Stochastic and incremental methods
(Optml++ Meeting 4)

Suvrit Sra
Massachusetts Institute of Technology

OPTML++, Fall 2015

Outline

Lect 1: Recap on convexity

Lect 1: Recap on duality, optimality

Lect 2: First-order optimization algorithms
Lect 3: Operator splitting

Lect 4: Stochastic and incremental methods

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 2/42

Large-scale ML

Regularized Empirical Risk Minimization

N r
min zﬁ(y,, w' X))+ Ar(w).
=
This is the f(w) + r(w) “composite objective” form we saw.
(e.g., regression, logistic regression, lasso, CRFs, etc.)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 3/42

Large-scale ML

Regularized Empirical Risk Minimization

N r
min n;e(y;, w' X))+ Ar(w).
=
This is the f(w) + r(w) “composite objective” form we saw.
(e.g., regression, logistic regression, lasso, CRFs, etc.)
m training data: (x;,y;) € R? x Y (i.i.d.)
m |arge-scale ML: Both d and n are large:

» d: dimension of each input sample
» n: number of training data points / samples

m Assume training data “sparse”; so total datasize <« adn.
m Running time O(#nnz)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 3/42

Regularized Risk Minimization

Empirical: F(w) = 17 0(y;, wTx;) + Ar(w)
Generalization: F(w) = E, ,[((y, w"x)] + Ar(w)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 4742

Regularized Risk Minimization

Empirical: F(w) = 17 0(y;, wTx;) + Ar(w)
Generalization: F(w) = E, ,[((y, w"x)] + Ar(w)
Single pass through data for F(w) by sampling n iid points

Multiple passes if only minimizing empirical cost ﬁ(W)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 4/42

Stochastic optimization

Minxex F(X) := Ee[f(x,)]
(f: loss; x: parameters; £: data samples)

Setup
1. X c RY compact convex set

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 5/42

Stochastic optimization

Minxex F(X) := Ee[f(x,)]
(f: loss; x: parameters; £: data samples)

Setup
1. X c RY compact convex set
2. ¢ r.v. with distribution P on Q c R?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 5/42

Stochastic optimization

Minxex F(X) := Ee[f(x,)]
(f: loss; x: parameters; £: data samples)

Setup

1. X c RY compact convex set

2. ¢ r.v. with distribution P on Q c R?
3. The expectation

Ec[f(x,)] = Jq f(x,£)dP(¢)

is well-defined and finite valued for every x € X.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++

L [T 5/42

Stochastic optimization

Minxex F(X) := Ee[f(x,)]
(f: loss; x: parameters; £: data samples)

Setup

1. X c RY compact convex set

2. ¢ r.v. with distribution P on Q c R?
3. The expectation

Ec[f(x,)] = Jq f(x,£)dP(¢)

is well-defined and finite valued for every x € X.
4. Forevery ¢ € Q, f(+,£) is convex

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++

L [T 5/42

Stochastic optimization

Assumption 1: Possible to generate iid samples &1, &o, . . .
Assumption 2: Oracle yields stochastic gradient g(x, ¢), i.e.,

G(x) == E[g(x,£)] st G(x) € dF(x).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 6/42

Stochastic optimization

Assumption 1: Possible to generate iid samples &1, &o, . . .
Assumption 2: Oracle yields stochastic gradient g(x, ¢), i.e.,

G(x) == E[g(x,£)] st G(x) € dF(x).

Theorem Let ¢ € Q; If (-, &) is convex, and F(-) is finite valued in
a neighborhood of x, then

OF(x) = E[0xf(x,&)]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 6/42

Stochastic optimization

Assumption 1: Possible to generate iid samples &1, &o, . . .
Assumption 2: Oracle yields stochastic gradient g(x, ¢), i.e.,

G(x) == E[g(x,£)] st G(x) € dF(x).

Theorem Let ¢ € Q; If (-, &) is convex, and F(-) is finite valued in
a neighborhood of x, then

OF(x) = E[0xf(x,&)]
» So g(x,w) € Okf(x,w) is a stochastic subgradient.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 6/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid
» Generate stochastic subgradient g(x, &)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid
» Generate stochastic subgradient g(x, &)
» Use that in a subgradient method

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid
» Generate stochastic subgradient g(x, &)
» Use that in a subgradient method

& Sample average approximation (SAA)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid
» Generate stochastic subgradient g(x, &)
» Use that in a subgradient method

& Sample average approximation (SAA)
» Generate niid samples, &1,...,&,

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid
» Generate stochastic subgradient g(x, &)
» Use that in a subgradient method

& Sample average approximation (SAA)

» Generate niid samples, {1, ..., &n
» Consider empirical objective F, := n=1Y", f(x, &)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic optimization methods

& Stochastic Approximation (SA) / Stochastic gradient (SGD)
» Sample ¢ iid
» Generate stochastic subgradient g(x, &)
» Use that in a subgradient method

& Sample average approximation (SAA)

» Generate niid samples, {1, ..., &n

» Consider empirical objective F, := n=1Y", f(x, &)

» SAA refers to creation of this sample average problem
» Minimizing F, still needs to be done!

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 7/42

Stochastic gradient

SA or stochastic (sub)-gradient

> Letxge X
» Fork >0

o Sample &x; compute g(xk, &k) using oracle
o Update xx.1 = Px(Xk — axg(X«, k), where ax > 0

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 8/42

Stochastic gradient

SA or stochastic (sub)-gradient

> Letxge X
» Fork >0

o Sample &x; compute g(xk, &k) using oracle
o Update xx.1 = Px(Xk — axg(X«, k), where ax > 0

We’ll simply write

Xi+1 = Py (X — o)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 8/42

Stochastic gradient

SA or stochastic (sub)-gradient

> Letxge X
» Fork >0

o Sample &x; compute g(xk, &k) using oracle
o Update xx.1 = Px(Xk — axg(X«, k), where ax > 0

We’ll simply write

Xi+1 = Py (X — o)

?

Q..
@ Does this work?

=

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 8/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random
» Of course, xx does not depend on &

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random
» Of course, xx does not depend on &
» Subgradient method analysis hinges upon: ||xx — x*||?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random

» Of course, xx does not depend on &

» Subgradient method analysis hinges upon: ||xx — x*||?
» Stochastic subgradient hinges upon: E[||xx — x*||?]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random

» Of course, xx does not depend on &

» Subgradient method analysis hinges upon: ||xx — x*||?
» Stochastic subgradient hinges upon: E[||xx — x*||?]

Denote: Ry := ||xx — x*||? and ry := E[Rx] = E[||xx — x*||?]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random

» Of course, xx does not depend on &

» Subgradient method analysis hinges upon: ||xx — x*||?
» Stochastic subgradient hinges upon: E[||xx — x*||?]

Denote: Ry := ||xx — x*||? and ry := E[Rx] = E[||xx — x*||?]
Bounding Ry

Ricrt = Xt = X113 = 11Px (X — cxgi) — Pa(x*)13

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random

» Of course, xx does not depend on &

» Subgradient method analysis hinges upon: ||xx — x*||?
» Stochastic subgradient hinges upon: E[||xx — x*||?]

Denote: Ry := ||xx — x*||? and ry := E[Rx] = E[||xx — x*||?]

Bounding Ry

X1 — X*||5 = || Pr(Xk — axgk) — Pr(x*)|3
< flxk — x* — awgkll3

R+

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 9/42

Convergence Analysis

» X, depends onrvs &1, ..., &k_1, SO itself random

» Of course, xx does not depend on &

» Subgradient method analysis hinges upon: ||xx — x*||?
» Stochastic subgradient hinges upon: E[||xx — x*||?]

Denote: Ry := ||xx — x*||? and ry := E[Rx] = E[||xx — x*||?]
Bounding Ry

Xk — X153 = || Pr (X — i) — P (x*)|I3
< flxk — x* — awgkll3

Ri + o |9klI5 — 20k (Gk, Xk — X*).

R+

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 9/42

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ T s 10742

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

» Assume: ||gkll2 < Mon X
» Taking expectation:
Mkt < T + ogM? — 204E[(gk, Xk — X))

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 10/ 42

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

» Assume: ||gkll2 < Mon X
» Taking expectation:
Mkt < Mk + agMP — 20 E[(gi, Xic — X*)].

» We need to now get a handle on the last term

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 10/42

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

» Assume: ||gkll2 < Mon X
» Taking expectation:
Mkt < Mk + agMP — 20 E[(gi, Xic — X*)].

» We need to now get a handle on the last term
» Since xi is independent of &, we have

E[(xk — X%, 9(Xk,&k))] =

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 10/42

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

» Assume: ||gk|lo < Mon X
» Taking expectation:
Mkt < Mk + agMP — 20 E[(gi, Xic — X*)].

» We need to now get a handle on the last term
» Since xi is independent of &, we have

E[<Xk - X, g(Xkagk»] = E{E[<Xk - X7, g(kafk» ‘ f[1..(k—1)]]}

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 10/42

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

» Assume: ||gk|lo < Mon X
» Taking expectation:
Mkt < Mk + agMP — 20 E[(gi, Xic — X*)].

» We need to now get a handle on the last term
» Since xi is independent of &, we have

E[0% — X, 9%, &) = E{E[(x% — X", 900 &) | &rny)
= E{{k — X", E[90 &) | &) }

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 10/42

Convergence analysis

Rii1 < Rk + of]|gkl13 — 2ak(gk, Xk — X*)

» Assume: ||gk|lo < Mon X
» Taking expectation:
Mkt < Mk + agMP — 20 E[(gi, Xic — X*)].

» We need to now get a handle on the last term
» Since xi is independent of &, we have

E[<Xk - X, g(Xkagk»] = E{E[<Xk - X7, g(kafk» ‘ f[1..(k—1)]]}
= E{(x — X", E[90%, &) | €.k }
= E[(xx — x*, Gx)], Gk € O0F(xk).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 10/42

Convergence analysis

It remains to bound: E[(xx — x*, Gk)]

Suvrit Sra (MIT)

Optimization for ML and beyond: OPTML++

T s 11742

Convergence analysis

It remains to bound: E[(xx — x*, Gk)] ‘

» Since Fis cvx, F(x) > F(xx) + (G, x — xx) forany x € X.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 11/42

Convergence analysis

It remains to bound: E[(xx — x*, Gk)] ‘

» Since Fis cvx, F(x) > F(xx) + (G, x — xx) forany x € X.
» Thus, in particular

20E[F(x*) — F(xk)] > 2aE[(Gk, X* — Xi)]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 11/42

Convergence analysis

It remains to bound: E[(xx — x*, Gk)] ‘

» Since Fis cvx, F(x) > F(xx) + (G, x — xx) forany x € X.
» Thus, in particular

20kE[F(x") = F(X)] = 20kE[{ Gk, X" — Xi)]
Plug this bound back into the rx, 1 inequality:

o1 < fe+ agMP — 204 E[(Gi, Xk — X*)]

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 11/42

Convergence analysis

It remains to bound: E[(xx — x*, Gk)] ‘

» Since Fis cvx, F(x) > F(xx) + (G, x — xx) forany x € X.
» Thus, in particular

20kE[F(x") = F(X)] = 20kE[{ Gk, X" — Xi)]
Plug this bound back into the rx, 1 inequality:

eyt < e+ agM? — 204E[(G, Xk — x*)]
2akE[<Gk, X — X*>] < k= Tkt F akM2

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 11/42

Convergence analysis

It remains to bound: E[(xx — x*, Gk)] ‘

» Since Fis cvx, F(x) > F(xx) + (G, x — xx) forany x € X.
» Thus, in particular

20kE[F(x") = F(X)] = 20kE[{ Gk, X" — Xi)]
Plug this bound back into the rx, 1 inequality:

eyt < e+ agM? — 204E[(G, Xk — x*)]
2akE[<Gk, X — X*>] < Tk — Tkt akM2
<

2aE[F(xi) — F(x)] Tk — Tkt + axMP.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 11/42

Convergence analysis

It remains to bound: E[(xx — x*, Gk)] ‘

» Since Fis cvx, F(x) > F(xx) + (G, x — xx) forany x € X.
» Thus, in particular

2akE[F(x7) = F(Xk)] = 20kE[{Gk, X — Xk)]
Plug this bound back into the rx, 1 inequality:

eyt < e+ agM? — 204E[(G, Xk — x*)]
2akE[<Gk, X — X*>] < Tk — Tkt akMz
<

2aE[F(xi) — F(x)] Tk — Tkt + axMP.

\ We’ve bounded the expected progress; What now? \

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 11/42

Convergence analysis

2akE[F(xk) — F(X*)] < 1k — Tyt + axMP.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ T s 12742

Convergence analysis

2akE[F(xk) — F(X*)] < 1k — Tyt + axMP.

Sumupoveri=1,..., k,toobtain

S @aEF() ~) < Ay + MY o

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 12/42

Convergence analysis

2akE[F(xk) — F(X*)] < 1k — Tyt + axMP.

Sumupoveri=1,..., k,toobtain

S (RoiElF(x) — (x)])

IN

A

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++

2 2
n—rg1+M Ziai
< n+ Mm? Zl_a,-z.

L [T 12/42

Convergence analysis

2akE[F(xk) — F(X*)] < 1k — Tyt + axMP.

Sumupoveri=1,..., k,toobtain

IN

S @aEF() ~) < Ay + MY o

< n+ M? Zl_a,-z.

A

Divide both sides by } *; ;, so

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 12/42

Convergence analysis

2akE[F(xk) — F(X*)] < 1k — Tyt + axMP.

Sumupoveri=1,..., k,toobtain

IN

S @aEF() ~) < Ay + MY o

< n+ M? Zl_a,-z.

A

Divide both sides by } *; ;, so
» Sety; = Ok”

i i

» Thus, v >0and) ;v =1

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 12/42

Convergence analysis

2akE[F(xk) — F(X*)] < 1k — Tyt + axMP.

Sumupoveri=1,..., k,toobtain

IN

S @aEF() ~) < Ay + MY o

< n+ M? Zl_a,-z.

A

Divide both sides by } *; ;, so
» Sety; = Ok”

i i

» Thus, v >0and) ;v =1

2 2
n—+ M3 a;

E[30i(FO0) = FOe)] = F55-

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 12/42

Convergence analysis

» But we wish to say something about x;

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 13/42

Convergence analysis

» But we wish to say something about x;
» Since 7; > 0 and Y-+, = 1, and we have v;F(x))

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 13/42

Convergence analysis

» But we wish to say something about x;
» Since 7; > 0 and Y-+, = 1, and we have v;F(x))
» Easier to talk about averaged

Xk = Z:(ViXi-

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 13/42

Convergence analysis

» But we wish to say something about x;
» Since 7; > 0 and Y-+, = 1, and we have v;F(x))
» Easier to talk about averaged

Xk = Z:(ViXi-

» f(xk) <> ;7iF(x;) due to convexity

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 13/42

v

Convergence analysis

But we wish to say something about x,
Since ; > 0 and 3%+, = 1, and we have ~;F(x;)
Easier to talk about averaged

Xk = Z:(ViXi-

f(xk) < > ;7iF(x;) due to convexity
So we finally obtain the inequality
cht M? Zia/?'

E[F(R) — F(x)] < e

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++

L [T 13/42

SGD - finally

& Let Dy := maxycy || X — x*||2 (act. only need ||x; — x*|| < Dx)

& Assume «; = « is a constant. Observe that

& Minimize rhs over o > 0; thus E[F(X,) — F(x*)] < 2xM

D2 + MPka?

EIF (%) — F(x)) < =2

k

& If kK is not fixed in advance, then choose

0D~

:7’ I:1,2,
M-/

Qj

We showed O(1/V/k) rate

Suvrit Sra (MIT)

Optimization for ML and beyond: OPTML++ Illll 14 /42

Stochastic optimization — smooth

Theorem Let f(x, &) be C] convex. Let e := VF(xx) — g satisfy
E[ex] = 0. Let ||x; — x*|| < D. Also, let o; = 1/(L + n;). Then,

k

i=1

* 2 k ; 2
F(Xie1) — F(x*)] < 2+ 577 Elaltl,

El -

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 15/42

Stochastic optimization — smooth

Theorem Let f(x, &) be C] convex. Let e := VF(xx) — g satisfy
E[ex] = 0. Let ||x; — x*|| < D. Also, let o; = 1/(L + n;). Then,

D? lleil
El g F i) = | <om+ Z, 1 n

As before, by using X, = F ZH Xj+1 we get

— « 2 k (12
EF () — FOON < st + 4>, o

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 15/42

Stochastic optimization — smooth

Theorem Let f(x, &) be C] convex. Let e := VF(x,) —
E[ex] = 0. Let ||x; — x*|| < D. Also, let o; = 1/(L + n;).

F(Xi1) — +Z,]

|lei|
2n;

D2
< 2ay

B2

gk satisfy
Then,

].

As before, by using X, = F ZH Xj+1 We get

Fx*]—2akk+kz,1

» Using a; = L + n; where n; o< 1/+/i we obtain

E[F()_(k) — F(X*)] = O(LTDZ) + O(%[/%

E[F(

Xi) —

2771

)

where o bounds the variance E[| &;||?]

Minimax optimal rate

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++

L [T 15/ 42

Stochastic optimization — strongly convex

Theorem Suppose f(x, {) are convex and F(x) is u-strongly con-
vex. Let xi := Zf‘;& 0;x;, where 6; = % we obtain
2M?
E[F(Xk) — F(x*)] € ——.

(Lacoste-Julien, Schmidt, Bach (2012))
With uniform averaging X = 1} > Xi, we get O(log k/k).

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 16/42

SGD convergence summary

Cvx Class Rate Iterate | Minimax
Cc? 1/Vk X Yes
C? logk/Vk | xx No
C] 1/Vk Xk Yes
SP (logk)/k | Xk, Xk No
SZ 1/k Xic, Xk Yes

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 17/42

Extensions

m Proximal stochastic gradient

Xi+1 = ProXe, nlXk — akg(Xi: &k)]

(Xiao 2010; Hu et al. 2009)
Accelerated versions also possible
(Ghadimi, Lan (2013))

m Related methods:

m Regularized dual averaging (Nesterov, 2009; Xiao 2010)
m Stochastic mirror-prox (Nemirovski et al. 2009)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 18/42

SAA / Batch problem

min F(x) = E[f(x,)]

Sample Average Approximation (SAA):

m Collect samples &4,...,&,
m Empirical objective: F(x) := 1 7 f(x, &)
m aka Empirical Risk Minimization

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++

L [T 19/42

SAA / Batch problem

min F(x) = E[f(x,)]

Sample Average Approximation (SAA):

m Collect samples &4,...,&,
m Empirical objective: F(x) := 1 7 f(x, &)
m aka Empirical Risk Minimization

m Note: we often optimize F using stochastic subgradient;
but theoretical guarantees are then only on the empirical
suboptimality E[F(xx)] < ...

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 19/42

SAA / Batch problem

min F(x) = E[f(x,)]

Sample Average Approximation (SAA):

m Collect samples &4,...,&,
m Empirical objective: F(x) := 1 7 f(x, &)
m aka Empirical Risk Minimization

m Note: we often optimize F using stochastic subgradient;
but theoretical guarantees are then only on the empirical
suboptimality E[F(xx)] < ...

m For guarantees on F(Xy) more work
(regularization + concentration)

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 19/42

Finite-sum problems

min Zf

xERd

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ T v 20742

Finite-sum problems

xERd

min f(x) = lzn: fi(x).
i=1

Gradient / subgradient methods

Xkr1 = Xk — o VIE(X)
X1 = Xk —o9(Xk), 9 € If(xk)
X1 = pI’OXakr(Xk — OZKVf(Xk))

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML++ L [T 20/42

Stochastic gradient

At iteration k, we randomly pick an integer
i(k) e {1,2,...,m}

Xk+1 = Xk — ok Vi) (Xk)

» The update requires only gradient for ;)

» Uses unbiased estimate E[V ;)] = Vf

» One iteration now n times faster using V£(x)
» But how many iterations do we need?

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 21/42

Stochastic gradient

Method \ Assumptions Full Stochastic
Subgradient | convex O(1/vk) O(1/Vk)
Subgradient | strongly cvx O(1/k) O(1/k)

So using stochastic subgradient, solve n times faster.

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 22/42

Stochastic gradient

Method \ Assumptions Full Stochastic
Subgradient | convex O(1/vk) O(1/Vk)
Subgradient | strongly cvx O(1/k) O(1/k)

So using stochastic subgradient, solve n times faster.

Method \ Assumptions Full Stochastic
Gradient convex O(1/k) O(1/Vk)
Gradient | strongly cvx O((1 — u/L)¥) O(1/k)

— For smooth problems, stochastic gradient needs more iterations
— Widely used in ML, rapid initial convergence
— Several speedup techniques studied, but worst case remains same

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 22/42

Hybrid methods

» Hybrid of stochastic gradient with full gradient.

Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)
o store the gradients of Vfifori=1,..,n
o Select uniformly at random i(k) € {1,...,n}
o Perform the update

. e
ax Vii(xk) ifi=i(k)

X1 = X = — Zyik yi'= {y.kl—1 otherwise
i=1 ! .

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 23/42

Hybrid methods

» Hybrid of stochastic gradient with full gradient.

Stochastic Average Gradient (SAG) (Le Roux, Schmidt, Bach 2012)
o store the gradients of Vfifori=1,..,n
o Select uniformly at random i(k) € {1,...,n}
o Perform the update

Vii(xx) ifi=i(k
Xkt = Xk — Zyl i = { _(¥ (.)

y otherwise.
o Randomized / stochastlc version of incremental gradient method
of Blatt et al (2008)
o Storage overhead; acceptable in some ML settings:
B fi(x) =, xT®(a)), Vi(x) = VI, xTd(a))d(a)
m Store only n scalars (since depends only on x' a))

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T 23/42

SAG

Method | Assumptions Rate

Gradient convex O(1/k)
Gradient strongly cvx O((1 — u/L)¥)
Stochastic | strongly cvx O(1/k)

SAG strongly convex O((1 — min {£, L 1)k)

This speedup also observed in practice
Complicated convergence analysis

Similar rates for many other methods

— stochastic dual coordinate (SDCA); [Shalev-Shwartz, Zhang, 2013]

— stochastic variance reduced gradient (SVRG); [Johnson, Zhang, 2013]
— proximal SVRG [Xiao, Zhang, 2014]

— hybrid of SAG and SVRG, SAGA (also proximal); [Defazio et al, 2014]
— accelerated versions [Lin, Mairal, Harchoui; 2015]

— asynchronous hybrid SVRG [Reddi et al. 2015]

— incremental Newton method, S2SGD and MS2GD, ...

Suvrit Sra (MIT) Optimization for ML and beyond: OPTML-++ L [T

