·, ξ) is convex, and F (·) is finite valued in
a neighborhood of x , then

∂F (x) = E[∂x f (x , ξ)].

I So g(x , ω) ∈ ∂x f (x , ω) is a stochastic subgradient.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 42

Stochastic optimization

Assumption 1: Possible to generate iid samples ξ1, ξ2, . . .
Assumption 2: Oracle yields stochastic gradient g(x , ξ), i.e.,

G(x) := E[g(x , ξ)] s.t. G(x) ∈ ∂F (x).

Theorem Let ξ ∈ Ω; If f (·, ξ) is convex, and F (·) is finite valued in
a neighborhood of x , then

∂F (x) = E[∂x f (x , ξ)].

I So g(x , ω) ∈ ∂x f (x , ω) is a stochastic subgradient.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 42

Stochastic optimization

Assumption 1: Possible to generate iid samples ξ1, ξ2, . . .
Assumption 2: Oracle yields stochastic gradient g(x , ξ), i.e.,

G(x) := E[g(x , ξ)] s.t. G(x) ∈ ∂F (x).

Theorem Let ξ ∈ Ω; If f (·, ξ) is convex, and F (·) is finite valued in
a neighborhood of x , then

∂F (x) = E[∂x f (x , ξ)].

I So g(x , ω) ∈ ∂x f (x , ω) is a stochastic subgradient.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 6 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid

I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi)
I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid
I Generate stochastic subgradient g(x , ξ)

I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi)
I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid
I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi)
I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid
I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)

I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi)
I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid
I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn

I Consider empirical objective F̂n := n−1∑
i f (x , ξi)

I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid
I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi)

I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic optimization methods

♣ Stochastic Approximation (SA) / Stochastic gradient (SGD)
I Sample ξ iid
I Generate stochastic subgradient g(x , ξ)
I Use that in a subgradient method

♣ Sample average approximation (SAA)
I Generate n iid samples, ξ1, . . . , ξn
I Consider empirical objective F̂n := n−1∑

i f (x , ξi)
I SAA refers to creation of this sample average problem
I Minimizing F̂n still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 7 / 42

Stochastic gradient

SA or stochastic (sub)-gradient

I Let x0 ∈ X
I For k ≥ 0

◦ Sample ξk ; compute g(xk , ξk) using oracle
◦ Update xk+1 = PX (xk − αkg(xk , ξk)), where αk > 0

We’ll simply write

xk+1 = PX
(
xk − αkgk

)
Does this work?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 42

Stochastic gradient

SA or stochastic (sub)-gradient

I Let x0 ∈ X
I For k ≥ 0

◦ Sample ξk ; compute g(xk , ξk) using oracle
◦ Update xk+1 = PX (xk − αkg(xk , ξk)), where αk > 0

We’ll simply write

xk+1 = PX
(
xk − αkgk

)

Does this work?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 42

Stochastic gradient

SA or stochastic (sub)-gradient

I Let x0 ∈ X
I For k ≥ 0

◦ Sample ξk ; compute g(xk , ξk) using oracle
◦ Update xk+1 = PX (xk − αkg(xk , ξk)), where αk > 0

We’ll simply write

xk+1 = PX
(
xk − αkgk

)
Does this work?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 8 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random

I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22

≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22

= Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence Analysis

I xk depends on rvs ξ1, . . . , ξk−1, so itself random
I Of course, xk does not depend on ξk

I Subgradient method analysis hinges upon: ‖xk − x∗‖2

I Stochastic subgradient hinges upon: E[‖xk − x∗‖2]

Denote: Rk := ‖xk − x∗‖2 and rk := E[Rk] = E[‖xk − x∗‖2]

Bounding Rk+1

Rk+1 = ‖xk+1 − x∗‖22 = ‖PX (xk − αkgk)− PX (x∗)‖22
≤ ‖xk − x∗ − αkgk‖22
= Rk + α2

k‖gk‖22 − 2αk 〈gk , xk − x∗〉.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 9 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] = E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] = E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] = E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] =

E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] = E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

=

E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] = E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
=

E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

Rk+1 ≤ Rk + α2
k‖gk‖22 − 2αk 〈gk , xk − x∗〉

I Assume: ‖gk‖2 ≤ M on X
I Taking expectation:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈gk , xk − x∗〉].

I We need to now get a handle on the last term

I Since xk is independent of ξk , we have

E[〈xk − x∗, g(xk , ξk)〉] = E
{

E[〈xk − x∗, g(xk , ξk)〉 | ξ[1..(k−1)]]
}

= E
{
〈xk − x∗, E[g(xk , ξk) | ξ[1..(k−1)]]〉

}
= E[〈xk − x∗, Gk 〉], Gk ∈ ∂F (xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 10 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .

I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

It remains to bound: E[〈xk − x∗, Gk 〉]

I Since F is cvx, F (x) ≥ F (xk) + 〈Gk , x − xk 〉 for any x ∈ X .
I Thus, in particular

2αkE[F (x∗)− F (xk)] ≥ 2αkE[〈Gk , x∗ − xk 〉]

Plug this bound back into the rk+1 inequality:

rk+1 ≤ rk + α2
kM2 − 2αkE[〈Gk , xk − x∗〉]

2αkE[〈Gk , xk − x∗〉] ≤ rk − rk+1 + αkM2

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

We’ve bounded the expected progress; What now?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 11 / 42

Convergence analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 42

Convergence analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 42

Convergence analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 42

Convergence analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so

I Set γi = αi∑k
i αi

.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 42

Convergence analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 42

Convergence analysis

2αkE[F (xk)− F (x∗)] ≤ rk − rk+1 + αkM2.

Sum up over i = 1, . . . , k , to obtain∑k

i=1
(2αiE[F (xi)− f (x∗)]) ≤ r1 − rk+1 + M2

∑
i
α2

i

≤ r1 + M2
∑

i
α2

i .

Divide both sides by
∑

i αi , so
I Set γi = αi∑k

i αi
.

I Thus, γi ≥ 0 and
∑

i γi = 1

E
[∑

i
γi(F (xi)− F (x∗))

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 12 / 42

Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k)− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 42

Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k)− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 42

Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k)− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 42

Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k) ≤
∑

i γiF (xi) due to convexity

I So we finally obtain the inequality

E
[
F (x̄k)− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 42

Convergence analysis

I But we wish to say something about xk

I Since γi ≥ 0 and
∑k

i γi = 1, and we have γiF (xi)

I Easier to talk about averaged

x̄k :=
∑k

i
γixi .

I f (x̄k) ≤
∑

i γiF (xi) due to convexity
I So we finally obtain the inequality

E
[
F (x̄k)− F (x∗)

]
≤

r1 + M2∑
i α

2
i

2
∑

i αi
.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 13 / 42

SGD – finally

♠ Let DX := maxx∈X ‖x − x∗‖2 (act. only need ‖x1 − x∗‖ ≤ DX)
♠ Assume αi = α is a constant. Observe that

E[F (x̄k)− F (x∗)] ≤
D2
X + M2kα2

2kα

♠ Minimize rhs over α > 0; thus E[F (x̄k)− F (x∗)] ≤ DX M√
k

♠ If k is not fixed in advance, then choose

αi =
θDX
M
√

i
, i = 1,2, . . .

We showed O(1/
√

k) rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 14 / 42

Stochastic optimization – smooth

Theorem Let f (x , ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L + ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1
E[‖ei‖2]

2ηi
.

As before, by using x̄k = 1
k
∑k

i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αk k + 1
k

∑k

i=1
E[‖ei‖2]

2ηi
.

I Using αi = L + ηi where ηi ∝ 1/
√

i we obtain
E[F (x̄k)− F (x∗)] = O(LD2

k) + O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 42

Stochastic optimization – smooth

Theorem Let f (x , ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L + ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1
E[‖ei‖2]

2ηi
.

As before, by using x̄k = 1
k
∑k

i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αk k + 1
k

∑k

i=1
E[‖ei‖2]

2ηi
.

I Using αi = L + ηi where ηi ∝ 1/
√

i we obtain
E[F (x̄k)− F (x∗)] = O(LD2

k) + O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 42

Stochastic optimization – smooth

Theorem Let f (x , ξ) be C1
L convex. Let ek := ∇F (xk)− gk satisfy

E[ek] = 0. Let ‖xi − x∗‖ ≤ D. Also, let αi = 1/(L + ηi). Then,

E
[∑k

i=1
F (xi+1)− F (x∗)

]
≤ D2

2αk
+
∑k

i=1
E[‖ei‖2]

2ηi
.

As before, by using x̄k = 1
k
∑k

i=1 xi+1 we get

E[F (x̄k)− F (x∗)] ≤ D2

2αk k + 1
k

∑k

i=1
E[‖ei‖2]

2ηi
.

I Using αi = L + ηi where ηi ∝ 1/
√

i we obtain
E[F (x̄k)− F (x∗)] = O(LD2

k) + O(σD√
k

)

where σ bounds the variance E[‖ei‖2]

Minimax optimal rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 15 / 42

Stochastic optimization – strongly convex

Theorem Suppose f (x , ξ) are convex and F (x) is µ-strongly con-
vex. Let x̄k :=

∑k−1
i=0 θixi , where θi = 2(i+1)

(k+1)(k+2) , we obtain

E[F (x̄k)− F (x∗)] ≤ 2M2

µ(k + 1)
.

(Lacoste-Julien, Schmidt, Bach (2012))
With uniform averaging x̄k = 1

k
∑

i xi , we get O(log k/k).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 16 / 42

SGD convergence summary

Cvx Class Rate Iterate Minimax
C0

L 1/
√

k x̄k Yes
C0

L log k/
√

k xk No
C1

L 1/
√

k x̄k Yes
S0

L (log k)/k x̄k , xk No
S1

L 1/k x̄k , xk Yes

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 17 / 42

Extensions

Proximal stochastic gradient

xk+1 = proxαk h[xk − αkg(xk , ξk)]

(Xiao 2010; Hu et al. 2009)

Accelerated versions also possible
(Ghadimi, Lan (2013))
Related methods:

Regularized dual averaging (Nesterov, 2009; Xiao 2010)
Stochastic mirror-prox (Nemirovski et al. 2009)

. . .

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 18 / 42

SAA / Batch problem

min F (x) = E[f (x , ξ)]

Sample Average Approximation (SAA):

Collect samples ξ1, . . . , ξn

Empirical objective: F̂ (x) := 1
n
∑n

i=1 f (x , ξi)

aka Empirical Risk Minimization

Note: we often optimize F̂ using stochastic subgradient;
but theoretical guarantees are then only on the empirical
suboptimality E [F̂ (x̄k)] ≤ . . .
For guarantees on F (x̄k) more work
(regularization + concentration)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 42

SAA / Batch problem

min F (x) = E[f (x , ξ)]

Sample Average Approximation (SAA):

Collect samples ξ1, . . . , ξn

Empirical objective: F̂ (x) := 1
n
∑n

i=1 f (x , ξi)

aka Empirical Risk Minimization
Note: we often optimize F̂ using stochastic subgradient;
but theoretical guarantees are then only on the empirical
suboptimality E [F̂ (x̄k)] ≤ . . .

For guarantees on F (x̄k) more work
(regularization + concentration)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 42

SAA / Batch problem

min F (x) = E[f (x , ξ)]

Sample Average Approximation (SAA):

Collect samples ξ1, . . . , ξn

Empirical objective: F̂ (x) := 1
n
∑n

i=1 f (x , ξi)

aka Empirical Risk Minimization
Note: we often optimize F̂ using stochastic subgradient;
but theoretical guarantees are then only on the empirical
suboptimality E [F̂ (x̄k)] ≤ . . .
For guarantees on F (x̄k) more work
(regularization + concentration)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 19 / 42

Finite-sum problems

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x).

Gradient / subgradient methods

xk+1 = xk − αk∇f (xk)

xk+1 = xk − αkg(xk), g ∈ ∂f (xk)

xk+1 = proxαk r (xk − αk∇f (xk))

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 42

Finite-sum problems

min
x∈Rd

f (x) =
1
n

n∑
i=1

fi(x).

Gradient / subgradient methods

xk+1 = xk − αk∇f (xk)

xk+1 = xk − αkg(xk), g ∈ ∂f (xk)

xk+1 = proxαk r (xk − αk∇f (xk))

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 20 / 42

Stochastic gradient

At iteration k , we randomly pick an integer
i(k) ∈ {1,2, . . . ,m}

xk+1 = xk − αk∇fi(k)(xk)

I The update requires only gradient for fi(k)

I Uses unbiased estimate E[∇fi(k)] = ∇f
I One iteration now n times faster using ∇f (x)

I But how many iterations do we need?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 21 / 42

Stochastic gradient

Method Assumptions Full Stochastic
Subgradient convex O(1/

√
k) O(1/

√
k)

Subgradient strongly cvx O(1/k) O(1/k)

So using stochastic subgradient, solve n times faster.

Method Assumptions Full Stochastic
Gradient convex O(1/k) O(1/

√
k)

Gradient strongly cvx O((1− µ/L)k) O(1/k)

– For smooth problems, stochastic gradient needs more iterations
– Widely used in ML, rapid initial convergence
– Several speedup techniques studied, but worst case remains same

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 22 / 42

Stochastic gradient

Method Assumptions Full Stochastic
Subgradient convex O(1/

√
k) O(1/

√
k)

Subgradient strongly cvx O(1/k) O(1/k)

So using stochastic subgradient, solve n times faster.

Method Assumptions Full Stochastic
Gradient convex O(1/k) O(1/

√
k)

Gradient strongly cvx O((1− µ/L)k) O(1/k)

– For smooth problems, stochastic gradient needs more iterations
– Widely used in ML, rapid initial convergence
– Several speedup techniques studied, but worst case remains same

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 22 / 42

Hybrid methods

I Hybrid of stochastic gradient with full gradient.
Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

◦ store the gradients of ∇fi for i = 1, ..,n
◦ Select uniformly at random i(k) ∈ {1, . . . ,n}
◦ Perform the update

xk+1 = xk −
αk

n

n∑
i=1

yk
i yk

i =

{
∇fi (xk) if i = i(k)

yk−1
i otherwise.

◦ Randomized / stochastic version of incremental gradient method
of Blatt et al (2008)

◦ Storage overhead; acceptable in some ML settings:
fi (x) = `(li , xT Φ(ai)), ∇fi (x) = ∇`(li , xT Φ(ai))Φ(ai)
Store only n scalars (since depends only on xT ai)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 23 / 42

Hybrid methods

I Hybrid of stochastic gradient with full gradient.
Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)

◦ store the gradients of ∇fi for i = 1, ..,n
◦ Select uniformly at random i(k) ∈ {1, . . . ,n}
◦ Perform the update

xk+1 = xk −
αk

n

n∑
i=1

yk
i yk

i =

{
∇fi (xk) if i = i(k)

yk−1
i otherwise.

◦ Randomized / stochastic version of incremental gradient method
of Blatt et al (2008)

◦ Storage overhead; acceptable in some ML settings:
fi (x) = `(li , xT Φ(ai)), ∇fi (x) = ∇`(li , xT Φ(ai))Φ(ai)
Store only n scalars (since depends only on xT ai)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 23 / 42

SAG

Method Assumptions Rate
Gradient convex O(1/k)

Gradient strongly cvx O((1− µ/L)k)
Stochastic strongly cvx O(1/k)

SAG strongly convex O((1−min
{µ

n ,
1

8n

}
)k)

This speedup also observed in practice
Complicated convergence analysis
Similar rates for many other methods
– stochastic dual coordinate (SDCA); [Shalev-Shwartz, Zhang, 2013]
– stochastic variance reduced gradient (SVRG); [Johnson, Zhang, 2013]
– proximal SVRG [Xiao, Zhang, 2014]
– hybrid of SAG and SVRG, SAGA (also proximal); [Defazio et al, 2014]
– accelerated versions [Lin, Mairal, Harchoui; 2015]
– asynchronous hybrid SVRG [Reddi et al. 2015]
– incremental Newton method, S2SGD and MS2GD, . . .

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ 24 / 42

